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Abstract This paper revisits the classical Edge-Disjoint Paths (EDP) problem, where

one is given an undirected graph G and a set of terminal pairs P and asks whether

G contains a set of pairwise edge-disjoint paths connecting every terminal pair in P .

Our aim is to identify structural properties (parameters) of graphs which allow the

efficient solution of EDP without restricting the placement of terminals in P in any

way. In this setting, EDP is known to remain NP-hard even on extremely restricted

graph classes, such as graphs with a vertex cover of size 3.

We present three results which use edge-separator based parameters to chart new

islands of tractability in the complexity landscape of EDP. Our first and main re-

sult utilizes the fairly recent structural parameter tree-cut width (a parameter with

fundamental ties to graph immersions and graph cuts): we obtain a polynomial-time

algorithm for EDP on every graph class of bounded tree-cut width. Our second result

shows that EDP parameterized by tree-cut width is unlikely to be fixed-parameter

tractable. Our final, third result is a polynomial kernel for EDP parameterized by the

size of a minimum feedback edge set in the graph.

Keywords edge-disjoint path problem, feedback edge set, tree-cut width, parame-

terized complexity

1 Introduction

EDGE-DISJOINT PATHS (EDP) is a fundamental routing graph problem: we are

given a graph G and a set P containing pairs of vertices (terminals), and are asked

to decide whether there is a set of |P | pairwise edge-disjoint paths in G connecting

each pair in P . Similarly to its counterpart, the VERTEX-DISJOINT PATHS (VDP)
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problem, EDP has been at the center of numerous results in structural graph theory,

approximation algorithms, and parameterized algorithms [2,8,9,14,17,19,21,22,26].

Both EDP and VDP are NP-complete in general [16], and a significant amount

of research has focused on identifying structural properties which make these prob-

lems tractable. For instance, Robertson and Seymour’s seminal work in the Graph

Minors project [22] provides an O(n3) time algorithm for both problems for every

fixed value of |P |. Such results are often viewed through the more refined lens of the

parameterized complexity paradigm [5, 7]; there, each problem is associated with a

numerical parameter k (capturing some structural property of the instance), and the

goal is to obtain algorithms which are efficient when the parameter is small. Ideally,

the aim is then to obtain so-called fixed-parameter algorithms for the problem, i.e.,

algorithms which run in time f(k) · nO(1) where f is a computable function and n

the input size; the aforementioned result of Robertson and Seymour is hence an ex-

ample of a fixed-parameter algorithm where k = |P |, and we say that the problem

is FPT (w.r.t. this particular parameterization). In cases where fixed-parameter algo-

rithms are unlikely to exist, one can instead aim for so-called XP algorithms, i.e.,

algorithms which run in polynomial time for every fixed value of k.

Naturally, one prominent question that arises is whether we can use the structure

of the input graph itself (captured via a structural parameter) to solve EDP and VDP.

Here, we find a stark contrast in the difficulty between these two, otherwise closely

related, problems. Indeed, while VDP is known to be FPT with respect to the well-

established structural parameter treewidth [24], EDP is NP-hard even on graphs of

treewidth 3 [9]. What’s worse, the same reduction shows that EDP remains NP-hard

even on graphs with a vertex cover of size 3 [9], which rules out fixed-parameter

and XP algorithms for the vast majority of studied graph parameters (including, e.g.,

treedepth and the size of a minimum feedback vertex set).

We note that previous research on the problem has found ways of circumventing

these negative results by imposing additional restrictions. Zhou et al. [26] introduced

the notion of an augmented graph, which contains information about how terminal

pairs need to be connected, and used the treewidth of this graph to solve EDP. Recent

work [13], which primarily focused on the complexity of EDP on near-forests and

with respect to parameterizations of the augmented graphs, has also observed that

EDP admits a fixed-parameter algorithm when parameterized by treewidth and the

maximum degree of the graph.

Our Contribution. The aim of this paper is to provide new algorithms and match-

ing lower bounds for solving the EDGE-DISJOINT PATHS problem without imposing

any restrictions on the number and placement of terminals. In other words, our aim is

to be able to identify structural properties of the graph which guarantee tractability of

the problem without knowing any information about the placement of terminals. The

only positive result known so far in this setting requires us to restrict the degree of

the input graph; however, in the bounded-degree setting there is a simple treewidth-

preserving reduction from EDP to VDP (see Proposition 1), and so the problem only

becomes truly interesting when the input graphs can contain vertices of higher degree.

Our main result, which is provided in Theorem 2, is an XP algorithm for EDP

when parameterized by the structural parameter tree-cut width [20, 25]. Tree-Cut
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width is inherently tied to the theory of graph immersions; in particular, it has a sim-

ilar relationship to graph immersions and cuts as treewidth has to graph minors and

separators. Since its introduction, tree-cut width has been successfully used to obtain

fixed-parameter algorithms for problems which are W[1]-hard w.r.t. treewidth [11,

12]; however, this is the first time that it has been used to obtain an algorithm for a

problem that is NP-hard on graphs of bounded treewidth.

One “feature” of algorithmically exploiting tree-cut width is that it requires the

solution of a non-trivial dynamic programming step. In previous works, this was car-

ried out mostly by direct translations into INTEGER LINEAR PROGRAMMING in-

stances with few integer variables [11] or by using network flows [12]. In the case of

EDP, the dynamic programming step requires us to solve an instance of EDP with

a vertex cover of size k where every vertex outside of the vertex cover has a degree

of 2; we call this problem SIMPLE EDP and solve it in the dedicated Section 3. It

is worth noting that there is only a very small gap between SIMPLE EDP (for which

we provide an XP algorithm in Lemma 4) and graphs with a vertex cover of size 3
(where EDP is known to be NP-hard).

In view of our main result, it is natural to ask whether the algorithm can be im-

proved to a fixed-parameter one. After all, given the parallels between EDP param-

eterized by tree-cut width (an edge-separator based parameter) and VDP parameter-

ized by treewidth (a vertex-separator based parameter), one would rightfully expect

that the fixed-parameter tractability result on the latter [24] would be mirrored in the

former case. Surprisingly, we rule this out by showing that EDP parameterized by

tree-cut width is W[1]-hard [5, 7] and hence unlikely to be fixed-parameter tractable;

in fact, we obtain this lower-bound result even in the more restrictive setting of SIM-

PLE EDP in Lemma 5. The proof is based on an involved reduction from an adapted

variant of the MULTIDIMENSIONAL SUBSET SUM problem [12, 13] and forms our

second main contribution.

Having ruled out fixed-parameter algorithms for EDP parameterized by tree-cut

width and in view of previous lower-bound results, one may ask whether it is even

possible to obtain such an algorithm for any reasonable parameterization. We answer

this question positively by using the size of a minimum feedback edge set as a pa-

rameter. In fact, we show an even stronger result: as our final contribution, we obtain

a so-called linear kernel [5, 7] for EDP parameterized by the size of a minimum

feedback edge set (Theorem 3).

Organization of the Paper. After introducing the required preliminaries in Sec-

tion 2, we proceed to introducing SIMPLE EDP, solving it via an XP algorithm and

establishing our lower-bound result (Section 3). Section 4 then contains our algo-

rithm for EDP parameterized by tree-cut width. Finally, in Section 5 we obtain a

polynomial kernel for EDP parameterized by the size of a minimum feedback edge

set.

2 Preliminaries

We use standard terminology for graph theory, see for instance [6]. Given a graph G,

we let V (G) denote its vertex set and E(G) its edge set. The (open) neighborhood of
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a vertex x ∈ V (G) is the set {y ∈ V (G) : xy ∈ E(G)} and is denoted by NG(x).
For a vertex subset X , the neighborhood of X is defined as

⋃

x∈X NG(x) \ X and

denoted by NG(X); we drop the subscript if the graph is clear from the context.

Contracting an edge a, b is the operation of replacing vertices a, b by a new vertex

whose neighborhood is (N(a) ∪ N(b)) \ {a, b}. For a vertex set A (or edge set B),

we use G− A (G− B) to denote the graph obtained from G by deleting all vertices

in A (edges in B), and we use G[A] to denote the subgraph induced on A, i.e.,

G− (V (G) \A). A path segment of a path Q is a path that is a subgraph of Q.

A forest is a graph without cycles, and an edge set X is a feedback edge set if

G − X is a forest. The feedback edge set number of a graph G, denoted by fes(G),
is the smallest integer k such that G has a feedback edge set of size k. We use [i] to

denote the set {0, 1, . . . , i}.

2.1 Parameterized Complexity

A parameterized problem P is a subset of Σ∗ × N for some finite alphabet Σ. Let

L ⊆ Σ∗ be a classical decision problem for a finite alphabet, and let p be a non-

negative integer-valued function defined on Σ∗. Then L parameterized by p denotes

the parameterized problem { (x, p(x)) | x ∈ L } where x ∈ Σ∗. For a problem in-

stance (x, k) ∈ Σ∗×N we call x the main part and k the parameter. A parameterized

problem P is fixed-parameter tractable (FPT in short) if a given instance (x, k) can

be solved in time f(k) · |x|O(1) where f is an arbitrary computable function of k; we

call algorithms running in this time fixed-parameter algorithms.

Parameterized complexity classes are defined with respect to fpt-reducibility. A

parameterized problem P is fpt-reducible to Q if in time f(k) · |x|O(1), one can trans-

form an instance (x, k) of P into an instance (x′, k′) of Q such that (x, k) ∈ P if and

only if (x′, k′) ∈ Q, and k′ ≤ g(k), where f and g are computable functions depend-

ing only on k. Owing to the definition, if P fpt-reduces to Q and Q is fixed-parameter

tractable then P is fixed-parameter tractable as well. Central to parameterized com-

plexity is the following hierarchy of complexity classes, defined by the closure of

canonical problems under fpt-reductions:

FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ XP.

All inclusions are believed to be strict. In particular, FPT 6= W[1] under the Expo-

nential Time Hypothesis.

A major goal in parameterized complexity is to distinguish between parame-

terized problems which are in FPT and those which are W[1]-hard, i.e., those to

which every problem in W[1] is fpt-reducible. There are many problems shown to be

complete for W[1], or equivalently W[1]-complete, including the MULTI-COLORED

CLIQUE (MCC) problem [7]. We refer the reader to the respective monographs [4,7,

10] for an in-depth introduction to parameterized complexity.

2.2 Edge-Disjoint Path Problem

Throughout the paper we consider the following problem.
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EDGE-DISJOINT PATHS (EDP)

Input: A graph G and a set P of terminal pairs, i.e., a set of

subsets of V (G) of size two.

Question: Is there a set of pairwise edge-disjoint paths connecting

every set of terminal pairs in P ?

A vertex which occurs in a terminal pair is called a terminal, and a set of pairwise

edge-disjoint paths connecting every set of terminal pairs in P is called a solution.

Without loss of generality, we assume that G is connected. The VERTEX-DISJOINT

PATHS (VDP) problem is defined analogously as EDP, with the sole distinction be-

ing that the paths must be vertex-disjoint.

The following proposition establishes a link between EDP and VDP on graphs

of bounded degree. Since we will not need the notion of treewidth [23] for any other

result presented in the paper, we refer to the standard textbooks [4,7] for its definition.

Proposition 1 There exists a linear-time reduction from EDP to VDP with the fol-

lowing property: if the input graph has treewidth k and maximum degree d, then the

output graph has treewidth at most (k + 1)d.

Proof. Let (G,P ) be an instance of EDP where G has treewidth k and maximum

degree d; let V = V (G) and E = E(G). Observe that if any vertex v ∈ V occurs in

P more than d many times, then (G,P ) must be a NO-instance (we assume that P

does not contain tuples in the form (a, a) for any a).

Consider the graph G′ obtained in the following two-step procedure. First, we

subdivide each edge in G (i.e., we replace that edge with a vertex of degree 2 that is

adjacent to both endpoints of the original edge); let V ′ be the set of vertices created

by such subdivisions. Second, for each vertex v = v1 ∈ V of the original graph G,

we create d− 1 copies v2, . . . , vd of that vertex and set their neighborhood to match

that of v1. This construction gives rise to a natural mapping α from G to G′ which

maps each v ∈ V to the set v1, . . . , vd and each e ∈ E to the vertex created by

subdividing e. Next, we iteratively process P as follows: for each {v, w} ∈ P , we

add a tuple {v′, w′} into the set P ′ such that v′ ∈ α(v), w′ ∈ α(w) and neither v′

nor w′ occurs in any other pair in P ′ (the last condition can be ensured because each

vertex in v has d copies in G′ but never occurs more than d times in P ).

It is now easy to verify that (G,P ) is a YES-instance of EDP if and only if

(G′, P ′) is a YES-instance of VDP. Indeed, consider a solution S (i.e., a set of edge

disjoint paths) for (G,P ). For each v-w path Q in S, there is a corresponding tu-

ple (v′, w′) in P ′, and we can construct a v′-w′ path Q′ by (a) replacing each edge

and vertex used by Q with a vertex in the α-image of that edge and vertex, while

(b) ensuring that all paths constructed in this way are pairwise vertex-disjoint. This

means that (G′, P ′) is also a YES-instance. On the other hand, if (G′, P ′) is a YES-

instance and this is witnessed by a set S′ of vertex-disjoint paths spanning a minimal

set of vertices, then by this minimality assumption it follows that each path may

only visit the α-image of any vertex v ∈ V (G) at most once. Now consider a v-w

path Q′ ∈ S′, and notice that Q′ can be viewed as a sequence of vertices of the form

(α(v), α(e1), α(v1), α(e2), . . . , α(w)). The sequence obtained from the images of α,
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i.e., (v, e1, v1, e2, . . . , w) must then also form a path, and moreover the set of paths

obtained in this way must be edge-disjoint by construction.

To conclude the proof, observe that it is possible to convert any tree-decomposition

(T,X) [7] of G of width k into a tree-decomposition of G′ of width (k + 1)d by

(1) replacing each vertex v by α(v) in T , and then (2) by choosing, for each edge

e = ab ∈ E, a bag X ⊇ {a, b}, creating a bag X ′ = X ∪ {α(e)}, and attaching X ′

to X as a leaf. �

We remark that Proposition 1 in combination with the known fixed-parameter

algorithm for VDP parameterized by treewidth [24] provides an alternative proof for

the fixed-parameter tractability of EDP parameterized by degree and treewidth [13].

Finally, we introduce one bit of useful notation that applies to an instance (G,P ) of

EDP: for a subgraph H of G, we let PH
2 denote the subset of terminal pairs which

are subsets of V (H) and PH
1 denote the subset of terminal pairs with a non-empty

intersection with V (H).

2.3 Tree-Cut Width

The notion of tree-cut decompositions was introduced by Wollan [25], see also [20].

A family of subsets X1, . . . , Xk of X is a near-partition of X if they are pairwise

disjoint and
⋃k

i=1 Xi = X , allowing the possibility of Xi = ∅.

Definition 1 A tree-cut decomposition of G is a pair (T,X ) which consists of a

rooted tree T and a near-partition X = {Xt ⊆ V (G) : t ∈ V (T )} of V (G). A set in

the family X is called a bag of the tree-cut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge

incident to t on the path to r. Let Tu and T t be the two connected components in

T − e(t) which contain u and t, respectively. Note that (
⋃

q∈Tu Xq,
⋃

q∈T t Xq) is a

near-partition of V (G), and we use Et to denote the set of edges with one endpoint in

each part. We define the adhesion of t (adh(t)) as |Et|; we explicitly set adh(r) = 0
and Er = ∅.

The torso of a tree-cut decomposition (T,X ) at a node t, written as Ht, is the

graph obtained from G as follows. If T consists of a single node t, then the torso of

(T,X ) at t is G. Otherwise let T1, . . . , Tℓ be the connected components of T − t.

For each i = 1, . . . , ℓ, the vertex set Zi ⊆ V (G) is defined as the set
⋃

b∈V (Ti)
Xb.

The torso Ht at t is obtained from G by consolidating each vertex set Zi into a

single vertex zi (this is also called shrinking in the literature). Here, the operation of

consolidating a vertex set Z into z is to substitute Z by z in G, and for each edge e

between Z and v ∈ V (G) \Z, adding an edge zv in the new graph. We note that this

may create parallel edges.

The operation of suppressing (also called dissolving in the literature) a vertex v

of degree at most 2 consists of deleting v, and when the degree is two, adding an

edge between the neighbors of v. Given a connected graph G and X ⊆ V (G), let the

3-center of (G,X) be the unique graph obtained from G by exhaustively suppressing

vertices in V (G) \X of degree at most two. Finally, for a node t of T , we denote by
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H̃t the 3-center of (Ht, Xt), where Ht is the torso of (T,X ) at t. Let the torso-size

tor(t) denote |H̃t|.

Definition 2 The width of a tree-cut decomposition (T,X ) of G is maxt∈V (T ){adh(t),
tor(t)}. The tree-cut width of G, or tcw(G) in short, is the minimum width of

(T,X ) over all tree-cut decompositions (T,X ) of G.

We also refer to [15] for a novel alternative definition of tree-cut width. Without

loss of generality, we shall assume that Xr = ∅. We conclude this subsection with

some notation related to tree-cut decompositions. Given a tree node t, let Tt be the

subtree of T rooted at t. Let Yt =
⋃

b∈V (Tt)
Xb, and let Gt denote the induced

subgraph G[Yt]. A node t 6= r in a rooted tree-cut decomposition is thin if adh(t) ≤
2 and bold otherwise.

a

d

b c

e

f

g

d(2, 0)

a(3, 3)

bc(3, 3)

e

(1, 2)

f

(1, 2)

g

(1, 1)

Fig. 1 A graph G and a width-3 tree-cut decomposition of G, including the torso-size (left value) and

adhesion (right value) of each node.

While it is not known how to compute optimal tree-cut decompositions efficiently,

there exists a fixed-parameter 2-approximation algorithm which we can use instead.

Theorem 1 ([18]) There exists an algorithm that takes as input an n-vertex graph G

and integer k, runs in time 2O(k2 log k)n2, and either outputs a tree-cut decomposition

of G of width at most 2k or correctly reports that tcw(G) > k.

A tree-cut decomposition (T,X ) is nice if it satisfies the following condition for

every thin node t ∈ V (T ): NG(Yt) ∩ (
⋃

b is a sibling of t Yb) = ∅. The intuition behind

nice tree-cut decompositions is that we restrict the neighborhood of thin nodes in a

way which facilitates dynamic programming.

Lemma 1 ([11]) There exists a cubic-time algorithm which transforms any rooted

tree-cut decomposition (T,X ) of G into a nice tree-cut decomposition of the same

graph, without increasing its width or number of nodes.

For a node t in a nice tree-cut decomposition, we let Bt = { b is a child of t |
adh(b) ≤ 2 ∧ NG(Yb) ⊆ Xt } denote the set of thin children of t whose neighbor-

hood is a subset of Xt, and we let At = { a is a child of t | a 6∈ Bt } be the set of

all other children of t. The following property of nice tree-cut decompositions will

be crucial for our algorithm; among others, it implies that only a bounded number of

children of t contain neighbors of vertices that do not lie in Xt.

Lemma 2 ([11]) Let t be a node in a nice tree-cut decomposition of width k. Then

|At| ≤ 2k + 1.
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We refer to previous work [11,18,20,25] for a more detailed comparison of tree-

cut width to other parameters. Here, we mention only that tree-cut width lies “be-

tween” treewidth and treewidth plus maximum degree.

Lemma 3 ([11, 20, 25]) Let tw(G) denote the treewidth of G and degtw(G) denote

the maximum over tw(G) and the maximum degree of a vertex in G. Then tw(G) ≤
2tcw(G)2 + 3tcw(G), and tcw(G) ≤ 4degtw(G)2.

In this context, we can view tree-cut width as a parameter which serves as a “mid-

dle ground” for solving EDP. On one hand, EDP remains NP-hard even on graphs of

bounded treewidth. On the other hand, parameterizing EDP by degtw yields a fixed-

parameter algorithm, but this is only useful on graphs of small maximum degree,

where it simply collapses to solving VDP parameterized by treewidth. In this paper,

we show that tree-cut width allows for a non-trivial XP (but not a fixed-parameter)

algorithm for EDP. We also remark that Lemma 3 immediately implies that VDP is

FPT parameterized by tree-cut width.

3 The Simple Edge-Disjoint Paths Problem

Before we start working towards our algorithm for solving EDP parameterized by

tree-cut width, we will first deal with a simpler (but crucial) setting for the problem.

We call this the SIMPLE EDGE-DISJOINT PATHS problem (SIMPLE EDP) and define

it below.

SIMPLE EDP

Input: An EDP instance (G,P ) such that V (G) = A ∪ B where B is

an independent set containing vertices of degree at most 2.

Parameter: k = |A|
Question: Is (G,P ) a YES-instance of EDP?

Notice that every instance of SIMPLE EDP has tree-cut width at most k, and so it

forms a special case of EDP parameterized by tree-cut width. Indeed, the tree-cut de-

composition where T is a star, the center bag contains A, and each leaf bag contains

a vertex from B (except for the root r, where Xr = ∅), has tree-cut width at most k.

This contrasts to the setting where G has a vertex cover of size 3 and all vertices out-

side the vertex cover have degree 3; the tree-cut width of such graphs is not bounded

by any constant, and EDP is known to be NP-complete in this setting [9].

The main reason we introduce and focus on SIMPLE EDP is that it captures the

combinatorial problem that needs to be solved in the dynamic step of the algorithm

for EDP parameterized by tree-cut width. Hence, our first task here will be to solve

SIMPLE EDP by an algorithm that can later be called as a subroutine.

Lemma 4 SIMPLE EDP can be solved in time O((|P |+ 1)(
k

2)+1(k + 1)!).

Proof. We will start by simplifying the instance using some simple observations.

First we will show that we can remove all vertices in B that are not contained in any

terminal pair by adding multi-edges to G[A]. Namely, let v be a vertex in B that does
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not appear in any terminal pair in P . If v has no neighbors or at most one neighbor,

then v can simply be removed from G, and if v has degree two, then we can remove

v and add an edge between its two neighbors in A. Hence in the following we will

assume that all vertices in B occur in at least one terminal pair and that G[A] can

contain multi-edges.

Let the terminal graph of G, denoted GT , be the graph with vertex set V and edge

set P . The following two observations will be crucial for our algorithm:

O1 Consider a path Q connecting a terminal pair p ∈ P in a solution. Because B is

an independent set and every vertex in B has degree at most two and is contained

in at least one terminal pair in P , we obtain that all inner vertices of Q are from A.

Hence, Q contains at most k+2 vertices and all inner vertices of Q are contained

in A. It follows that Q is completely characterized by the sequence of vertices it

uses in A. Consequently, there are at most
∑k

ℓ=1

(

k
ℓ

)

ℓ! ≤ (k+ 1)! different types

of paths that need to be considered for the connection of any terminal pair.

O2 GT [B] is a disjoint union of paths and cycles. This is because every vertex v

of G can be contained in at most |NG(v)| terminal pairs in P (otherwise we

immediately reject) and all vertices in B have degree at most two.

Let u and v be two distinct vertices in A. Because |A| ≤ k, we can enumerate all pos-

sible paths between u and v in G[A] in time O((k+1)!). We will represent each such

path H as a binary vector EH , whose entries are indexed by all sets of two distinct

vertices in A, such that EH [e] = 1 if H uses the edge e and EH [e] = 0 otherwise.

Moreover, we will denote by Eu,v the set {EH | H is a path between u and v in G[A] };

intuitively, Eu,v captures all possible sets of edges that can be used in order to connect

u to v.

Let S be a solution for (G,P ). The algorithm represents every solution S for

(G,P ) as a solution vector ES of natural numbers whose entries are indexed by all

sets {u, v} of two distinct vertices in A. More specifically, for two distinct vertices

u and v in A, ES [{u, v}] is equal to the number of edges between u and v used by

the paths in S. The algorithm uses dynamic programming to compute the set L of all

solution vectors; clearly, L 6= ∅ if and only if (G,P ) is a YES-instance. We compute

L in two main steps:

(S1) the algorithm computes the set LA of all solution vectors for the sub-instance

(G[A], P ′) of (G,P ), where P ′ is the subset of P containing all terminal pairs

{p, q} with p, q ∈ A.

(S2) the algorithm computes the set of all solution vectors for the sub-instance (G,P \
P ′). Note that every terminal pair p in P \ P ′ is either completely contained in

B, in which case it forms an edge of a path or a cycle in GT [B], or p has one

vertex in A and the other vertex in B, which is the endpoint of a path in GT [B].
The algorithm now computes the set of all solution vectors for the sub-instance

(G,P \ P ′) in two steps:

(S2A) For every cycle C in GT [B], the algorithm computes the set LC of all solution

vectors for the sub-instance (G[A ∪ V (C)], PC
2 ), where PC

2 is the set of all

terminal pairs in P with both terminals in C.
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(S2B) For every path H in GT [B], the algorithm computes the set LH of all solution

vectors for the sub-instance (G[A ∪ V (H)], PH
1 ), where PH

1 is the set of all

terminal pairs in P with at least one endpoint in H .

In the end, the set of all hypothetical solution vectors L′ for (G,P ) is obtained as

LA ⊕ (⊕C is a cycle of GT [B]LC)⊕ (⊕H is a path of GT [B]LH), where P ⊕P ′ for two sets

P and P ′ of solution vectors is equal to {R+R′ | R ∈ P ∧R′ ∈ P ′ }. Each vector

in L′ describes one possible set of multi-edges in G[A] that can be used to connect

all terminal pairs in P . In order to compute L, one simply needs to remove all vectors

from L′ which require more multi-edges than are available in G[A]; in particular, to

obtain L we delete each vector ES from L′ such that there exist u, v ∈ A where

ES [{u, v}] exceeds the number of multi-edges between u and v in G. The algorithm

then returns YES if L is non-empty and otherwise the algorithm returns NO. Note

that, as is usually the case with these types of dynamic programming algorithms, the

algorithm can also be easily modified to find a solution for (G,P ), without increasing

its running time.

The set LA described in step (S1) is computed as follows. Given an arbitrary but

fixed ordering p1, . . . , p|P ′| of the terminal pairs in P ′, let Pi be the set { pj | 1 ≤ j ≤
i }, for every i with 1 ≤ i ≤ |P ′|. The algorithm now uses dynamic programming to

compute the sets S1, . . . , S|P ′|, where Si contains the set of all hypothetical solution

vectors for the instance (G[A], Pi) as follows. The algorithm starts by setting T1 to

be the set Ep1
. Then for every i with 1 < i ≤ |P ′|, the algorithm computes Ti from

Ti−1 as the set {E + E′ | E ∈ Ti−1 ∧ E′ ∈ Epi
}.

The set LC described in step (S2A) for a cycle C = (v1, . . . , vn) of GT [B] is

computed as follows. Note that every vertex in C has exactly two neighbors in A

(and also in G). For a neighbor n of vi, we denote by n̄ the other neighbor of vi in

G, i.e., n̄ is the unique neighbor in NG(vi) \ {n}. For every i with 2 ≤ i ≤ n, we

denote by Pi the set { {vj , vj+1} | 1 ≤ j < i } of terminal pairs. The algorithm starts

by computing a table Ti for every i with 2 ≤ i ≤ n. Informally, for every neighbor

n1 of v1 and every neighbor ni of vi in G, the table Ti contains all hypothetical

solution vectors for the instance induced on A and the vertices v1, . . . , vi that use n1

to connect the terminal pair {v1, v2} and ni to connect the terminal pair {vi−1, vi}.

More formally, for every n1 ∈ NG(v1) and ni ∈ NG(vi) the table Ti contains the set

of all solution vectors for the instance (G[A ∪ {v1, . . . , vi}]− {v1n̄1, vin̄i}, Pi).

The tables T2, . . . , Tn are iteratively computed starting with T2 as follows. For

every n1 ∈ NG(v1) and n2 ∈ NG(v2), T2[n1, n2] is equal to En1,n2
. Moreover, for

every i with 3 ≤ i ≤ n, the table Ti is obtained from the table Ti−1 as follows.

For every n1 ∈ NG(v1) and ni ∈ NG(vi), Ti[n1, ni] is equal to the union of the

following two sets:

– {E + E′ | E ∈ Ti−1[n1, ni−1] ∧ E′ ∈ En̄i−1,ni
} and

– {E + E′ | E ∈ Ti−1[n1, n̄i−1] ∧ E′ ∈ Eni−1,ni
}

where {ni−1, n̄i−1} = NG(vi−1). Finally, the set of all hypothetical solution vectors

for the instance (G[A ∪ C], PC
2 ) is obtained from the table Tn as the union of the

sets {E + E′ | E ∈ Tn[n1, nn] ∧ E′ ∈ En̄n,n̄1
} for every n1 ∈ NG(v1) and every

nn ∈ NG(vn).
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The set LH described in step (S2B) for a path H = (v1, . . . , vn) of GT [B] is

computed as follows. Note first that every inner vertex of H has exactly two neighbors

in A and the two endpoints v1 and vn of H have either one or two neighbors in A.

We will compute LH with the help of the table Tn computed for the step (S2A)

above. First note that if both endpoints v1 and vn of H have only one neighbor in

A, then LH is equal to Tn[n1, nn], where n1 and nn are the unique neighbors of v1
and vn, respectively, in G. Moreover, if both endpoints occur only in one terminal

pair (but could have up to two neighbors in G), then LH is equal to the union of the

sets Tn[n1, nn] for every neighbor n1 ∈ NG(v1) and every neighbor nn ∈ NG(vn).
Now consider the case that both endpoints v1 and vn occur in exactly two terminal

pairs; the case that only one of them occurs in two terminal pairs is then analogously.

Then v1 occurs in the terminal pair {v1, v2} and in the terminal pair {v1, a1} for

some a1 ∈ A and similarily vn occurs in the terminal pair {vn−1, vn} and in the

terminal pair {vn, an} for some an ∈ A. In this case, LH is equal to the union of the

sets {E + E′ + E′′ | E ∈ En̄1,a1
∧ E′ ∈ Tn[n1, nn] ∧ E′′ ∈ En̄n,an

} for every

n1 ∈ NG(v1) and every nn ∈ NG(vn). All other remaining cases can be handled

analogously.

This completes the description of the algorithm. To verify correctness, one can

observe that each solution vector computed by the algorithm can be traced back to

a specific choice of edges (a path) that connects each terminal pair in P , and since

there are sufficient multi-edges in G[A] to accommodate all the resulting paths, this

guarantees the existence of a solution. On the other hand, if a solution exists then it

surely has a solution vector, and moreover the algorithm will discover this solution

vector by choosing, for each {a, b} ∈ P , the entry in EH which corresponds to the

a-b path used in the solution.

Finally, we establish the running time bound. Note first that every set of solution

vectors computed at any point in the algorithm contains at most (|P |+1)(
k

2) elements.

Moreover, as argued in (O1) the set Eu,v for two distinct vertices u and v in A can be

computed in time O((k + 1)!) and contains at most (k + 1)! elements. From this it

follows that the time required to compute LA in (S1) is at most O((|P |+ 1)(
k

2)(k +
1)!|P ′|). Similarly, the time required to compute LC for a cycle C in GT [B] in step

(S2A) is at most O((|P |+ 1)(
k

2)(k+ 1)!|PC
2 |) and the time required to compute LH

for a path H in GT [B] in step (S2B) is at most O((|P |+1)(
k

2)(k+1)!|PH
1 |). Hence

the time required to compute LA together with all the sets LC and LH for every cycle

C and path H of GT [B] is at most O((|P | + 1)(
k

2)(k + 1)!|P |). Finally, combining

these sets into L′ does not incur an additional run-time overhead since L′ can be

computed iteratively as part of the computation of the sets LA, LC , and LH . �

Notice that Lemma 4 does not provide a fixed-parameter algorithm for SIMPLE

EDP. Our second task for this section will be to rule out the existence of such algo-

rithms (hence also ruling out the fixed-parameter tractability of EDP parameterized

by tree-cut width).

Before we proceed, we would like note that this outcome was highly surpris-

ing for the authors. Indeed, not only does this “break” the parallel between {VDP,

treewidth} and {EDP, tree-cut width}, but inspecting the dynamic programming al-
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gorithm for EDP parameterized by tree-cut width presented in Section 4 reveals that

solving SIMPLE EDP is the only step which requires more than “FPT-time”. In par-

ticular, if SIMPLE EDP were FPT, then EDP parameterized by tree-cut width would

also be FPT. This situation contrasts the vast majority of dynamic programming al-

gorithms for parameters such as treewidth and clique-width [3], where the complexity

bottleneck is usually tied to the size of the records used and not to the computation

of the dynamic step.

Our lower-bound result is based on a fpt-reduction from the following problem:

MULTIDIMENSIONAL SUBSET SUM (MSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with si ∈
N

k for every i with 1 ≤ i ≤ n, a target vector t ∈ N
k, and an

integer ℓ.

Parameter: k

Question: Is there a subset S′ ⊆ S with |S′| ≥ ℓ such that
∑

s∈S′ s ≤ t?

The W[1]-hardness of MSS can be obtained by a trivial reduction from the follow-

ing problem, which was recently shown to be W[1]-hard by Ganian, Ordyniak and

Ramanujan [13]:

MULTIDIMENSIONAL RELAXED SUBSET SUM (MRSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with si ∈
N

k for every i with 1 ≤ i ≤ n, a target vector t ∈ N
k, and an

integer ℓ.

Parameter: k

Question: Is there a subset S′ ⊆ S with |S′| ≤ ℓ such that
∑

s∈S′ s ≥ t?

Indeed, given an instance (k, S, t, ℓ) of MRSS, it is straightforward to verify that

(k, S, (
∑

s∈S s) − t, |S| − ℓ) is an equivalent instance of MSS; since the reduction

preserves the parameter, this shows that MSS is also W[1]-hard.

Lemma 5 SIMPLE EDP is W[1]-hard.

Proof. We provide a fpt-reduction from MSS. Namely, given an instance (k, S, t, ℓ)
of MSS, we will construct an equivalent instance (G,P ) with partition A and B

and |A| = k + 3 of SIMPLE EDP. For convenience and w.l.o.g. we will assume

that all entries of the vectors in S as well as all entries of the target vector t are

divisible by two; furthermore, we will describe the constructed instance of SIMPLE

EDP with multi-edges between vertices in A (note that these can be replaced by

degree-2 vertices in B, similarly as in Lemma 4).

The graph G[A] has vertices a, b, d, and d1, . . . , dk and the following multi-edges:

– |S| − ℓ edges between a and b,

– for every i with 1 ≤ i ≤ k, t[i] edges between d and di.

Moreover, for every s ∈ S we construct a gadget G(s) consisting of:

– the vertices vs, vs1, u
s
1, . . . , v

s
s̄ , u

s
s̄ with s̄ =

∑k

i=1 s[i],
– two edges vsa and vsd,



The Power of Cut-Based Parameters for Computing Edge-Disjoint Paths 13

– for every i with 1 ≤ i ≤ s̄, two edges vsi b and us
i b,

– for every i with 1 ≤ i ≤ s̄ and i even, two edges vsi d and us
id,

– for every j with 1 ≤ j ≤ k and every i with
∑j−1

l=1 s[l] < i ≤
∑j

l=1 s[l] and i

odd, two edges vsi dj and us
idj ,

– the terminal pair {vs, vs1},

– for every i with 1 ≤ i ≤ s̄, a terminal pair {vsi , u
s
i},

– for every i with 1 ≤ i < s̄, a terminal pair {us
i , v

s
i+1},

a

b

vs

vs
1

us
1

vs
2

us
2

vs
3

us
3

vs
4

us
4

d1

d2

d

|S| − ℓ
t[1]

t[2]

a

b

vs

vs
1

us
1

vs
2

us
2

vs
3

us
3

vs
4

us
4

d1

d2

d

|S| − ℓ
t[1]

t[2]

Fig. 2 An illustration of the graph G[A] together with the gadget G(s) for k = 2, s[1] = 2, and s[2] =
2. Bold edges indicate multi-edges with multiplicities given as an edge label. The left side illustrates

configuration (C1) and the right side illustrates configuration (C2) as defined in Claim 1; here the non-

black edges indicate the edges used by a solution that uses the corresponding configuration to connect the

terminal pairs of G(s). In particular, on the left side illustrating the case (C1), we have that: the green

edges connect the terminal pair {vs, vs
1
}, the yellow edges connect the terminal pairs {us

i , v
s
i+1

}, the

blue edges connect the terminal pairs {vsi , u
s
i } for i even, and the red edges connect the terminal pairs

{vsi , u
s
i } for i odd. Moreover, on the right side illustrating the case (C2), we have that: the green edges

connect the terminal pair {vs, vs
1
}, the yellow edges connect the terminal pairs {us

i , v
s
i }, the blue edges

connect the terminal pairs {us
i , v

s
i+1

} for i odd, and the red edges connect the terminal pairs {us
i , v

s
i+1

}
for i even.

Then G consists of the graph G[A] together with the vertices and edges of the

gadget G(s) for every s ∈ S; note that B is the union of V (G(s)) over every s ∈ S.

Moreover, P consists of all terminal pairs of the gadgets G(s) for every s ∈ S.

This completes the construction of the instance (G,P ); an illustration is provided in

Figure 2. It remains to show that the instance (k, S, t, ℓ) of MSS has a solution if and

only if so does the instance (G,P ) of EDP.
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We start by showing that there are only two ways to connect all terminal pairs

of the gadget G(s) for every s ∈ S. Figure 2 illustrates the edges used by the two

configurations.

Claim 1. Let S be a solution for (G,P ), and s ∈ S. Then either:

(C1) The terminal pair {vs, vs1} is connected by the path (vs, a, b, vs1) and:

– for every i with 1 ≤ i < s̄, the terminal pair {us
i , v

s
i+1} is connected by the

path (us
i , b, v

s
i+1),

– for every i with 1 ≤ i ≤ s̄ and i even, the terminal pair {vsi , u
s
i} is connected

by the path (vsi , d, u
s
i ), and

– for every i with 1 ≤ i ≤ s̄ and i odd, the terminal pair {vsi , u
s
i} is connected

by the path (vsi , dj , u
s
i ), where j is such that

∑j−1
l=1 s[l] < i ≤

∑j

l=1 s[l].
(C2) The terminal pair {vs, vs1} is connected by the path (vs, d, dj , v

s
1), where j is the

minimum integer such that s[j] 6= 0 and:

– for every i with 1 ≤ i ≤ s̄, the terminal pair {vsi , u
s
i} is connected by the path

(vsi , b, u
s
i ),

– for every i with 1 ≤ i < s̄ and i is odd, the terminal pair {us
i , v

s
i+1} is

connected by the path (us
i , dj , d, v

s
i+1), where j is such that

∑j−1
l=1 s[l] < i ≤

∑j

l=1 s[l],
– for every i with 1 ≤ i < s̄ and i is even, the terminal pair {us

i , v
s
i+1} is

connected by the path (us
i , d, dj , v

s
i+1), where j is such that

∑j−1
l=1 s[l] < i ≤

∑j

l=1 s[l].

Proof. Let S be a solution for (G,P ) and s ∈ G(s). Then S has to connect the

terminal pair {vs, vs1} either by the path (vs, a, b, vs1) or by the path (vs, d, dj , v
s
1).

In the former case, the only way to connect the terminal pair {vs1, u
s
1} is the

path (vs1, dj , u
s
1), where j is such that

∑j−1
l=1 s[l] < 1 ≤

∑j

l=1 s[l]. But then the

terminal pair {us
1, v

s
2} can only be connected by the path (us

1, b, v
s
2) and in turn the

terminal pair {vs2, u
s
2} can only be connected by the path (vs2, d, u

s
2). Since this pattern

continues in this manner, this concludes the argument for the first case.

In the later case, the only way to connect the terminal pair {vs1, u
s
1} is the path

(vs1, b, u
s
1). But then the terminal pair {us

1, v
s
2} can only be connected by the path

(us
1, dj , d, v

s
2), where j is such that

∑j−1
l=1 s[l] < 1 ≤

∑j

l=1 s[l], and in turn the

terminal pair {vs2, u
s
2} can only be connected by the path (vs2, b, u

s
2). Finally, the ter-

minal pair {us
2, v

s
3} can then only be connected by the path (us

2, d, dj , v
s
3), where j

is such that
∑j−1

l=1 s[l] < 1 ≤
∑j

l=1 s[l]. Since this pattern continues in this manner,

this concludes the argument for the second case. �

Let S be a solution for (G,P ) and s ∈ S. It follows from Claim 1 that if S
connects the terminal pairs of G(s) according to (C1), then the only edge used from

G[A] is the edge ab. On the other hand, if S connects the terminal pairs in G(s)
according to (C2), then S uses s[i] edges between d and dj for every i with 1 ≤ i ≤ k.

Towards showing the forward direction, let S′ ⊆ S be a solution for (k, S, t, ℓ).
W.l.o.g. we can assume that |S′| = ℓ. We claim that the set of edge-disjoint paths S ,

which if s ∈ S′ connects all terminal pairs in G(s) according to (C2) and if s ∈ S\S′
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connects all terminal pairs in G(s) according to (C1) is a solution for (G,P ). This

holds because there are |S| − ℓ edges between a and b, which are sufficient for the

elements in S \S′ to be connected according to (C1). Moreover, because
∑

s∈S′ s ≤
t, the t[i] edges between d and di for every i with 1 ≤ i ≤ k, suffice for the elements

in S′ to be connected according to (C2).

For the reverse direction, let S be a solution for (G,P ). We claim that the subset

S′ of S containing all s ∈ S such that S connects all terminal pairs in G(s) according

to C2 is a solution for (k, S, t, ℓ). Because there are at most |S| − ℓ edges between a

and b in G[A], we obtain that |S′| ≥ ℓ. Moreover, because there are at most t[i] edges

between d and di in G[A], it follows that
∑

s∈S′ s ≤ t. Consequently, S′ is a solution

for (k, S, t, ℓ). �

4 An Algorithm for EDP on Graphs of Bounded Tree-Cut Width

The goal of this section is to provide an XP algorithm for EDP parameterized by tree-

cut-width. The core of the algorithm is a dynamic programming procedure which runs

on a nice tree-cut decomposition (T,X ) of the input graph G.

4.1 Overview

Our first aim is to define the data table the algorithm is going to dynamically compute

for individual nodes of the tree-cut decomposition; to this end, we introduce two ad-

ditional notions. For a node t, we say that Yt (or Gt) contains an unmatched terminal

s if {s, e} ∈ P , s ∈ Yt and e 6∈ Yt; let Ut be the multiset containing all unmatched

terminals in Yt (one entry in Ut per tuple in P which contains an unmatched termi-

nal). For a subgraph H of G, let PH
2 ⊆ P denote the subset of terminal pairs whose

both endpoints lie in H .

Let a record for node t be a tuple (δ, I, F, L) where:

– δ is a partitioning of Et into four subsets: an even-sized set I ′ (internal), a set L′

(leaving), an even-sized set F ′ (foreign) and a set (U ′) (unused);

– I is a set of subsets of size 2 of I ′ that is a perfect matching between the edges in

I ′;

– F is a set of subsets of size 2 of F ′ that is a perfect matching between the edges

in F ′;

– L is a perfect matching between Ut and the edges in L′.

Intuitively, a record captures all the information we need about one possible in-

teraction between a solution to EDP and the edges in Et. In particular, unmatched

terminals need to cross between Yt and G−Yt using an edge in Et and L captures the

first edge used by a path from an unmatched terminal in the solution while L′ is the

set of all edges in Et that are used for this purpose. I and F then capture information

about paths which intersect with Et but whose terminals both lie in Yt and G − Yt,

respectively1, and the sets I ′ and F ′ contain all edges used for these two purposes.

1 For technical reasons, F will also store information about paths with unmatched terminals which use

multiple edges in Et—see Definition 4 later.
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Finally, the set U ′ simply contains edges which are not used by a given solution. We

formalize this intuitive description below through the notion of a valid record.

Yt

a c

b d

Yt

a

b

e′

s

Yt

a c

b d

b′ d′

Fig. 3 Illustration of the construction of (Gt,λ, P t,λ) from (Gt, P
Gt

2
) and λ. Green vertices and edges

represent new elements that are added to (Gt,λ, P t,λ) and dashed edges represent terminal-pairs. The

left, middle, and right picture corresponds to the steps 2, 3, and 4 in the algorithm for constructing

(Gt,λ, P t,λ), respectively.

Let λ = (δ, I, F, L) be a record for t. Then, the instance (Gt,λ, P t,λ) is obtained

from (Gt, P
Gt

2 ) and λ by the following algorithm (see Figure 3 for an illustration):

1. initialize Gt,λ to Gt and P t,λ to PGt

2 ,

2. For each {{a, b}, {c, d}} ∈ I where a, c ∈ Yt, add a new vertex into Gt,λ and

connect it to a and c by edges (note that if a = c then this simply creates a new

leaf and hence this operation can be ignored).

3. For each {s, {a, b}} ∈ L where a ∈ Yt, add a new tuple {s, e′} into P t,λ and a

new leaf e′ into Gt,λ adjacent to a.

4. For each {{a, b}, {c, d}} ∈ F where a, c ∈ Yt, add two new leaves b′, d′ into

Gt,λ, make them adjacent to a and c respectively, and add {b′, d′} into P t,λ.

Definition 3 A record λ = (δ, I, F, L) is valid for t if (Gt,λ, P t,λ) is a YES-instance

of EDP.

We are now ready to define our data tables: for a node t ∈ V (T ), let D(t) be the

set of all valid records for t. We now make two observations. First, for any node t in a

nice tree-cut decomposition of width k, it holds that there exist at most 4k ·k! distinct

records and hence |D(t)| ≤ 4k ·k!; indeed, there are 4k possible choices for δ, and for

each such choice and each edge e in Et one has at most k options of what to match

with e. Second, if r is the root of T , then either D(r) = ∅ or D(r) = {(∅, ∅, ∅, ∅)};

furthermore, (G,P ) is a YES-instance if and only if the latter holds. Hence it suffices

to compute D(r) in order to solve EDP.

The next lemma shows that D(t) can be computed efficiently for all leaves of t.

Lemma 6 Given (G,P ), a width-k tree-cut decomposition (T,X ) of G and a leaf

t ∈ V (T ) as the input, it is possible to compute D(t) in time kO(k2).

Proof. We proceed as follows. For each record λ for t, we construct the instance

(Gt,λ, P t,λ) as per Definition 3 and check whether (Gt,λ, P t,λ) is a YES-instance
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of EDP. Since V (Gt,λ) ≤ 2k, a simple brute-force algorithm will suffice here. For

instance, one can enumerate all partitions of the at most 4k2 edges in Gt,λ, and for

each such partition one can check whether this represents a set of edge-disjoint paths

which forms a solution to (Gt,λ, P t,λ). If (Gt,λ, P t,λ) is a YES-instance of EDP

then we add λ into D(t), and otherwise we do not.

The number of partitions of a set of size 4k2 is upper-bounded by kO(k2) [1],

and |D(t)| ≤ 4k · k!. Hence the runtime of the whole algorithm described above is

dominated by kO(k2). �

At this point, all that is left to obtain a dynamic leaves-to-root algorithm which

solves EDP is the dynamic step, i.e., computing the data table for a node t ∈ V (t)
from the data tables of its children. Unfortunately, that is where all the difficulty of the

problem lies, and our first step towards handling this task will be the introduction of

two additional notions related to records. The first is correspondence, which allows

us to associate each solution to (G,P ) with a specific record for t; on an intuitive

level, a solution corresponds to a particular record if that record precisely captures

the “behavior” of that solution on Et. Correspondence will, among others, later be

used to establish the correctness of our algorithm.

Definition 4 A solution S to (G,P ) corresponds to a record λ = (δ, I, F, L) for t if

the conditions 1.-4. stated below hold for every a-b path Q ∈ S such that Q∩Et 6= ∅.

We let s = |Q∩Et| and we denote individual edges in Q∩Et by e1, e2, . . . es, ordered

from the edge nearest to a along Q.

1. If a, b 6∈ Yt, then for each odd i ∈ [s], F contains {ei, ei+1}.

2. If a, b ∈ Yt, then for each odd i ∈ [s], I contains {ei, ei+1}.

3. If {a, b}∩Yt = {a}, then L contains (a, e1), and for each even i ∈ [s] F contains

{ei, ei+1}.

4. There are no elements in I, F, L other than those specified above.

Note that “restricting” the solution S to the instance (Gt,λ, P t,λ) used in Def-

inition 3 yields also a solution to (Gt,λ, P t,λ); in particular, for each path Q ∈ S

that intersects Et, one replaces the path segments of Q in G \ Yt by the newly cre-

ated vertices to obtain a solution to (Gt,λ, P t,λ). Consequently, if S corresponds to

λ then λ must be valid (however, it is clearly not true that every valid record has a

solution to the whole instance that corresponds to it). Moreover, since Definition 4 is

constructive and deterministic, for each solution S and node t there exists precisely

one corresponding valid record λ.

The second notion that we will need is that of simplification. This is an operation

which takes a valid record λ for a node t and replaces Gt by a “small representa-

tive” so that the resulting graph retains the existence of a solution corresponding to

λ. Simplification can also be seen as being complementary to the construction of

(Gt,λ, P t,λ) used in Definition 3 (instead of modeling the implications of a record on

Gt, we model its implications on G− Yt), and will later form an integral part of our

procedure for computing valid records for nodes.



18 R. Ganian and S. Ordyniak

G−Yt
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G−Yt

b d

a c

a′ c′

G−Yt

b d

a c

x

Fig. 4 Illustration of the simplification of t in accordance with λ. Green vertices and edges represent new

elements that are added to (G′, P ′) and dashed edges represent terminal-pairs. The left, middle, and right

picture corresponds to the steps 2, 3, and 4 in the algorithm given in Definition 5, respectively.

Definition 5 The simplification of a node t in accordance with λ = (δ, I, F, L) is

an operation which transforms the instance (G,P ) into a new instance (G′, P ′) ob-

tained from (G − Yt, P
G−Yt

2 ) and λ by the following algorithm (see Figure 4 for an

illustration):

1. initialize G′ to G− Yt and P ′ to PG−Yt

2 ,

2. For each {s, {a, b}} ∈ L where (s, e) ∈ P and b 6∈ Yt, add a new vertex s′

adjacent to b to G′ and add (s′, e) to P ′.

3. For each {{a, b}, {c, d}} ∈ I where a, c ∈ Yt and a 6= c, add vertices a′ and c′

into G′ and make them adjacent to b and d respectively, and add (a′, c′) into P ′.

4. For each {{a, b}, {c, d}} ∈ F where a, c ∈ Yt and b 6= d, add a new vertex x to

G′ and make it adjacent to b and d.

With regards to simplification, observe that every vertex added to G − Yt has

degree at most 2 and that simplification can never increase the degree of vertices in

G− Yt.

Observation 1. If there exists a solution to (G,P ) which corresponds to a record

λ = (δ, I, F, L) for t, and if (G′, P ′) is the result of simplification of t in accordance

with λ, then (G′, P ′) admits a solution. On the other hand, if (G′, P ′) is the result

of simplification of t in accordance with a valid record λ and if (G′, P ′) admits a

solution, then (G,P ) also admits a solution.

Proof. For the forward direction, consider a solution S to (G,P ) which corresponds

to λ = (δ, I, F, L). Comparing Definition 4 with Definition 5, we observe the fol-

lowing:

1. for each s-e path Q ∈ S such that s, e 6∈ Yt and Q∩Et 6= ∅, it holds that each path

segment of Q in Yt begins and ends with a pair of edges in F and in particular is

replaced by a single vertex in (G′, P ′);
2. for each s-e path Q ∈ S such that s, e ∈ Yt and Q ∩ Et 6= ∅, it holds that each

path segment of Q outside of Yt begins and ends with a pair of edges in I and in

particular is replaced by a pair of new terminals in (G′, P ′);
3. for each s-e path Q ∈ S such that {s, e}∩Yt = {s}, it holds that the path segment

of Q in Yt containing s ends with an edge in L and is replaced by a new terminal
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in (G′, P ′), and all other path segments of Q in Yt begin and end with a pair of

edges in F and are hence replaced by single vertices in (G′, P ′).

From the above, we observe that S can be transformed into a solution S′ for (G′, P ′).
The backward direction then follows by reversing the above observations; in particu-

lar, given a solution S′ for (G′, P ′), we use the fact that λ is valid to expand S′ into

a full solution S to (G,P ). �

4.2 The Dynamic Step

Let us begin by formalizing our aim for this subsection.

Lemma 7 There is an algorithm which takes as input (G,P ) along with a nice width-

k tree-cut decomposition (T,X ) of G and a non-leaf node t ∈ V (T ) and D(t′) for

every child t′ of t, runs in time (k|P |)O(k2), and outputs D(t).

Finally, we introduce two simple reduction rules which will later help us reduce

our problem to SIMPLE EDP. The first ensures that two vertices of degree at most 2
are not adjacent to each other.

Reduction Rule 1. Let (G,P ) be an instance of EDP containing an edge ab between

two vertices of degree at most 2.

1. If a is not a terminal, then contract ab and replace all occurrences of b in P by

the new vertex;

2. If {a, b} ∈ P , then remove {a, b} from P and remove the edge ab from G;

3. If {a, b} 6∈ P and each of a and b occurs in precisely one element of P , then

delete the edge ab;

4. Otherwise, reject (G,P ).

Proof of Safeness. The safeness of the first three rules is straightforward. As for the

fourth rule, let us consider the conditions for when it is applied. In particular, the

fourth rule is only called if either a or b occurs in three terminal pairs, or if a occurs

in at least one terminal pair and b in at least two but {a, b} 6∈ P . Clearly, (G,P ) is a

NO-instance in either of these cases. �

The second reduction rule will allow us to replace thin nodes with data tables

by small representatives; these representatives will only contain vertices of degree at

most 2 adjacent to the original neighborhood of the thin node. For brevity and as a

slight abuse of notation, we use the symbol 7→ to identify how the first element δ in a

record partitions the edges in Et.

Reduction Rule 2. Let t be a thin node in V (T ) with non-empty D(t).

1. If Et = {{a, b}} where a ∈ Yt and if

– (({a, b} 7→ L′), ∅, ∅, {s, {a, b}}) ∈ D(t) for some s ∈ Ut, then delete Yt\{s}
and create the edge sb;

– otherwise, (({a, b} 7→ U ′), ∅, ∅, ∅) ∈ D(t) and we delete Yt.

2. If Et = {{a, b}, {c, d}} where a, c ∈ Yt, Ut = ∅ and if
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– (({a, b} 7→ F ′, {c, d} 7→ F ′), ∅, {{a, b}, {c, d}}, ∅) ∈ D(t), then delete Yt

and create a new vertex v adjacent to b and d; else, if

– (({a, b} 7→ U ′, {c, d} 7→ U ′), ∅, ∅, ∅) ∈ D(t), then delete Yt;

– otherwise, (({a, b} 7→ I ′, {c, d} 7→ I ′), {{a, b}, {c, d}}, ∅, ∅) ∈ D(t) and we

delete Yt \ {a, c} and add {a, c} into the set P of terminals.

3. If Et = {{a, b}, {c, d}} where a, c ∈ Yt, Ut = {s} and if

– (({a, b} 7→ L′, {c, d} 7→ U ′), ∅, ∅, {s, {a, b}}) ∈ D(t) and also (({c, d} 7→
L′, {a, b} 7→ U ′), ∅, ∅, {s, {c, d}}) ∈ D(t), then delete Yt \ {s} and make s

adjacent to b and d;

– otherwise, (({a, b} 7→ L′, {c, d} 7→ U ′), ∅, ∅, {s, {a, b}}) ∈ D(t) and we

delete Yt \ {s} and make s adjacent to b.

4. If Et = {{a, b}, {c, d}} where a, c ∈ Yt, Ut = {s1, s2} (not necessarily s1 6= s2)

and if

– (({a, b} 7→ L′, {c, d} 7→ L′), ∅, ∅, {{s1, {a, b}}, {s2, {c, d}}}) ∈ D(t) and

(({a, b} 7→ L′, {c, d} 7→ L′), ∅, ∅, {{s2, {a, b}}, {s1, {c, d}}}) ∈ D(t), then

add a new vertex s′ adjacent to b and d, replace all occurrences of s1 and s2
in P by s′, and delete Yt;

– otherwise, (({a, b} 7→ L′, {c, d} 7→ L′), ∅, ∅, {{s1, {a, b}}, {s2, {c, d}}}) ∈
D(t) and we delete Yt \ {s1, s2}, and make s1 adjacent to b and s2 adjacent

to d.

5. Otherwise, (G,P ) is a NO-instance.

The safeness of Reduction Rule 2 follows directly from the definition of D(t)
(one simply needs to check each case separately) and hence we do not provide an

explicit proof for each case. To provide intuition for Case 5., we note that:

– Case 1. captures the only two possible outcomes when |Et| = 1;

– Case 2. captures the only admissible outcomes when |Et| = 2 and Ut = ∅: the

two edges in Et can either be used to connect a terminal pair outside of Gt, or

remain unused, or used to connect a terminal pair inside of Gt;

– Case 3. captures the only admissible outcomes when |Et| = 2 and Ut = {s}:

either it is possible to route s to either of the two edges in Et, or only one of these

two edges can be connected to s via an edge-disjoint path;

– Case 4. captures the only admissible outcomes when |Et| = 2 and |Ut| = 2:

either it is possible to route both of the unmatched terminals in Ut to either of

the two edges (in parallel), or parallel routing of both unmatched terminals to Et

requires each terminal to be routed to precisely one fixed edge in Et.

With Lemma 4 and Reduction Rules 1, 2 in hand, we have all we need to handle

the dynamic step. It will be useful to recall the definitions of At and Bt, and that

|At| ≤ 2k + 1.

Proof of Lemma 7. We begin by looping through all of the at most 4k · k! distinct

records for t; for each such record λ, our task is to decide whether it is valid, i.e.,

whether (Gt,λ, P t,λ) is a YES-instance. On an intuitive level, our aim will now be to

use branching and simplification in order to reduce the question of checking whether

λ is valid to an instance of SIMPLE EDP.
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In our first layer of branching, we will select a record from the data tables of each

node in At. Formally, we say that a record-set is a mapping τ : t′ ∈ At 7→ λt′ ∈
D(t′). Note that the number of record-sets is upper-bounded by (4k ·k!)2k+1, and we

will loop over all possible record-sets.

Next, for each record-set τ , we will apply simplification to each node t′ ∈ At

in accordance with τ(t′), and recall that each vertex v created by this sequence of

simplifications has degree at most 2. Next, we exhaustively apply Reduction Rule 1

to ensure that each such v is only adjacent to (V (G) \ Yt) ∪Xt. At this point, every

vertex contained in a bag Xt′ for t′ ∈ At has degree at most 2 and is only adjacent to

Xt ∪ (V (G) \ Yt).

Finally, we apply Reduction Rule 2 to replace each thin node by vertices of degree

at most 2 adjacent to Xt. At this point, every vertex in V (Gt,λ) \Xt is of degree at

most 2 and only adjacent to Xt, and so (Gt,λ, P t,λ) is an instance of SIMPLE EDP.

All that is left is to invoke Lemma 4; if it is a YES-instance then we add λ to D(t),
and otherwise we do not.

The running time is upper bounded by the branching factor (4k · k!)2k+1 times

the time to apply our two reduction rules and the time required to solve the resulting

SIMPLE EDP INSTANCE. All in all, we obtain a running time of at most kO(k2) ·

|P |O(k2) = (k|P |)O(k2).

We conclude the proof by arguing correctness. Assume λ is a valid record. By

Definition 3, this implies that (Gt,λ, P t,λ) admits a solution S. For each child t′ ∈ At,

S corresponds to some record λS
t′ for t; consider now the branch in our algorithm

which sets τ(t′) = λS
t′ . Then by Observation 1 it follows that each simplification

carried out by the algorithm preserves the existence of a solution to (Gt,λ, P t,λ).
Since both our reduction rules are safe, the instance of SIMPLE EDP we obtain at the

end of this branch must also be a YES-instance.

On the other hand, assume the algorithm adds a record λ into Dt. This means that

the resulting SIMPLE EDP instance was a YES-instance. Then by the safeness of our

reduction rules and by the second part of Observation 1, the instance obtained by re-

versing the reduction rules and simplifications was also a YES-instance; in particular

(Gt,λ, P t,λ) is a YES-instance and so λ is a valid record. �

We now have all the ingredients we need to prove our main result.

Theorem 2 EDP can be solved in time at most O(n3) + kO(k2)n2 + (k|P |)O(k2)n,

where k is the tree-cut width of the input graph and n is the number of its vertices.

Proof. We begin by invoking Theorem 1 to compute a tree-cut decomposition of G of

width at most 2k and then converting it into a nice tree-cut decomposition (this takes

time kO(k2)n2 and O(n3), respectively). Afterwards, we use Lemma 6 to compute

D(t) for each leaf of T , followed by a recursive leaf-to-root application of Lemma 7.

Once we compute D(r) for the root r of T , we output YES if and only if D(r) =
{(∅, ∅, ∅, ∅)}. �
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5 Kernelizing EDP Parameterized by Feedback Edge Set

The goal of this section is to provide a fixed-parameter algorithm for EDP which

exploits the structure of the input graph exclusively. While tree-cut width cannot be

used to obtain such an algorithm, here we show that the feedback edge set number

can. More specifically, we obtain a linear kernel for EDP parameterized by the feed-

back edge set number. Our kernel relies on the following two facts:

Fact 1. A minimum feedback edge set of a graph G can be obtained by deleting the

edges of minimum spanning trees of all connected components of G, and hence can

be computed in time O(|E(G)|+ |V (G)|).

Fact 2 ([14]). EDP can be solved in polynomial time when G is a forest.

Consider an instance (G,P ) of EDP and let X ⊆ E(G) be a minimum feedback

edge set X . Let Y be the set of all vertices incident to at least one edge from X . For

the purposes of this section, it will be useful to view P as a multiset rather than a set.

We begin with two simple reduction rules which allow us to remove some degree 2
vertices and all leaves disjoint from Y .

Reduction Rule 3. Let v, a, b ∈ V (G) be such that NG(v) = {a, b}, v 6∈ Y and

ab 6∈ E(G). If v does not occur in any terminal pair in P , then delete v and add the

edge ab into E(G).

Proof of Safeness. Observe that every solution to the original instance which uses

an edge incident to v must contain a path which traverses through both av and vb,

and after the reduction rule is applied one can simply replace these two edges in that

path by ab. Any solution in the reduced instance can be similarly transformed into a

solution to the original instance. Moreover, X clearly remains a feedback edge set in

the reduced instance. �

Reduction Rule 4. Let v ∈ V (G) be such that NG(v) = {w}. Then:

1. if v occurs in no terminal pair in P , delete v from G;

2. if v occurs in precisely one terminal pair {v, w} in P , delete v from G and delete

{v, w} from P ;

3. if v occurs in precisely one terminal pair {v, y} in P where y 6= w, delete v from

G and replace {v, y} in P by {w, y};

4. if v occurs in at least two terminal pairs in P , reject (G,P ).

Proof of Safeness. In the first case, it is easy to see that no path in the solution can

contain v. For the second and third case, safeness follows by the fact that every path

connecting v to its assigned terminal pair must use the edge vw and no other path can

use vw. For the last case, simply observe that a leaf cannot appear in more than one

edge-disjoint path. �

Observe that the exhaustive application of Reduction Rules 3 and 4 results in an

instance (H,L) where every leaf lies in Y . Moreover, every vertex of degree 2 must

lie in at least one terminal pair, or lie in Y , or be adjacent to a vertex in Y (since

Reduction Rule 3 does not apply to a C3). We now introduce a new rule and lemma



The Power of Cut-Based Parameters for Computing Edge-Disjoint Paths 23

which will help us deal with the potentially large number of vertices of degree 2 that

occur in terminal pairs.

Reduction Rule 5. Let vw ∈ E(H) be such that {v, w} ∈ L. Then remove vw from

E(H) (and also from X , if it was in X), and remove {v, w} from L.

Proof of Safeness. If the solution connects the terminal pair {v, w} via the edge vw,

the solution is preserved even after applying the rule. If the solution connects the pair

using a different path, we can obtain an equivalent solution by instead connecting

v to w via the edge vw and—if this edge was used to connect a different terminal

pair—using the old v-w path as a replacement for that edge. Finally, if the reduced

instance admits a solution, it is easy to see that the graph also had a solution before

the application of the rule to delete vw and {v, w}. �

We can now prove the following for the instance (H ′, L′) obtained from (H,L)
by exhaustively applying Reduction Rule 5.

Lemma 8 Let a, b, c ∈ V (H ′)\Y be three degree-2 vertices in H ′ such that N(b) =
{a, c}. Then (H ′, L′) is a NO-instance.

Proof. By the exhaustive application of Reduction Rule 3, the vertex b must occur in

at least one terminal pair. Moreover, since we have also exhaustively applied Reduc-

tion Rule 5, this terminal pair can be neither {b, a} nor {b, c}. And since both a and

c have degree 2, each of these must also occur in some terminal pair, say {a, a′} and

{c, c′}.

Now, to reach a contradiction let us consider a hypothetical solution S for (H ′, L′).
Clearly S must contain an a-a′ path, and this path cannot start with the edge ab (since

then it would have to continue with bc, preventing b from using any edge to reach its

own terminal pair). By symmetry, S must also contain a c-c′ path which does not

start with the edge cb. But now the only two vertices reachable by an edge-disjoint

path from b are a and c, and we have argued that b has a terminal pair with a vertex

different from a and c. Hence, we have reached a contradiction to the existence of

S. �

At this point, we can prove that we have a linear kernel, as desired.

Theorem 3 EDP admits a linear kernel parameterized by the feedback edge set num-

ber of the input graph.

Proof. Let us consider the graph (H ′, L′) obtained by the exhaustive application of

Reduction Rules 3-5. Since we have already established the safeness of these rules,

it suffices to argue that the instance has size linear in |Y |. We now check if Lemma 8

applies—if yes then we reject, and otherwise we proceed knowing that G contains no

path of 3 consecutive degree-2 vertices disjoint from Y .

Let us now consider the number of vertices in H ′, which is the same as the number

of vertices in the graph Q = H ′ − X . By the exhaustive application of Reduction

Rule 4, every leaf in Q lies in Y and hence in particular Q contains at most |Y | leaves.

Consequently, the number of vertices of degree at least 3 is also upper-bounded by

|Y |. It remains to bound the number of vertices of degree precisely 2 in Q.
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To this end, let Z be the union of Y with the set of all vertices of degree at least

3, and recall that |Z| ≤ 2|Y |. By the exhaustive application of Reduction Rule 3 and

our use of Lemma 8, every vertex of degree 2 in Q must be a neighbor of at least one

vertex in Z. The number of such vertices is upper-bounded by 2 times the number of

edges of a tree with at most |Z| vertices, i.e., at most 2 · (2|Y | − 1). We conclude that

Q (and hence also H ′) contains at most 6|Y | vertices. Moreover, Q contains at most

6|Y | edges and hence G contains at most 6|Y |+ |X| ≤ 7|Y | edges.

To conclude the proof, it suffices to bound the size of P . Here, we simply observe

that a YES-instance cannot contain more terminal pairs than the number of edges in

H ′ (since terminal pairs always contain two distinct vertices), and so either |P | ≤
7|Y | or we can correctly reject (H ′, L′). �
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