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Correlation-Robust Auction Design∗

Wei He† Jiangtao Li‡
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Abstract

We study the design of auctions when the auctioneer has limited statistical

information about the joint distribution of the bidders’ valuations. More

specifically, we consider an auctioneer who has an estimate of the marginal

distribution of a generic bidder’s valuation but does not have reliable

information about the correlation structure. We analyze the performance of

mechanisms in terms of revenue guarantee, that is, the greatest lower bound

of revenue across all joint distributions that are consistent with the marginals.

A simple auction format, the second-price auction with no reserve price, is

shown to be asymptotically optimal. Furthermore, for any finite number of

bidders, we solve for the robustly optimal reserve price that generates the

highest revenue guarantee among second-price auctions with reserve prices.

Keywords: Robust mechanism design, correlation, second-price auction,
low reserve price, duality approach, optimal transport.
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1 Introduction

Traditional models in mechanism design make strong assumptions about the
detailed knowledge of the mechanism designer in the economic environment.
Subsequently, the theoretical conclusions can sometimes be fragile; mechanisms
that are optimized to perform well when the assumptions are exactly true may still
fail miserably in the much more frequent cases when the assumptions are untrue.
The so-called Wilson doctrine holds that practical mechanisms should be designed
without assuming that the designer has precise knowledge about the economic
environment.

This paper studies a robust version of the single-unit auction problem where we
relax the assumption about the auctioneer’s knowledge in the payoff environment—
the auctioneer has limited statistical information about the joint distribution of
the bidders’ valuations. In particular, we consider an auctioneer who has an
estimate of the marginal distribution of a generic bidder’s valuation but has non-
Bayesian uncertainty about the correlation structure. Lacking the knowledge of the
correlation structure, our auctioneer ranks mechanisms according to their revenue
guarantee, that is, the greatest lower bound of revenue across all joint distributions
that are consistent with the marginals.

Several motivations can be offered for considering the robustness to the
correlation structure:1

- First, while it is relatively easy to estimate the distribution of a generic
bidder’s valuation, it is significantly more difficult to estimate the joint
distribution, which is a much higher-dimensional object; the computational
and sampling complexity of learning the joint distribution is exponential in the
number of bidders. In other words, obtaining an accurate statistical estimate
of the joint distribution of bidders’ values often requires the observation of
unrealistically many examples of the joint value profiles.

- Second, besides the statistical aspect that the joint distribution is a much
higher-dimensional object, there are many practical reasons why the joint
distribution might be quite hard to observe and learn. For example, there are
many instances in which the auctioneer cannot pin down the identities of the
bidders (such as auctions that take place over the Internet or when bidders

1Of course, our results would not apply in settings in which the auctioneer has access to
sufficiently rich data to obtain an accurate estimate of the joint distribution.
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bid through proxies). In this case, the auctioneer has no way of estimating
the correlation structure. It is reasonable to assume that each bidder has
identical prior distribution, which can be deduced from an empirical study
of a small random subgroup of the buyers’ population.

- Third, given the known importance of the correlation structure (see for
example Myerson (1981) and Crémer and McLean (1988)), understanding
the robustness to the correlation structure is an especially useful exercise,
at the very least in the sense of providing a robustness check for known
mechanisms.2

- Fourth, while we could model the auctioneer’s (lack of) knowledge of the
payoff environment in many different ways, the correlation-robust framework
seems to be a natural starting point. The source of the uncertainty, the
correlation structure, is the same as that in Carroll (2017), who considers a
multi-dimensional screening problem in which the seller knows the marginal
distribution of the buyer’s valuation for each good but does not know the
joint distribution.3

- Finally, reserve prices observed in real-world auctions are substantially lower
than the theoretically optimal ones (see for example Hasker and Sickles
(2010)). Under the correlation-robust framework, for large markets, the
robustly optimal mechanism is the simple and familiar second-price auction
with no reserve price; for a finite number of bidders, we show that typically
the auctioneer finds it optimal to use a low reserve price. Thus, both our
analysis for large markets and a finite number of bidders could be perceived as
supporting the use of a low reserve price from a novel robustness perspective.

To fix ideas and also to illustrate some of the motivations of our analysis, let
us revisit the seminal paper of Myerson (1981) that studies optimal auction design
in the independent private-value setting.

2For example, if the optimal mechanism derived under the independent private-value model
also performs well under other correlation structures, then we would be comfortable using such a
mechanism even without an accurate statistical estimate of the correlation structure. Example 1
shows that this is not the case.

3While the auctioneer is assumed to know the marginal distribution in the correlation-robust
framework, our results for large markets does not depend on the knowledge of the marginal
distribution; see Remark 2(b). For a finite number of bidders, we consider two variations of our
model that relax the assumption about the auctioneer’s knowledge of the marginal distribution
and show that our results still hold true under alternative assumptions.
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Example 1. In the independent private-value setting, Myerson (1981) shows that,
under a regularity condition, the optimal mechanism can be implemented via a
second-price auction with a reserve price (denoted rM ) that does not depend on the
number of bidders. Suppose that each bidder’s valuation is uniformly distributed
on the [0, 1] interval. Then rM = 1

2 . For a thought experiment, suppose that
there is a large number of bidders and the auctioneer needs to decide between
two mechanisms: the second-price auction with reserve price 1

2 and the second-
price auction with no reserve price. We argue that the auctioneer should use the
second-price auction with no reserve price. Consider two cases.

Case (1): If the bidders’ valuations are indeed independent, then the second-
price auction with reserve price 1

2 is optimal and generates a strictly higher expected
revenue than the second-price auction with no reserve price. However, as ex post
revenue of these two mechanisms differs only in the region in which at most one
bidder has a valuation above 1

2 , the difference in the expected revenue of these two
mechanisms is vanishingly small as the number of bidders gets larger.

Case (2): Now consider an alternative scenario in which the bidders’ valuations
are maximally positively correlated (the assumption of independent types is untrue).
Regardless of the number of bidders (provided that there are at least two bidders),
the second-price auction with no reserve price is the optimal mechanism and
generates an expected revenue of 1

2 , whereas the second-price auction with reserve
price 1

2 only generates an expected revenue of 3
8 . �

While we only considered two particular correlation structures, the analysis
already suggests that in large markets, the second-price auction with the optimally
chosen reserve price under the independent private-value model is more vulnerable
than the second-price auction with no reserve price. Intuitively, the optimality of
the second-price auction with reserve price rM in the independent private-value
model depends on the intricate tradeoff of the following two events: (1) the largest
valuation is less than rM (so that the reserve price is not favorable); and (2)
the largest valuation is weakly larger than rM conditional on that the second
largest valuation is less than rM (so that the reserve price is favorable). Thus, the
second-price auction with reserve price rM may not perform well if the correlation
structure is misspecified. In contrast, the second-price auction with no reserve
price generates an expected revenue that is equal to the expectation of the second
largest valuation regardless of the correlation structure. As such, one might expect
that the second-price auction with no reserve price is a reasonable mechanism
given non-Bayesian uncertainty about the correlation structure.
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Indeed, our first result, Theorem 1, establishes the robust optimality of the
second-price auction with no reserve price in large markets among all dominant-
strategy mechanisms.4,5 We show that the revenue guarantee of the second-price
auction with no reserve price converges to the expectation of a generic bidder’s
valuation. Importantly, the expectation of a generic bidder’s valuation is an upper
bound of the highest revenue guarantee in our framework; our auctioneer could
never rule out the maximally positive correlation as a candidate for the joint
distribution, and the expectation of a generic bidder’s valuation is the full surplus
under this particular correlation structure.6

Although the robustness of a mechanism is a key concern, it is only one
of several desiderata in practical mechanism design. Indeed, when selecting an
auction format, the auctioneer might have to balance many different criteria. This
perspective (of balancing multiple criteria) makes our result all the more appealing:
besides having nice theoretical properties and being widely adopted in practice,
the second-price auction with no reserve price is asymptotically optimal in the
correlation-robust framework.7 Our analysis supports the use of the second-price
auction with no reserve price in large markets from a novel robustness perspective,
complementary to existing reasons.

To show that the revenue guarantee of the second-price auction with no
reserve price converges to the expectation of a generic bidder’s valuation, we need

4Theorem 1 continues to hold even if the auctioneer uses a Bayesian mechanism, if we
model the bidders’ beliefs to be derived from the joint distribution; see Remark 1(a) for further
discussion.

5One might think that the design of auctions in large markets is less interesting, on the
ground that many auction formats including the second-price auction with any reserve price are
optimal. While it is indeed the case that the choice of the reserve price does not matter under
the assumption of independent values (since a large number of independent draws form some
distribution would ensure that the second largest valuation approaches the upper bound of possible
valuations), this is not the case in the correlation-robust framework, as illustrated in Example
1. We further wish to emphasize that the underlying logic of the optimality of the second-price
auction in our correlation-robust framework and under the assumption of independent values is
drastically different.

6Abusing the terminology slightly, we refer to the expectation of a generic bidder’s valuation
as the full surplus in the correlation-robust framework hereafter.

7English auctions have a number of properties that make them attractive for practical
purposes. They are weakly group strategy-proof, preserve the privacy of trading agents, endow
the bidders with obviously dominant strategies, and limit the information that agents and the
designer must acquire prior to the auction. English auctions are also widely adopted in practice.
Besides these properties that are common to all English auctions, the English auction with no
reserve price is efficient and does not demand the commitment power that the auctioneer commits
to permanently withholding an unsold object off the market; see Liu, Mierendorff, Shi, and Zhong
(2019). English auctions and second-price auctions are strategically equivalent in our setting. To
economize on notation, we work with second-price auctions.
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to solve the minimization problem in which Nature minimizes the auctioneer’s
expected revenue by choosing a joint distribution that is consistent with the
marginals. While this is a non-trivial task, due to the functional form of the ex
post revenue function of the second-price auction with no reserve price, there is
strong intuition about the properties of the worst-case correlation structure: if
bidder i has the highest valuation and bidder j has the second highest valuation,
then all the other bidders have the same valuation as that of bidder j. This is
because (1) the choice of Nature for the other bidders’ valuation does not matter
for the ex post revenue for this particular realization; (2) since Nature is bounded
by the marginal consistency constraint, choosing the same valuation as that of
bidder j provides the maximum flexibility for Nature to reduce the auctioneer’s ex
post revenue for other realizations.

This intuition leads us to consider a candidate correlation structure that has a
natural economic interpretation as the maximally positive correlation conditionally
on the existence of a strong bidder. Let F denote the distribution of a generic
bidder. One bidder, whom the seller believes is equally likely to be any one of
the bidders, is a strong bidder whose value is drawn from F conditional on that
her valuation is weakly higher than some threshold. Every other bidder is a weak
bidder whose value is drawn from F conditional on that their values are weakly
less than this threshold. Furthermore, all the bidders’ valuations are maximally
positively correlated.

To show that the candidate correlation structure is indeed a worst-case
correlation structure, we adopt a duality approach. This step of our analysis is
closely related to the optimal transport theory (see for example Villani (2003)). To
wit, Nature’s minimization problem can be interpreted as an optimal transportation
problem in which Nature seeks to implement the transportation at minimal cost. A
transportation plan is a joint distribution that is consistent with the marginals, and
Nature’s cost function is the ex post revenue function of the auctioneer. While the
literature of optimal transport focuses on the case of two random variables, we work
with multiple random variables. To be rigorous and self-contained, we prove an n-
dimensional generalization of the weak duality property in the Kantorovich duality
theorem (see Villani (2003, Theorem 1.1.3)). This generalization is straightforward
and follows from a modification of the original proof.

There may be other sequences of mechanisms that are also asymptotically
optimal. To further support the use of the second-price auction with no reserve
price, we prove a complementary result to Theorem 1 on the rate of convergence.
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Consider a class of standard mechanisms in which bidders who do not have the
highest bid do not get the object. In Appendix C, we show that among all sequences
of standard mechanisms, the revenue guarantee of the second-price auction with
no reserve price converges to the full surplus with the fastest rate of convergence.

While Theorem 1 is a result on large markets, the second-price auction with
no reserve price also performs well in small and moderate sized markets. For any
marginal distribution, if there are n bidders, the difference of the full surplus and
the revenue guarantee of the second-price auction with no reserve price is bounded
above by 1

n
. For a numerical example, suppose that each bidder’s valuation is

uniformly distributed on the [0, 1] interval. The revenue guarantee of the second-
price auction with no reserve price is 75% of the full surplus with 4 bidders, and is
90% of the full surplus with 10 bidders.

The auctioneer could potentially do better using other mechanisms in markets
with a finite number of bidders. For practical purposes and also for tractability, we
focus on a familiar class of auction forms, second-price auctions with reserve prices,
that are both theoretically appealing and widely adopted in practice.8 Formally,
we work with a maxmin optimization problem in which the auctioneer chooses
a (random) reserve price to maximize the worst-case expected revenue, where
the worst case is taken over all joint distributions that are consistent with the
marginals. Theorem 2 and Theorem 3 solve for the robustly optimal (random)
reserve price that generates the highest revenue guarantee among all reserve prices
for any finite number of bidders.

Our basic model assumes that the auctioneer knows the marginal distribution
of a generic bidder’s valuation. In Section 7, we consider two variations of the
basic model in which we relax this assumption, and show that our results persist
when the model is made more realistic. Section 7.1 considers a model in which
the auctioneer has local uncertainty about the marginal distribution. Section
7.2 considers a model in which the auctioneer has a conservative estimate of the
marginal distribution.

Section 2 presents our model. Section 3 and Section 4 show that the second-
price auction with no reserve price is asymptotically optimal. Section 5 and Section
6 solve for the robustly optimal (random) reserve price for any finite number of

8We emphasize that it is important to understand the revenue guarantee of standard auction
formats such as second-price auctions with reserve prices. While second-price auctions with
reserve prices might not provide the highest revenue guarantee among all mechanisms, they
are nevertheless one of the most common forms of auctioning an object and have many other
desirable features aside from revenue guarantee.
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bidders. Section 7 discusses two variations of our basic model, Section 8 discussed
related literature, and Section 9 concludes the paper.

2 Preliminaries

2.1 Notation

We first introduce some notation that will be used in the sequel. For any real-valued
vector x ∈ Rn, we write x(k) for the k-th largest element of the vector. For any
set S, we denote by |S| its cardinality. If Y is a measurable set, then ∆Y is the
set of all probability measures on Y . If Y is a metric space, then we treat it as a
measurable space with its Borel σ-algebra.

2.2 The auction environment

An auctioneer seeks to sell a single indivisible object. There are n ≥ 2 risk-neutral
bidders competing for the object. We denote by I = {1, 2, . . . , n} the set of bidders
and i a typical bidder. Each bidder i holds private information about her valuation
of the object, which is modeled as a random variable vi with cumulative distribution
function Fi. We denote by Vi the set of possible valuations of bidder i. The set of
possible valuation profiles is V = ×i∈I Vi with a typical element v. We write v−i
for a valuation profile of bidder i’s opponents; that is, v−i ∈ V−i = ×j 6=i Vj. Apart
from their private information, all bidders are identical. Hereafter, we shall write F
for the common cumulative distribution function.9 Without loss of generality, we
normalize the support of F to be [0, 1]. We assume that F has a positive density
f everywhere on the support.

The auctioneer has an estimate of the marginal distribution of a generic
bidder’s valuation, but has non-Bayesian uncertainty about the correlation structure.
Any joint distribution is a plausible candidate as long as it is consistent with the
marginals. We denote by

Πn(F ) =
{
π ∈ ∆V : ∀i ∈ I, ∀Ai ⊆ Vi, π(Ai × V−i) = F (Ai)

}

the collection of such joint distributions in the setting with n bidders and marginal
distribution F . When there is no confusion, we shall drop the dependence of

9Abusing notation slightly, we also use F to denote the probability measure that is consistent
with the distribution F .
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Πn(F ) on the number of bidders n and/or the marginal distribution F . We make
no assumption about the bidders’ beliefs. In particular, we do not assume that
a common prior exists, nor that the bidders’ and the auctioneer’s beliefs are
consistent.

2.3 Dominant-strategy mechanisms

We focus on dominant-strategy mechanisms. The revelation principle holds, and
we can restrict attention to direct mechanisms. A direct mechanism (q, t) consists
of an allocation rule q : V → [0, 1]n and a payment function t : V → Rn. Each
bidder will report a valuation vi, and based on the resulting profile of reports v,
bidder i receives the object with probability qi(v) and pays ti(v) to the auctioneer.

A direct mechanism (q, t) is a dominant-strategy mechanism if for all i ∈ I,
all v ∈ V , and all v′i ∈ Vi,

vi qi(v)− ti(v) ≥ vi qi(v′i, v−i)− ti(v′i, v−i),

vi qi(v)− ti(v) ≥ 0.

We denote byMn the set of dominant-strategy mechanisms in the setting with n
bidders, and we write Mn for a typical element ofMn. For ease of notation, we
shall drop the dependency ofMn and Mn on the number of bidders n when there
is no confusion.

We are interested in the auctioneer’s expected revenue in the dominant-
strategy equilibrium in which each bidder truthfully reports her valuation of the
object. Let REV (M,π) =

∫
V

∑
i∈I ti(v) dπ(v). That is, we use REV (M,π) to

denote the auctioneer’s expected revenue by using the mechanism M under the
joint distribution π.

2.4 Second-price auctions with reserve prices

Second-price auctions with reserve prices play an important role in our analysis. In
the second-price auction with reserve price r, each bidder i submits a bid mi ∈ R+.
Conditional on the submitted bids m = (m1,m2, . . . ,mn), bidder i’s probability of
winning the object qi(m) and the payment from bidder i to the auctioneer ti(m)

9



are given as follows:

qi(m) =


1

|W (m)| if i ∈ W (m)

0 otherwise
and ti(m) =


max(m(2),r)
|W (m)| if i ∈ W (m)

0 otherwise

where W (m) = {i ∈ I : mi = m(1), mi ≥ r}.

We are interested in the auctioneer’s expected revenue in the dominant-
strategy equilibrium in which each bidder submits a bid that is equal to her
valuation of the object. For the second-price auction with reserve price r, let

REV (r, v) =


0 if v(1) < r;

r if v(2) < r ≤ v(1);

v(2) if v(2) ≥ r,

and let
REV (r, π) =

∫
V
REV (r, v) dπ(v).

That is, we use REV (r, v) to denote the auctioneer’s ex post revenue by using the
second-price auction with reserve price r when the realized valuation profile is v,
and we use REV (r, π) to denote the auctioneer’s expected revenue by using the
second-price auction with reserve price r under the joint distribution π.

2.5 Revenue guarantee as a criterion

We say that R is a revenue guarantee of mechanism M if for all π ∈ Π,

REV (M,π) ≥ R.

We say that R is the revenue guarantee of mechanismM if it is a revenue guarantee
and there is no higher revenue guarantee.

Our auctioneer ranks mechanism according to the revenue guarantee. That is,
given the choice among a set of dominant-strategy mechanisms M̄, the auctioneer
solves the following maxmin optimization problem:

sup
M∈M̄

inf
π∈Π

REV (M,π).
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3 Large markets

We first consider the design of correlation-robust auctions in large markets. The
auctioneer chooses a dominant-strategy mechanism to maximize the worst-case
expected revenue, where the worst case is taken over all joint distributions that
are consistent with the marginals. Formally, the auctioneer solves the following
maxmin optimization problem:

sup
M∈M

inf
π∈Π

REV (M,π). (Maxmin)

We work with sequences of mechanisms {Mn}n≥2 as the auctioneer may
condition the choice of the mechanism on the number of bidders. That is, the
auctioneer could use one mechanism M2 when there are 2 bidders and use another
mechanism M10 when there are 10 bidders. Abuse notation slightly, we use 0 (resp.
r) to denote the second-price auction with no reserve price (resp. second-price
auction with reserve price r) regardless of the number of bidders. This should not
cause any confusion. When studying the asymptotic properties of a sequence of
mechanisms, we write the second-price auction with no reserve price (resp. reserve
price r) rather than the sequence of mechanisms where the designer uses the
second-price auction with no reserve price (resp. reserve price r) for any number
of bidders.

We say that a sequence of mechanisms {Mn}n≥2 is asymptotically optimal if
for any {M ′

n}n≥2, for any α < 1, there exists N such that for all n ≥ N , we have

inf
π∈Π

REV (Mn, π) > α inf
π∈Π

REV (M ′
n, π).

Theorem 1 below shows that a simple auction format, the second-price auction
with no reserve price, is asymptotically optimal.

Theorem 1. The second-price auction with no reserve price is asymptotically
optimal.

One may attempt to work with the maxmin optimization problem (Maxmin)
directly. That is, we first ask, is there a systematic way of solving for the worst-case
correlation structure for any dominant-strategy mechanism? In principle, if we
have a way of identifying the worst-case correlation structure for any dominant-
strategy mechanism, we could first calculate the worst-case expected revenue for
any dominant-strategy mechanism, and then maximize the worst-case expected
revenue (as a function of dominant-strategy mechanisms only) by choosing the
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mechanism. This approach is problematic, as it is far from clear (at least to us)
what would be the worst-case correlation structure for any dominant-strategy
mechanism.

We proceed indirectly. We first work with a simpler problem where we solve
for the revenue guarantee of the second-price auction with no reserve price. We
show that in the setting with n bidders, the revenue guarantee of the second-price
auction with no reserve price is

min
π∈Π

REV (0, π) = n

n− 1

∫ F−1(n−1
n

)

0
x dF (x).

Therefore, as n→∞,

min
π∈Π

REV (0, π)→
∫ 1

0
x dF (x).

Importantly,
∫ 1

0 x dF (x) can be interpreted as the full surplus in the correlation-
robust framework. This is because our auctioneer could never rule out the maximally
positive correlation (defined by randomly drawing q ∼ U [0, 1] and taking v1 =
v2 = . . . = vn = F−1(q)) as a candidate for the joint distribution. Therefore,
for whatever dominant-strategy mechanism that the auctioneer might use, be it
a second-price auction with some reserve price or a more complex mechanism,
the expectation of a generic bidder’s valuation is an upper bound of the revenue
guarantee of the mechanism.

The most involved part of our analysis is to solve for the revenue guarantee
of the second-price auction with no reserve price. Formally, we need to solve the
following minimization problem:

inf
π∈Π

REV (0, π).

This is a non-trivial task, as the space of joint distributions that are consistent
with the marginals is large. For this step, we adopt the duality approach. We
construct the dual maximization problem of the primal minimization problem
and show that the optimal value of the maximization problem is weakly less than
the optimal value of the minimization problem. That is, we establish a weak
duality property. We then proceed to construct the primal variables and dual
variables such that the value of the objective function of the minimization problem
under the constructed primal variables and the value of the objective function
of the maximization problem under the constructed dual variables are the same.

12



This implies that the constructed primal variables is a solution to the primal
minimization problem.10

Remark 1. (a) Theorem 1 shows that the second-price auction with no reserve price
is asymptotically optimal among all sequences of dominant-strategy mechanisms.
Among other things, working with dominant-strategy mechanisms spares us the
need to model the bidders’ hierarchies of beliefs about each other. A Bayesian
approach that makes detailed assumptions about the bidders’ hierarchies of beliefs
about each other goes against the spirit of our exercise. Having said that, if we
model the bidders’ beliefs to be derived from the joint distribution, Theorem 1
continues to hold even if the auctioneer uses a Bayesian mechanism. This is because∫ 1

0 x dF (x) remains to be the full surplus in the Bayesian framework.

(b) Notably, Theorem 1 does not rely on the knowledge of the marginal
distribution. Even if the auctioneer does not possess the knowledge of the marginal
distribution, the auctioneer finds it robustly optimal to use the second-price
auction with no reserve price in large markets. More formally, let F be an arbitrary
collection of marginal distributions, and let Πn(F) = ⋃

F∈F Πn(F ) denote the
collection of joint distributions that the auctioneer considers plausible. Obviously,
Theorem 1 still holds in this alternative setting.

(c) It is instructive to compare our model to that of Myerson (1981). As
discussed in the introduction, the second-price auction with reserve price rM (the
optimal mechanism under the independence assumption) may not perform well
if the correlation structure is misspecified. In contrast, we establish the robust
optimality of the second-price auction with no reserve price in large markets.
Intuitively, the second-price auction with no reserve price generates an expected
revenue that is equal to the expectation of the second largest valuation regardless
of the correlation structure. We formally show that in large markets, the worst case
for the expectation of the second largest valuation is the expectation of a generic
bidder’s valuation. Another difference is that, while Myerson (1981) requires the
regularity condition to establish the optimality of the second-price auction with

10For Theorem 1, it suffices to identify a lower bound of the worst-case revenue of the second-
price auction with no reserve price that converges to the full surplus. While we are aware
of alternative approaches of proving Theorem 1, we present the duality approach here as (1)
the lower bound that we identify can be shown to be tight, which has the the added benefit
of understanding the worst-case expected revenue and the worst-case correlation structure for
the second-price auction with no reserve price for any finite number of bidders, and (2) this
methodology will be used repeatedly throughout the paper, including the analysis of second-price
auctions with (random) reserve prices for any finite number of bidders.
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some reserve price, our model does not impose any condition on the marginal
distribution.

(d) Theorem 1 is a result on large markets. The second-price auction with no
reserve price also performs well in small and moderate sized markets. For any F ,
if there are n bidders, the difference of the full surplus and the revenue guarantee
of the second-price auction with no reserve price is bounded above by 1

n
. Indeed,

∫ 1

0
x dF (x)− inf

π∈Π
REV (0, π)

=
∫ 1

0
x dF (x)− n

n− 1

∫ F−1(n−1
n

)

0
x dF (x)

=
∫ 1

F−1(n−1
n

)
x dF (x)− 1

n− 1

∫ F−1(n−1
n

)

0
x dF (x)

≤
∫ 1

F−1(n−1
n

)
1 dF (x) = 1

n
→ 0.

For a numerical example, suppose that the marginal distribution F is the uniform
distribution on the [0, 1] interval. In the setting with n bidders, the revenue
guarantee of the second-price auction with no reserve price is

min
π∈Π

REV (0, π) = n

n− 1

∫ F−1(n−1
n

)

0
x dF (x) = n

n− 1

∫ n−1
n

0
x dx = n− 1

2n ,

whereas the full surplus is 1
2 . Thus, if there are n bidders, the revenue guarantee

of the second-price auction with no reserve price is n−1
n

of the full surplus.

There may be other sequences of mechanisms that are also asymptotically
optimal.11 Consider a class of standard mechanisms in which bidders who do not
have the highest bid do not get the object.12 Formally, let

M̂n =
{
M̂n ∈Mn : q̂i(v1, v2, . . . , vn) = 0 if vi < max

1≤j≤n
vj

}
.

In Appendix C, we present a complementary result to Theorem 1 that among
all sequences of standard mechanisms, the revenue guarantee of the second-price
auction with no reserve price converges to the full surplus with the fastest rate of

11The second-price auction with any positive reserve price r is not asymptotically optimal.
Regardless of the number of bidders, the revenue guarantee of the second-price auction with
a positive reserve price r cannot exceed its expected revenue under the maximally positive
correlation, which is

∫ 1
r
x dF (x) and is strictly bounded away from

∫ 1
0 x dF (x).

12Thus, the outcome of any standard mechanism is envy-free.
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convergence. Following Remark 1(d), the revenue guarantee of the second-price
auction with no reserve price converges to the full surplus at least in the rate of
O( 1

n
). Appendic C shows that the revenue guarantee of any sequence of standard

mechanisms converges to the full surplus at most in the rate of O( 1
n
).13

4 Proof of Theorem 1

In this section, we show that in the setting with n bidders, the revenue guarantee
of the second-price auction with no reserve price is

min
π∈Π

REV (0, π) = n

n− 1

∫ F−1(n−1
n

)

0
x dF (x).

This, combined with the analysis in Section 3, establishes Theorem 1.

For the sake of clarity, we first consider the case in which there are only two
bidders.

Observation 1. Suppose that n = 2. A worst-case correlation structure for the
second-price auction with no reserve price is the maximally negative correlation,
defined by randomly drawing q ∼ U [0, 1] and taking

v1 = F−1(q) and v2 = F−1(1− q).

To see why this is a worst-case correlation structure, note that for the second-
price auction with no reserve price, the auctioneer’s ex post revenue function

REV (0, v) = v(2) = min(v1, v2)

is a supermodular function. Since Nature chooses a joint distribution to minimize
the expected value of a supermodular function, a worst-case correlation structure
for the auctioneer is indeed the maximally negative correlation.14 It follows that

13It is common in computer science to evaluate an algorithm by bounding its error with a
function of some measure m on the operation of the algorithm. A bound of this kind expresses
the rate at which the error diminishes as m is relaxed, with the error converging to zero as m goes
to infinity. An algorithm with a faster rate of convergence is deemed superior to an algorithm
with a slower rate of convergence because it approximates the exact solution of the problem more
accurately than the slower algorithm when m is sufficiently large. In economics, Satterthwaite
and Williams (2002) rank market mechanisms according to how quickly inefficiency diminishes as
the size of the market increases.

14A function g : V → R is supermodular if

g(v ∨ v′) + g(v ∧ v′) ≥ g(v) + g(v′)
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the revenue guarantee of the second-price auction with no reserve price is

min
π∈Π

REV (0, π) = 2
∫ F−1( 1

2 )

0
x dF (x).

Remark 2. (a) There are other worst-case correlation structures. Consider the
correlation structure defined by randomly drawing s ∼ U{1, 2}, q ∼ U [0, 1

2 ], and
taking vs = F−1(q+ 1

2) and v−s = F−1(q). In words, a bidder, whom the auctioneer
believes is equally likely to be any one of the bidders, is a strong bidder, the
other bidder is a weak bidder, and the bidders’ valuations are maximally positively
correlated. Clearly, under this correlation structure, the auctioneer also obtains an
expected revenue of 2

∫ F−1( 1
2 )

0 x dF (x). Hence, this is also a worst-case correlation
structure for the second-price auction with no reserve price.

(b) An equivalent but indirect way of defining the maximally negative
correlation is as follows. The maximally negative correlation is the unique joint
distribution such that

1. the probability concentrates on the following curve

L0 : F (1)− F (v2) = F (v1)− F (0), v1 ∈ [0, 1];

2. the joint distribution is consistent with the marginals.

While indirect, this alternative definition is somewhat more intuitive. Throughout
the rest of the paper, we shall construct joint distributions indirectly.

Our analysis in the case of two bidders is particularly simple, as we could
exploit the fact that the auctioneer’s ex post revenue function REV (0, v) = v(2) =
min(v1, v2) is a supermodular function. However, when there are more than two
bidders, for the second-price auction with no reserve price, the ex post revenue
function REV (0, v) = v(2) is no longer a supermodular function. Thus, the
worst-case correlation structure in the case of two bidders does not generalize in a
straightforward manner. Nevertheless, for the second-price auction with no reserve
price, since Nature’s objective is to minimize the expectation of v(2) by choosing
a joint distribution that is consistent with the marginals, we have the following
observation, which helps pin down a worst-case correlation structure when there
are more than two bidders.

for all v, v′ ∈ V , where ∨ denotes the component-wise maximum and ∧ denotes the component-
wise minimum. For detailed discussions on the ordering of joint distributions based on the
integrals of supermodular functions, see for example Meyer and Strulovici (2012).
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Observation 2. Suppose that n ≥ 3. Consider the thought experiment in which
the values of v(1) and v(2) are fixed and Nature has the flexibility to choose
v(3), v(4), . . . , v(n). For whatever values of v(3), v(4), . . . , v(n) that Nature chooses,
the ex post revenue is v(2), which is fixed by assumption.

Observation 2 is about a specific scenario in which the values of v(1) and
v(2) have been fixed. Thus, Nature’s choice of v(3), v(4), . . . , v(n) does not matter.
However, Nature’s objective is not to minimize the ex post revenue for this particular
realization of values, but to minimize the expectation of v(2). Since Nature is
constrained to choose a joint distribution that is consistent with the marginals,
although the specific values of v(3), . . . , v(n) do not affect the ex post revenue for
this particular realization, Nature would choose the other bidders’ valuations to be
as high as possible, that is, v(3) = . . . = v(n) = v(2). This choice gives Nature the
maximum flexibility to minimize the expected revenue.

Motivated by these observations, we consider the following joint distribution,
which is our candidate for a worst-case correlation structure. Define π0 to be the
unique joint distribution such that

1. the probability concentrates on n symmetric curves L1
0, L

2
0, . . . , L

n
0 where

Li0 =
{
v ∈ V :F (vj)− F (0) = (n− 1)(F (1)− F (vi)), ∀j 6= i,

vi ∈ [F−1(n− 1
n

), 1]
}

;

2. the joint distribution is consistent with the marginals.

The interpretation of the curve Li0 is that in the region in which bidder i has the
highest valuation, Nature puts probability in a way such that bidders other than i
have the same valuation (motivated by Observation 2), and bidder i’s valuation is
maximally negatively correlated with the other bidders’ valuation (motivated by
Observation 1).

In what follows, we formally show that the correlation structure π0 we
construct above is a worst-case correlation structure for the second-price auction
with no reserve price.

Proposition 1. Suppose that n ≥ 2.15 Then

π0 ∈ arg min
π∈Π

REV (0, π),

15This covers the case of two bidders as a special case.
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and the revenue guarantee of the second-price auction with no reserve price is

min
π∈Π

REV (0, π) = n

n− 1

∫ F−1(n−1
n

)

0
x dF (x).

Remark 3. As in the case of two bidders, there are other worst-case correlation
structures. Consider the correlation structure defined by randomly drawing s ∼
U{1, 2, . . . , n}, q ∼ U [0, n−1

n
], and taking vs = F−1( q

n−1 + n−1
n

) and vw = F−1(q)
for each w 6= s. In words, a bidder, whom the auctioneer believes is equally likely
to be any one of the bidders, is a strong bidder, all the other bidders are weak
bidders, and all the bidders’ valuations are maximally positively correlated. It is
easy to verify that the auctioneer obtains the same expected revenue under this
correlation structure as that under π0. Hence, this is also a worst-case correlation
structure for the second-price auction with no reserve price.

To solve the minimization problem

min
π∈Π

REV (0, π), (Primal-0)

we adopt a duality approach. We construct the dual maximization problem of the
primal minimization problem and show that the optimal value of the maximization
problem is weakly less than the optimal value of the minimization problem. We then
proceed to construct the primal variables and dual variables such that the value of
the objective function of the minimization problem under the constructed primal
variables and the value of the objective function of the maximization problem under
the constructed dual variables are the same. This implies that the constructed
primal variables is a solution to the primal minimization problem.

Define J by

J : L1(F )×L1(F )× . . .×L1(F )→ R and J(µ1, µ2, . . . , µn) =
∑
i∈I

∫
Vi
µi(vi) dF (vi).

Consider the following dual maximization problem of the primal minimization
problem:

max
µ1,µ2,...,µn∈L1(F )

J(µ1, µ2, . . . , µn) =
∑
i∈I

∫
Vi
µi(vi) dF (vi) (Dual-0)

subject to for all v ∈ V,
∑
i∈I

µi(vi) ≤ REV (0, v).

The duality approach has a natural economic interpretation (see for example Villani
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(2003)). The optimal value of the primal minimization problem is the least cost for
a planner that chooses a cost minimizing transport plan. The dual maximization
problem may be interpreted as a decentralized solution. We can interpret µi(vi) as
the price paid per unit of mass to transport companies at the location vi.16 The
optimal value of the dual maximization problem represents the maximal profit of
transport companies with the profit being constrained by that the total cost paid
to the transport sector for transporting one unit of goods ∑i∈I µi(vi) should not
exceed the “if I do it myself” cost REV (0, v).

Lemma 1. The optimal value of the dual maximization problem (Dual-0) is weakly
less than the optimal value of the primal minimization problem (Primal-0).

Lemma 1 is essentially the n-dimensional generalization of the weak duality
property in the Kantorovich duality theorem. The Kantorovich duality theorem
establishes the strong duality in the case of two random variables. For our results,
it suffices to prove the weak duality property. The extension to the case of n
random variables is straightforward. To be self-contained, we present the short
proof here.

Proof of Lemma 1. It suffices to show that for any feasible dual variables µ =
(µ1, µ2, . . . , µN ) of the dual maximization problem and any feasible primal variables
π of the primal minimization problem, the value of the objective function of the
maximization problem under µ is weakly less than the value of the objective
function of the minimization problem under π. As we shall see below, this follows
immediately from the feasibility constraint.

Let π be feasible variables of the primal minimization problem. That is, for
all i ∈ I and for all measurable sets Ai ∈ Vi,

π(Ai × V−i) = F (Ai). (1)

Let µ = (µ1, µ2, . . . , µN) be feasible variables of the dual maximization problem.
That is, for all v ∈ V ,

∑
i∈I

µi(vi) ≤ REV (0, v). (2)

16More formally, µi(vi) can be interpreted as the shadow cost of the primal minimization
problem as one perturbs the marginal distribution F at vi.
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Thus, we have

J(µ) =
∑
i∈I

∫
Vi
µi(vi) dF (vi)

=
∑
i∈I

∫
V
µi(vi) dπ(v)

=
∫
V

∑
i∈I

µi(vi) dπ(v)

≤
∫
V
REV (0, v) dπ(v)

= REV (0, π),

where the second line follows from (1) and the fourth line follows from (2).

We are now ready to show that for the second-price auction with no reserve
price, π0 is a worst-case correlation structure. The proof proceeds as follows. Step
(1) calculates the value of the objective function of the primal minimization problem
under π0. Step (2) constructs dual variables. Step (3) verifies that the value of
the objective function of the dual maximization problem under the constructed
dual variables is the same as the value of the objective function of the primal
minimization problem under π0.

Step (1). The value of the objective function of the primal minimization
problem under π∗0 is

n

n− 1

∫ cn(0)

0
x dF (x)

where cn(0) = F−1(n−1
n

) denotes the threshold for the reserve price 0.17

Step (2). For each i ∈ I, let

µi(vi) =


vi
n−1 −

cn(0)
n(n−1) , if vi < cn(0);

cn(0)
n
, if vi ≥ cn(0).

It is easy to verify that these dual variables satisfy the constraints of the dual
maximization problem. Indeed, since µi(vi) is a weakly increasing function of vi,

1. if v(2) ≥ cn(0), then

∑
i∈I

µi(vi) ≤ n
cn(0)
n

= cn(0) ≤ v(2) = REV (0, v);

17In Section 5, we shall use the notation cn(r) to denote the threshold for the second-price
auction with reserve price r.
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2. if v(2) < cn(0), then

∑
i∈I

µi(vi) ≤ (n− 1)( v(2)
n− 1 −

cn(0)
n(n− 1)) + cn(0)

n
= v(2) = REV (0, v).

Step (3). We now calculate the value of the objective function of the dual
maximization problem under the constructed dual variables as follows:

J(µ1, µ2, . . . , µn) =
∑
i∈I

∫
Vi
µi(vi) dF (vi)

= n
∫
V1
µ1(v1) dF (v1)

= n
∫ cn(0)

0

v1

n− 1 −
cn(0)

n(n− 1) dF (v1) + n
∫ 1

cn(0)

cn(0)
n

dF (v1)

= n

n− 1

∫ cn(0)

0
v1 dF (v1)− cn(0)

n− 1

∫ cn(0)

0
1 dF (v1) + cn(0)

∫ 1

cn(0)
1 dF (v1)

= n

n− 1

∫ cn(0)

0
v1 dF (v1),

where the last line follows from the definition of cn(0). This completes the proof of
Proposition 1.

5 Robustly optimal reserve price

Theorem 1 establishes the robust optimality of the second-price auction with no
reserve price in large markets. In markets with a finite number of bidders, the
auctioneer could potentially do better using other mechanisms. For practical
purposes and also for tractability, in this section and Section 6, we study an
important class of auction forms, second-price auctions with reserve prices, that
are both theoretically appealing and widely adopted in practice.18 We consider
deterministic reserve prices here, and analyze the case in which the auctioneer is
allowed to randomize over reserve prices in Section 6.

Our auctioneer chooses a reserve price to maximize the worst-case expected
revenue, where the worst case is taken over all joint distributions that are

18As discussed in the introduction, revenue guarantee is not the only criterion when selecting
an auction format; the auctioneer might have to balance many different criteria. Thus, it is
important to understand the revenue guarantee of standard auction formats such as second-price
auctions with reserve prices. For other papers that study the robustness of standard auction
formats, see for example Bergemann, Brooks, and Morris (2017) and Bergemann, Brooks, and
Morris (2019).
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consistent with the marginals. Formally, the auctioneer solves the following
maxmin optimization problem:

sup
r∈[0,1]

inf
π∈Π

REV (r, π). (Maxmin-r)

We refer to the solution to this maxmin optimization problem as the robustly
optimal reserve price.

The maxmin optimization problem (Maxmin-r) can be interpreted as a two-
player zero-sum game. The two players are the auctioneer and Nature. The
auctioneer first chooses a reserve price r ∈ [0, 1]. After observing the choice of
the reserve price, Nature chooses a correlation structure π ∈ Π. The auctioneer’s
payoff is REV (r, π), and Nature’s payoff is −REV (r, π).

It is not clear (at least to us) for an arbitrary reserve price what would be
the worst-case correlation structure. To bypass this difficulty, we take an indirect
approach. In the maxmin optimization problem (Maxmin-r), for each reserve price
r, Nature can choose any joint distribution that is consistent with the marginals.
This is not easy to work with, as the space of such joint distributions is very large.
The novelty in our analysis is that we work with an auxiliary problem that has
the interpretation that we impose a restriction on what Nature can do. For each
reserve price r, we construct a particular correlation structure πr that is consistent
with the marginals. We can easily solve the following auxiliary problem:

max
r∈[0,1]

REV (r, πr).19

The auxiliary problem then corresponds to an extreme restriction on Nature’s
strategies in the sense that if the auctioneer chooses a reserve price r, Nature has
no choice but to choose πr. We show that the solution to this auxiliary problem is
also the solution to the maxmin optimization problem (Maxmin-r).

The key step of our analysis is thus the construction of {πr}r∈[0,1]. The
construction of {πr}r∈[0,1] depends on the number of bidders and the marginal
distribution, and will be made clear in the formal analysis. Before we move on
to the formal analysis, we wish to provide a sketch of our analysis. The sketch
highlights the requirements on {πr}r∈[0,1] and should also make our approach more
transparent.

In the first step, for each reserve price r, we explicitly construct a joint
19Our construction of {πr}r∈[0,1] ensures that a solution to this auxiliary problem exists.
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distribution πr that is consistent with the marginals. At this stage, we do not
know whether the joint distribution πr that we construct is a worst-case correlation
structure for the reserve price r. Nevertheless, since πr is consistent with the
marginals, the worst-case expected revenue of the reserve price r is weakly lower
than its expected revenue under the correlation structure πr. That is, for any r,

inf
π∈Π

REV (r, π) ≤ REV (r, πr).

In the second step, we solve the following auxiliary maximization problem:

max
r∈[0,1]

REV (r, πr).

Let r∗ denote a solution to the auxiliary maximization problem. Thus,

REV (r∗, πr∗) ≥ REV (r, πr)

for all r.

In the third step, we show that for the reserve price r∗, the correlation
structure πr∗ is a worst-case correlation structure. Formally, we show that

REV (r∗, πr∗) = min
π∈Π

REV (r∗, π).

Our logic can be succinctly summarized via a series of inequalities and
equalities. For any r,

inf
π∈Π

REV (r, π) ≤ REV (r, πr) ≤ REV (r∗, πr∗) = min
π∈Π

REV (r∗, π).

It follows that r∗ is a solution to the maxmin optimization problem (Maxmin-r).

We are now ready to present the formal analysis. For the sake of clarity, we
first consider the setting with only two bidders in Section 5.1. Section 5.2 studies
the general setting with n bidders.20

For ease of exposition, we introduce one more notation. For any r ∈ [0, 1]
and any subset of bidders S ⊆ I, let

V r,S = {v ∈ V : vi ≥ r if and only if i ∈ S}.

20To be clear, our analysis in the case of n bidders can be easily adopted in the setting with
only two bidders. We organize in this way so as to present our analysis in the clearest way
possible.
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In words, for any valuation profile v ∈ V r,S, bidders in S have valuations weakly
higher that r and bidders not in S have valuations lower than r. When S consists
of a single bidder i, we write V r,i rather than V r,{i}.

5.1 Two bidders

Suppose that there are only two bidders. Recall that for the second-price auction
with no reserve price, a worst-case correlation structure is the maximally negative
correlation (Observation 1). It is less clear what would be the worst-case correlation
structure for an arbitrary reserve price r. Nevertheless, if Nature can only put
positive probability in the regions V r,∅ and V r,{1,2}, we have a similar observation
as in the case of the second-price auction with no reserve price.

Observation 3. Fix an arbitrary reserve price r ∈ [0, 1]. In the constrained
minimization problem in which Nature can only put positive probability in the
regions V r,∅ and V r,{1,2}, a worst-case correlation structure is the unique joint
distribution such that

1. in the region V r,{1,2}, the probability concentrates on the following curve

Lr : F (1)− F (v2) = F (v1)− F (r), v1 ∈ [r, 1];

2. in the region V r,∅, the probability concentrates on the following curve

v2 = v1, v1 ∈ [0, r);

3. the joint distribution is consistent with the marginals.

We denote this joint distribution by πr (see Figure 1 for a graphical illustration of
πr in the case in which F is the uniform distribution on the [0, 1] interval).

To see why this is a worst-case correlation structure when Nature is
constrained to only put positive probability in the regions V r,∅ and V r,{1,2}, note
that we can think of Nature’s constrained minimization problem as two sub-
problems, namely, the choice of the joint distribution in the region V r,∅ and the
choice of the joint distribution in the region V r,{1,2}. We can safely treat these two
sub-problems separately, since these two choices do not interact with each other in
terms of the consistency requirement. In the region V r,{1,2}, the auctioneer’s ex
post revenue function is REV (r, v) = v(2) = min(v1, v2), which is a supermodular
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function. Therefore, our logic in Observation 1 applies here. In the region V r,∅, the
joint distribution does not matter as long as it is consistent with the marginals, as
the ex post revenue for any valuation profile in this region is zero. For concreteness,
when constructing πr, we pick the joint distribution such that the probability in
the region V r,∅ concentrates on the curve v2 = v1, v1 ∈ [0, r). This particular choice
plays no role in our analysis.

0

r

1

r 1

V r,∅ V r,{1}

V r,{2} V r,{1,2}

0

r

1

r 1

Figure 1: The figure on the left depicts the four regions given by V r,∅, V r,1, V r,2, and
V r,{1,2}. The figure on the right depicts the correlation structure πr that we construct in
the case in which F is the uniform distribution on the [0, 1] interval.

While we have solved the constrained minimization problem in which Nature
can only put positive probability in the regions V r,∅ and V r,{1,2}, our logic so far is
incomplete for the purpose of identifying a worst-case correlation structure when
Nature can choose any joint distribution that is consistent with the marginals, as
Nature may want to allocate some probability to the regions V r,1 and V r,2.

Nevertheless, our analysis above leads us to consider an auxiliary maxi-
mization problem that we formulate below. Now that we have constructed the
correlation structure πr for each r ∈ [0, 1], we can easily calculate the expected
revenue of the reserve price r under πr as follows:

REV (r, πr) =
∫

[r,1]2
v(2) dπr(v) = 2

∫ c(r)

r
x dF (x),

where c(r) = F−1(1+F (r)
2 ). Consider the following auxiliary maximization problem:

max
r∈[0,1]

REV (r, πr) = 2
∫ c(r)

r
x dF (x). (Max-2)

Proposition 2 below shows that the solution to the maximization problem (Max-2)
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is the robustly optimal reserve price.

Proposition 2. Suppose that n = 2. Let r∗ denote a solution to the maximization
problem (Max-2). Then,

πr
∗ ∈ arg min

π∈Π
REV (r∗, π).

This further implies that r∗ is the robustly optimal reserve price and generates the
highest revenue guarantee of REV (r∗, πr∗).

Proposition 2 is a special case of Theorem 2, which solves for the robustly
optimal reserve price in the general setting with n bidders. For this reason, we
omit its proof.

The auxiliary maximization problem (Max-2) is easy to solve. In particular, by
the first-order condition, we have F (2r∗) = 1+F (r∗)

2 . For any F , it is straightforward
to solve for r∗. Example 2 below applies Proposition 2 to the case in which F is
the uniform distribution on the [0, 1] interval.

Example 2 (Two bidders and uniform distribution). Suppose that n = 2 and
F is the uniform distribution on the [0, 1] interval. From our analysis above, r∗

necessarily satisfies that 2r∗ = 1+r∗

2 . The robustly optimal reserve price is 1
3 and

generates the highest revenue guarantee of 1
3 . �

Remark 4. The key step in our analysis is the construction of the correlation
structures {πr}r∈[0,1]. Proposition 2 shows that for r∗, the correlation structure πr∗

is a worst-case correlation structure. This suffices for our purpose of solving for
the robustly optimal reserve price, sparing us the need to solve for the worst-case
correlation structure for any r ∈ [0, 1].21

5.2 n bidders

Next, we solve for the robustly optimal reserve price in the general setting with
n bidders. Motivated by the worst-case correlation structure for the second-price
auction with no reserve price (Proposition 1) and our analysis in Section 5.1, we

21While the correlation structure πr∗ is the worst case for r∗, πr is not the worst case for
any r ∈ [0, 1]. Readers might wonder what makes r∗ special. In Appendix D, we provide a
direct proof of Proposition 2. While notationally intensive, the direct proof highlights the role of
the first-order condition that the robustly optimal reserve price necessarily satisfies. While we
believe that a direct proof for any number of bidders could be given, we do not proceed along
this direction. This alternative approach would inevitably be much more tedious when there are
more bidders, compared to our duality approach.
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construct the correlation structures {πr}r∈[0,1] as follows. For each reserve price
r ∈ [0, 1], we define πr to be the unique joint distribution such that

1. it only puts positive probability in the regions V r,∅ and V r,I ;

2. in the region V r,I , the probability concentrates on n symmetric curves
L1
r, L

2
r, . . . , L

n
r where

Lir =
{
v ∈ V r,I : F (vj)− F (r) = (n− 1)(F (1)− F (vi)), ∀j 6= i,

vi ∈ [F−1((n− 1) + F (r)
n

), 1]
}

;

3. in the region V r,∅, the probability concentrates on the following curve

vi = v1, ∀i 6= 1, v1 ∈ [0, r];

4. the joint distribution is consistent with the marginals.

The interpretation of the curve Lir is that in the region in which every bidder’s
valuation is weakly higher than r and bidder i has the highest valuation, Nature
puts probability in a way such that bidders other than i have the same valuation,
and bidder i’s valuation is maximally negatively correlated with the other bidders’
valuation. In the region V r,∅, the joint distribution does not matter as long as it
is consistent with the marginals, as the ex post revenue for any valuation profile
in this region is zero. For concreteness, when constructing πr, we pick the joint
distribution such that the probability in the region V r,∅ concentrates on the curve
vi = v1, ∀i 6= 1, v1 ∈ [0, r]. This particular choice plays no role in our analysis.

Consider the following auxiliary maximization problem:

max
r∈[0,1]

REV (r, πr) =
∫

[r,1]n
v(2) dπr(v) = n

n− 1

∫ cn(r)

r
x dF (x) (Max-n)

where cn(r) = F−1( (n−1)+F (r)
n

). Theorem 2 below shows that the solution to the
maximization problem (Max-n) is the robustly optimal reserve price.

Theorem 2. Suppose that there are n bidders. Let r∗n denote a solution to the
maximization problem (Max-n). Then,

πr
∗
n ∈ arg min

π∈Π
REV (r∗n, π).

This further implies that r∗n is the robustly optimal reserve price and generates the
highest revenue guarantee of REV (r∗n, πr

∗
n).
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It suffices to show that for the reserve price r∗n, πr
∗
n is a worst-case correlation

structure. Since r∗n is a solution to the maximization problem (Max-n), for any
reserve price r,

inf
π∈Π

REV (r, π) ≤ REV (r, πr) ≤ REV (r∗, πr∗) = min
π∈Π

REV (r∗, π).

Thus, r∗n is the robustly optimal reserve price and generates the highest revenue
guarantee of REV (r∗n, πr

∗
n). To show that πr∗

n is a worst-case correlation structure
for r∗n, as in the case of the second-price auction with no reserve price, we adopt
the duality approach. The proof can be found in Appendix A.

The auxiliary maximization problem (Max-n) is easy to solve. In particular,
by the first-order condition, we have F (nr∗n) = F ( (n−1)+F (r∗

n)
n

). Example 3 below
illustrates how to apply Theorem 2 to the case in which F is the uniform distribution
on the [0, 1] interval.

Example 3 (n bidders and uniform distribution). Suppose that there are n bidders
and F is the uniform distribution on the [0, 1] interval. From our analysis above,
r∗n necessarily satisfies that nr∗n = (n−1)+r∗

n

n
. The robustly optimal reserve price is

r∗n = 1
n+1 and generates the highest revenue guarantee of n

2(n+1) . �

Theorem 2 solves for the robustly optimal reserve price for any finite number
of bidders. We now briefly discuss the case in which the number of bidders is
large. We first revisit the example where the marginal distribution is the uniform
distribution on [0, 1].

Example 4 (large n and uniform distribution). Suppose that there are n bidders
and F is the uniform distribution on the [0, 1] interval. As n→∞, the robustly
optimal reserve price r∗n = 1

n+1 → 0, and the revenue guarantee n
2(n+1) →

1
2 which

is the expectation of a generic bidder’s valuation.

These features generalize to any marginal distribution. Indeed, Theorem 2
has immediate implications as follows.

Corollary 1. For any marginal distribution F ,

1. r∗n < 1
n
for any n;

2. limn→∞ r∗n → 0;

3. limn→∞ REV (r∗n, πr
∗
n)→

∫ 1
0 x dF (x); and

4. The second-price auction with no reserve price is asymptotically optimal.
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The first statement follows from the first-order condition of the auxiliary
maximization problem (Max-n) that

F (nr∗n) = F ((n− 1) + F (r∗n)
n

) < 1.

The second statement then trivially follows. By Theorem 2,

REV (r∗n, πr
∗
n) = n

n− 1

∫ cn(r∗
n)

r∗
n

x dF (x)→
∫ 1

0
x dF (x)

as n→∞. The fourth statement follows from the observation that
∫ 1
0 x dF (x) is

the full surplus in our framework.

6 Random reserve price

In this section, we extend our analysis to the case in which the auctioneer is allowed
to randomize over reserve prices and solve for the robustly optimal random reserve
price that generates the highest revenue guarantee among all random reserve
prices. While we view the use of a random reserve price to be less practical, this is
interesting from a theoretical perspective, as the auctioneer may want to use the
randomization in reserve prices to hedge against the uncertainty in the correlation
structure. Indeed, we show that the auctioneer could achieve a strictly higher
revenue guarantee using a random reserve price.

We consider the case in which the auctioneer is allowed to randomize over
reserve prices. By allowing the auctioneer to randomize over reserve prices, we are
enlarging the auctioneer’s strategy space. Let G denote the set of all cumulative
distribution functions on the [0, 1] interval. The auctioneer chooses a distribution
G ∈ G rather than a deterministic reserve price r ∈ [0, 1]. For any random reserve
price G, let

REV (G, v) =
∫ 1

0
REV (r, v) dG(r)

and let
REV (G, π) =

∫
V
REV (G, v) dπ(v).

That is, we use REV (G, v) to denote the auctioneer’s ex post revenue by using
the random reserve price G when the realized valuation profile is v, and we use
REV (G, π) to denote the auctioneer’s expected revenue by using the random
reserve price G under the joint distribution π.

29



The auctioneer solves the following maxmin optimization problem:

sup
G∈G

inf
π∈Π

REV (G, π).

We refer to the solution of this maxmin optimization problem as the robustly
optimal random reserve price.

Our approach is to identify a saddle point (G∗, π∗) such that

REV (G∗, π) ≥ REV (G∗, π∗) ≥ REV (G, π∗)

for all G ∈ G and π ∈ Π. Since

max
G∈G

min
π∈Π

REV (G, π) ≥ min
π∈Π

REV (G∗, π)

= REV (G∗, π∗)

= max
G∈G

REV (G, π∗)

≥ min
π∈Π

max
G∈G

REV (G, π)

≥ max
G∈G

min
π∈Π

REV (G, π),

we can conclude that G∗ is the robustly optimal random reserve price, and
REV (G∗, π∗) is the highest revenue guarantee.

For the sake of clarity, we first study the case in which there are n bidders
and each bidder’s valuation is uniformly distributed on the [0, 1] interval in Section
6.1. We then extend our analysis to general distributions in Section 6.2.

6.1 Uniform distribution

We construct a particular random reserve price G∗ and a correlation structure π∗

such that (G∗, π∗) is a saddle point.

We first construct the correlation structure π∗. The correlation structure π∗

has the feature that given that the auctioneer knows the joint distribution is π∗,
the auctioneer is indifferent among a range of reserve prices.

Construction of π∗. Let b̄ = 2n−1
2n . The correlation structure π∗ is such

that

1. it only puts positive probability in the regions V b̄,∅ and V b̄,i for each i ∈ I;
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2. in the region V b̄,i, π∗ is uniformly distributed on the following region

Di :=
{

(v1, v2, . . . , vn) : b̄ ≤ vi ≤ 1,

0 ≤ v1 = v2 = . . . = vi−1 = vi+1 = . . . = vn < b̄
}

with total measure 1− b̄;

3. in the region V b̄,∅, π∗ is uniformly distributed on the following line

D0 := {(v1, v2, . . . , vn) : 0 ≤ v1 = . . . = vn < b̄}

with total measure 1
2 .

In words, in the region V b̄,i, bidders other than bidder i have the same valuation
which is independent of vi. In the region V b̄,∅, all the bidders have the same
valuation. It is straightforward to verify that π∗ is consistent with the marginals.
Figure 2 illustrates π∗ in the case in which there are two bidders.

0

3
4

1

3
4

1

Figure 2: The figure depicts the correlation structure π∗ that we construct in the case
in which there are two bidders and F is the uniform distribution on [0, 1]. In this case,
b̄ = 3

4 .

Before we proceed, let us discuss some intuition behind the construction of
the correlation structure π∗. One intuition is that π∗ creates a lot of indifferences
for the choice of the reserve price. The other intuition is described as follows. We
focus on the region in which only bidder i’s valuation is weakly larger than b̄. The
ex post revenue for each v in this region and each realization of the random reserve
price is then the maximum of v−i(1) and the realization of the random reserve price,
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which is a submodular function. To minimize the expectation of a submodular
function, in this region, bidders other than bidder i have the same valuation.

We now calculate the expected revenue for each reserve price r ∈ [0, 1] against
π∗. It is straightforward to calculate that

REV (r, π∗) =


2n−1

4n , if r ∈ [0, b̄];

nr(1− r), if r ∈ (b̄, 1].

Since b̄ = 2n−1
2n ≥

1
2 , nr(1− r) < nb̄(1− b̄) = 2n−1

4n whenever r > b̄. Thus,

arg max
r∈[0,1]

REV (r, π∗) = [0, b̄].

Construction of G∗. Let

G∗(r) = b̄−
1

n−1 r
1

n−1

with support [0, b̄]. Since every reserve price in the support of G∗ maximizes the
auctioneer’s expected revenue against π∗,

G∗ ∈ arg max
G∈G

REV (G, π∗).

Thus, REV (G∗, π∗) is an upper bound of the revenue guarantee.

Proposition 3. Suppose that there are n bidders and each bidder’s valuation is
uniformly distributed on the [0, 1] interval. Then, G∗ is the robustly optimal random
reserve price, and generates the highest revenue guarantee of 2n−1

4n .

It remains to show that

π∗ ∈ arg min
π∈Π

REV (G∗, π).

Here, as in the case of a deterministic reserve price, we adopt the duality
approach. In words, the revenue guarantee of G∗ is REV (G∗, π∗). Since we
have established that REV (G∗, π∗) is an upper bound of the revenue guarantee,
G∗ is the robustly optimal random reserve price, and achieves the highest revenue
guarantee REV (G∗, π∗).

Proof of Proposition 3. In what follows, we show that

π∗ ∈ arg min
π∈Π

REV (G∗, π).
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We first calculate the ex post revenue of the auctioneer as follows:

REV (G∗, v) =


b̄−

1
n−1

[
1
n
v(1)

n
n−1 + n−1

n
v(2)

n
n−1
]
, if v(1) ≤ b̄;

b̄
n

+ n−1
n
b̄−

1
n−1v(2)

n
n−1 , if v(2) ≤ b̄ < v(1);

v(2), if v(2) > b̄.

Let

u(x) =


1
n
b̄−

1
n−1x

n
n−1 , if x ≤ b̄;

b̄
n
, if x > b̄.

One can easily verify that

REV (G∗, v) ≥
∑
i∈I

u(vi)

for all v ∈ V . It follows that for any π ∈ Π,

REV (G∗, π) =
∫
V
REV (G, v) dπ(v)

≥
∫
V

∑
i∈I

u(vi) dπ(v)

=
∑
i∈I

∫
V
u(vi) dπ(v)

= n
∫ 1

0
u(x) dx

= 2n− 1
4n .

Since REV (G∗, π∗) = 2n−1
4n , we obtain the desired result.

6.2 General distribution

We now extend our analysis to a large class of marginal distributions. We make the
following assumption: xf(x) is weakly increasing in x. In words, this assumption
says that the density function does not decrease too fast. Our analysis here parallels
that in the case of uniform distribution.

We first present the following technical lemma which is used in the
construction of the saddle point. The lemma is a consequence of the assumption
that xf(x) is weakly increasing in x.

Lemma 2. Fix a marginal distribution F such that xf(x) is weakly increasing in
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x. Let ψ(x) := x− 1−F (x)
f(x) , and let

γ(x) := 1− F (x)− 1
n− 1x

− n
n−1

∫ x

0
y

n
n−1f(y) dy.

Then,

1. limx→0 xf(x) = 0;

2. there exists a unique b∗ ∈ (0, 1) such that ψ(b∗) = 0; and

3. there exists x ∈ [b∗, 1] such that γ(x) = 0.

Let b̄F be such that b̄F ∈ [b∗, 1] and γ(b̄F ) = 0. We are now ready to construct
a particular random reserve price G∗F and a correlation structure π∗F such that
(G∗F , π∗F ) is a saddle point.

Construction of π∗F . As in the case of uniform distribution, π∗F only puts
positive probability in the regions V b̄F ,∅ and V b̄F ,i for each i ∈ I.

In V b̄F ,i, π∗F concentrates on the following region

Di =
{

(v1, v2, . . . , vn) : b̄F ≤ vi ≤ 1,

0 ≤ v1 = v2 = . . . = vi−1 = vi+1 = . . . = vn < b̄F

}
.

The marginal of π∗F coincides with the restriction of F on [b̄F , 1] ⊆ Vi. Restricted
in V b̄F ,i, all the {vj}j 6=i are maximally positively correlated with the marginal of
π∗F being H on [0, b̄F ) ⊆ Vj for each j 6= i, where

H(x) = 1
n− 1x

− n
n−1

∫ x

0
y

n
n−1f(y) dy.

Then the restriction of π∗F on V b̄F ,i is the product measure on Vi and
∏
j 6=i Vj ; that

is, vi and (v1, v2, . . . , vi−1, vi+1, . . . , vn) are independently distributed. Note that
H is a feasible measure on [0, b̄F ), because

1. limx→0H(x) = 0 and H(b̄F ) = 1− F (b̄F );

2. H is continuous;

3. H is weakly increasing since the derivative of H is

h(x) = 1
n− 1

[
− n

n− 1 · x
− 2n−1
n−1 ·

∫ x

0
y

n
n−1f(y) dy + f(x)

]
≥ 1
n− 1

[
− n

n− 1 · x
− 2n−1
n−1 · xf(x) ·

∫ x

0
y

1
n−1 dy + f(x)

]
= 0.
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In the region V b̄F ,∅, π∗F concentrates on the following line

D0 = {(v1, . . . , vn) : 0 ≤ v1 = . . . = vn < b̄F},

with the density on any dimension Vj being f(vi)− (n− 1)h(vj). The density is
well defined since by the construction of H, we have that f(vi)− (n− 1)h(vj) ≥ 0
for vj ∈ [0, b̄F ].

In words, in the region V b̄F ,i, bidders other than bidder i have the same
valuation which is independent of vi. In the region V b̄F ,∅, all the bidders have
the same valuation. It is straightforward to verify that π∗F is consistent with the
marginal distribution F . The intuition behind the construction here is similar to
the case of uniform distribution, and we shall not repeat the arguments.

Now that we have constructed the correlation structure π∗F , we can calculate
REV (r, π∗F ) for all r ∈ [0, 1]. If r ∈ (b̄F , 1], then REV (r, π∗F ) = nr(1 − F (r)). If
r ∈ [0, b̄F ], then

REV (r, π∗F ) =
∫ b̄F

r
x
[
f(x)− (n− 1)h(x)

]
dx+ n

[ ∫ b̄F

r
xh(x) dx+ rH(r)

]
,

which is the sum of the expected revenue in the region V b̄F ,∅ and the expected
revenue in the n symmetric regions {V b̄F ,i}i∈I . The expected revenue in each of
the n symmetric regions is the sum of

∫ b̄F
r xh(x) dx and rH(r), where

∫ b̄F
r xh(x) dx

(resp. rH(r)) is the expected revenue from valuations profiles such that the second
highest valuation is weakly higher than (resp. lower than) the reserve price r. This
simplifies to

REV (r, π∗F ) =
∫ b̄F

r
x
[
f(x) + h(x)

]
dx+ nrH(r)

= n
∫ b̄F

r

[
xh(x) +H(x)

]
dx+ nrH(r)

= n
∫ b̄F

r
xh(x) dx+ n

[
b̄FH(b̄F )− rH(r)−

∫ b̄F

r
x dH(x)

]
+ nrH(r)

= nb̄FH(b̄F )

= nb̄F (1− F (b̄F )).

The second equality holds since by the construction of H, nH(x) + (n− 1)xh(x) =
xf(x) for any x ∈ [0, b̄F ]. The third equality uses integration by parts, and the last
equality follows from that H(b̄F ) = (1− F (b̄F )).

Note that the derivative of x(1−F (x)) is 1−F (x)−xf(x), which is negative
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for x > b∗. Since b̄F ≥ b∗, for any r > b̄F , nr(1− F (r)) < nb̄F (1− F (b̄F )). Thus,

arg max
r∈[0,1]

REV (r, π∗F ) = [0, b̄F ].

Construction of G∗F . Let

G∗F (r) = b̄
− 1
n−1

F r
1

n−1

with support [0, b̄F ]. Since every reserve price in the support of G∗F maximizes the
auctioneer’s expected revenue against π∗F ,

G∗F ∈ arg max
G∈G

REV (G, π∗F ).

Thus, REV (G∗F , π∗F ) is an upper bound of the revenue guarantee.

Theorem 3. Suppose that there are n bidders and each bidder’s valuation is
distributed according to F . Then, G∗F is the robustly optimal random reserve price,
and generates the highest revenue guarantee of

REV (G∗F , π∗F ) = nb̄F (1− F (b̄F )).

It remains to show that

π∗F ∈ arg min
π∈Π

REV (G∗F , π).

In words, the revenue guarantee of G∗F is REV (G∗F , π∗F ). Since we have established
that REV (G∗F , π∗F ) is an upper bound of the revenue guarantee, G∗F is the
robustly optimal random reserve price, and achieves the highest revenue guarantee
REV (G∗F , π∗F ).

Proof of Theorem 3. In what follows, we show that

π∗F ∈ arg min
π∈Π

REV (G∗F , π).

We calculate the ex post revenue of the auctioneer as follows:

REV (G∗F , v) =


b̄
− 1
n−1

F

[
1
n
v(1)

n
n−1 + n−1

n
v(2)

n
n−1
]
, if v(1) ≤ b̄F ;

b̄F
n

+ n−1
n
b̄
− 1
n−1

F v(2)
n
n−1 , if v(2) ≤ b̄F < v(1);

v(2), if v(2) > b̄F .
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Let

u(x) =


1
n
b̄
− 1
n−1

F x
n
n−1 , if x ≤ b̄F ;

b̄F
n
, if x > b̄F .

One can easily verify that

REV (G∗F , v) ≥
∑
i∈I

u(vi)

for all v ∈ V . It follows that for any π ∈ Π,

REV (G∗F , π) ≥
∑
i∈I

∫
V
u(vi) dπ(v)

= n
∫ 1

0
u(x) dF (x)

= n

[∫ b̄F

0

1
n
b̄
− 1
n−1

F x
n
n−1 dF (x) + b̄F

n
(1− F (b̄F ))

]
= nb̄F (1− F (b̄F )),

where the last equality follows from the construction of b̄F . Since REV (G∗F , π∗F ) =
nb̄F (1− F (b̄F )), we obtain the desired result.

Remark 5. As the number of bidders gets large, b̄F converges to 1, the robustly
optimal random reserve price is G∗F (r) = b̄

− 1
n−1

F r
1

n−1 which converges to the Dirac
measure on zero, and the highest revenue guarantee is

REV (G∗F , π∗F ) = nb̄F (1− F (b̄F )) = nb̄F
1

n− 1 b̄
− n
n−1

F

∫ b̄F

0
y

n
n−1f(y) dy,

which converges to
∫ 1

0 x dF (x).

7 Extensions

In this section, we consider two variations of our basic model. The common
theme of these two models is that we relax the assumption of the auctioneer’s
knowledge of the marginal distribution, and the purpose is to study how the results
persist when the model is made more realistic. As discussed in Remark 1(b),
Theorem 1 does not rely on the knowledge of the marginal distribution. Thus,
our analysis in this section focuses on the robustly optimal reserve price for any
finite number of bidders. Section 7.1 considers a model in which the auctioneer
has local uncertainty about the marginal distribution. That is, the auctioneer does
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not know the marginal distribution but she believes F is a good enough estimate.
Section 7.2 interprets F as a conservative estimate of the marginal distribution.
That is, the auctioneer does not know the marginal distribution but she believes
that the marginal distribution first-order stochastically dominates F .

7.1 Local uncertainty about the marginal distribution

We first consider a model in which the auctioneer has local uncertainty about
the marginal distribution. The auctioneer has uncertainty about the marginal
distribution, but she is confident that the marginal distribution is sufficiently close
to F . The rationale for studying this alternative model is clear. Rather than
assuming the exact knowledge of the marginal distribution, we only require that
the auctioneer has a good enough estimate of the marginal distribution. Thus, we
further relax the assumption of the auctioneer’s knowledge. We denote by F̂ the
true marginal distribution. Let d(F, F̂ ) denote the total variation distance between
two distributions F and F̂ .

We now argue that Theorem 2 is robust to the local uncertainty about the
marginal distribution in the following sense. Let r∗F denote the robustly optimal
reserve price calculated under F , and let r∗

F̂
denote the robustly optimal reserve

price calculated under F̂ . We claim that for any ε > 0, there exists δ > 0 such that
for d(F, F̂ ) < δ,

inf
π∈Π(F̂ )

REV (r∗F , π) > inf
π∈Π(F̂ )

REV (r∗
F̂
, π)− ε.

In words, even if the auctioneer does not know the marginal distribution F̂ , the
revenue guarantee of r∗F is close to the revenue guarantee of r∗

F̂
, provided that F

is a good enough estimate of F̂ . Thus, our auctioneer is protected from slight
misspecification of the marginal distribution.

We provide the intuition below without presenting the formal proof. The
key observation is that, for d(F, F̂ ) sufficiently small, for any joint distribution
π ∈ Π(F ) (resp. π̂ ∈ Π(F̂ )), there exists a joint distribution π̂ ∈ Π(F̂ ) (resp.
π ∈ Π(F )) such that for any reserve price r, REV (r, π) and REV (r, π̂) are close
to each other. Thus, for any reserve price, r∗F and r∗

F̂
in particular, the worst-

case expected revenue when Nature chooses π ∈ Π(F ) and when Nature chooses
π ∈ Π(F̂ ) cannot be far apart. Formally, for any ε > 0, there exists δ > 0 such
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that for d(F, F̂ ) < δ,
∣∣∣∣ inf
π∈Π(F )

REV (r∗F , π)− inf
π∈Π(F̂ )

REV (r∗F , π)
∣∣∣∣ < ε

2 , (3)
∣∣∣∣ inf
π∈Π(F )

REV (r∗
F̂
, π)− inf

π∈Π(F̂ )
REV (r∗

F̂
, π)

∣∣∣∣ < ε

2 . (4)

By the definition of r∗F (resp. r∗
F̂
), the worst-case expected revenue of r∗F (resp.

r∗
F̂
) is weakly higher than the worst-case expected revenue of r∗

F̂
(resp. r∗F ) when

Nature chooses π ∈ Π(F ) (resp. π ∈ Π(F̂ )). Formally,

inf
π∈Π(F )

REV (r∗F , π) ≥ inf
π∈Π(F )

REV (r∗
F̂
, π), (5)

inf
π∈Π(F̂ )

REV (r∗
F̂
, π) ≥ inf

π∈Π(F̂ )
REV (r∗F , π). (6)

It is an elementary exercise to show that the claim follows from (3), (4), (5), and
(6).

7.2 F as a conservative estimate

Next, we study another model that relaxes the assumption of the auctioneer’s
knowledge. Consider a setting in which the auctioneer does not know the marginal
distribution but she believes that the marginal distribution first-order stochastically
dominates F . In other words, F is the auctioneer’s conservative estimate of the
marginal distribution.

Write F̃ �FOSD F if F̃ first-order stochastically dominates F . Let

Π̃(F ) = ∪F̃�FOSDF Π(F̃ ).

Consider the following problem in which the auctioneer chooses a reserve price to
maximize the worst-case expected revenue, where the worst case is taken over all
joint distributions in Π̃(F ):

sup
r∈[0,1]

inf
π∈Π̃(F )

REV (r, π). (FOSD)

Let r∗F denote the robustly optimal reserve price calculated under F . We claim
that r∗F is also a solution to the above maxmin optimization problem (FOSD).

We provide the intuition below without presenting the formal proof. Note
that for any reserve price r, the ex post revenue function REV (r, v) is weakly
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increasing in vi for any i. This leads to our key observation: for any F̃ that
first-order stochastically dominates F and π̃ that is consistent with F̃ , there exists
a joint distribution π that is consistent with F such that for any reserve price r,
REV (r, π) ≤ REV (r, π̃). It follows that for any r,

inf
π∈Π̃(F )

REV (r, π) = inf
π∈Π(F )

REV (r, π). (7)

The claim then follows from the definition of r∗F and (7).

8 Related literature

This paper joins the burgeoning literature of robust mechanism design.22 A large
body of papers focus on the case in which the designer does not have reliable
information about the agents’ hierarchies of beliefs about each other while assuming
the knowledge of the payoff environment; see, for example, Bergemann and Morris
(2005), Chung and Ely (2007), Chen and Li (2018), Yamashita and Zhu (2020),
Bergemann, Brooks, and Morris (2016, 2017, 2019), Du (2018), Brooks and Du
(2020), and Libgober and Mu (2020).23

The focus of this paper is on the uncertainty about the payoff environment,
that is, the distribution of the bidders’ valuations. More explicitly, our auctioneer
has an estimate of the distribution of a generic bidder’s valuation, but has non-
Bayesian uncertainty about the correlation structure. Thus, the closest to our
paper in terms of the source of uncertainty is Carroll (2017), who considers a multi-
dimensional screening setting in which the seller knows the marginal distribution of
the buyer’s valuation for each good but does not know the joint distribution. Each
mechanism is evaluated by its worst-case expected profit, over all joint distributions
that are consistent with the known marginals. In this setting, Carroll (2017) shows
that the optimal mechanism for the seller is simply to screen along each component
separately.

Several papers are similar in spirit to ours in that the auctioneer is assumed to
have some limited information about payoff environment and evaluates mechanisms
using the worst-case criterion. These papers assume that the auctioneer only knows
some moment conditions (for example, the mean) that the marginal distribution

22See Carroll (2019) for a recent survey on robust mechanism design and references therein.
23Börgers and Li (2019) propose a notion of strategic simplicity that can be interpreted as

a form of robustness—the outcome implemented in strategically simple mechanism does not
depend on higher-order beliefs.
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needs to satisfy. Neeman (2003) considers an auctioneer who knows (a lower bound
of) the mean of each bidder’s valuation. He works with the notion of “effectiveness,”
which is the ratio of the revenue generated by the English auction and the benchmark
of full-surplus extraction (this benchmark may not be feasible even for the optimal
mechanism). Koçyiğit, Iyengar, Kuhn, and Wiesemann (2020) study, among
other settings, second-price auctions with reserve price when there are n ex ante
symmetric bidders with a known lower bound for the mean. They characterize the
optimal reserve price, and also show that randomized mechanisms yield strictly
more revenue in this setting. Suzdaltsev (2020a) considers an auctioneer who knows
that the bidders’ valuations are independent draws from some unknown distribution
F , and solves for the reserve price in a second-price auction to maximize worst-case
expected revenue among all deterministic reserve prices under two specifications: (1)
the seller knows the mean of F and an upper bound on values; (2) the seller knows
the mean of F and an upper bound on its variance. He shows that it is optimal
to set the reserve price to seller’s own valuation. Suzdaltsev (2020b) considers an
auctioneer who knows only the means and an upper bound for valuations. He shows
that among all deterministic and dominant-strategy mechanisms, a linear version
of Myersonian optimal auction generates the highest revenue guarantee. Che (2020)
considers an auctioneer who only knows the mean of the marginal distribution of
each bidder’s valuation and the range, and shows that a second-price auction with
an optimal, random reserve price obtains the optimal revenue guarantee within
a broad class of mechanisms. As in our paper, the optimal reserve price in Che
(2020) also converges to zero as the number of bidders goes to infinity.24

There is also a large literature in computer science that shows that simple
mechanisms can perform reasonable well in a variety of settings. The most closely
related to our work is Bei, Gravin, Lu, and Tang (2019) that consider the design
of auctions in the correlation-robust framework. They use a different performance
measure from the revenue guarantee. They focus on the sequential posted-price
mechanism (SPM) and (among other results) show that SPM achieves a constant
(2 ln 4+2 ≈ 4.78) approximation to the optimal correlation-robust mechanism, that
is, the revenue guarantee of the optimal sequential posted-price mechanism is weakly
larger than 1

2 ln 4+2 times the revenue guarantee of the optimal dominant-strategy
mechanism.

24Also see Carrasco, Luz, Kos, Messner, Monteiro, and Moreira (2018) that study the revenue
maximization problem of a seller who is partially informed about the distribution of buyer’s
valuation, only knowing its first n moments.
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9 Conclusion

We consider a robust version of the single-unit auction problem in which the
auctioneer has an estimate of the marginal distribution of a generic bidder’s
valuation but has non-Bayesian uncertainty about the correlation structure. A
simple auction format, the second-price auction with no reserve price, is shown to
be asymptotically optimal. Furthermore, the revenue guarantee of the second-price
auction with no reserve price converges to the full surplus with the fastest rate of
convergence among all sequences of standard mechanisms. In settings with a finite
number of bidders, we focus on second-price auctions with reserve prices and solve
for the robustly optimal reserve price that generates the highest revenue guarantee
among all reserve prices. We show that typically the auctioneer finds it optimal to
use a low reserve price. Both our analysis for large markets and a finite number
of bidders could be perceived as supporting the use of a low reserve price from a
novel robustness perspective.

From a theoretical perspective, it would be interesting to understand which
mechanism generates the highest revenue guarantee among all dominant-strategy
mechanisms. Further research might also consider additional restrictions on the
joint distributions that the auctioneer perceives plausible. While classical papers
such as Myerson (1981) consider one extreme formulation of the single-unit auction
problem in the sense that the auctioneer knows the exact correlation structure, we
consider the other extreme formulation in the sense that the auctioneer has no
additional information besides the marginal distribution. It might be fruitful to
investigate settings in which the auctioneer has some additional information besides
the marginals, such as the knowledge that the bidders’ valuations are positively
correlated.

A Proof of Theorem 2

It suffices to show that for the reserve price r∗n, πr
∗
n is a worst-case correlation

structure. The proof proceeds as follows. We first show that r∗n necessarily satisfies

F (nr∗n) = (n− 1) + F (r∗n)
n

.

We then show that for any r such that F (nr) = (n−1)+F (r)
n

, πr is a worst-case
correlation structure.

The first step is straightforward. This requirement on r∗n is an immediate
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implication of the first-order condition. Consider the maximization problem:

max
r∈[0,1]

REV (r, πr) = n

n− 1

∫ cn(r)

r
x dF (x).

By the first-order condition, we have dREV (r,πr)
dr

= n
n−1 f(r)( cn(r)

n
− r). Let

Rn :={r ∈ [0, 1] : n

n− 1 f(r)(cn(r)
n
− r) = 0}

={r ∈ [0, 1] : F (nr) = (n− 1) + F (r)
n

}

denote the set of stationary points. Since the first-order derivative has a positive
value at r = 0 and has a negative value at r = 1, the maximization problem has
an interior solution. Thus, it must be that r∗n ∈ Rn.

In what follows, we show that for any reserve price r ∈ Rn, πr is a worst-case
correlation structure. That is, πr is a solution to the following minimization
problem:

min
π∈Π

REV (r, π). (Primal-r)

We adopt a duality approach. We construct the dual maximization problem
(Dual-r) of the primal minimization problem (Primal-r) as follows:

max
µ1,µ2,...,µn∈L1(F )

J(µ1, µ2, . . . , µn) =
∑
i∈I

∫
Vi
µi(vi) dF (vi) (Dual-r)

subject to for all v ∈ V,
∑
i∈I

µi(vi) ≤ REV (r, v).

As in the proof of Theorem 1, one can easily show that the optimal value of
the maximization problem (Dual-r) is weakly less than the optimal value of the
minimization problem (Primal-r).

We are now ready to show that for any reserve price r ∈ Rn, πr is a worst-case
correlation structure. Step (1) calculates the value of the objective function of
the primal minimization problem (Primal-r) under πr. Step (2) constructs dual
variables and calculates the value of the objective function of the dual maximization
problem (Dual-r) under the constructed dual variables. Step (3) verifies that these
two values are the same for any r ∈ Rn.

Step (1). The value of the objective function of the primal minimization
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problem (Primal-r) under πr is

n

n− 1

∫ cn(r)

r
x dF (x)

where cn(r) = F−1( (n−1)+F (r)
n

).

Step (2). For each i ∈ I, let

µi(vi) =


0, if vi < r;

1
n−1(vi − r), if r ≤ vi < nr;

r, if vi ≥ nr.

It is easy to verify that these dual variables satisfy the constraints of the
dual maximization problem (Dual-r). Indeed, since µi(vi) is a weakly increasing
function of vi,

1. if v(2) ≥ nr, then ∑i∈I µi(vi) ≤ nr ≤ v(2) = REV (r, v);

2. if v(1) ≥ nr > v(2) ≥ r, then

∑
i∈I

µi(vi) ≤ r + (n− 1) 1
n− 1 (v(2)− r) = v(2) = REV (r, v);

3. if v(1) ≥ nr and r > v(2), then ∑i∈I µi(vi) = r = REV (r, v);

4. if nr > v(1) ≥ v(2) ≥ r, then

∑
i∈I

µi(vi) ≤
1

n− 1 (nr − r) + (n− 1) 1
n− 1 (v(2)− r) = v(2) = REV (r, v);

5. if nr > v(1) ≥ r > v(2), ∑i∈I µi(vi) = 1
n−1(v(1)− r) < r = REV (r, v);

6. if r > v(1), then ∑i∈I µi(vi) = 0 = REV (r, v).

We now calculate the value of the objective function of the dual maximization
problem (Dual-r) under the constructed dual variables as follows:

J(µ1, µ2, . . . , µn) =
∑
i∈I

∫
Vi
µi(vi) dF (vi)

= n
∫
V1
µ1(v1) dF (v1)

= n
∫ nr

r

1
n− 1 (v1 − r) dF (v1) + n

∫ 1

nr
r dF (v1)
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= n

n− 1

∫ nr

r
v1 dF (v1)− n

n− 1

∫ nr

r
r dF (v1) + n

∫ 1

nr
r dF (v1).

(8)

Step (3). Recall that Rn = {r ∈ [0, 1] : F (nr) = (n−1)+F (r)
n

}. Thus, for any
r ∈ Rn,

cn(r) = F−1((n− 1) + F (r)
n

) = nr.

The value of the objective function of the primal minimization problem (Primal-r)
under πr is

n

n− 1

∫ cn(r)

r
x dF (x) = n

n− 1

∫ nr

r
x dF (x).

The value of the objective function of the dual maximization problem (Dual-r)
under the constructed dual variables is also

n

n− 1

∫ nr

r
x dF (x),

since the last two terms in (8) cancel off. This completes the proof that for any
r ∈ Rn, πr is a solution to the primal minimization problem (Primal-r).

B Proof of Lemma 2

1. Suppose that limx→0 xf(x) = c > 0. Since xf(x) is weakly increasing in x, for
any x > 0, we have that xf(x) ≥ c and f(x) ≥ c

x
. But then F (x) ≥

∫ x
0

c
y
dy =∞

for any x > 0. We have a contradiction.

2. Let η(x) := xf(x) − (1 − F (x)). Since xf(x) is weakly increasing in x,
η(x) is increasing in x. Since limx→0 η(x) < 0 and η(1) > 0, there exists a unique
b∗ such that

η(x)


< 0, x < b∗;

= 0, x = b∗;

> 0, x > b∗.

Since ψ(x) = η(x)
f(x) , we have that

ψ(x)


< 0, x < b∗;

= 0, x = b∗;

> 0, x > b∗.
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3. We show that (1) limx→0 γ(x) > 0; and (2) for any x ≤ b∗ such that
γ(x) ≤ 0, we have that γ′(x) ≥ 0. It then follows that γ(b∗) ≥ 0. Since γ(1) < 0,
there exists x ∈ [b∗, 1] such that γ(x) = 0.

For (1),

lim
x→0

γ(x) = 1− 1
n− 1 lim

x→0

∫ x
0 y

n
n−1f(y) dy
x

n
n−1

= 1− 1
n− 1 lim

x→0

x
n
n−1f(x)
n
n−1x

1
n−1

= 1− 1
n

lim
x→0

xf(x)

= 1.

For (2), for any x ≤ b∗ and γ(x) ≤ 0,

γ′(x) = − n

n− 1f(x) + n

(n− 1)2x
− 2n−1
n−1

∫ x

0
y

n
n−1f(y) dy

≥ − n

n− 1f(x) + n

(n− 1)
1− F (x)

x

≥ 0,

where the first inequality follows from the definition of the function γ and the
assumption that γ(x) ≤ 0, and the second inequality is due to the fact that
ψ(x) ≤ 0 for x ≤ b∗.
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Supplemental Material

Appendix C shows that among a class of sequences of dominant-strategy
mechanisms, the revenue guarantee of the second-price auction with no reserve
price converges to the full surplus with the fastest rate of convergence. Appendix D
presents a direct proof of Proposition 2, which highlights the role of the first-order
condition that the robustly optimal reserve price necessarily satisfies.

C Fastest rate of convergence

Theorem 1 shows that the second-price auction with no reserve price is
asymptotically optimal among all sequences of dominant-strategy mechanisms.
Here, we present a complementary result to Theorem 1 that among a class of
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sequences of dominant-strategy mechanisms, the revenue guarantee of the second-
price auction with no reserve price converges to the full surplus with the fastest
rate of convergence.

We focus on standard mechanisms in which bidders who do not have the
highest bid do not get the object. Formally, let

M̂n =
{
M̂n ∈Mn : q̂i(v1, v2, . . . , vn) = 0 if vi < max

1≤j≤n
vj

}
.

Obviously, the second-price auction with no reserve price is a standard mechanism.

The notion of optimality is captured by the following definition.

Definition 1. We say that the revenue guarantee of {M̂n}n≥2 converges to∫ 1
0 x dF (x) with the fastest rate of convergence if

1. the revenue guarantee of {M̂n}n≥2 converges to
∫ 1

0 x dF (x); and

2. for any {M̂ ′
n}n≥2, there exists some α > 0 such that for all n ≥ 2,

∫ 1

0
x dF (x)− inf

πn∈Πn
REV (M̂n, πn) ≤ α

(∫ 1

0
x dF (x)− inf

πn∈Πn
REV (M̂ ′

n, πn)
)
.

Proposition 4. The revenue guarantee of the second-price auction with no reserve
price converges to

∫ 1
0 x dF (x) with the fastest rate of convergence.

Recall that the revenue guarantee of the second-price auction with no reserve
price converges to

∫ 1
0 x dF (x) at least in the rate of O( 1

n
) (see Remark 1(e)). Thus,

to prove Proposition 4, it suffices to show that for any sequence of standard
mechanisms, the revenue guarantee converges to

∫ 1
0 x dF (x) at most in the rate of

O( 1
n
).

While the proof is a bit long and somewhat technical, the logic is clear. We
first argue that it suffices to work with symmetric joint distributions and symmetric
mechanisms. For any symmetric M̂n, we explicitly construct a symmetric joint
distribution and establish a lower bound of the difference between

∫ 1
0 x dF (x) and

the expected revenue of the mechanism M̂n under the constructed joint distribution.
Since the joint distribution that we construct is symmetric, this bound is also the
bound between

∫ 1
0 x dF (x) and the worst-case expected revenue of the mechanism

M̂n when Nature chooses among all symmetric joint distributions. We break down
our analysis into easily digestible steps.
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Step 1. Symmetric joint distributions and symmetric mechanisms.

We denote by Sn(F ) the collection of symmetric joint distributions that are
consistent with the marginal distribution F when there are n bidders. For ease of
notation, we shall drop the dependency of Sn(F ) on F when there is no confusion.

Since Sn ⊆ Πn, for any M̂n,

inf
πn∈Sn

REV (M̂n, πn) ≥ inf
πn∈Πn

REV (M̂n, πn).

Thus, to show that infπn∈Πn REV (M̂n, πn) converges to
∫ 1

0 x dF (x) at most in the
rate of O( 1

n
), it suffices to show that infπn∈Sn REV (M̂n, πn) converges to

∫ 1
0 x dF (x)

at most in the rate of O( 1
n
).

For now on, we shall work with Sn. As such, it is without loss of generality to
focus on symmetric mechanisms. In what follows, we show that for any symmetric
{M̂n}n≥2, there exists some β > 0 such that for any n ≥ 2,

∫ 1

0
x dF (x)− inf

πn∈Sn
REV (M̂n, πn) ≥ β

n
.

Step 2. Technical preparation.

For any c ∈ (0, 1), let zc ∈ (0, 1) be such that F ([zc, 1]) = c
2 , and let bc ∈ (0, 1)

be such that F ([0, bc]) = c. Also let

ac = 1
F ([zc, 1])

∫
[zc,1]

x dF (x).

Clearly, for c sufficiently close to 1, we have ac < bc. Hereafter, we fix some c∗1 such
that 0 < ac∗

1
< bc∗

1
< 1.

We first prove two technical lemmas that are used to establish a bound of
the auctioneer’s expected revenue in Step (3). Lemma 1 is used in Step (3a), and
Lemma 2 is used in Step (3b). We suggest that readers proceed to Step (3) directly
and refer to these technical lemmas when necessary.

For any measurable set E ⊆ [0, 1], for any n ≥ 2, let

x∗n(E) = sup
{
x ∈ E : F (E ∩ [0, x]) = n− 1

n
F (E)

}
.

Lemma 1. There exists some κ > 0 such that for any measurable set E ⊆ [0, 1]
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with F (E) ≥ c∗1, for any n ≥ 2,
∫
E∩(x∗

n(E),1]
x dF (x)− 1

n− 1

∫
E∩[0,x∗

n(E)]
x dF (x) ≥ κ

n
. (9)

Lemma 2. For any ε > 0 and any measurable set E with F (E) > 0, there exist
two measurable sets C1, C2 ⊆ E and a mapping g : E → E such that

1. F (C1) = F (C2) > 1
2 F (E);

2. x ∈ C1 if and only if g(x) ∈ C2;

3. for any x ∈ C1,
F ([0, x] ∩ C1) = F ([0, g(x)] ∩ C2);

4. for any x ∈ E \ C1,

F ([0, x] ∩ (E \ C1)) = F ([0, g(x)] ∩ (E \ C2));

5. for any x ∈ C1, 0 < g(x)− x < ε;

6. for any x ∈ E \ C1, g(x) ≤ x.

Proof of Lemma 1. Fix an arbitrary measurable set E with F (E) ≥ c∗1. For any
n ≥ 2, let zn ∈ (0, 1) and yn ∈ (0, 1) be such that

F ([zn, 1]) = n− 1
n

c∗1 and F ([yn, 1]) = n− 1
n

F (E).

By construction, z2 ≥ zn for all n ≥ 2. Since F (E) ≥ c∗1, zn ≥ yn for all n ≥ 2.

Since F (E ∩ [0, x∗n(E)]) = n−1
n
F (E) = F ([yn, 1]), we have

∫
E∩[0,x∗

n(E)]
x dF (x) ≤

∫
[yn,1]

x dF (x).

Thus,

1
F (E ∩ [0, x∗n(E)])

∫
E∩[0,x∗

n(E)]
x dF (x) ≤ 1

F ([yn, 1])

∫
[yn,1]

x dF (x)

≤ 1
F ([zn, 1])

∫
[zn,1]

x dF (x)

≤ 1
F ([z2, 1])

∫
[z2,1]

x dF (x). (10)
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The second inequality holds since zn ≥ yn for all n ≥ 2. The third inequality holds
since z2 ≥ zn for all n ≥ 2.

Let γ = 1
F ([z2,1])

∫
[z2,1] x dF (x). It follows from (10) and the definition of

x∗n(E) that

1
n− 1

∫
E∩[0,x∗

n(E)]
x dF (x) ≤ γ

n− 1 F (E ∩ [0, x∗n(E)]) = γ

n
F (E). (11)

Since F ([zc∗
1
, 1]) = c∗

1
2 = F ([z2, 1]), zc∗

1
= z2. It follows that

bc∗
1
> ac∗

1
= 1
F ([zc∗

1
, 1])

∫
[zc∗

1
,1]
x dF (x) = 1

F ([z2, 1])

∫
[z2,1]

x dF (x) = γ. (12)

For any n ≥ 2, let sn ∈ (0, 1) be such that

F ([0, sn]) = n− 1
n

c∗1.

By construction, {sn}n≥2 is a strictly increasing sequence. As n goes to infinity,
F ([0, sn]) converges to c∗1 = F ([0, bc∗

1
]). Thus, sn converges to bc∗

1
. It follows from

(12) that there exists some sufficiently large integer N ≥ 4 such that sN > γ. Since

F (E ∩ [0, x∗n(E)]) = n− 1
n

F (E) ≥ n− 1
n

c∗1 = F ([0, sn]),

x∗n(E) ≥ sn for all n ≥ 2. For all n ≥ N ,
∫
E∩(x∗

n(E),1]
x dF (x) ≥ sn F (E ∩ (x∗n(E), 1]) ≥ sN F (E ∩ (x∗n(E), 1]) = sN

n
F (E).

(13)

The first inequality holds since x ≥ sn for any x ∈ E ∩ (x∗n(E), 1]. The second
inequality holds since {sn}n≥2 is a strictly increasing sequence. The equality follows
from the definition of x∗n(E).

It follows from (11) and (13) that for n ≥ N ,
∫
E∩(x∗

n(E),1]
x dF (x)− 1

n− 1

∫
E∩[0,x∗

n(E)]
x dF (x) ≥ sN − γ

n
F (E) ≥ sN − γ

n
c∗1.

This proves (9) for n ≥ N .

Next, we prove (9) for 2 ≤ n < N . Let Υk = {x : f(x) ≤ k}.25 Fix some ε∗

25Recall that f is the density of F .
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such that 0 < ε∗ <
c∗

1
N

(recall that N ≥ 4). There exists a sufficiently large positive
integer k∗ such that F (Υk∗) ≥ 1− ε∗. For 2 ≤ n < N ,
∫
E∩(x∗

n(E),1]
x dF (x) =

∫
E∩(x∗

n(E),1]∩Υk∗
x dF (x) +

∫
(E∩(x∗

n(E),1])\Υk∗
x dF (x)

≥
∫
E∩(x∗

n(E),1]∩Υk∗
x dF (x) + F ((E ∩ (x∗n(E), 1]) \Υk∗)x∗n(E)

≥ k∗
∫

[x∗
n(E),x∗

n(E)+F (E)
k∗n −

ε∗
k∗ ]

x dx+ ε∗ x∗n(E)

= 1
2 (2x∗n(E) + F (E)

k∗n
− ε∗

k∗
) (F (E)

n
− ε∗) + ε∗ x∗n(E). (14)

The first inequality holds since x > x∗n(E) for any x ∈ (E ∩ (x∗n(E), 1]) \ Υk∗ .
For the second inequality, the key observation is that x > x∗n(E) for any x ∈
E ∩ (x∗n(E), 1] ∩Υk∗ . Since

F (E ∩ (x∗n(E), 1]∩Υk∗) +F (E ∩ (x∗n(E), 1])\Υk∗) = F (E ∩ (x∗n(E), 1]) = 1
n
F (E),

to obtain a lower bound, we set F ((E ∩ (x∗n(E), 1]) \Υk∗) to be as large as possible.
Since F (Υk∗) ≥ 1− ε∗,

F ((E ∩ (x∗n(E), 1]) \Υk∗) ≤ ε∗.

Thus, we set F ((E∩ (x∗n(E), 1])\Υk∗) = ε∗ and F (E∩ (x∗n(E), 1]∩Υk∗) = F (E)
n
−ε∗.

Moreover, since Υk∗ = {x : f(x) ≤ k∗},
∫
E∩(x∗

n(E),1]∩Υk∗
x dF (x) ≥ k∗

∫
[x∗
n(E),x∗

n(E)+F (E)
k∗n −

ε∗
k∗ ]

x dx,

where the right hand side is the integral of a random variable over this region
[x∗n, x∗n + F (E)

k∗n
− ε∗

k∗ ] with the constant density k∗ and total measure F (E)
n
− ε∗.

Intuitively, the lower bound is obtained by concentrating the total measure F (E)
n
−ε∗

on the smallest value possible.

Using similar arguments as above, one can show that for 2 ≤ n < N ,

1
n− 1

∫
E∩[0,x∗

n(E)]
x dF (x)

= 1
n− 1

∫
E∩[0,x∗

n(E)]∩Υk∗
x dF (x) + 1

n− 1

∫
E∩[0,x∗

n(E)]\Υk∗
x dF (x)

≤ k∗

n− 1

∫
[x∗
n(E)− (n−1)F (E)

k∗n + ε∗
k∗ ,x∗

n(E)]
x dx+ ε∗

n− 1 x
∗
n(E)

53



= 1
2 (2x∗n(E)− (n− 1)F (E)

k∗n
+ ε∗

k∗
) (F (E)

n
− ε∗

n− 1) + ε∗

n− 1 x
∗
n(E). (15)

It follows from (14) and (15) that for 2 ≤ n < N ,

∫
E∩(x∗

n(E),1]
x dF (x)− 1

n− 1

∫
E∩[0,x∗

n(E)]
x dF (x) ≥ F (E)

2k∗n (F (E)− 4ε∗) + (ε∗)2

2k∗
n

n− 1

≥ c∗1
2k∗n (c∗1 − 4ε∗).

The lemma follows by setting κ = min{(sN − γ)c∗1,
c∗

1
2k∗ (c∗1 − 4ε∗)}.

Proof of Lemma 2. For any δ ∈ (0, F (E)), let xδ be the smallest x such that

F ([0, x] ∩ E) = F (E)− δ,

and yδ ∈ E be the largest y such that

F ([y, 1] ∩ E) = F (E)− δ.

Consider the mapping φδ : [0, xδ] ∩ E → [yδ, 1] ∩ E defined as follows: for any
x ∈ [0, xδ] ∩ E,

F ([0, x] ∩ E) = F ([yδ, φδ(x)] ∩ E).26

By construction, φδ is an increasing mapping. Let

Aδ =
{
x ∈ [0, xδ] ∩ E : φδ(x)− x ≥ ε

}
.

Then F (Aδ)→ 0 as δ → 0. Fix some sufficiently small δ∗ > 0 such that

F
(

([0, xδ∗ ] ∩ E) \ Aδ∗

)
>

1
2 F (E).

Let C1 = ([0, xδ∗ ] ∩ E) \ Aδ∗ , g = φδ∗ on C1, and C2 = {g(x) : x ∈ C1}. For
any x ∈ E \ C1, let g(x) ∈ E \ C2 be such that

F
(

[0, x] ∩ (E \ C1)
)

= F
(

[0, g(x)] ∩ (E \ C2)
)
.

By construction, Conditions (1) - (5) in the lemma hold.

Next, we show that Condition (6) in the lemma holds. We first show that for

26There may be multiple z ∈ [yδ, 1] ∩ E such that F ([0, x] ∩ E) = F ([yδ, z] ∩ E). We just
arbitrarily fix one such point.

54



any x ∈ E \ C1,
F ([0, x] ∩ C1) ≥ F ([0, x] ∩ C2).

• This is obviously true if F ([0, x] ∩ C2) = 0.

• Consider the case that F ([0, x]∩C2) > 0. Fix some ε1 > 0. Let C3 = C2∪{x}.
Since F ([0, y] ∩ C2) is continuous and weakly increasing in y ∈ C3, there
exists some y ∈ C2 such that y < x and

F ([0, y] ∩ C2) > F ([0, x] ∩ C2)− ε1. (16)

Then there exists some z ∈ C1 such that g(z) = y and z < y < x. By
Condition (3) in the lemma,

F ([0, y] ∩ C2) = F ([0, g(z)] ∩ C2) = F ([0, z] ∩ C1) ≤ F ([0, x] ∩ C1). (17)

It follows from (16) and (17) that

F ([0, x] ∩ C1) > F ([0, x] ∩ C2)− ε1. (18)

Since (18) holds for any ε1 > 0, we have

F ([0, x] ∩ C1) ≥ F ([0, x] ∩ C2).

This completes the proof that for any x ∈ E \ C1,

F ([0, x] ∩ C1) ≥ F ([0, x] ∩ C2). (19)

It follows from the construction of g(x) and (19) that

F ([0, g(x)] ∩ (E \ C2)) = F ([0, x] ∩ (E \ C1)) ≤ F ([0, x] ∩ (E \ C2)).

As a result, g(x) ≤ x.

Step (3). Establishing bounds.

It follows from Lemma 1 that we can fix some κ∗ > 0 such that for any
measurable set E ⊆ [0, 1] with F (E) ≥ c∗1, for any n ≥ 2,

∫
E∩(x∗

n(E),1]
x dF (x)− 1

n− 1

∫
E∩[0,x∗

n(E)]
x dF (x) ≥ κ∗

n
.
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Fix some sufficiently large integer d ≥ 2 such that

1. 2d κ∗ > 24;

2. c∗1 < 1− F ([1− 1
2d−1 , 1]).

Fix any n ≥ 2 and an arbitrary symmetric M̂n with allocation rule
(q̂1, q̂2, . . . , q̂n). For any y ∈ [0, 1], let

hn1 (y) = inf
{
z ∈ [y, 1] : q̂1(z, y, . . . y) ≥ 2n− 1

2n

}

if there exists some z ∈ [y, 1] such that q̂1(z, y, . . . y) ≥ 2n−1
2n . In words, hn1 (y) is the

lowest type of bidder 1 that gets the object with at least probability 2n−1
2n , when

every other bidder’s valuation is y. If there is no such type, let hn1 (y) = 1.

For each 1 ≤ k ≤ nd − 2, let

Ck =
{
y ∈ [k − 1

nd
,
k

nd
) : hn1 (y) ∈ [y, k + 1

nd
)
}
,

Also let

W n
1 = ∪1≤k≤nd−2Ck,

W n
2 = [0, 1− 2

nd
) \W n

1 ,

W n
3 = [1− 2

nd
, 1].

By construction, W n
1 ⊆ [0, 1− 2

nd
), and

q̂1(k + 1
nd

, y, . . . , y) ≥ 2n− 1
2n

for y ∈ W n
1 ∩ [k−1

nd
, k
nd

), 1 ≤ k ≤ nd − 2.

We classify our analysis into two cases based on the measure of the set W n
1 .

In the first case, the measure of the set W n
1 is weakly higher than c∗1. In the

second case, the measure of W n
1 is lower than c∗1. In each case, we construct a joint

distribution in Sn and establish a lower bound of the difference between
∫ 1

0 x dF (x)
and the auctioneer’s expected revenue under the constructed joint distribution.
Since this joint distribution lies in Sn, this bound is also a lower bound of

∫ 1

0
x dF (x)− inf

πn∈Sn
REV (M̂n, πn).
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Our construction of the joint distribution for each of these two cases is
technical (and may seem at hoc). Before we proceed, we wish to offer some
intuition behind our construction. In the first case, the measure of the set W n

1

is sufficiently large. Recall that if all bidders other than bidder 1 have valuation
y, any type of bidder 1 that is larger than hn1 (y) gets the object with at least
probability 2n−1

2n . For any y ∈ F (W n
1 ), by definition, hn1 (y) and y are not far

apart. Loosely speaking, the allocation rule in this region is close to that of the
second-price auction. We exploit this observation in the construction of our joint
distribution in this case.

In the second case, the measure ofW n
2 is sufficiently large. For any y ∈ F (W n

2 ),
by definition, hn1 (y) and y are sufficiently far apart. Thus, if all bidders other than
bidder 1 have valuation y, and bidder 1’s valuation is larger than but sufficiently
close to y, bidder 1 obtains the object with probability less than 2n−1

2n , and all other
bidders do not get the object. Due to the participation constraint, the ex post
revenue of the auctioneer is bounded by 2n−1

2n multiplied by bidder 1’s valuation.
We exploit exactly this inefficiency in allocation in the construction of our joint
distribution in this case.

Step (3a). The first case: F (W n
1 ) ≥ c∗1.

We first consider the case in which the measure of the set W n
1 is weakly

higher than c∗1.

Let

Ln1 = W n
1 ×W n

1 × . . .×W n
1 ,

Ln2 = W n
2 ×W n

2 × . . .×W n
2 ,

Ln3 = W n
3 ×W n

3 × . . .×W n
3 .

Define π̄n to be the unique joint distribution such that

1. it only puts positive probability in the regions Ln1 and Ln2 ∪ Ln3 ;

2. in the region Ln1 : Let

x̄n = sup
{
x ∈ W n

1 : F (W n
1 ∩ [0, x]) = n− 1

n
F (W n

1 )
}
.

57



The probability concentrates on n symmetric curves K1, K2, . . . , Kn where

Ki =
{
v ∈ Ln1 : F (W n

1 ∩ [0, vj])

= (n− 1)
[
F (W n

1 )− F (W n
1 ∩ [0, vi])

]
,∀j 6= i, vi ∈ [x̄n, 1]

}
;

3. in the region Ln2 ∪ Ln3 , v1, v2, . . ., vn are maximally positively correlated;

4. the joint distribution is consistent with the marginals.

Obviously, π̄n ∈ Sn.

The interpretation of the curve Ki is that in the subset of Ln1 in which bidder i
has the highest valuation, Nature puts probability in a way such that bidders other
than i have the same valuation, and bidder i’s valuation is maximally negatively
correlated with the other bidders’ valuations.

Define a mapping

ψ(y) = k + 1
nd

for y ∈ W n
1 ∩ [k − 1

nd
,
k

nd
).

By construction, y+ 1
nd
< ψ(y) ≤ y+ 2

nd
. Note that for any y ∈ W n

1 ∩ [0, x̄n], there
exists some µ(y) ∈ W n

1 ∩ [x̄n, 1] such that (µ(y), y, . . . , y) ∈ K1. Formally,

F (W n
1 ∩ [0, y]) = (n− 1)

[
F (W n

1 )−F (W n
1 ∩ [0, µ(y)])

]
= (n− 1)F (W n

1 ∩ [µ(y), 1]).

In what follows, we first show that for any y ∈ W n
1 ∩ [0, x̄n],

t̂1(µ(y), y, . . . , y) ≤ 1
2n µ(y) + 2n− 1

2n (y + 2
nd

).

We then use this bound on t1(µ(y), y, . . . , y) to show that the auctioneer’s expected
revenue by using the mechanism M̂n when the joint distribution is π̄n is bounded
above by ∫ 1

0
y dF (y)− κ∗

4n.

1. If µ(y) ≥ ψ(y), then

µ(y) q̂1(µ(y), y, . . . , y)− t̂1(µ(y), y, . . . , y)

≥ µ(y) q̂1(ψ(y), y, . . . , y)− t̂1(ψ(y), y, . . . , y)

= (µ(y)− ψ(y)) q̂1(ψ(y), y, . . . , y) + ψ(y) q̂1(ψ(y), y, . . . , y)− t̂1(ψ(y), y, . . . , y)
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≥ (µ(y)− ψ(y)) q̂1(ψ(y), y, . . . , y) + ψ(y) q̂1(y, y, . . . , y)− t̂1(y, y, . . . , y)

= (µ(y)− ψ(y)) q̂1(ψ(y), y, . . . , y) + (ψ(y)− y) q̂1(y, y, . . . , y)

+ y q̂1 (y, y, . . . , y)− t̂1(y, y, . . . , y)

≥ (µ(y)− ψ(y)) q̂1(ψ(y), y, . . . , y) + (ψ(y)− y) q̂1(y, y, . . . , y)

≥ 2n− 1
2n (µ(y)− ψ(y)) + 1

nd
q̂1(y, y, . . . , y)

≥ 2n− 1
2n (µ(y)− ψ(y)). (20)

The first inequality is the incentive constraint of type µ(y) of bidder 1. The
second inequality follows from the incentive constraint of type ψ(y) of bidder
1. The third inequality follows from the participation constraint of type y
of bidder 1. The fourth inequality holds since q̂1(ψ(y), y, . . . , y) ≥ 2n−1

2n and
ψ(y) > y + 1

nd
.

Thus, we have

t̂1(µ(y), y, . . . , y) ≤ µ(y)
[
q̂1(µ(y), y, . . . , y)− 2n− 1

2n

]
+ 2n− 1

2n ψ(y)

≤ 1
2n µ(y) + 2n− 1

2n ψ(y)

≤ 1
2n µ(y) + 2n− 1

2n (y + 2
nd

).

The first inequality follows from (20). The second inequality follows from
the feasibility constraint q̂1(µ(y), y, . . . , y) ≤ 1. The third inequality holds
since ψ(y) ≤ y + 2

nd
.

2. If µ(y) < ψ(y), then

t̂1(µ(y), y, . . . , y) ≤ µ(y) < 1
2n µ(y)+2n− 1

2n ψ(y) ≤ 1
2n µ(y)+2n− 1

2n (y+ 2
nd

).

The first inequality follows from the participation constraint of type µ(y)
of bidder 1 and the feasibility constraint q̂1(µ(y), y, . . . , y) ≤ 1. The second
inequality follows from the assumption that µ(y) < ψ(y). The third inequality
holds since ψ(y) ≤ y + 2

nd
.

This completes the proof that

t̂1(µ(y), y, . . . , y) ≤ 1
2n µ(y) + 2n− 1

2n (y + 2
nd

).

The auctioneer’s expected revenue by using the mechanism M̂n when the
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joint distribution is π̄n is

REV (Mn, π̄n)

≤ n

n− 1

∫
Wn

1 ∩[0,x̄n]

[
µ(y)
2n + 2n− 1

2n (y + 2
nd

)
]
dF (y) +

∫
Wn

2 ∪W
n
3

x dF (x)

≤ 1
2(n− 1)

∫
Wn

1 ∩[0,x̄n]
µ(y) dF (y) + 2n− 1

2(n− 1)

∫
Wn

1 ∩[0,x̄n]
y dF (y) + 2n− 1

nd(n− 1) +
∫
Wn

2 ∪W
n
3

x dF (x)

= 1
2

∫
Wn

1 ∩[x̄n,1]
y dF (y) + 2n− 1

2(n− 1)

∫
Wn

1 ∩[0,x̄n]
y dF (y) + 2n− 1

nd(n− 1) +
∫
Wn

2 ∪W
n
3

x dF (x)

=
∫

[0,1]
y dF (y)− 1

2

∫
Wn

1 ∩[x̄n,1]
y dF (y) + 1

2(n− 1)

∫
Wn

1 ∩[0,x̄n]
y dF (y) + 2n− 1

nd(n− 1)

<
∫

[0,1]
y dF (y)− κ∗

2n + κ∗

4n

=
∫

[0,1]
y dF (y)− κ∗

4n.

The first equality holds since F (W n
1 ∩ [0, y]) = (n − 1)F (W n

1 ∩ [µ(y), 1]). The
second equality holds since

∫
[0,1]

y dF (y) =
∫
Wn

1 ∩[0,x̄n]
y dF (y) +

∫
Wn

1 ∩[x̄n,1]
y dF (y) +

∫
Wn

2 ∪W
n
3

x dF (x).

The third inequality follows from Lemma 1 and that

2n− 1
nd(n− 1) ≤

3
nd
≤ 3

2d−1n
<
κ∗

4n.

Let β1 = κ∗

4 . We conclude that if F (W n
1 ) ≥ c∗1, then

∫ 1

0
x dF (x)− inf

πn∈Sn
REV (M̂n, πn) ≥

∫ 1

0
x dF (x)−REV (M̂n, π̄n) ≥ β1

n
.

Step (3b). The second case: F (W n
1 ) < c∗1.

Let c∗2 = 1− F ([1− 1
2d−1 , 1])− c∗1. If F (W n

1 ) < c∗1, then

F (W n
2 ) = F ([0, 1− 2

nd
)\W n

1 ) = F ([0, 1− 2
nd

))−F (W n
1 ) > 1−F ([1− 1

2d−1 , 1])−c∗1 = c∗2.

Let x ∈ (0, 1) be such that F ([0, x]) = c∗
2
2 . Fix some sufficiently large integer d ≥ d

such that
1

2d−3
≤
∫

[0,x]
x dF (x).

By Lemma 2, there exists two measurable sets C1, C2 ⊆ W n
2 and a mapping
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g : W n
2 → W n

2 such that

1. F (C1) = F (C2) > 1
2 F (W n

2 );

2. x ∈ C1 if and only if g(x) ∈ C2;

3. for any x ∈ C1,
F ([0, x] ∩ C1) = F ([0, g(x)] ∩ C2);

4. for any x ∈ W n
2 \ C1,

F ([0, x] ∩ (W n
2 \ C1)) = F ([0, g(x)] ∩ (W n

2 \ C2));

5. for any x ∈ C1, 0 < g(x)− x < 1
nd
;

6. for any x ∈ W n
2 \ C1, g(x) ≤ x.

Define ¯̄πnto be the unique symmetric joint distribution such that

1. it only puts positive probability in the regions Ln2 and Ln1 ∪ Ln3 ;

2. in the region Ln2 , the probability concentrates on n symmetric curves
J1, J2, . . . , Jn where

Ji = {v ∈ Ln2 : g(vj) = vi,∀j 6= i}.

3. in the region Ln1 ∪ Ln3 , v1, v2, . . ., vn are maximally positively correlated;

4. the joint distribution is consistent with the marginals.

Obviously, ¯̄πn ∈ Sn.

We first consider the seller’s expected revenue from the curve J1. By symmetry,
the expected revenue from any other curve Ji is the same. On the curve J1, bidder
1 has the highest valuation if v1 ∈ C2 and does not have the highest valuation if
v1 ∈ W n

2 \ C2.

• For v1 ∈ C2, there exists some v2 ∈ C1 such that v1 = g(v2). By the definition
of W n

2 ,
hn1 (v2)− v2 >

1
nd
≥ 1
nd
.

Thus,

v1 = g(v2) < v2 + 1
nd

< hn1 (v2). (21)
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By the definition of hn1 , we have

q̂1(v1, v2, . . . , v2) < 2n− 1
2n . (22)

Since only bidder 1 has the highest valuation, only bidder 1 makes a payment
to the auctioneer. The auctioneer’s revenue when the valuation profile is
(v1, v2, . . . , v2) is

t̂1(v1, v2, . . . , v2) ≤ v1 q̂1(v1, v2, . . . , v2) < 2n− 1
2n v1 <

2n− 1
2n (v2 + 1

nd
).

The first inequality follows from the participation constraint of type v1 of
bidder 1. The second inequality follows from (22). The last inequality follows
from (21).

• For v1 /∈ C2, bidders other than bidder i have the same value v2, while bidder
i has the valuation v1 = g(v2) < v2. Thus, the auctioneer’s revenue when the
valuation profile is (v1, v2, . . . , v2) is at most v2.

The auctioneer’s expected revenue from using the mechanism M̂n when the
joint distribution is ¯̄πn is

REV (Mn, ¯̄πn)

≤
∫
Wn

2 \C1
x dF (x) +

∫
C1

2n− 1
2n (x+ 1

nd
) dF (x) +

∫
Wn

1 ∪W
n
3

x dF (x)

=
∫
Wn

2

x dF (x)−
∫
C1
x dF (x) +

∫
C1

2n− 1
2n (x+ 1

nd
) dF (x) +

∫
Wn

1 ∪W
n
3

x dF (x)

=
∫

[0,1]
x dF (x)− 1

2n

∫
C1
x dF (x) + 2n− 1

2nd+1
F (C1)

≤
∫

[0,1]
x dF (x)− 1

2n

∫
C1
x dF (x) + 2n− 1

2nd+1

≤
∫

[0,1]
x dF (x)− 1

2n

∫
[0,x]

x dF (x) + 2n− 1
2nd+1

≤
∫

[0,1]
x dF (x)− 1

2n

∫
[0,x]

x dF (x) + 1
4n

∫
[0,x]

x dF (x)

=
∫

[0,1]
x dF (x)− 1

4n

∫
[0,x]

x dF (x).

The third inequality holds since

F (C1) > 1
2F (W n

2 ) ≥ c∗2
2 = F ([0, x]).
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The fourth inequality holds since

2n− 1
2nd+1

<
1
nd
≤ 1

2d−1

1
n
≤ 1

4n

∫
[0,x]

x dF (x).

Let β2 = 1
4
∫
[0,x] x dF (x). We conclude that if F (W n

1 ) < c∗1, then

∫ 1

0
x dF (x)− inf

πn∈Sn
REV (M̂n, πn) ≥

∫ 1

0
x dF (x)−REV (M̂n, ¯̄πn) ≥ β2

n
.

Step (4). Wrapping up the proof.

Let β = min {β1, β2}. It follows from our analysis in Step (3a) and Step (3b)
that for any n ≥ 2 and any symmetric M̂n,

∫ 1

0
x dF (x)− inf

πn∈Sn
REV (Mn, πn) ≥ β

n
.

Thus, for any sequence of symmetric {M̂n}n≥2, the revenue guarantee converges to∫ 1
0 x dF (x) at most in the rate of O( 1

n
). This completes the proof.

D Proof of Proposition 2

We first show that r∗ necessarily satisfies that F (2r∗) = 1+F (r∗)
2 . Consider the

auxiliary maximization problem:

max
r∈[0,1]

REV (r, πr) = 2
∫ c(r)

r
x dF (x).

By the first-order condition, we have that dREV (r,πr)
dr

= 2f(r)( c(r)2 − r). Let

R :={r ∈ [0, 1] : 2f(r)(c(r)2 − r) = 0}

={r ∈ [0, 1] : c(r) = 2r}

={r ∈ [0, 1] : F−1(1 + F (r)
2 ) = 2r}

={r ∈ [0, 1] : F (2r) = 1 + F (r)
2 }

denote the set of stationary points. Since the first-order derivative takes a positive
value at r = 0, and takes a negative value at r = 1, the auxiliary problem has an
interior solution. Thus, r∗ ∈ R.

We proceed to show that for any r ∈ R, πr is the worst-case correlation
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structure. Without loss of generality, we consider only symmetric joint distributions.
We show that for any π ∈ Π that is symmetric, there exists π′ such that

1. π′ ∈ Π;

2. π′ puts zero probability in the regions V r,1 and V r,2; and

3. REV (r, π′) ≤ REV (r, π).

Thus, to solve for the worst-case correlation structure, we only have to consider
joint distributions that are consistent with the marginals and only put positive
probability in the regions V r,∅ and V r,{1,2}. This, combined with Observation 3,
implies that πr is indeed the worst-case correlation structure.

The idea behind the construction of π′ for any symmetric π is intuitive.
Unfortunately, the formal analysis requires quite a bit of notation. For ease of
reference, we define nine segments as follows (see Figure 3):

A1 = [0, r]× [0, r]; A2 = [r, c(r)]× [0, r]; A3 = [c(r), 1]× [0, r];

A4 = [0, r]× [r, c(r)]; A5 = [0, r]× [c(r), 1]; A6 = [r, c(r)]× [r, c(r)];

A7 = [c(r), 1]× [r, c(r)]; A8 = [r, c(r)]× [r, 1]; A9 = [r, 1]× [r, 1].

For 1 ≤ j ≤ 9, we also write Aj = [xj, x̄j] × [yj, ȳj]. For example, x2 = r,
x̄2 = c(r), y2 = 0, and ȳ2 = r.

0

r

c(r)

1

r c(r) 1

A1 A2 A3

A4 A6 A7

A5 A8 A9

Figure 3: The nine segments that we define on the basis of r and c(r).

Suppose that π has positive measures on ∪2≤j≤5Aj.

Fix any π ∈ Π that is symmetric. For 1 ≤ j ≤ 9, let aj := π(Aj) denote
the total measure of π on Aj. For any [c1, c2] ⊆ [0, 1], [d1, d2] ⊆ [0, 1] and any
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1 ≤ j ≤ 9, let

πjx([c1, c2]) = π([c1, c2]× [yj, ȳj]) and πjy([d1, d2]) = π([xj, x̄j]× [d1, d2]).

We consider two cases. In the first case, a2 ≥ a3. In the second case, a2 < a3.
Suppose that a2 ≥ a3. Since π is symmetric, a4 ≥ a3. If a3 6= 0, we construct
a correlation structure π′ from π by shifting all the measure from A3 to A7 and
shifting the same measure from A4 to A1 in a way that respects the marginals.
Otherwise, we skip this step. This weakly decreases the auctioneer’s expected
revenue, since the ex post revenue is r for any v ∈ A3 ∪A4 and the ex post revenue
is capped at c(r) = 2r for any v ∈ A7. Formally, π′ is such that

1. π′ coincides with π on A2, A5, A6, A8, and A9;

2. π′(A3) = 0;

3. for any [c1, c2]× [d1, d2] ⊆ A7,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2]) +
π3
x([c1, c2]) · π4

y([d1, d2])
a4

;

4. for any [c1, c2]× [d1, d2] ⊆ A4,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2])− a3

a4
· π([c1, c2]× [d1, d2]);

5. for any [c1, c2]× [d1, d2] ⊆ A1,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2]) +
π4
x([c1, c2]) · π3

y([d1, d2])
a4

.

Analogously, one can construct a correlation structure π′′ from π′ by shifting
all the measure from A5 to A8 and shifting the same measure from A2 to A1 in a
way that respects the marginals and weakly decreases the auctioneer’s expected
revenue. Note that

π′′(A3) = π′′(A5) = 0 and π′′(A2) = π′′(A4) = a2 − a3.

If a2 = a3, then we have proved the desired result. If a2 > a3, then the last
step in this case is to construct a correlation structure π̂ from π′′ by shifting all
the measure from A2 to A6 and shifting the same measure from A4 to A1 in a way
that respects the marginals. This weakly decreases the expected revenue, since
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the ex post revenue is r for any v ∈ A2 ∪ A4 and the ex post revenue is capped at
c(r) = 2r for any v ∈ A6. Formally, π̂ is such that

1. π̂ coincides with π′′ on A3, A5, A7, A8, and A9;
2. π̂(A2) = π̂(A4) = 0;
3. for any [c1, c2]× [d1, d2] ⊆ A1,

π̂([c1, c2]× [d1, d2]) = π′′([c1, c2]× [d1, d2]) +
π′′4x ([c1, c2]) · π′′2y ([d1, d2])

a2 − a3
;

4. for any [c1, c2]× [d1, d2] ⊆ A6,

π̂([c1, c2]× [d1, d2]) = π′′([c1, c2]× [d1, d2]) +
π′′2x ([c1, c2]) · π′′4y ([d1, d2])

a2 − a3
.

This completes the proof for the first case since

π̂(A2) = π̂(A3) = π̂(A4) = π̂(A5) = 0.

Next, we study the case in which a2 < a3. Since π is consistent with the
marginals and F (2r) = 1+F (r)

2 , a2 + a6 + a8 = F (c(r)) − F (r) = 1 − F (c(r)) =
a3 + a7 + a9. Since π is symmetric, a7 = a8. Thus, a2 + a6 = a3 + a9 ≥ a3, which
implies a6 ≥ a3− a2. We further divide A6 by the 45-degree line into three regions:
Au6 = {v ∈ A6 : v1 < v2} (above the 45-degree line), Am6 = {v ∈ A6 : v1 = v2}
(the 45-degree line), and Ad6 = {v ∈ A6 : v1 > v2} (below the 45-degree line).
Without loss of generality, we can work with π such that π(Am6 ) = 0.27 Thus,
π(Au6) = π(Ad6) = a6

2 . For any [c1, c2]× [d1, d2] ⊆ A6, let

πdx([c1, c2]) = π
(
([c1, c2]× [y6, ȳ6]) ∩ Ad6

)
and

πdy([d1, d2]) = π
(
([x6, x̄6]× [d1, d2]) ∩ Ad6

)
.

and

πmx ([c1, c2]) = π ({(z, z) : c1 ≤ z ≤ c2}) , πmy ([d1, d2]) = π ({(z, z) : d1 ≤ z ≤ d2}) .

27Otherwise, let πm6 be the restriction of π on Am6 , and πmx and πmy be the marginal of πm6
on V1 and V2, respectively. Then we can construct another finite measure π̄m6 having the same
marginals πmx and πmy as follows: π̄m6 concentrates on the curve with the maximally negative
correlation on A6: πmx [x6, v1] = πmy [v2, ȳ

6] for (v1, v2) ∈ A6. Let π̄′ be the finite measure by
restricting π on V \ Am6 , and π̄ = π̄′ + π̄m6 . Then π̄ respects the marginals, π̄(Am6 ) = 0, and
REV (r, π̄) ≤ REV (r, π).
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We construct a correlation structure π′ from π by shifting measure a3−a2
2

from A3 to A2 and shifting the same measure from Ad6 to A7 in a way that respects
the marginals and does not change the expected revenue. Formally, π′ is such that

1. π′ coincides with π on A1, A4, A5, Au6 , Am6 , A8, and A9;

2. for any [c1, c2]× [d1, d2] ⊆ A2,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2])+(a3−a2) ·
πdx([c1, c2]) · π3

y([d1, d2])
a3 · a6

;

3. for any [c1, c2]× [d1, d2] ⊆ A3,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2])− a3 − a2

2 · π([c1, c2]× [d1, d2])
a3

;

4. for any [c1, c2]× [d1, d2] ⊆ Ad6,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2])− (a3 − a2) · π([c1, c2]× [d1, d2])
a6

;

5. for any [c1, c2]× [d1, d2] ⊆ A7,

π′([c1, c2]× [d1, d2]) = π([c1, c2]× [d1, d2])+(a3−a2) ·
π3
x([c1, c2]) · πdy([d1, d2])

a3 · a6
.

Analogously, one can construct a correlation structure π′′ from π′ by shifting
measure from A5 to A4 and shifting the same measure from Au6 to A8 in a way
that respects the marginals and does not change the expected revenue. Note that
π′′(A2) = π′′(A3) = π′′(A4) = π′′(A5) = a2+a3

2 . We can then adopt our approach in
the first case. This completes the proof.
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