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Abstract
This paper revisits the classical edge-disjoint paths (EDP) problem, where one is 
given an undirected graph G and a set of terminal pairs P and asks whether G con-
tains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our 
aim is to identify structural properties (parameters) of graphs which allow the effi-
cient solution of EDP without restricting the placement of terminals in P in any way. 
In this setting, EDP is known to remain NP-hard even on extremely restricted graph 
classes, such as graphs with a vertex cover of size 3. We present three results which 
use edge-separator based parameters to chart new islands of tractability in the com-
plexity landscape of EDP. Our first and main result utilizes the fairly recent struc-
tural parameter tree-cut width (a parameter with fundamental ties to graph immer-
sions and graph cuts): we obtain a polynomial-time algorithm for EDP on every 
graph class of bounded tree-cut width. Our second result shows that EDP parameter-
ized by tree-cut width is unlikely to be fixed-parameter tractable. Our final, third 
result is a polynomial kernel for EDP parameterized by the size of a minimum feed-
back edge set in the graph.

Keywords  Edge-disjoint path problem · Feedback edge set · Tree-cut width · 
Parameterized complexity

 *	 Robert Ganian 
	 rganian@gmail.com

	 Sebastian Ordyniak 
	 sordyniak@gmail.com

1	 Algorithms and Complexity Group, Vienna University of Technology, Vienna, Austria
2	 Algorithms Group, University of Sheffield, Sheffield, UK

http://orcid.org/0000-0002-7762-8045
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00772-w&domain=pdf


727

1 3

Algorithmica (2021) 83:726–752	

1  Introduction

Edge-Disjoint Paths (EDP) is a fundamental routing graph problem: we are given 
a graph G and a set P containing pairs of vertices (terminals), and are asked to 
decide whether there is a set of |P| pairwise edge-disjoint paths in G connect-
ing each pair in P. Similarly to its counterpart, the Vertex-Disjoint Paths (VDP) 
problem, EDP has been at the center of numerous results in structural graph the-
ory, approximation algorithms, and parameterized algorithms [2, 8, 9, 14, 17, 19, 
21, 22, 26].

Both EDP and VDP are NP-complete in general [16], and a significant amount 
of research has focused on identifying structural properties which make these 
problems tractable. For instance, Robertson and Seymour’s seminal work in 
the Graph Minors project [22] provides an O(n3) time algorithm for both prob-
lems for every fixed value of |P|. Such results are often viewed through the more 
refined lens of the parameterized complexity paradigm [5, 7]; there, each problem 
is associated with a numerical parameter k (capturing some structural property 
of the instance), and the goal is to obtain algorithms which are efficient when the 
parameter is small. Ideally, the aim is then to obtain so-called fixed-parameter 
algorithms for the problem, i.e., algorithms which run in time f (k) ⋅ nO(1) where f 
is a computable function and n the input size; the aforementioned result of Rob-
ertson and Seymour is hence an example of a fixed-parameter algorithm where 
k = |P| , and we say that the problem is FPT(w.r.t. this particular parameteriza-
tion). In cases where fixed-parameter algorithms are unlikely to exist, one can 
instead aim for so-called XP algorithms, i.e., algorithms which run in polynomial 
time for every fixed value of k.

Naturally, one prominent question that arises is whether we can use the struc-
ture of the input graph itself (captured via a structural parameter) to solve EDP 
and VDP. Here, we find a stark contrast in the difficulty between these two, oth-
erwise closely related, problems. Indeed, while VDP is known to be FPT with 
respect to the well-established structural parameter treewidth [24], EDP is NP-
hard even on graphs of treewidth 3 [9]. What’s worse, the same reduction shows 
that EDP remains NP-hard even on graphs with a vertex cover of size 3 [9], 
which rules out fixed-parameter and XP algorithms for the vast majority of stud-
ied graph parameters (including, e.g., treedepth and the size of a minimum feed-
back vertex set).

We note that previous research on the problem has found ways of circumvent-
ing these negative results by imposing additional restrictions. Zhou et  al. [26] 
introduced the notion of an augmented graph, which contains information about 
how terminal pairs need to be connected, and used the treewidth of this graph to 
solve EDP. Recent work [13], which primarily focused on the complexity of EDP 
on near-forests and with respect to parameterizations of the augmented graphs, 
has also observed that EDP admits a fixed-parameter algorithm when parameter-
ized by treewidth and the maximum degree of the graph.

Our Contribution The aim of this paper is to provide new algorithms and 
matching lower bounds for solving the Edge-Disjoint Paths problem without 
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imposing any restrictions on the number and placement of terminals. In other 
words, our aim is to be able to identify structural properties of the graph which 
guarantee tractability of the problem without knowing any information about 
the placement of terminals. The only positive result known so far in this setting 
requires us to restrict the degree of the input graph; however, in the bounded-
degree setting there is a simple treewidth-preserving reduction from EDP to VDP 
(see Proposition 1), and so the problem only becomes truly interesting when the 
input graphs can contain vertices of higher degree.

Our main result, which is provided in Theorem 2, is an XP algorithm for EDP 
when parameterized by the structural parameter tree-cut width [20, 25]. Tree-Cut 
width is inherently tied to the theory of graph immersions; in particular, it has a 
similar relationship to graph immersions and cuts as treewidth has to graph minors 
and separators. Since its introduction, tree-cut width has been successfully used to 
obtain fixed-parameter algorithms for problems which are W[1]-hard w.r.t. treewidth 
[11, 12]; however, this is the first time that it has been used to obtain an algorithm 
for a problem that is NP-hard on graphs of bounded treewidth.

One “feature” of algorithmically exploiting tree-cut width is that it requires the 
solution of a non-trivial dynamic programming step. In previous works, this was 
carried out mostly by direct translations into Integer Linear Programming instances 
with few integer variables [11] or by using network flows [12]. In the case of EDP, 
the dynamic programming step requires us to solve an instance of EDP with a vertex 
cover of size k where every vertex outside of the vertex cover has a degree of 2; we 
call this problem Simple EDP and solve it in the dedicated Sect. 3. It is worth noting 
that there is only a very small gap between Simple EDP (for which we provide an 
XP algorithm in Lemma 4) and graphs with a vertex cover of size 3 (where EDP is 
known to be NP-hard).

In view of our main result, it is natural to ask whether the algorithm can be 
improved to a fixed-parameter one. After all, given the parallels between EDP 
parameterized by tree-cut width (an edge-separator based parameter) and VDP 
parameterized by treewidth (a vertex-separator based parameter), one would right-
fully expect that the fixed-parameter tractability result on the latter [24] would be 
mirrored in the former case. Surprisingly, we rule this out by showing that EDP 
parameterized by tree-cut width is W[1]-hard [5, 7] and hence unlikely to be fixed-
parameter tractable; in fact, we obtain this lower-bound result even in the more 
restrictive setting of Simple EDP in Lemma 5. The proof is based on an involved 
reduction from an adapted variant of the Multidimensional Subset Sum problem 
[12, 13] and forms our second main contribution.

Having ruled out fixed-parameter algorithms for EDP parameterized by tree-
cut width and in view of previous lower-bound results, one may ask whether it is 
even possible to obtain such an algorithm for any reasonable parameterization. We 
answer this question positively by using the size of a minimum feedback edge set as 
a parameter. In fact, we show an even stronger result: as our final contribution, we 
obtain a so-called linear kernel [5, 7] for EDP parameterized by the size of a mini-
mum feedback edge set (Theorem 3).

Organization of the Paper After introducing the required preliminaries in 
Sect. 2, we proceed to introducing Simple EDP, solving it via an XP algorithm and 
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establishing our lower-bound result (Sect. 3). Section 4 then contains our algorithm 
for EDP parameterized by tree-cut width. Finally, in Sect. 5 we obtain a polynomial 
kernel for EDP parameterized by the size of a minimum feedback edge set.

2 � Preliminaries

We use standard terminology for graph theory, see for instance [6]. Given a graph G, 
we let V(G) denote its vertex set and E(G) its edge set. The (open) neighborhood of 
a vertex x ∈ V(G) is the set {y ∈ V(G) ∶ xy ∈ E(G)} and is denoted by NG(x) . For a 
vertex subset X, the neighborhood of X is defined as 

⋃
x∈X NG(x)⧵X and denoted by 

NG(X) ; we drop the subscript if the graph is clear from the context. Contracting an 
edge a, b is the operation of replacing vertices a, b by a new vertex whose neigh-
borhood is (N(a) ∪ N(b))⧵{a, b} . For a vertex set A (or edge set B), we use G − A 
( G − B ) to denote the graph obtained from G by deleting all vertices in A (edges in 
B), and we use G[A] to denote the subgraph induced on A, i.e., G − (V(G)⧵A) . A 
path segment of a path Q is a path that is a subgraph of Q.

A forest is a graph without cycles, and an edge set X is a feedback edge set if 
G − X is a forest. The feedback edge set number of a graph G, denoted by ���(G) , 
is the smallest integer k such that G has a feedback edge set of size k. We use [i] to 
denote the set {0, 1,… , i}.

2.1 � Parameterized Complexity

A parameterized problem P is a subset of �∗ × ℕ for some finite alphabet � . Let 
L ⊆ 𝛴∗ be a classical decision problem for a finite alphabet, and let p be a non-
negative integer-valued function defined on �∗ . Then L parameterized by p denotes 
the parameterized problem { (x, p(x)) | x ∈ L } where x ∈ �∗ . For a problem instance 
(x, k) ∈ �∗ × ℕ we call x the main part and k the parameter. A parameterized prob-
lem P is fixed-parameter tractable (FPT in short) if a given instance (x, k) can be 
solved in time f (k) ⋅ |x|O(1) where f is an arbitrary computable function of k; we call 
algorithms running in this time fixed-parameter algorithms.

Parameterized complexity classes are defined with respect to fpt-reducibility. A 
parameterized problem P is fpt-reducible to Q if in time f (k) ⋅ |x|O(1) , one can trans-
form an instance (x, k) of P into an instance (x�, k�) of Q such that (x, k) ∈ P if and 
only if (x�, k�) ∈ Q , and k� ≤ g(k) , where f and g are computable functions depend-
ing only on k. Owing to the definition, if P fpt-reduces to Q and Q is fixed-parameter 
tractable then P is fixed-parameter tractable as well. Central to parameterized com-
plexity is the following hierarchy of complexity classes, defined by the closure of 
canonical problems under fpt-reductions:

All inclusions are believed to be strict. In particular, ��� ≠ �[1] under the Expo-
nential Time Hypothesis.

��� ⊆ �[1] ⊆ �[2] ⊆ ⋯ ⊆ ��.
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A major goal in parameterized complexity is to distinguish between parameter-
ized problems which are in ��� and those which are �[1]-hard, i.e., those to which 
every problem in �[1] is fpt-reducible. There are many problems shown to be com-
plete for �[1] , or equivalently �[1]-complete, including the Multi-Colored Clique 
(MCC) problem [7]. We refer the reader to the respective monographs [4, 7, 10] for 
an in-depth introduction to parameterized complexity.

2.2 � Edge‑Disjoint Path Problem

Throughout the paper we consider the following problem. 

Edge-Disjoint Paths (EDP)
Input: A graph G and a set P of terminal pairs, i.e., a set of subsets of V(G) of size two.
Question: Is there a set of pairwise edge-disjoint paths connecting every set of terminal pairs in P?

 A vertex which occurs in a terminal pair is called a terminal, and a set of pairwise 
edge-disjoint paths connecting every set of terminal pairs in P is called a solution. 
Without loss of generality, we assume that G is connected. The Vertex-Disjoint 
Paths (VDP) problem is defined analogously as EDP, with the sole distinction being 
that the paths must be vertex-disjoint.

The following proposition establishes a link between EDP and VDP on graphs 
of bounded degree. Since we will not need the notion of treewidth [23] for any 
other result presented in the paper, we refer to the standard textbooks [4, 7] for its 
definition.

Proposition 1  There exists a linear-time reduction from EDP to VDP with the fol-
lowing property: if the input graph has treewidth k and maximum degree d, then the 
output graph has treewidth at most (k + 1)d.

Proof  Let (G,  P) be an instance of EDP where G has treewidth k and maximum 
degree d; let V = V(G) and E = E(G) . Observe that if any vertex v ∈ V  occurs in P 
more than d many times, then (G, P) must be a NO-instance (we assume that P does 
not contain tuples in the form (a, a) for any a).

Consider the graph G′ obtained in the following two-step procedure. First, we 
subdivide each edge in G (i.e., we replace that edge with a vertex of degree 2 that is 
adjacent to both endpoints of the original edge); let V ′ be the set of vertices created 
by such subdivisions. Second, for each vertex v = v1 ∈ V  of the original graph G, 
we create d − 1 copies v2,… , vd of that vertex and set their neighborhood to match 
that of v1 . This construction gives rise to a natural mapping � from G to G′ which 
maps each v ∈ V  to the set v1,… , vd and each e ∈ E to the vertex created by sub-
dividing e. Next, we iteratively process P as follows: for each {v,w} ∈ P , we add 
a tuple {v�,w�} into the set P′ such that v� ∈ �(v) , w� ∈ �(w) and neither v′ nor w′ 
occurs in any other pair in P′ (the last condition can be ensured because each vertex 
in v has d copies in G′ but never occurs more than d times in P).
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It is now easy to verify that (G,  P) is a YES-instance of EDP if and only 
if (G�,P�) is a YES-instance of VDP. Indeed, consider a solution S (i.e., a set of 
edge disjoint paths) for (G,  P). For each v-w path Q in S, there is a correspond-
ing tuple (v�,w�) in P′ , and we can construct a v′-w′ path Q′ by (a) replacing each 
edge and vertex used by Q with a vertex in the �-image of that edge and vertex, 
while (b) ensuring that all paths constructed in this way are pairwise vertex-disjoint. 
This means that (G�,P�) is also a YES-instance. On the other hand, if (G�,P�) is 
a YES-instance and this is witnessed by a set S′ of vertex-disjoint paths spanning 
a minimal set of vertices, then by this minimality assumption it follows that each 
path may only visit the �-image of any vertex v ∈ V(G) at most once. Now consider 
a path Q� ∈ S� , and notice that Q′ can be viewed as a sequence of vertices of the 
form (�(v), �(e1), �(v1), �(e2),… , �(w)) . The sequence obtained from the images of 
� , i.e., (v, e1, v1, e2,… ,w) must then also form a path, and moreover the set of paths 
obtained in this way must be edge-disjoint by construction.

To conclude the proof, observe that it is possible to convert any tree-decompo-
sition (T, X) [7] of G of width k into a tree-decomposition of G′ of width (k + 1)d 
by (1) replacing each vertex v by �(v) in T, and then (2) by choosing, for each edge 
e = ab ∈ E , a bag X ⊇ {a, b} , creating a bag X� = X ∪ {�(e)} , and attaching X′ to X 
as a leaf.� □

We remark that Proposition  1 in combination with the known fixed-parameter 
algorithm for VDP parameterized by treewidth [24] provides an alternative proof for 
the fixed-parameter tractability of EDP parameterized by degree and treewidth [13]. 
Finally, we introduce one bit of useful notation that applies to an instance (G, P) of 
EDP: for a subgraph H of G, we let PH

2
 denote the subset of terminal pairs which are 

subsets of V(H) and PH
1

 denote the subset of terminal pairs with a non-empty inter-
section with V(H).

2.3 � Tree‑Cut Width

The notion of tree-cut decompositions was introduced by Wollan [25], see also [20]. 
A family of subsets X1,… ,Xk of X is a near-partition of X if they are pairwise dis-
joint and 

⋃k

i=1
Xi = X , allowing the possibility of Xi = �.

Definition 1  A tree-cut decomposition of G is a pair (T ,X) which consists of a 
rooted tree T and a near-partition X = {Xt ⊆ V(G) ∶ t ∈ V(T)} of V(G). A set in the 
family X  is called a bag of the tree-cut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge incident 
to t on the path to r. Let Tu and Tt be the two connected components in T − e(t) 
which contain u and t, respectively. Note that (

⋃
q∈Tu Xq,

⋃
q∈Tt Xq) is a near-parti-

tion of V(G), and we use Et to denote the set of edges with one endpoint in each part. 
We define the adhesion of t ( ���(t) ) as |Et| ; we explicitly set ���(r) = 0 and Er = �.

The torso of a tree-cut decomposition (T ,X) at a node t, written as Ht , is the 
graph obtained from G as follows. If T consists of a single node t, then the torso 
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of (T ,X) at t is G. Otherwise let T1,… , T
�
 be the connected components of T − t . 

For each i = 1,… ,� , the vertex set Zi ⊆ V(G) is defined as the set 
⋃

b∈V(Ti)
Xb . 

The torso Ht at t is obtained from G by consolidating each vertex set Zi into a sin-
gle vertex zi (this is also called shrinking in the literature). Here, the operation of 
consolidating a vertex set Z into z is to substitute Z by z in G, and for each edge e 
between Z and v ∈ V(G)⧵Z , adding an edge zv in the new graph. We note that this 
may create parallel edges.

The operation of suppressing (also called dissolving in the literature) a vertex v 
of degree at most 2 consists of deleting v, and when the degree is two, adding an 
edge between the neighbors of v. Given a connected graph G and X ⊆ V(G) , let 
the 3-center of (G, X) be the unique graph obtained from G by exhaustively sup-
pressing vertices in V(G)⧵X of degree at most two. Finally, for a node t of T, we 
denote by H̃t the 3-center of (Ht,Xt) , where Ht is the torso of (T ,X) at t. Let the 
torso-size ���(t) denote |H̃t|.

Definition 2  The width of a tree-cut decomposition (T ,X) of G is maxt∈V(T){���(t), 
���(t)} . The tree-cut width of G, or ���(G) in short, is the minimum width of (T ,X) 
over all tree-cut decompositions (T ,X) of G.

We also refer to [15] for a novel alternative definition of tree-cut width. With-
out loss of generality, we shall assume that Xr = � . We conclude this subsec-
tion with some notation related to tree-cut decompositions. Given a tree node t, 
let Tt be the subtree of T rooted at t. Let Yt =

⋃
b∈V(Tt)

Xb , and let Gt denote the 
induced subgraph G[Yt] . A node t ≠ r in a rooted tree-cut decomposition is thin if 
���(t) ≤ 2 and bold otherwise (Fig. 1).

While it is not known how to compute optimal tree-cut decompositions effi-
ciently, there exists a fixed-parameter 2-approximation algorithm which we can 
use instead.

Theorem 1  [18] There exists an algorithm that takes as input an n -vertex graph G 
and integer k, runs in time 2O(k2 log k)n2 , and either outputs a tree-cut decomposition 
of G of width at most 2k or correctly reports that ���(G) > k.

A tree-cut decomposition (T ,X) is nice if it satisfies the following condition for 
every thin node t ∈ V(T) : NG(Yt) ∩ (

⋃
b is a sibling of t Yb) = � . The intuition behind 

a

d

b c

e

f

g

d(2, 0)

a(3, 3)

bc(3, 3)

e

(1, 2)

f

(1, 2)

g

(1, 1)

Fig. 1   A graph G and a width-3 tree-cut decomposition of G, including the torso-size (left value) and 
adhesion (right value) of each node
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nice tree-cut decompositions is that we restrict the neighborhood of thin nodes in 
a way which facilitates dynamic programming.

Lemma 1  [11] There exists a cubic-time algorithm which transforms any rooted 
tree-cut decomposition (T ,X) of G into a nice tree-cut decomposition of the same 
graph, without increasing its width or number of nodes.

For a node t in a nice tree-cut decomposition, we let Bt = { b is a child of t | 
���(b) ≤ 2 ∧ NG(Yb) ⊆ Xt } denote the set of thin children of t whose neighborhood 
is a subset of Xt , and we let At = { a is a child of t | a ∉ Bt } be the set of all other 
children of t. The following property of nice tree-cut decompositions will be crucial 
for our algorithm; among others, it implies that only a bounded number of children 
of t contain neighbors of vertices that do not lie in Xt.

Lemma 2  [11] Let t be a node in a nice tree-cut decomposition of width k. Then 
|At| ≤ 2k + 1.

We refer to previous work [11, 18, 20, 25] for a more detailed comparison of 
tree-cut width to other parameters. Here, we mention only that tree-cut width lies 
“between” treewidth and treewidth plus maximum degree.

Lemma 3  [11, 20, 25] Let ��(G) denote the treewidth of G and �����(G) 
denote the maximum over ��(G) and the maximum degree of a vertex in G. Then 
��(G) ≤ 2���(G)2 + 3���(G) , and ���(G) ≤ 4�����(G)2.

In this context, we can view tree-cut width as a parameter which serves as a “mid-
dle ground” for solving EDP. On one hand, EDP remains NP-hard even on graphs of 
bounded treewidth. On the other hand, parameterizing EDP by ����� yields a fixed-
parameter algorithm, but this is only useful on graphs of small maximum degree, 
where it simply collapses to solving VDP parameterized by treewidth. In this paper, 
we show that tree-cut width allows for a non-trivial XP (but not a fixed-parameter) 
algorithm for EDP. We also remark that Lemma 3 immediately implies that VDP is 
FPT parameterized by tree-cut width.

3 � The Simple Edge‑Disjoint Paths Problem

Before we start working towards our algorithm for solving EDP parameterized by 
tree-cut width, we will first deal with a simpler (but crucial) setting for the problem. 
We call this the Simple Edge-Disjoint Paths problem (Simple EDP) and define it 
below. 
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Simple EDP
Input: An EDP instance (G, P) such that V(G) = A ∪ B where B is an independent 

set containing vertices of degree at most 2.
Parameter: k = |A|
Question: Is (G, P) a YES-instance of EDP?

 Notice that every instance of Simple EDP has tree-cut width at most k, and so it 
forms a special case of EDP parameterized by tree-cut width. Indeed, the tree-cut 
decomposition where T is a star, the center bag contains A, and each leaf bag con-
tains a vertex from B (except for the root r, where Xr = � ), has tree-cut width at 
most k. This contrasts to the setting where G has a vertex cover of size 3 and all ver-
tices outside the vertex cover have degree 3; the tree-cut width of such graphs is not 
bounded by any constant, and EDP is known to be NP-complete in this setting [9].

The main reason we introduce and focus on Simple EDP is that it captures the 
combinatorial problem that needs to be solved in the dynamic step of the algorithm 
for EDP parameterized by tree-cut width. Hence, our first task here will be to solve 
Simple EDP by an algorithm that can later be called as a subroutine.

Lemma 4  Simple EDP can be solved in time O((�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠
+1

(k + 1)!).

Proof  We will start by simplifying the instance using some simple observations. First 
we will show that we can remove all vertices in B that are not contained in any termi-
nal pair by adding multi-edges to G[A]. Namely, let v be a vertex in B that does not 
appear in any terminal pair in P. If v has no neighbors or at most one neighbor, then v 
can simply be removed from G, and if v has degree two, then we can remove v and add 
an edge between its two neighbors in A. Hence in the following we will assume that all 
vertices in B occur in at least one terminal pair and that G[A] can contain multi-edges.

Let the terminal graph of G, denoted GT , be the graph with vertex set V and edge 
set P. The following two observations will be crucial for our algorithm: 

O1	Consider a path Q connecting a terminal pair p ∈ P in a solution. Because B is 
an independent set and every vertex in B has degree at most two and is contained 
in at least one terminal pair in P, we obtain that all inner vertices of Q are from 
A. Hence, Q contains at most k + 2 vertices and all inner vertices of Q are con-
tained in A. It follows that Q is completely characterized by the sequence of 

vertices it uses in A. Consequently, there are at most 
∑k

�=1

�
k

�

�
�! ≤ (k + 1)! 

different types of paths that need to be considered for the connection of any ter-
minal pair.

O2	GT [B] is a disjoint union of paths and cycles. This is because every vertex v of G 
can be contained in at most |NG(v)| terminal pairs in P (otherwise we immediately 
reject) and all vertices in B have degree at most two.
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Let u and v be two distinct vertices in A. Because |A| ≤ k , we can enumerate all pos-
sible paths between u and v in G[A] in time O((k + 1)!) . We will represent each such 
path H as a binary vector EH , whose entries are indexed by all sets of two distinct 
vertices in A, such that EH[e] = 1 if H uses the edge e and EH[e] = 0 otherwise. 
Moreover, we will denote by Eu,v the set {EH | H is a path between u and v inG[A] } ; 
intuitively, Eu,v captures all possible sets of edges that can be used in order to connect 
u to v.

Let S be a solution for (G,  P). The algorithm represents every solution S for 
(G, P) as a solution vector ES of natural numbers whose entries are indexed by all 
sets {u, v} of two distinct vertices in A. More specifically, for two distinct vertices u 
and v in A, ES[{u, v}] is equal to the number of edges between u and v used by the 
paths in S. The algorithm uses dynamic programming to compute the set L of all 
solution vectors; clearly, L ≠ ∅ if and only if (G, P) is a YES-instance. We compute 
L in two main steps: 

	(S1)	 the algorithm computes the set LA of all solution vectors for the sub-instance 
(G[A],P�) of (G, P), where P′ is the subset of P containing all terminal pairs 
{p, q} with p, q ∈ A.

	(S2)	 the algorithm computes the set of all solution vectors for the sub-instance 
(G,P⧵P�) . Note that every terminal pair p in P⧵P′ is either completely contained 
in B, in which case it forms an edge of a path or a cycle in GT [B] , or p has one 
vertex in A and the other vertex in B, which is the endpoint of a path in GT [B] . 
The algorithm now computes the set of all solution vectors for the sub-instance 
(G,P⧵P�) in two steps: 

	 (S2A)	 For every cycle C in GT [B] , the algorithm computes the set LC of all solu-
tion vectors for the sub-instance (G[A ∪ V(C)],PC

2
) , where PC

2
 is the set of 

all terminal pairs in P with both terminals in C.
	 (S2B)	 For every path H in GT [B] , the algorithm computes the set LH of all solu-

tion vectors for the sub-instance (G[A ∪ V(H)],PH
1
) , where PH

1
 is the set 

of all terminal pairs in P with at least one endpoint in H.

In the end, the set of all hypothetical solution vectors L′ for (G, P) is obtained as 
LA ⊕ (⊕CisacycleofGT [B]LC)⊕ (⊕HisapathofGT [B]LH) , where P⊕ P

′ for two sets P and 
P
′ of solution vectors is equal to {R + R� | R ∈ P ∧ R� ∈ P

� } . Each vector in L′ 
describes one possible set of multi-edges in G[A] that can be used to connect all ter-
minal pairs in P. In order to compute L , one simply needs to remove all vectors from 
L
′ which require more multi-edges than are available in G[A]; in particular, to obtain 

L we delete each vector ES from L′ such that there exist u, v ∈ A where ES[{u, v}] 
exceeds the number of multi-edges between u and v in G. The algorithm then returns 
YES if L is non-empty and otherwise the algorithm returns NO. Note that, as is usu-
ally the case with these types of dynamic programming algorithms, the algorithm can 
also be easily modified to find a solution for (G, P), without increasing its running 
time.
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The set LA described in step (S1) is computed as follows. Given an arbitrary but 
fixed ordering p1,… , p|P�| of the terminal pairs in P′ , let Pi be the set { pj | 1 ≤ j ≤ i } , 
for every i with 1 ≤ i ≤ |P′| . The algorithm now uses dynamic programming to com-
pute the sets S1,… , S|P�| , where Si contains the set of all hypothetical solution vec-
tors for the instance (G[A],Pi) as follows. The algorithm starts by setting T1 to be the 
set Ep1

 . Then for every i with 1 < i ≤ |P′| , the algorithm computes Ti from Ti−1 as the 
set {E + E� | E ∈ Ti−1 ∧ E� ∈ Epi

},

The set LC described in step (S2A) for a cycle C = (v1,… , vn) of GT [B] is com-
puted as follows. Note that every vertex in C has exactly two neighbors in A (and 
also in G). For a neighbor n of vi , we denote by n̄ the other neighbor of vi in G, i.e., 
n̄ is the unique neighbor in NG(vi)⧵{n} . For every i with 2 ≤ i ≤ n , we denote by Pi 
the set { {vj, vj+1} | 1 ≤ j < i } of terminal pairs. The algorithm starts by comput-
ing a table Ti for every i with 2 ≤ i ≤ n . Informally, for every neighbor n1 of v1 and 
every neighbor ni of vi in G, the table Ti contains all hypothetical solution vectors 
for the instance induced on A and the vertices v1,… , vi that use n1 to connect the 
terminal pair {v1, v2} and ni to connect the terminal pair {vi−1, vi} . More formally, 
for every n1 ∈ NG(v1) and ni ∈ NG(vi) the table Ti contains the set of all solution 
vectors for the instance (G[A ∪ {v1,… , vi}] − {v1n̄1, vin̄i},Pi).

The tables T2,… , Tn are iteratively computed starting with T2 as follows. For 
every n1 ∈ NG(v1) and n2 ∈ NG(v2) , T2[n1, n2] is equal to En1,n2

 . Moreover, for  
every i with 3 ≤ i ≤ n , the table Ti is obtained from the table Ti−1 as follows. For 
every n1 ∈ NG(v1) and ni ∈ NG(vi) , Ti[n1, ni] is equal to the union of the following 
two sets:

•	 {E + E� | E ∈ Ti−1[n1, ni−1] ∧ E� ∈ En̄i−1,ni
} and

•	 {E + E� | E ∈ Ti−1[n1, n̄i−1] ∧ E� ∈ Eni−1,ni
}

where {ni−1, n̄i−1} = NG(vi−1) . Finally, the set of all hypothetical solution vec-
tors for the instance (G[A ∪ C],PC

2
) is obtained from the table Tn as the union of 

the sets {E + E� | E ∈ Tn[n1, nn] ∧ E� ∈ En̄n,n̄1
} for every n1 ∈ NG(v1) and every 

nn ∈ NG(vn).

The set LH described in step (S2B) for a path H = (v1,… , vn) of GT [B] is com-
puted as follows. Note first that every inner vertex of H has exactly two neighbors 
in A and the two endpoints v1 and vn of H have either one or two neighbors in A. 
We will compute LH with the help of the table Tn computed for the step (S2A) 
above. First note that if both endpoints v1 and vn of H have only one neighbor in 
A, then LH is equal to Tn[n1, nn] , where n1 and nn are the unique neighbors of v1 
and vn , respectively, in G. Moreover, if both endpoints occur only in one terminal 
pair (but could have up to two neighbors in G), then LH is equal to the union of 
the sets Tn[n1, nn] for every neighbor n1 ∈ NG(v1) and every neighbor nn ∈ NG(vn) . 
Now consider the case that both endpoints v1 and vn occur in exactly two ter-
minal pairs; the case that only one of them occurs in two terminal pairs is then 
analogously. Then v1 occurs in the terminal pair {v1, v2} and in the terminal pair 
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{v1, a1} for some a1 ∈ A and similarily vn occurs in the terminal pair {vn−1, vn} 
and in the terminal pair {vn, an} for some an ∈ A . In this case, LH is equal to the 
union of the sets {E + E� + E�� | E ∈ En̄1,a1

∧ E� ∈ Tn[n1, nn] ∧ E�� ∈ En̄n,an
} for 

every n1 ∈ NG(v1) and every nn ∈ NG(vn) . All other remaining cases can be han-
dled analogously.

This completes the description of the algorithm. To verify correctness, one can 
observe that each solution vector computed by the algorithm can be traced back to 
a specific choice of edges (a path) that connects each terminal pair in P, and since 
there are sufficient multi-edges in G[A] to accommodate all the resulting paths, this 
guarantees the existence of a solution. On the other hand, if a solution exists then it 
surely has a solution vector, and moreover the algorithm will discover this solution 
vector by choosing, for each {a, b} ∈ P , the entry in EH which corresponds to the a-
b path used in the solution.

Finally, we establish the running time bound. Note first that every set of solu-

tion vectors computed at any point in the algorithm contains at most (�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠ 
elements. Moreover, as argued in (O1) the set Eu,v for two distinct vertices u and 
v in A can be computed in time O((k + 1)!) and contains at most (k + 1)! ele-

ments. From this it follows that the time required to compute LA in (S1) is at 

most O((�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠(k + 1)!�P��) . Similarly, the time required to compute LC 

for a cycle C in GT [B] in step (S2A) is at most O((�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠(k + 1)!�PC
2
�) and 

the time required to compute LH for a path H in GT [B] in step (S2B) is at most 

O((�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠(k + 1)!�PH
1
�) . Hence the time required to compute LA together 

with all the sets LC and LH for every cycle C and path H of GT [B] is at most 

O((�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠(k + 1)!�P�) . Finally, combining these sets into L′ does not incur 

an additional run-time overhead since L′ can be computed iteratively as part of the 
computation of the sets LA , LC , and LH.� □

Notice that Lemma  4 does not provide a fixed-parameter algorithm for Sim-
ple EDP. Our second task for this section will be to rule out the existence of such 
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algorithms (hence also ruling out the fixed-parameter tractability of EDP parameter-
ized by tree-cut width).

Before we proceed, we would like note that this outcome was highly surprising 
for the authors. Indeed, not only does this “break” the parallel between {VDP, tree-
width} and {EDP, tree-cut width}, but inspecting the dynamic programming algo-
rithm for EDP parameterized by tree-cut width presented in Sect. 4 reveals that solv-
ing Simple EDP is the only step which requires more than “FPT-time”. In particular, 
if Simple EDP were FPT, then EDP parameterized by tree-cut width would also be 
FPT. This situation contrasts the vast majority of dynamic programming algorithms 
for parameters such as treewidth and clique-width [3], where the complexity bottle-
neck is usually tied to the size of the records used and not to the computation of the 
dynamic step.

Our lower-bound result is based on a fpt-reduction from the following problem: 

Multidimensional Subset Sum (MSS)
Input: An integer k, a set S = {s1,… , s

n
} of item-vectors with 

s
i
∈ ℕ

k for every i with 1 ≤ i ≤ n , a target vector t ∈ ℕ
k , 

and an integer �.
Parameter: k
Question: Is there a subset S′ ⊆ S with |S′| ≥ � such that 

∑
s∈S� s ≤ t?

 The W[1]-hardness of MSS can be obtained by a trivial reduction from the follow-
ing problem, which was recently shown to be W[1]-hard by Ganian, Ordyniak and 
Ramanujan [13]: 

Multidimensional Relaxed Subset Sum (MRSS)
Input: An integer k, a set S = {s1,… , s

n
} of item-vectors with 

s
i
∈ ℕ

k for every i with 1 ≤ i ≤ n , a target vector t ∈ ℕ
k , 

and an integer �.
Parameter: k
Question: Is there a subset S′ ⊆ S with |S′| ≤ � such that 

∑
s∈S� s ≥ t?

 Indeed, given an instance (k, S, t,�) of MRSS, it is straightforward to verify that 
(k, S,   (

∑
s∈S s) − t, �S� − �) is an equivalent instance of MSS; since the reduction 

preserves the parameter, this shows that MSS is also W[1]-hard.

Lemma 5  Simple EDP is W[1]-hard.

Proof  We provide a fpt-reduction from MSS. Namely, given an instance (k, S, t,�) 
of MSS, we will construct an equivalent instance (G, P) with partition A and B and 
|A| = k + 3 of Simple EDP. For convenience and w.l.o.g. we will assume that all 
entries of the vectors in S as well as all entries of the target vector t are divisible 
by two; furthermore, we will describe the constructed instance of Simple EDP with 
multi-edges between vertices in A (note that these can be replaced by degree-2 verti-
ces in B, similarly as in Lemma 4).
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The graph G[A] has vertices a, b, d, and d1,… , dk and the following multi-edges:

•	 |S| − � edges between a and b,
•	 for every i with 1 ≤ i ≤ k , t[i] edges between d and di.

Moreover, for every s ∈ S we construct a gadget G(s) consisting of:

•	 the vertices vs, vs
1
, us

1
,… , vs

s̄
, us

s̄
 with s̄ =

∑k

i=1
s[i],

•	 two edges vsa and vsd,
•	 for every i with 1 ≤ i ≤ s̄ , two edges vs

i
b and us

i
b,

•	 for every i with 1 ≤ i ≤ s̄ and i even, two edges vs
i
d and us

i
d,

•	 for every j with 1 ≤ j ≤ k and every i with 
∑j−1

l=1
s[l] < i ≤

∑j

l=1
s[l] and i odd, 

two edges vs
i
dj and us

i
dj,

a

b

vs

vs1

us
1

vs2

us
2

vs3

us
3

vs4

us
4

d1

d2

d

|S| −
t[1]

t[2]

a

b

vs

vs1

us
1

vs2

us
2

vs3

us
3

vs4

us
4

d1

d2

d

|S| −
t[1]

t[2]

Fig. 2   An illustration of the graph G[A] together with the gadget G(s) for k = 2 , s[1] = 2 , and s[2] = 2 . 
Bold edges indicate multi-edges with multiplicities given as an edge label. The left side illustrates con-
figuration (C1) and the right side illustrates configuration (C2) as defined in Claim 1; here the non-black 
edges indicate the edges used by a solution that uses the corresponding configuration to connect the ter-
minal pairs of G(s). In particular, on the left side illustrating the case (C1), we have that: the green edges 
connect the terminal pair {vs, vs

1
} , the yellow edges connect the terminal pairs {us

i
, vs

i+1
} , the blue edges 

connect the terminal pairs {vs
i
, us

i
} for i even, and the red edges connect the terminal pairs {vs

i
, us

i
} for i 

odd. Moreover, on the right side illustrating the case (C2), we have that: the green edges connect the 
terminal pair {vs, vs

1
} , the yellow edges connect the terminal pairs {us

i
, vs

i
} , the blue edges connect the 

terminal pairs {us
i
, vs

i+1
} for i odd, and the red edges connect the terminal pairs {us

i
, vs

i+1
} for i even (Color 

figure online)
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•	 the terminal pair {vs, vs
1
},

•	 for every i with 1 ≤ i ≤ s̄ , a terminal pair {vs
i
, us

i
},

•	 for every i with 1 ≤ i < s̄ , a terminal pair {us
i
, vs

i+1
},

Then G consists of the graph G[A] together with the vertices and edges of the 
gadget G(s) for every s ∈ S ; note that B is the union of V(G(s)) over every s ∈ S . 
Moreover, P consists of all terminal pairs of the gadgets G(s) for every s ∈ S . This 
completes the construction of the instance (G,  P); an illustration is provided in 
Fig. 2. It remains to show that the instance (k, S, t,�) of MSS has a solution if and 
only if so does the instance (G, P) of EDP.

We start by showing that there are only two ways to connect all terminal pairs 
of the gadget G(s) for every s ∈ S . Figure 2 illustrates the edges used by the two 
configurations.

Claim 1  Let S be a solution for (G, P), and s ∈ S . Then either:

	(C1)	The terminal pair {vs, vs
1
} is connected by the path (vs, a, b, vs

1
) and:

•	 for every i with 1 ≤ i < s̄ , the terminal pair {us
i
, vs

i+1
} is connected by the 

path (us
i
, b, vs

i+1
),

•	 for every i with 1 ≤ i ≤ s̄ and i even, the terminal pair {vs
i
, us

i
} is connected 

by the path (vs
i
, d, us

i
) , and

•	 for every i with 1 ≤ i ≤ s̄ and i odd, the terminal pair {vs
i
, us

i
} is connected 

by the path (vs
i
, dj, u

s
i
) , where j is such that 

∑j−1

l=1
s[l] < i ≤

∑j

l=1
s[l].

	(C2)	The terminal pair {vs, vs
1
} is connected by the path (vs, d, dj, vs1) , where j is the 

minimum integer such that s[j] ≠ 0 and:

•	 for every i with 1 ≤ i ≤ s̄ , the terminal pair {vs
i
, us

i
} is connected by the 

path (vs
i
, b, us

i
),

•	 for every i with 1 ≤ i < s̄ and i is odd, the terminal pair {us
i
, vs

i+1
} 

is connected by the path (us
i
, dj, d, v

s
i+1

) , where j is such that ∑j−1

l=1
s[l] < i ≤

∑j

l=1
s[l],

•	 for every i with 1 ≤ i < s̄ and i is even, the terminal pair {us
i
, vs

i+1
} 

is connected by the path (us
i
, d, dj, v

s
i+1

) , where j is such that ∑j−1

l=1
s[l] < i ≤

∑j

l=1
s[l].

Proof  Let S be a solution for (G, P) and s ∈ G(s) . Then S has to connect the termi-
nal pair {vs, vs

1
} either by the path (vs, a, b, vs

1
) or by the path (vs, d, dj, vs1).

In the former case, the only way to connect the terminal pair {vs
1
, us

1
} is the path 

(vs
1
, dj, u

s
1
) , where j is such that 

∑j−1

l=1
s[l] < 1 ≤

∑j

l=1
s[l] . But then the terminal pair 

{us
1
, vs

2
} can only be connected by the path (us

1
, b, vs

2
) and in turn the terminal pair 

{vs
2
, us

2
} can only be connected by the path (vs

2
, d, us

2
) . Since this pattern continues in 

this manner, this concludes the argument for the first case.
In the later case, the only way to connect the terminal pair {vs

1
, us

1
} is the path 

(vs
1
, b, us

1
) . But then the terminal pair {us

1
, vs

2
} can only be connected by the path 

(us
1
, dj, d, v

s
2
) , where j is such that 

∑j−1

l=1
s[l] < 1 ≤

∑j

l=1
s[l] , and in turn the terminal 
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pair {vs
2
, us

2
} can only be connected by the path (vs

2
, b, us

2
) . Finally, the terminal pair 

{us
2
, vs

3
} can then only be connected by the path (us

2
, d, dj, v

s
3
) , where j is such that ∑j−1

l=1
s[l] < 1 ≤

∑j

l=1
s[l] . Since this pattern continues in this manner, this concludes 

the argument for the second case.� □

Let S be a solution for (G,  P) and s ∈ S . It follows from Claim  1 that if S 
connects the terminal pairs of G(s) according to (C1), then the only edge used 
from G[A] is the edge ab. On the other hand, if S connects the terminal pairs in 
G(s) according to (C2), then S uses s[i] edges between d and dj for every i with 
1 ≤ i ≤ k.

Towards showing the forward direction, let S′ ⊆ S be a solution for (k, S, t,�) . 
W.l.o.g. we can assume that |S�| = � . We claim that the set of edge-disjoint paths 
S , which if s ∈ S� connects all terminal pairs in G(s) according to (C2) and if 
s ∈ S⧵S� connects all terminal pairs in G(s) according to (C1) is a solution for 
(G, P). This holds because there are |S| − � edges between a and b, which are 
sufficient for the elements in S⧵S′ to be connected according to (C1). Moreover, 
because 

∑
s∈S� s ≤ t , the t[i] edges between d and di for every i with 1 ≤ i ≤ k , 

suffice for the elements in S′ to be connected according to (C2).
For the reverse direction, let S be a solution for (G, P).
We claim that the subset S′ of S containing all s ∈ S such that S connects all 

terminal pairs in G(s) according to C2 is a solution for (k, S, t,�) . Because there 
are at most |S| − � edges between a and b in G[A], we obtain that |S′| ≥ � . More-
over, because there are at most t[i] edges between d and di in G[A], it follows 
that 

∑
s∈S� s ≤ t . Consequently, S′ is a solution for (k, S, t,�).� □

4 � An Algorithm for EDP on Graphs of Bounded Tree‑Cut Width

The goal of this section is to provide an XP algorithm for EDP parameterized by 
tree-cut-width. The core of the algorithm is a dynamic programming procedure 
which runs on a nice tree-cut decomposition (T ,X) of the input graph G.

Yt

a c

b d

Yt

a

b

e

s

Yt

a c

b d

b d

Fig. 3   Illustration of the construction of (Gt,�,Pt,�) from (G
t
,P

G
t

2
) and � . Green vertices and edges rep-

resent new elements that are added to (Gt,�,Pt,�) and dashed edges represent terminal-pairs. The left, 
middle, and right picture corresponds to the steps 2, 3, and 4 in the algorithm for constructing (Gt,�,Pt,�) , 
respectively (Color figure online)
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4.1 � Overview

Our first aim is to define the data table the algorithm is going to dynamically com-
pute for individual nodes of the tree-cut decomposition; to this end, we introduce two 
additional notions. For a node t, we say that Yt (or Gt ) contains an unmatched termi-
nal s if {s, e} ∈ P , s ∈ Yt and e ∉ Yt ; let Ut be the multiset containing all unmatched 
terminals in Yt (one entry in Ut per tuple in P which contains an unmatched termi-
nal). For a subgraph H of G, let PH

2
⊆ P denote the subset of terminal pairs whose 

both endpoints lie in H.
Let a record for node t be a tuple (�, I,F, L) where:

•	 � is a partitioning of Et into four subsets: an even-sized set I′ (internal), a set L′ 
(leaving), an even-sized set F′ (foreign) and a set (U�) (unused);

•	 I is a set of subsets of size 2 of I′ that is a perfect matching between the edges in 
I′;

•	 F is a set of subsets of size 2 of F′ that is a perfect matching between the edges in 
F′;

•	 L is a perfect matching between Ut and the edges in L′.

Intuitively, a record captures all the information we need about one possible inter-
action between a solution to EDP and the edges in Et . In particular, unmatched ter-
minals need to cross between Yt and G − Yt using an edge in Et and L captures the 
first edge used by a path from an unmatched terminal in the solution while L′ is the 
set of all edges in Et that are used for this purpose. I and F then capture information 
about paths which intersect with Et but whose terminals both lie in Yt and G − Yt , 
respectively,1 and the sets I′ and F′ contain all edges used for these two purposes. 
Finally, the set U′ simply contains edges which are not used by a given solution. We 
formalize this intuitive description below through the notion of a valid record.

Let � = (�, I,F, L) be a record for t. Then, the instance (Gt,�,Pt,�) is obtained from 
(Gt,P

Gt

2
) and � by the following algorithm (see Fig. 3 for an illustration): 

1.	 initialize Gt,� to Gt and Pt,� to PGt

2
,

2.	 For each {{a, b}, {c, d}} ∈ I where a, c ∈ Yt , add a new vertex into Gt,� and con-
nect it to a and c by edges (note that if a = c then this simply creates a new leaf 
and hence this operation can be ignored).

3.	 For each {s, {a, b}} ∈ L where a ∈ Yt , add a new tuple {s, e�} into Pt,� and a new 
leaf e′ into Gt,� adjacent to a.

4.	 For each {{a, b}, {c, d}} ∈ F where a, c ∈ Yt , add two new leaves b′, d′ into Gt,� , 
make them adjacent to a and c respectively, and add {b�, d�} into Pt,�.

1  For technical reasons, F will also store information about paths with unmatched terminals which use 
multiple edges in E

t
—see Definition 4 later.
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Definition 3  A record � = (�, I,F, L) is valid for t if (Gt,�,Pt,�) is a YES-instance of 
EDP.

We are now ready to define our data tables: for a node t ∈ V(T) , let D(t) be the set 
of all valid records for t. We now make two observations. First, for any node t in a 
nice tree-cut decomposition of width k, it holds that there exist at most 4k ⋅ k! distinct 
records and hence |D(t)| ≤ 4k ⋅ k! ; indeed, there are 4k possible choices for � , and for 
each such choice and each edge e in Et one has at most k options of what to match 
with e. Second, if r is the root of T, then either D(r) = � or D(r) = {(�, �, �, �)} ; fur-
thermore, (G, P) is a YES-instance if and only if the latter holds. Hence it suffices to 
compute D(r) in order to solve EDP.

The next lemma shows that D(t) can be computed efficiently for all leaves of t.

Lemma 6  Given (G,  P), a width-k tree-cut decomposition (T ,X) of G and a leaf 
t ∈ V(T) as the input, it is possible to compute D(t) in time kO(k2).

Proof  We proceed as follows. For each record � for t, we construct the instance 
(Gt,�,Pt,�) as per Definition  3 and check whether (Gt,�,Pt,�) is a YES-instance of 
EDP. Since V(Gt,�) ≤ 2k , a simple brute-force algorithm will suffice here. For 
instance, one can enumerate all partitions of the at most 4k2 edges in Gt,� , and for 
each such partition one can check whether this represents a set of edge-disjoint paths 
which forms a solution to (Gt,�,Pt,�) . If (Gt,�,Pt,�) is a YES-instance of EDP then we 
add � into D(t), and otherwise we do not.

The number of partitions of a set of size 4k2 is upper-bounded by kO(k2) [1], and 
|D(t)| ≤ 4k ⋅ k! . Hence the runtime of the whole algorithm described above is domi-
nated by kO(k2).� □

At this point, all that is left to obtain a dynamic leaves-to-root algorithm which 
solves EDP is the dynamic step, i.e., computing the data table for a node t ∈ V(t) 
from the data tables of its children. Unfortunately, that is where all the difficulty 
of the problem lies, and our first step towards handling this task will be the intro-
duction of two additional notions related to records. The first is correspondence, 
which allows us to associate each solution to (G, P) with a specific record for t; 
on an intuitive level, a solution corresponds to a particular record if that record 
precisely captures the “behavior” of that solution on Et . Correspondence will, 
among others, later be used to establish the correctness of our algorithm.

Definition 4  A solution S to (G, P) corresponds to a record � = (�, I,F, L) for t if 
the conditions 1.-4. stated below hold for every a-b path Q ∈ S such that Q ∩ Et ≠ � . 
We let s = |Q ∩ Et| and we denote individual edges in Q ∩ Et by e1, e2,… es , ordered 
from the edge nearest to a along Q. 

1.	 If a, b ∉ Yt , then for each odd i ∈ [s] , F contains {ei, ei+1}.
2.	 If a, b ∈ Yt , then for each odd i ∈ [s] , I contains {ei, ei+1}.
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3.	 If {a, b} ∩ Yt = {a} , then L contains (a, e1) , and for each even i ∈ [s] F contains 
{ei, ei+1}.

4.	 There are no elements in I, F, L other than those specified above.

Note that “restricting” the solution S to the instance (Gt,�,Pt,�) used in Defini-
tion 3 yields also a solution to (Gt,�,Pt,�) ; in particular, for each path Q ∈ S that 
intersects Et , one replaces the path segments of Q in G⧵Yt by the newly created 
vertices to obtain a solution to (Gt,�,Pt,�) . Consequently, if S corresponds to � 
then � must be valid (however, it is clearly not true that every valid record has 
a solution to the whole instance that corresponds to it). Moreover, since Defini-
tion 4 is constructive and deterministic, for each solution S and node t there exists 
precisely one corresponding valid record �.

The second notion that we will need is that of simplification. This is an opera-
tion which takes a valid record � for a node t and replaces Gt by a “small rep-
resentative” so that the resulting graph retains the existence of a solution cor-
responding to � . Simplification can also be seen as being complementary to the 
construction of (Gt,�,Pt,�) used in Definition 3 (instead of modeling the implica-
tions of a record on Gt , we model its implications on G − Yt ), and will later form 
an integral part of our procedure for computing valid records for nodes.

Definition 5  The simplification of a node t in accordance with � = (�, I,F, L) is an 
operation which transforms the instance (G, P) into a new instance (G�,P�) obtained 
from (G − Yt,P

G−Yt
2

) and � by the following algorithm (see Fig. 4 for an illustration): 

1.	 initialize G′ to G − Yt and P′ to PG−Yt
2

,
2.	 For each {s, {a, b}} ∈ L where (s, e) ∈ P and b ∉ Yt , add a new vertex s′ adjacent 

to b to G′ and add (s�, e) to P′.
3.	 For each {{a, b}, {c, d}} ∈ I where a, c ∈ Yt and a ≠ c , add vertices a′ and c′ into 

G′ and make them adjacent to b and d respectively, and add (a�, c�) into P′.
4.	 For each {{a, b}, {c, d}} ∈ F where a, c ∈ Yt and b ≠ d , add a new vertex x to G′ 

and make it adjacent to b and d.

G−Yt

b

a

s

e

G−Yt

b d

a c

a c

G−Yt

b d

a c

x

Fig. 4   Illustration of the simplification of t in accordance with � . Green vertices and edges represent new 
elements that are added to (G�,P�) and dashed edges represent terminal-pairs. The left, middle, and right 
picture corresponds to the steps 2, 3, and 4 in the algorithm given in Definition 5, respectively (Color 
figure online)
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With regards to simplification, observe that every vertex added to G − Yt has 
degree at most 2 and that simplification can never increase the degree of vertices 
in G − Yt.

Observation 1  If there exists a solution to (G,  P) which corresponds to a record 
� = (�, I,F, L) for t, and if (G�,P�) is the result of simplification of t in accordance 
with � , then (G�,P�) admits a solution. On the other hand, if (G�,P�) is the result of 
simplification of t in accordance with a valid record � and if (G�,P�) admits a solu-
tion, then (G, P) also admits a solution.

Proof  For the forward direction, consider a solution S to (G, P) which corresponds to 
� = (�, I,F, L) . Comparing Definition 4 with Definition 5, we observe the following: 

1.	 for each s-e path Q ∈ S such that s, e ∉ Yt and Q ∩ Et ≠ � , it holds that each path 
segment of Q in Yt begins and ends with a pair of edges in F and in particular is 
replaced by a single vertex in (G�,P�);

2.	 for each s-e path Q ∈ S such that s, e ∈ Yt and Q ∩ Et ≠ � , it holds that each path 
segment of Q outside of Yt begins and ends with a pair of edges in I and in par-
ticular is replaced by a pair of new terminals in (G�,P�);

3.	 for each s-e path Q ∈ S such that {s, e} ∩ Yt = {s} , it holds that the path segment 
of Q in Yt containing s ends with an edge in L and is replaced by a new terminal 
in (G�,P�) , and all other path segments of Q in Yt begin and end with a pair of 
edges in F and are hence replaced by single vertices in (G�,P�).

From the above, we observe that S can be transformed into a solution S′ for 
(G�,P�) . The backward direction then follows by reversing the above observa-
tions; in particular, given a solution S′ for (G�,P�) , we use the fact that � is valid to 
expand S′ into a full solution S to (G, P).� □

4.2 � The Dynamic Step

Let us begin by formalizing our aim for this subsection.

Lemma 7  There is an algorithm which takes as input (G,  P) along with a nice 
width-k tree-cut decomposition (T ,X) of G and a non-leaf node t ∈ V(T) and D(t�) 
for every child t′ of t, runs in time (k|P|)O(k2) , and outputs D(t).

Finally, we introduce two simple reduction rules which will later help us reduce 
our problem to Simple EDP. The first ensures that two vertices of degree at most 2 
are not adjacent to each other.

Reduction Rule 1  Let (G, P) be an instance of EDP containing an edge ab between 
two vertices of degree at most 2. 
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1.	 If a is not a terminal, then contract ab and replace all occurrences of b in P by 
the new vertex;

2.	 If {a, b} ∈ P , then remove {a, b} from P and remove the edge ab from G;
3.	 If {a, b} ∉ P and each of a and b occurs in precisely one element of P, then delete 

the edge ab;
4.	 Otherwise, reject (G, P).

Proof of Safeness  The safeness of the first three rules is straightforward. As for the 
fourth rule, let us consider the conditions for when it is applied. In particular, the 
fourth rule is only called if either a or b occurs in three terminal pairs, or if a occurs 
in at least one terminal pair and b in at least two but {a, b} ∉ P . Clearly, (G, P) is a 
NO-instance in either of these cases.� □

The second reduction rule will allow us to replace thin nodes with data tables by 
small representatives; these representatives will only contain vertices of degree at 
most 2 adjacent to the original neighborhood of the thin node. For brevity and as a 
slight abuse of notation, we use the symbol ↦ to identify how the first element � in a 
record partitions the edges in Et.

Reduction Rule 2  Let t be a thin node in V(T) with non-empty D(t). 

1.	 If Et = {{a, b}} where a ∈ Yt and if

•	 (({a, b} ↦ L�), �, �, {s, {a, b}}) ∈ D(t) for some s ∈ Ut , then delete Yt⧵{s} 
and create the edge sb;

•	 otherwise, (({a, b} ↦ U�), �, �, �) ∈ D(t) and we delete Yt.

2.	 If Et = {{a, b}, {c, d}} where a, c ∈ Yt , Ut = � and if

•	 (({a, b} ↦ F�, {c, d} ↦ F�), �, {{a, b}, {c, d}}, �) ∈ D(t) , then delete Yt and 
create a new vertex v adjacent to b and d; else, if

•	 (({a, b} ↦ U�, {c, d} ↦ U�), �, �, �) ∈ D(t) , then delete Yt;
•	 otherwise, (({a, b} ↦ I�, {c, d} ↦ I�), {{a, b}, {c, d}}, �, �) ∈ D(t) and we 

delete Yt⧵{a, c} and add {a, c} into the set P of terminals.

3.	 If Et = {{a, b}, {c, d}} where a, c ∈ Yt , Ut = {s} and if

•	 (({a, b} ↦ L�, {c, d} ↦ U�), �, �, {s, {a, b}}) ∈ D(t) and also 
(({c, d} ↦ L�, {a, b} ↦ U�), �, �, {s, {c, d}}) ∈ D(t) , then delete Yt⧵{s} and 
make s adjacent to b and d;

•	 otherwise, (({a, b} ↦ L�, {c, d} ↦ U�), �, �, {s, {a, b}}) ∈ D(t) and we delete 
Yt⧵{s} and make s adjacent to b.

4.	 If Et = {{a, b}, {c, d}} where a, c ∈ Yt , Ut = {s1, s2} (not necessarily s1 ≠ s2 ) and 
if

•	 (({a, b} ↦ L�, {c, d} ↦ L�), �, �, {{s1, {a, b}}, {s2, {c, d}}}) ∈ D(t) and 
(({a, b} ↦ L�, {c, d} ↦ L�), �, �, {{s2, {a, b}}, {s1, {c, d}}}) ∈ D(t) , then add 
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a new vertex s′ adjacent to b and d, replace all occurrences of s1 and s2 in P 
by s′ , and delete Yt;

•	 otherwise, (({a, b} ↦ L�, {c, d} ↦ L�), �, �, {{s1, {a, b}}, {s2, {c, d}}}) ∈ D(t) 
and we delete Yt⧵{s1, s2} , and make s1 adjacent to b and s2 adjacent to d.

5.	 Otherwise, (G, P) is a NO -instance.

The safeness of Reduction Rule 2 follows directly from the definition of D(t) (one 
simply needs to check each case separately) and hence we do not provide an explicit 
proof for each case. To provide intuition for Case 5., we note that:

•	 Case 1. captures the only two possible outcomes when |Et| = 1;
•	 Case 2. captures the only admissible outcomes when |Et| = 2 and Ut = � : the two 

edges in Et can either be used to connect a terminal pair outside of Gt , or remain 
unused, or used to connect a terminal pair inside of Gt;

•	 Case 3. captures the only admissible outcomes when |Et| = 2 and Ut = {s} : 
either it is possible to route s to either of the two edges in Et , or only one of these 
two edges can be connected to s via an edge-disjoint path;

•	 Case 4. captures the only admissible outcomes when |Et| = 2 and |Ut| = 2 : either 
it is possible to route both of the unmatched terminals in Ut to either of the two 
edges (in parallel), or parallel routing of both unmatched terminals to Et requires 
each terminal to be routed to precisely one fixed edge in Et.

With Lemma 4 and Reduction Rules 1, 2 in hand, we have all we need to handle 
the dynamic step. It will be useful to recall the definitions of At and Bt , and that 
|At| ≤ 2k + 1.

Proof of Lemma 7  We begin by looping through all of the at most 4k ⋅ k! distinct 
records for t; for each such record � , our task is to decide whether it is valid, i.e., 
whether (Gt,�,Pt,�) is a YES-instance. On an intuitive level, our aim will now be to 
use branching and simplification in order to reduce the question of checking whether 
� is valid to an instance of Simple EDP.

In our first layer of branching, we will select a record from the data tables of each 
node in At . Formally, we say that a record-set is a mapping � ∶ t� ∈ At ↦ �t� ∈ D(t�) . 
Note that the number of record-sets is upper-bounded by (4k ⋅ k!)2k+1 , and we will 
loop over all possible record-sets.

Next, for each record-set � , we will apply simplification to each node t� ∈ At in 
accordance with �(t�) , and recall that each vertex v created by this sequence of sim-
plifications has degree at most 2. Next, we exhaustively apply Reduction Rule 1 to 
ensure that each such v is only adjacent to (V(G)⧵Yt) ∪ Xt . At this point, every ver-
tex contained in a bag Xt′ for t� ∈ At has degree at most 2 and is only adjacent to 
Xt ∪ (V(G)⧵Yt).

Finally, we apply Reduction Rule  2 to replace each thin node by vertices of 
degree at most 2 adjacent to Xt . At this point, every vertex in V(Gt,�)⧵Xt is of degree 
at most 2 and only adjacent to Xt , and so (Gt,�,Pt,�) is an instance of Simple EDP. All 
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that is left is to invoke Lemma 4; if it is a YES-instance then we add � to D(t), and 
otherwise we do not.

The running time is upper bounded by the branching factor (4k ⋅ k!)2k+1 times 
the time to apply our two reduction rules and the time required to solve the 
resulting Simple EDP instance. All in all, we obtain a running time of at most 
kO(k2)

⋅ |P|O(k2) = (k|P|)O(k2).
We conclude the proof by arguing correctness. Assume � is a valid record. By 

Definition 3, this implies that (Gt,�,Pt,�) admits a solution S. For each child t� ∈ At , S 
corresponds to some record �S

t′
 for t; consider now the branch in our algorithm which 

sets �(t�) = �S
t�
 . Then by Observation 1 it follows that each simplification carried out 

by the algorithm preserves the existence of a solution to (Gt,�,Pt,�) . Since both our 
reduction rules are safe, the instance of Simple EDP we obtain at the end of this 
branch must also be a YES-instance.

On the other hand, assume the algorithm adds a record � into Dt . This means that 
the resulting Simple EDP instance was a YES-instance. Then by the safeness of our 
reduction rules and by the second part of Observation 1, the instance obtained by 
reversing the reduction rules and simplifications was also a YES-instance; in par-
ticular (Gt,�,Pt,�) is a YES-instance and so � is a valid record.� □

We now have all the ingredients we need to prove our main result.

Theorem  2  EDP can be solved in time at most O(n3) + kO(k2)n2 + (k|P|)O(k2)n , 
where k is the tree-cut width of the input graph and n is the number of its vertices.

Proof  We begin by invoking Theorem  1 to compute a tree-cut decomposition of 
G of width at most 2k and then converting it into a nice tree-cut decomposition 
(this takes time kO(k2)n2 and O(n3) , respectively). Afterwards, we use Lemma 6 to 
compute D(t) for each leaf of T, followed by a recursive leaf-to-root application of 
Lemma 7. Once we compute D(r) for the root r of T, we output YES if and only if 
D(r) = {(�, �, �, �)}.� □

5 � Kernelizing EDP Parameterized by Feedback Edge Set

The goal of this section is to provide a fixed-parameter algorithm for EDP which 
exploits the structure of the input graph exclusively. While tree-cut width can-
not be used to obtain such an algorithm, here we show that the feedback edge set 
number can. More specifically, we obtain a linear kernel for EDP parameterized 
by the feedback edge set number. Our kernel relies on the following two facts:

Fact 1  A minimum feedback edge set of a graph G can be obtained by deleting the 
edges of minimum spanning trees of all connected components of G, and hence can 
be computed in time O(|E(G)| + |V(G)|).
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Fact 2  [14] EDP can be solved in polynomial time when G is a forest.

Consider an instance (G, P) of EDP and let X ⊆ E(G) be a minimum feedback 
edge set X. Let Y be the set of all vertices incident to at least one edge from X. For 
the purposes of this section, it will be useful to view P as a multiset rather than 
a set. We begin with two simple reduction rules which allow us to remove some 
degree 2 vertices and all leaves disjoint from Y.

Reduction Rule 3  Let v, a, b ∈ V(G) be such that NG(v) = {a, b} , v ∉ Y  and 
ab ∉ E(G) . If v does not occur in any terminal pair in P, then delete v and add the 
edge ab into E(G).

Proof of Safeness  Observe that every solution to the original instance which uses an 
edge incident to v must contain a path which traverses through both av and vb, and 
after the reduction rule is applied one can simply replace these two edges in that 
path by ab. Any solution in the reduced instance can be similarly transformed into a 
solution to the original instance. Moreover, X clearly remains a feedback edge set in 
the reduced instance.� □

Reduction Rule 4  Let v ∈ V(G) be such that NG(v) = {w} . Then:

1.	 if v occurs in no terminal pair in P, delete v from G;
2.	 if v occurs in precisely one terminal pair {v,w} in P, delete v from G and delete 

{v,w} from P;
3.	 if v occurs in precisely one terminal pair {v, y} in P where y ≠ w , delete v from G 

and replace {v, y} in P by {w, y};
4.	 if v occurs in at least two terminal pairs in P, reject (G, P).

Proof of Safeness  In the first case, it is easy to see that no path in the solution can 
contain v. For the second and third case, safeness follows by the fact that every path 
connecting v to its assigned terminal pair must use the edge vw and no other path 
can use vw. For the last case, simply observe that a leaf cannot appear in more than 
one edge-disjoint path.� □

Observe that the exhaustive application of Reduction Rules 3 and 4 results in an 
instance (H, L) where every leaf lies in Y. Moreover, every vertex of degree 2 must 
lie in at least one terminal pair, or lie in Y, or be adjacent to a vertex in Y (since 
Reduction Rule 3 does not apply to a C3 ). We now introduce a new rule and lemma 
which will help us deal with the potentially large number of vertices of degree 2 that 
occur in terminal pairs.

Reduction Rule 5  Let vw ∈ E(H) be such that {v,w} ∈ L . Then remove vw from 
E(H) (and also from X, if it was in X), and remove {v,w} from L.
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Proof of Safeness  If the solution connects the terminal pair {v,w} via the edge vw, 
the solution is preserved even after applying the rule. If the solution connects the 
pair using a different path, we can obtain an equivalent solution by instead connect-
ing v to w via the edge vw and—if this edge was used to connect a different terminal 
pair—using the old v-w path as a replacement for that edge. Finally, if the reduced 
instance admits a solution, it is easy to see that the graph also had a solution before 
the application of the rule to delete vw and {v,w}.� □

We can now prove the following for the instance (H�, L�) obtained from (H, L) by 
exhaustively applying Reduction Rule 5.

Lemma 8  Let a, b, c ∈ V(H�)⧵Y  be three degree-2 vertices in H′ such that 
N(b) = {a, c} . Then (H�, L�) is a NO-instance.

Proof  By the exhaustive application of Reduction Rule 3, the vertex b must occur in 
at least one terminal pair. Moreover, since we have also exhaustively applied Reduc-
tion Rule 5, this terminal pair can be neither {b, a} nor {b, c} . And since both a and 
c have degree 2, each of these must also occur in some terminal pair, say {a, a�} and 
{c, c�}.

Now, to reach a contradiction let us consider a hypothetical solution S for (H�, L�) . 
Clearly S must contain an a-a′ path, and this path cannot start with the edge ab 
(since then it would have to continue with bc, preventing b from using any edge to 
reach its own terminal pair). By symmetry, S must also contain a c-c′ path which 
does not start with the edge cb. But now the only two vertices reachable by an edge-
disjoint path from b are a and c, and we have argued that b has a terminal pair with 
a vertex different from a and c. Hence, we have reached a contradiction to the exist-
ence of S.� □

At this point, we can prove that we have a linear kernel, as desired.

Theorem  3  EDP admits a linear kernel parameterized by the feedback edge set 
number of the input graph.

Proof  Let us consider the graph (H�, L�) obtained by the exhaustive application of 
Reduction Rules 3–5. Since we have already established the safeness of these rules, 
it suffices to argue that the instance has size linear in |Y|. We now check if Lemma 8 
applies—if yes then we reject, and otherwise we proceed knowing that G contains 
no path of 3 consecutive degree-2 vertices disjoint from Y.

Let us now consider the number of vertices in H′ , which is the same as the num-
ber of vertices in the graph Q = H� − X . By the exhaustive application of Reduction 
Rule 4, every leaf in Q lies in Y and hence in particular Q contains at most |Y| leaves. 
Consequently, the number of vertices of degree at least 3 is also upper-bounded by 
|Y|. It remains to bound the number of vertices of degree precisely 2 in Q.

To this end, let Z be the union of Y with the set of all vertices of degree at least 
3, and recall that |Z| ≤ 2|Y| . By the exhaustive application of Reduction Rule 3 and 
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our use of Lemma 8, every vertex of degree 2 in Q must be a neighbor of at least one 
vertex in Z. The number of such vertices is upper-bounded by 2 times the number of 
edges of a tree with at most |Z| vertices, i.e., at most 2 ⋅ (2|Y| − 1) . We conclude that 
Q (and hence also H′ ) contains at most 6|Y| vertices. Moreover, Q contains at most 
6|Y| edges and hence G contains at most 6|Y| + |X| ≤ 7|Y| edges.

To conclude the proof, it suffices to bound the size of L′ . Here, we simply observe 
that a YES-instance cannot contain more terminal pairs than the number of edges 
in H′ (since terminal pairs always contain two distinct vertices), and so either 
|L′| ≤ 7|Y| or we can correctly reject (H�, L�).� □
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