
Vol:.(1234567890)

Algorithmica (2021) 83:726–752
https://doi.org/10.1007/s00453-020-00772-w

1 3

The Power of Cut‑Based Parameters for Computing
Edge‑Disjoint Paths

Robert Ganian1  · Sebastian Ordyniak2

Received: 7 May 2019 / Accepted: 17 September 2020 / Published online: 21 October 2020
© The Author(s) 2020

Abstract
This paper revisits the classical edge-disjoint paths (EDP) problem, where one is
given an undirected graph G and a set of terminal pairs P and asks whether G con-
tains a set of pairwise edge-disjoint paths connecting every terminal pair in P. Our
aim is to identify structural properties (parameters) of graphs which allow the effi-
cient solution of EDP without restricting the placement of terminals in P in any way.
In this setting, EDP is known to remain NP-hard even on extremely restricted graph
classes, such as graphs with a vertex cover of size 3. We present three results which
use edge-separator based parameters to chart new islands of tractability in the com-
plexity landscape of EDP. Our first and main result utilizes the fairly recent struc-
tural parameter tree-cut width (a parameter with fundamental ties to graph immer-
sions and graph cuts): we obtain a polynomial-time algorithm for EDP on every
graph class of bounded tree-cut width. Our second result shows that EDP parameter-
ized by tree-cut width is unlikely to be fixed-parameter tractable. Our final, third
result is a polynomial kernel for EDP parameterized by the size of a minimum feed-
back edge set in the graph.

Keywords  Edge-disjoint path problem · Feedback edge set · Tree-cut width ·
Parameterized complexity

 *	 Robert Ganian
	 rganian@gmail.com

	 Sebastian Ordyniak
	 sordyniak@gmail.com

1	 Algorithms and Complexity Group, Vienna University of Technology, Vienna, Austria
2	 Algorithms Group, University of Sheffield, Sheffield, UK

http://orcid.org/0000-0002-7762-8045
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00772-w&domain=pdf

727

1 3

Algorithmica (2021) 83:726–752	

1  Introduction

Edge-Disjoint Paths (EDP) is a fundamental routing graph problem: we are given
a graph G and a set P containing pairs of vertices (terminals), and are asked to
decide whether there is a set of |P| pairwise edge-disjoint paths in G connect-
ing each pair in P. Similarly to its counterpart, the Vertex-Disjoint Paths (VDP)
problem, EDP has been at the center of numerous results in structural graph the-
ory, approximation algorithms, and parameterized algorithms [2, 8, 9, 14, 17, 19,
21, 22, 26].

Both EDP and VDP are NP-complete in general [16], and a significant amount
of research has focused on identifying structural properties which make these
problems tractable. For instance, Robertson and Seymour’s seminal work in
the Graph Minors project [22] provides an O(n3) time algorithm for both prob-
lems for every fixed value of |P|. Such results are often viewed through the more
refined lens of the parameterized complexity paradigm [5, 7]; there, each problem
is associated with a numerical parameter k (capturing some structural property
of the instance), and the goal is to obtain algorithms which are efficient when the
parameter is small. Ideally, the aim is then to obtain so-called fixed-parameter
algorithms for the problem, i.e., algorithms which run in time f (k) ⋅ nO(1) where f
is a computable function and n the input size; the aforementioned result of Rob-
ertson and Seymour is hence an example of a fixed-parameter algorithm where
k = |P| , and we say that the problem is FPT(w.r.t. this particular parameteriza-
tion). In cases where fixed-parameter algorithms are unlikely to exist, one can
instead aim for so-called XP algorithms, i.e., algorithms which run in polynomial
time for every fixed value of k.

Naturally, one prominent question that arises is whether we can use the struc-
ture of the input graph itself (captured via a structural parameter) to solve EDP
and VDP. Here, we find a stark contrast in the difficulty between these two, oth-
erwise closely related, problems. Indeed, while VDP is known to be FPT with
respect to the well-established structural parameter treewidth [24], EDP is NP-
hard even on graphs of treewidth 3 [9]. What’s worse, the same reduction shows
that EDP remains NP-hard even on graphs with a vertex cover of size 3 [9],
which rules out fixed-parameter and XP algorithms for the vast majority of stud-
ied graph parameters (including, e.g., treedepth and the size of a minimum feed-
back vertex set).

We note that previous research on the problem has found ways of circumvent-
ing these negative results by imposing additional restrictions. Zhou et al. [26]
introduced the notion of an augmented graph, which contains information about
how terminal pairs need to be connected, and used the treewidth of this graph to
solve EDP. Recent work [13], which primarily focused on the complexity of EDP
on near-forests and with respect to parameterizations of the augmented graphs,
has also observed that EDP admits a fixed-parameter algorithm when parameter-
ized by treewidth and the maximum degree of the graph.

Our Contribution The aim of this paper is to provide new algorithms and
matching lower bounds for solving the Edge-Disjoint Paths problem without

728	 Algorithmica (2021) 83:726–752

1 3

imposing any restrictions on the number and placement of terminals. In other
words, our aim is to be able to identify structural properties of the graph which
guarantee tractability of the problem without knowing any information about
the placement of terminals. The only positive result known so far in this setting
requires us to restrict the degree of the input graph; however, in the bounded-
degree setting there is a simple treewidth-preserving reduction from EDP to VDP
(see Proposition 1), and so the problem only becomes truly interesting when the
input graphs can contain vertices of higher degree.

Our main result, which is provided in Theorem 2, is an XP algorithm for EDP
when parameterized by the structural parameter tree-cut width [20, 25]. Tree-Cut
width is inherently tied to the theory of graph immersions; in particular, it has a
similar relationship to graph immersions and cuts as treewidth has to graph minors
and separators. Since its introduction, tree-cut width has been successfully used to
obtain fixed-parameter algorithms for problems which are W[1]-hard w.r.t. treewidth
[11, 12]; however, this is the first time that it has been used to obtain an algorithm
for a problem that is NP-hard on graphs of bounded treewidth.

One “feature” of algorithmically exploiting tree-cut width is that it requires the
solution of a non-trivial dynamic programming step. In previous works, this was
carried out mostly by direct translations into Integer Linear Programming instances
with few integer variables [11] or by using network flows [12]. In the case of EDP,
the dynamic programming step requires us to solve an instance of EDP with a vertex
cover of size k where every vertex outside of the vertex cover has a degree of 2; we
call this problem Simple EDP and solve it in the dedicated Sect. 3. It is worth noting
that there is only a very small gap between Simple EDP (for which we provide an
XP algorithm in Lemma 4) and graphs with a vertex cover of size 3 (where EDP is
known to be NP-hard).

In view of our main result, it is natural to ask whether the algorithm can be
improved to a fixed-parameter one. After all, given the parallels between EDP
parameterized by tree-cut width (an edge-separator based parameter) and VDP
parameterized by treewidth (a vertex-separator based parameter), one would right-
fully expect that the fixed-parameter tractability result on the latter [24] would be
mirrored in the former case. Surprisingly, we rule this out by showing that EDP
parameterized by tree-cut width is W[1]-hard [5, 7] and hence unlikely to be fixed-
parameter tractable; in fact, we obtain this lower-bound result even in the more
restrictive setting of Simple EDP in Lemma 5. The proof is based on an involved
reduction from an adapted variant of the Multidimensional Subset Sum problem
[12, 13] and forms our second main contribution.

Having ruled out fixed-parameter algorithms for EDP parameterized by tree-
cut width and in view of previous lower-bound results, one may ask whether it is
even possible to obtain such an algorithm for any reasonable parameterization. We
answer this question positively by using the size of a minimum feedback edge set as
a parameter. In fact, we show an even stronger result: as our final contribution, we
obtain a so-called linear kernel [5, 7] for EDP parameterized by the size of a mini-
mum feedback edge set (Theorem 3).

Organization of the Paper After introducing the required preliminaries in
Sect. 2, we proceed to introducing Simple EDP, solving it via an XP algorithm and

729

1 3

Algorithmica (2021) 83:726–752	

establishing our lower-bound result (Sect. 3). Section 4 then contains our algorithm
for EDP parameterized by tree-cut width. Finally, in Sect. 5 we obtain a polynomial
kernel for EDP parameterized by the size of a minimum feedback edge set.

2 � Preliminaries

We use standard terminology for graph theory, see for instance [6]. Given a graph G,
we let V(G) denote its vertex set and E(G) its edge set. The (open) neighborhood of
a vertex x ∈ V(G) is the set {y ∈ V(G) ∶ xy ∈ E(G)} and is denoted by NG(x) . For a
vertex subset X, the neighborhood of X is defined as

⋃
x∈X NG(x)⧵X and denoted by

NG(X) ; we drop the subscript if the graph is clear from the context. Contracting an
edge a, b is the operation of replacing vertices a, b by a new vertex whose neigh-
borhood is (N(a) ∪ N(b))⧵{a, b} . For a vertex set A (or edge set B), we use G − A
( G − B ) to denote the graph obtained from G by deleting all vertices in A (edges in
B), and we use G[A] to denote the subgraph induced on A, i.e., G − (V(G)⧵A) . A
path segment of a path Q is a path that is a subgraph of Q.

A forest is a graph without cycles, and an edge set X is a feedback edge set if
G − X is a forest. The feedback edge set number of a graph G, denoted by ���(G) ,
is the smallest integer k such that G has a feedback edge set of size k. We use [i] to
denote the set {0, 1,… , i}.

2.1 � Parameterized Complexity

A parameterized problem P is a subset of �∗ × ℕ for some finite alphabet � . Let
L ⊆ 𝛴∗ be a classical decision problem for a finite alphabet, and let p be a non-
negative integer-valued function defined on �∗ . Then L parameterized by p denotes
the parameterized problem { (x, p(x)) | x ∈ L } where x ∈ �∗ . For a problem instance
(x, k) ∈ �∗ × ℕ we call x the main part and k the parameter. A parameterized prob-
lem P is fixed-parameter tractable (FPT in short) if a given instance (x, k) can be
solved in time f (k) ⋅ |x|O(1) where f is an arbitrary computable function of k; we call
algorithms running in this time fixed-parameter algorithms.

Parameterized complexity classes are defined with respect to fpt-reducibility. A
parameterized problem P is fpt-reducible to Q if in time f (k) ⋅ |x|O(1) , one can trans-
form an instance (x, k) of P into an instance (x�, k�) of Q such that (x, k) ∈ P if and
only if (x�, k�) ∈ Q , and k� ≤ g(k) , where f and g are computable functions depend-
ing only on k. Owing to the definition, if P fpt-reduces to Q and Q is fixed-parameter
tractable then P is fixed-parameter tractable as well. Central to parameterized com-
plexity is the following hierarchy of complexity classes, defined by the closure of
canonical problems under fpt-reductions:

All inclusions are believed to be strict. In particular, ��� ≠ �[1] under the Expo-
nential Time Hypothesis.

��� ⊆ �[1] ⊆ �[2] ⊆ ⋯ ⊆ ��.

730	 Algorithmica (2021) 83:726–752

1 3

A major goal in parameterized complexity is to distinguish between parameter-
ized problems which are in ��� and those which are �[1]-hard, i.e., those to which
every problem in �[1] is fpt-reducible. There are many problems shown to be com-
plete for �[1] , or equivalently �[1]-complete, including the Multi-Colored Clique
(MCC) problem [7]. We refer the reader to the respective monographs [4, 7, 10] for
an in-depth introduction to parameterized complexity.

2.2 � Edge‑Disjoint Path Problem

Throughout the paper we consider the following problem.

Edge-Disjoint Paths (EDP)
Input: A graph G and a set P of terminal pairs, i.e., a set of subsets of V(G) of size two.
Question: Is there a set of pairwise edge-disjoint paths connecting every set of terminal pairs in P?

 A vertex which occurs in a terminal pair is called a terminal, and a set of pairwise
edge-disjoint paths connecting every set of terminal pairs in P is called a solution.
Without loss of generality, we assume that G is connected. The Vertex-Disjoint
Paths (VDP) problem is defined analogously as EDP, with the sole distinction being
that the paths must be vertex-disjoint.

The following proposition establishes a link between EDP and VDP on graphs
of bounded degree. Since we will not need the notion of treewidth [23] for any
other result presented in the paper, we refer to the standard textbooks [4, 7] for its
definition.

Proposition 1  There exists a linear-time reduction from EDP to VDP with the fol-
lowing property: if the input graph has treewidth k and maximum degree d, then the
output graph has treewidth at most (k + 1)d.

Proof  Let (G, P) be an instance of EDP where G has treewidth k and maximum
degree d; let V = V(G) and E = E(G) . Observe that if any vertex v ∈ V occurs in P
more than d many times, then (G, P) must be a NO-instance (we assume that P does
not contain tuples in the form (a, a) for any a).

Consider the graph G′ obtained in the following two-step procedure. First, we
subdivide each edge in G (i.e., we replace that edge with a vertex of degree 2 that is
adjacent to both endpoints of the original edge); let V ′ be the set of vertices created
by such subdivisions. Second, for each vertex v = v1 ∈ V of the original graph G,
we create d − 1 copies v2,… , vd of that vertex and set their neighborhood to match
that of v1 . This construction gives rise to a natural mapping � from G to G′ which
maps each v ∈ V to the set v1,… , vd and each e ∈ E to the vertex created by sub-
dividing e. Next, we iteratively process P as follows: for each {v,w} ∈ P , we add
a tuple {v�,w�} into the set P′ such that v� ∈ �(v) , w� ∈ �(w) and neither v′ nor w′
occurs in any other pair in P′ (the last condition can be ensured because each vertex
in v has d copies in G′ but never occurs more than d times in P).

731

1 3

Algorithmica (2021) 83:726–752	

It is now easy to verify that (G, P) is a YES-instance of EDP if and only
if (G�,P�) is a YES-instance of VDP. Indeed, consider a solution S (i.e., a set of
edge disjoint paths) for (G, P). For each v-w path Q in S, there is a correspond-
ing tuple (v�,w�) in P′ , and we can construct a v′-w′ path Q′ by (a) replacing each
edge and vertex used by Q with a vertex in the �-image of that edge and vertex,
while (b) ensuring that all paths constructed in this way are pairwise vertex-disjoint.
This means that (G�,P�) is also a YES-instance. On the other hand, if (G�,P�) is
a YES-instance and this is witnessed by a set S′ of vertex-disjoint paths spanning
a minimal set of vertices, then by this minimality assumption it follows that each
path may only visit the �-image of any vertex v ∈ V(G) at most once. Now consider
a path Q� ∈ S� , and notice that Q′ can be viewed as a sequence of vertices of the
form (�(v), �(e1), �(v1), �(e2),… , �(w)) . The sequence obtained from the images of
� , i.e., (v, e1, v1, e2,… ,w) must then also form a path, and moreover the set of paths
obtained in this way must be edge-disjoint by construction.

To conclude the proof, observe that it is possible to convert any tree-decompo-
sition (T, X) [7] of G of width k into a tree-decomposition of G′ of width (k + 1)d
by (1) replacing each vertex v by �(v) in T, and then (2) by choosing, for each edge
e = ab ∈ E , a bag X ⊇ {a, b} , creating a bag X� = X ∪ {�(e)} , and attaching X′ to X
as a leaf.� □

We remark that Proposition 1 in combination with the known fixed-parameter
algorithm for VDP parameterized by treewidth [24] provides an alternative proof for
the fixed-parameter tractability of EDP parameterized by degree and treewidth [13].
Finally, we introduce one bit of useful notation that applies to an instance (G, P) of
EDP: for a subgraph H of G, we let PH

2
 denote the subset of terminal pairs which are

subsets of V(H) and PH
1

 denote the subset of terminal pairs with a non-empty inter-
section with V(H).

2.3 � Tree‑Cut Width

The notion of tree-cut decompositions was introduced by Wollan [25], see also [20].
A family of subsets X1,… ,Xk of X is a near-partition of X if they are pairwise dis-
joint and

⋃k

i=1
Xi = X , allowing the possibility of Xi = �.

Definition 1  A tree-cut decomposition of G is a pair (T ,X) which consists of a
rooted tree T and a near-partition X = {Xt ⊆ V(G) ∶ t ∈ V(T)} of V(G). A set in the
family X is called a bag of the tree-cut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge incident
to t on the path to r. Let Tu and Tt be the two connected components in T − e(t)
which contain u and t, respectively. Note that (

⋃
q∈Tu Xq,

⋃
q∈Tt Xq) is a near-parti-

tion of V(G), and we use Et to denote the set of edges with one endpoint in each part.
We define the adhesion of t ( ���(t) ) as |Et| ; we explicitly set ���(r) = 0 and Er = �.

The torso of a tree-cut decomposition (T ,X) at a node t, written as Ht , is the
graph obtained from G as follows. If T consists of a single node t, then the torso

732	 Algorithmica (2021) 83:726–752

1 3

of (T ,X) at t is G. Otherwise let T1,… , T
�
 be the connected components of T − t .

For each i = 1,… ,� , the vertex set Zi ⊆ V(G) is defined as the set
⋃

b∈V(Ti)
Xb .

The torso Ht at t is obtained from G by consolidating each vertex set Zi into a sin-
gle vertex zi (this is also called shrinking in the literature). Here, the operation of
consolidating a vertex set Z into z is to substitute Z by z in G, and for each edge e
between Z and v ∈ V(G)⧵Z , adding an edge zv in the new graph. We note that this
may create parallel edges.

The operation of suppressing (also called dissolving in the literature) a vertex v
of degree at most 2 consists of deleting v, and when the degree is two, adding an
edge between the neighbors of v. Given a connected graph G and X ⊆ V(G) , let
the 3-center of (G, X) be the unique graph obtained from G by exhaustively sup-
pressing vertices in V(G)⧵X of degree at most two. Finally, for a node t of T, we
denote by H̃t the 3-center of (Ht,Xt) , where Ht is the torso of (T ,X) at t. Let the
torso-size ���(t) denote |H̃t|.

Definition 2  The width of a tree-cut decomposition (T ,X) of G is maxt∈V(T){���(t),
���(t)} . The tree-cut width of G, or ���(G) in short, is the minimum width of (T ,X)
over all tree-cut decompositions (T ,X) of G.

We also refer to [15] for a novel alternative definition of tree-cut width. With-
out loss of generality, we shall assume that Xr = � . We conclude this subsec-
tion with some notation related to tree-cut decompositions. Given a tree node t,
let Tt be the subtree of T rooted at t. Let Yt =

⋃
b∈V(Tt)

Xb , and let Gt denote the
induced subgraph G[Yt] . A node t ≠ r in a rooted tree-cut decomposition is thin if
���(t) ≤ 2 and bold otherwise (Fig. 1).

While it is not known how to compute optimal tree-cut decompositions effi-
ciently, there exists a fixed-parameter 2-approximation algorithm which we can
use instead.

Theorem 1  [18] There exists an algorithm that takes as input an n -vertex graph G
and integer k, runs in time 2O(k2 log k)n2 , and either outputs a tree-cut decomposition
of G of width at most 2k or correctly reports that ���(G) > k.

A tree-cut decomposition (T ,X) is nice if it satisfies the following condition for
every thin node t ∈ V(T) : NG(Yt) ∩ (

⋃
b is a sibling of t Yb) = � . The intuition behind

a

d

b c

e

f

g

d(2, 0)

a(3, 3)

bc(3, 3)

e

(1, 2)

f

(1, 2)

g

(1, 1)

Fig. 1   A graph G and a width-3 tree-cut decomposition of G, including the torso-size (left value) and
adhesion (right value) of each node

733

1 3

Algorithmica (2021) 83:726–752	

nice tree-cut decompositions is that we restrict the neighborhood of thin nodes in
a way which facilitates dynamic programming.

Lemma 1  [11] There exists a cubic-time algorithm which transforms any rooted
tree-cut decomposition (T ,X) of G into a nice tree-cut decomposition of the same
graph, without increasing its width or number of nodes.

For a node t in a nice tree-cut decomposition, we let Bt = { b is a child of t |
���(b) ≤ 2 ∧ NG(Yb) ⊆ Xt } denote the set of thin children of t whose neighborhood
is a subset of Xt , and we let At = { a is a child of t | a ∉ Bt } be the set of all other
children of t. The following property of nice tree-cut decompositions will be crucial
for our algorithm; among others, it implies that only a bounded number of children
of t contain neighbors of vertices that do not lie in Xt.

Lemma 2  [11] Let t be a node in a nice tree-cut decomposition of width k. Then
|At| ≤ 2k + 1.

We refer to previous work [11, 18, 20, 25] for a more detailed comparison of
tree-cut width to other parameters. Here, we mention only that tree-cut width lies
“between” treewidth and treewidth plus maximum degree.

Lemma 3  [11, 20, 25] Let ��(G) denote the treewidth of G and �����(G)
denote the maximum over ��(G) and the maximum degree of a vertex in G. Then
��(G) ≤ 2���(G)2 + 3���(G) , and ���(G) ≤ 4�����(G)2.

In this context, we can view tree-cut width as a parameter which serves as a “mid-
dle ground” for solving EDP. On one hand, EDP remains NP-hard even on graphs of
bounded treewidth. On the other hand, parameterizing EDP by ����� yields a fixed-
parameter algorithm, but this is only useful on graphs of small maximum degree,
where it simply collapses to solving VDP parameterized by treewidth. In this paper,
we show that tree-cut width allows for a non-trivial XP (but not a fixed-parameter)
algorithm for EDP. We also remark that Lemma 3 immediately implies that VDP is
FPT parameterized by tree-cut width.

3 � The Simple Edge‑Disjoint Paths Problem

Before we start working towards our algorithm for solving EDP parameterized by
tree-cut width, we will first deal with a simpler (but crucial) setting for the problem.
We call this the Simple Edge-Disjoint Paths problem (Simple EDP) and define it
below.

734	 Algorithmica (2021) 83:726–752

1 3

Simple EDP
Input: An EDP instance (G, P) such that V(G) = A ∪ B where B is an independent

set containing vertices of degree at most 2.
Parameter: k = |A|
Question: Is (G, P) a YES-instance of EDP?

 Notice that every instance of Simple EDP has tree-cut width at most k, and so it
forms a special case of EDP parameterized by tree-cut width. Indeed, the tree-cut
decomposition where T is a star, the center bag contains A, and each leaf bag con-
tains a vertex from B (except for the root r, where Xr = � ), has tree-cut width at
most k. This contrasts to the setting where G has a vertex cover of size 3 and all ver-
tices outside the vertex cover have degree 3; the tree-cut width of such graphs is not
bounded by any constant, and EDP is known to be NP-complete in this setting [9].

The main reason we introduce and focus on Simple EDP is that it captures the
combinatorial problem that needs to be solved in the dynamic step of the algorithm
for EDP parameterized by tree-cut width. Hence, our first task here will be to solve
Simple EDP by an algorithm that can later be called as a subroutine.

Lemma 4  Simple EDP can be solved in time O((�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠
+1

(k + 1)!).

Proof  We will start by simplifying the instance using some simple observations. First
we will show that we can remove all vertices in B that are not contained in any termi-
nal pair by adding multi-edges to G[A]. Namely, let v be a vertex in B that does not
appear in any terminal pair in P. If v has no neighbors or at most one neighbor, then v
can simply be removed from G, and if v has degree two, then we can remove v and add
an edge between its two neighbors in A. Hence in the following we will assume that all
vertices in B occur in at least one terminal pair and that G[A] can contain multi-edges.

Let the terminal graph of G, denoted GT , be the graph with vertex set V and edge
set P. The following two observations will be crucial for our algorithm:

O1	Consider a path Q connecting a terminal pair p ∈ P in a solution. Because B is
an independent set and every vertex in B has degree at most two and is contained
in at least one terminal pair in P, we obtain that all inner vertices of Q are from
A. Hence, Q contains at most k + 2 vertices and all inner vertices of Q are con-
tained in A. It follows that Q is completely characterized by the sequence of

vertices it uses in A. Consequently, there are at most
∑k

�=1

�
k

�

�
�! ≤ (k + 1)!

different types of paths that need to be considered for the connection of any ter-
minal pair.

O2	GT [B] is a disjoint union of paths and cycles. This is because every vertex v of G
can be contained in at most |NG(v)| terminal pairs in P (otherwise we immediately
reject) and all vertices in B have degree at most two.

735

1 3

Algorithmica (2021) 83:726–752	

Let u and v be two distinct vertices in A. Because |A| ≤ k , we can enumerate all pos-
sible paths between u and v in G[A] in time O((k + 1)!) . We will represent each such
path H as a binary vector EH , whose entries are indexed by all sets of two distinct
vertices in A, such that EH[e] = 1 if H uses the edge e and EH[e] = 0 otherwise.
Moreover, we will denote by Eu,v the set {EH | H is a path between u and v inG[A] } ;
intuitively, Eu,v captures all possible sets of edges that can be used in order to connect
u to v.

Let S be a solution for (G, P). The algorithm represents every solution S for
(G, P) as a solution vector ES of natural numbers whose entries are indexed by all
sets {u, v} of two distinct vertices in A. More specifically, for two distinct vertices u
and v in A, ES[{u, v}] is equal to the number of edges between u and v used by the
paths in S. The algorithm uses dynamic programming to compute the set L of all
solution vectors; clearly, L ≠ ∅ if and only if (G, P) is a YES-instance. We compute
L in two main steps:

	(S1)	 the algorithm computes the set LA of all solution vectors for the sub-instance
(G[A],P�) of (G, P), where P′ is the subset of P containing all terminal pairs
{p, q} with p, q ∈ A.

	(S2)	 the algorithm computes the set of all solution vectors for the sub-instance
(G,P⧵P�) . Note that every terminal pair p in P⧵P′ is either completely contained
in B, in which case it forms an edge of a path or a cycle in GT [B] , or p has one
vertex in A and the other vertex in B, which is the endpoint of a path in GT [B] .
The algorithm now computes the set of all solution vectors for the sub-instance
(G,P⧵P�) in two steps:

	 (S2A)	 For every cycle C in GT [B] , the algorithm computes the set LC of all solu-
tion vectors for the sub-instance (G[A ∪ V(C)],PC

2
) , where PC

2
 is the set of

all terminal pairs in P with both terminals in C.
	 (S2B)	 For every path H in GT [B] , the algorithm computes the set LH of all solu-

tion vectors for the sub-instance (G[A ∪ V(H)],PH
1
) , where PH

1
 is the set

of all terminal pairs in P with at least one endpoint in H.

In the end, the set of all hypothetical solution vectors L′ for (G, P) is obtained as
LA ⊕ (⊕CisacycleofGT [B]LC)⊕ (⊕HisapathofGT [B]LH) , where P⊕ P

′ for two sets P and
P
′ of solution vectors is equal to {R + R� | R ∈ P ∧ R� ∈ P

� } . Each vector in L′
describes one possible set of multi-edges in G[A] that can be used to connect all ter-
minal pairs in P. In order to compute L , one simply needs to remove all vectors from
L
′ which require more multi-edges than are available in G[A]; in particular, to obtain

L we delete each vector ES from L′ such that there exist u, v ∈ A where ES[{u, v}]
exceeds the number of multi-edges between u and v in G. The algorithm then returns
YES if L is non-empty and otherwise the algorithm returns NO. Note that, as is usu-
ally the case with these types of dynamic programming algorithms, the algorithm can
also be easily modified to find a solution for (G, P), without increasing its running
time.

736	 Algorithmica (2021) 83:726–752

1 3

The set LA described in step (S1) is computed as follows. Given an arbitrary but
fixed ordering p1,… , p|P�| of the terminal pairs in P′ , let Pi be the set { pj | 1 ≤ j ≤ i } ,
for every i with 1 ≤ i ≤ |P′| . The algorithm now uses dynamic programming to com-
pute the sets S1,… , S|P�| , where Si contains the set of all hypothetical solution vec-
tors for the instance (G[A],Pi) as follows. The algorithm starts by setting T1 to be the
set Ep1

 . Then for every i with 1 < i ≤ |P′| , the algorithm computes Ti from Ti−1 as the
set {E + E� | E ∈ Ti−1 ∧ E� ∈ Epi

},

The set LC described in step (S2A) for a cycle C = (v1,… , vn) of GT [B] is com-
puted as follows. Note that every vertex in C has exactly two neighbors in A (and
also in G). For a neighbor n of vi , we denote by n̄ the other neighbor of vi in G, i.e.,
n̄ is the unique neighbor in NG(vi)⧵{n} . For every i with 2 ≤ i ≤ n , we denote by Pi
the set { {vj, vj+1} | 1 ≤ j < i } of terminal pairs. The algorithm starts by comput-
ing a table Ti for every i with 2 ≤ i ≤ n . Informally, for every neighbor n1 of v1 and
every neighbor ni of vi in G, the table Ti contains all hypothetical solution vectors
for the instance induced on A and the vertices v1,… , vi that use n1 to connect the
terminal pair {v1, v2} and ni to connect the terminal pair {vi−1, vi} . More formally,
for every n1 ∈ NG(v1) and ni ∈ NG(vi) the table Ti contains the set of all solution
vectors for the instance (G[A ∪ {v1,… , vi}] − {v1n̄1, vin̄i},Pi).

The tables T2,… , Tn are iteratively computed starting with T2 as follows. For
every n1 ∈ NG(v1) and n2 ∈ NG(v2) , T2[n1, n2] is equal to En1,n2

 . Moreover, for
every i with 3 ≤ i ≤ n , the table Ti is obtained from the table Ti−1 as follows. For
every n1 ∈ NG(v1) and ni ∈ NG(vi) , Ti[n1, ni] is equal to the union of the following
two sets:

•	 {E + E� | E ∈ Ti−1[n1, ni−1] ∧ E� ∈ En̄i−1,ni
} and

•	 {E + E� | E ∈ Ti−1[n1, n̄i−1] ∧ E� ∈ Eni−1,ni
}

where {ni−1, n̄i−1} = NG(vi−1) . Finally, the set of all hypothetical solution vec-
tors for the instance (G[A ∪ C],PC

2
) is obtained from the table Tn as the union of

the sets {E + E� | E ∈ Tn[n1, nn] ∧ E� ∈ En̄n,n̄1
} for every n1 ∈ NG(v1) and every

nn ∈ NG(vn).

The set LH described in step (S2B) for a path H = (v1,… , vn) of GT [B] is com-
puted as follows. Note first that every inner vertex of H has exactly two neighbors
in A and the two endpoints v1 and vn of H have either one or two neighbors in A.
We will compute LH with the help of the table Tn computed for the step (S2A)
above. First note that if both endpoints v1 and vn of H have only one neighbor in
A, then LH is equal to Tn[n1, nn] , where n1 and nn are the unique neighbors of v1
and vn , respectively, in G. Moreover, if both endpoints occur only in one terminal
pair (but could have up to two neighbors in G), then LH is equal to the union of
the sets Tn[n1, nn] for every neighbor n1 ∈ NG(v1) and every neighbor nn ∈ NG(vn) .
Now consider the case that both endpoints v1 and vn occur in exactly two ter-
minal pairs; the case that only one of them occurs in two terminal pairs is then
analogously. Then v1 occurs in the terminal pair {v1, v2} and in the terminal pair

737

1 3

Algorithmica (2021) 83:726–752	

{v1, a1} for some a1 ∈ A and similarily vn occurs in the terminal pair {vn−1, vn}
and in the terminal pair {vn, an} for some an ∈ A . In this case, LH is equal to the
union of the sets {E + E� + E�� | E ∈ En̄1,a1

∧ E� ∈ Tn[n1, nn] ∧ E�� ∈ En̄n,an
} for

every n1 ∈ NG(v1) and every nn ∈ NG(vn) . All other remaining cases can be han-
dled analogously.

This completes the description of the algorithm. To verify correctness, one can
observe that each solution vector computed by the algorithm can be traced back to
a specific choice of edges (a path) that connects each terminal pair in P, and since
there are sufficient multi-edges in G[A] to accommodate all the resulting paths, this
guarantees the existence of a solution. On the other hand, if a solution exists then it
surely has a solution vector, and moreover the algorithm will discover this solution
vector by choosing, for each {a, b} ∈ P , the entry in EH which corresponds to the a-
b path used in the solution.

Finally, we establish the running time bound. Note first that every set of solu-

tion vectors computed at any point in the algorithm contains at most (�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠
elements. Moreover, as argued in (O1) the set Eu,v for two distinct vertices u and
v in A can be computed in time O((k + 1)!) and contains at most (k + 1)! ele-

ments. From this it follows that the time required to compute LA in (S1) is at

most O((�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠(k + 1)!�P��) . Similarly, the time required to compute LC

for a cycle C in GT [B] in step (S2A) is at most O((�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠(k + 1)!�PC
2
�) and

the time required to compute LH for a path H in GT [B] in step (S2B) is at most

O((�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠(k + 1)!�PH
1
�) . Hence the time required to compute LA together

with all the sets LC and LH for every cycle C and path H of GT [B] is at most

O((�P� + 1)

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠(k + 1)!�P�) . Finally, combining these sets into L′ does not incur

an additional run-time overhead since L′ can be computed iteratively as part of the
computation of the sets LA , LC , and LH.� □

Notice that Lemma 4 does not provide a fixed-parameter algorithm for Sim-
ple EDP. Our second task for this section will be to rule out the existence of such

738	 Algorithmica (2021) 83:726–752

1 3

algorithms (hence also ruling out the fixed-parameter tractability of EDP parameter-
ized by tree-cut width).

Before we proceed, we would like note that this outcome was highly surprising
for the authors. Indeed, not only does this “break” the parallel between {VDP, tree-
width} and {EDP, tree-cut width}, but inspecting the dynamic programming algo-
rithm for EDP parameterized by tree-cut width presented in Sect. 4 reveals that solv-
ing Simple EDP is the only step which requires more than “FPT-time”. In particular,
if Simple EDP were FPT, then EDP parameterized by tree-cut width would also be
FPT. This situation contrasts the vast majority of dynamic programming algorithms
for parameters such as treewidth and clique-width [3], where the complexity bottle-
neck is usually tied to the size of the records used and not to the computation of the
dynamic step.

Our lower-bound result is based on a fpt-reduction from the following problem:

Multidimensional Subset Sum (MSS)
Input: An integer k, a set S = {s1,… , s

n
} of item-vectors with

s
i
∈ ℕ

k for every i with 1 ≤ i ≤ n , a target vector t ∈ ℕ
k ,

and an integer �.
Parameter: k
Question: Is there a subset S′ ⊆ S with |S′| ≥ � such that

∑
s∈S� s ≤ t?

 The W[1]-hardness of MSS can be obtained by a trivial reduction from the follow-
ing problem, which was recently shown to be W[1]-hard by Ganian, Ordyniak and
Ramanujan [13]:

Multidimensional Relaxed Subset Sum (MRSS)
Input: An integer k, a set S = {s1,… , s

n
} of item-vectors with

s
i
∈ ℕ

k for every i with 1 ≤ i ≤ n , a target vector t ∈ ℕ
k ,

and an integer �.
Parameter: k
Question: Is there a subset S′ ⊆ S with |S′| ≤ � such that

∑
s∈S� s ≥ t?

 Indeed, given an instance (k, S, t,�) of MRSS, it is straightforward to verify that
(k, S, (

∑
s∈S s) − t, �S� − �) is an equivalent instance of MSS; since the reduction

preserves the parameter, this shows that MSS is also W[1]-hard.

Lemma 5  Simple EDP is W[1]-hard.

Proof  We provide a fpt-reduction from MSS. Namely, given an instance (k, S, t,�)
of MSS, we will construct an equivalent instance (G, P) with partition A and B and
|A| = k + 3 of Simple EDP. For convenience and w.l.o.g. we will assume that all
entries of the vectors in S as well as all entries of the target vector t are divisible
by two; furthermore, we will describe the constructed instance of Simple EDP with
multi-edges between vertices in A (note that these can be replaced by degree-2 verti-
ces in B, similarly as in Lemma 4).

739

1 3

Algorithmica (2021) 83:726–752	

The graph G[A] has vertices a, b, d, and d1,… , dk and the following multi-edges:

•	 |S| − � edges between a and b,
•	 for every i with 1 ≤ i ≤ k , t[i] edges between d and di.

Moreover, for every s ∈ S we construct a gadget G(s) consisting of:

•	 the vertices vs, vs
1
, us

1
,… , vs

s̄
, us

s̄
 with s̄ =

∑k

i=1
s[i],

•	 two edges vsa and vsd,
•	 for every i with 1 ≤ i ≤ s̄ , two edges vs

i
b and us

i
b,

•	 for every i with 1 ≤ i ≤ s̄ and i even, two edges vs
i
d and us

i
d,

•	 for every j with 1 ≤ j ≤ k and every i with
∑j−1

l=1
s[l] < i ≤

∑j

l=1
s[l] and i odd,

two edges vs
i
dj and us

i
dj,

a

b

vs

vs1

us
1

vs2

us
2

vs3

us
3

vs4

us
4

d1

d2

d

|S| −
t[1]

t[2]

a

b

vs

vs1

us
1

vs2

us
2

vs3

us
3

vs4

us
4

d1

d2

d

|S| −
t[1]

t[2]

Fig. 2   An illustration of the graph G[A] together with the gadget G(s) for k = 2 , s[1] = 2 , and s[2] = 2 .
Bold edges indicate multi-edges with multiplicities given as an edge label. The left side illustrates con-
figuration (C1) and the right side illustrates configuration (C2) as defined in Claim 1; here the non-black
edges indicate the edges used by a solution that uses the corresponding configuration to connect the ter-
minal pairs of G(s). In particular, on the left side illustrating the case (C1), we have that: the green edges
connect the terminal pair {vs, vs

1
} , the yellow edges connect the terminal pairs {us

i
, vs

i+1
} , the blue edges

connect the terminal pairs {vs
i
, us

i
} for i even, and the red edges connect the terminal pairs {vs

i
, us

i
} for i

odd. Moreover, on the right side illustrating the case (C2), we have that: the green edges connect the
terminal pair {vs, vs

1
} , the yellow edges connect the terminal pairs {us

i
, vs

i
} , the blue edges connect the

terminal pairs {us
i
, vs

i+1
} for i odd, and the red edges connect the terminal pairs {us

i
, vs

i+1
} for i even (Color

figure online)

740	 Algorithmica (2021) 83:726–752

1 3

•	 the terminal pair {vs, vs
1
},

•	 for every i with 1 ≤ i ≤ s̄ , a terminal pair {vs
i
, us

i
},

•	 for every i with 1 ≤ i < s̄ , a terminal pair {us
i
, vs

i+1
},

Then G consists of the graph G[A] together with the vertices and edges of the
gadget G(s) for every s ∈ S ; note that B is the union of V(G(s)) over every s ∈ S .
Moreover, P consists of all terminal pairs of the gadgets G(s) for every s ∈ S . This
completes the construction of the instance (G, P); an illustration is provided in
Fig. 2. It remains to show that the instance (k, S, t,�) of MSS has a solution if and
only if so does the instance (G, P) of EDP.

We start by showing that there are only two ways to connect all terminal pairs
of the gadget G(s) for every s ∈ S . Figure 2 illustrates the edges used by the two
configurations.

Claim 1  Let S be a solution for (G, P), and s ∈ S . Then either:

	(C1)	The terminal pair {vs, vs
1
} is connected by the path (vs, a, b, vs

1
) and:

•	 for every i with 1 ≤ i < s̄ , the terminal pair {us
i
, vs

i+1
} is connected by the

path (us
i
, b, vs

i+1
),

•	 for every i with 1 ≤ i ≤ s̄ and i even, the terminal pair {vs
i
, us

i
} is connected

by the path (vs
i
, d, us

i
) , and

•	 for every i with 1 ≤ i ≤ s̄ and i odd, the terminal pair {vs
i
, us

i
} is connected

by the path (vs
i
, dj, u

s
i
) , where j is such that

∑j−1

l=1
s[l] < i ≤

∑j

l=1
s[l].

	(C2)	The terminal pair {vs, vs
1
} is connected by the path (vs, d, dj, vs1) , where j is the

minimum integer such that s[j] ≠ 0 and:

•	 for every i with 1 ≤ i ≤ s̄ , the terminal pair {vs
i
, us

i
} is connected by the

path (vs
i
, b, us

i
),

•	 for every i with 1 ≤ i < s̄ and i is odd, the terminal pair {us
i
, vs

i+1
}

is connected by the path (us
i
, dj, d, v

s
i+1

) , where j is such that ∑j−1

l=1
s[l] < i ≤

∑j

l=1
s[l],

•	 for every i with 1 ≤ i < s̄ and i is even, the terminal pair {us
i
, vs

i+1
}

is connected by the path (us
i
, d, dj, v

s
i+1

) , where j is such that ∑j−1

l=1
s[l] < i ≤

∑j

l=1
s[l].

Proof  Let S be a solution for (G, P) and s ∈ G(s) . Then S has to connect the termi-
nal pair {vs, vs

1
} either by the path (vs, a, b, vs

1
) or by the path (vs, d, dj, vs1).

In the former case, the only way to connect the terminal pair {vs
1
, us

1
} is the path

(vs
1
, dj, u

s
1
) , where j is such that

∑j−1

l=1
s[l] < 1 ≤

∑j

l=1
s[l] . But then the terminal pair

{us
1
, vs

2
} can only be connected by the path (us

1
, b, vs

2
) and in turn the terminal pair

{vs
2
, us

2
} can only be connected by the path (vs

2
, d, us

2
) . Since this pattern continues in

this manner, this concludes the argument for the first case.
In the later case, the only way to connect the terminal pair {vs

1
, us

1
} is the path

(vs
1
, b, us

1
) . But then the terminal pair {us

1
, vs

2
} can only be connected by the path

(us
1
, dj, d, v

s
2
) , where j is such that

∑j−1

l=1
s[l] < 1 ≤

∑j

l=1
s[l] , and in turn the terminal

741

1 3

Algorithmica (2021) 83:726–752	

pair {vs
2
, us

2
} can only be connected by the path (vs

2
, b, us

2
) . Finally, the terminal pair

{us
2
, vs

3
} can then only be connected by the path (us

2
, d, dj, v

s
3
) , where j is such that ∑j−1

l=1
s[l] < 1 ≤

∑j

l=1
s[l] . Since this pattern continues in this manner, this concludes

the argument for the second case.� □

Let S be a solution for (G, P) and s ∈ S . It follows from Claim 1 that if S
connects the terminal pairs of G(s) according to (C1), then the only edge used
from G[A] is the edge ab. On the other hand, if S connects the terminal pairs in
G(s) according to (C2), then S uses s[i] edges between d and dj for every i with
1 ≤ i ≤ k.

Towards showing the forward direction, let S′ ⊆ S be a solution for (k, S, t,�) .
W.l.o.g. we can assume that |S�| = � . We claim that the set of edge-disjoint paths
S , which if s ∈ S� connects all terminal pairs in G(s) according to (C2) and if
s ∈ S⧵S� connects all terminal pairs in G(s) according to (C1) is a solution for
(G, P). This holds because there are |S| − � edges between a and b, which are
sufficient for the elements in S⧵S′ to be connected according to (C1). Moreover,
because

∑
s∈S� s ≤ t , the t[i] edges between d and di for every i with 1 ≤ i ≤ k ,

suffice for the elements in S′ to be connected according to (C2).
For the reverse direction, let S be a solution for (G, P).
We claim that the subset S′ of S containing all s ∈ S such that S connects all

terminal pairs in G(s) according to C2 is a solution for (k, S, t,�) . Because there
are at most |S| − � edges between a and b in G[A], we obtain that |S′| ≥ � . More-
over, because there are at most t[i] edges between d and di in G[A], it follows
that

∑
s∈S� s ≤ t . Consequently, S′ is a solution for (k, S, t,�).� □

4 � An Algorithm for EDP on Graphs of Bounded Tree‑Cut Width

The goal of this section is to provide an XP algorithm for EDP parameterized by
tree-cut-width. The core of the algorithm is a dynamic programming procedure
which runs on a nice tree-cut decomposition (T ,X) of the input graph G.

Yt

a c

b d

Yt

a

b

e

s

Yt

a c

b d

b d

Fig. 3   Illustration of the construction of (Gt,�,Pt,�) from (G
t
,P

G
t

2
) and � . Green vertices and edges rep-

resent new elements that are added to (Gt,�,Pt,�) and dashed edges represent terminal-pairs. The left,
middle, and right picture corresponds to the steps 2, 3, and 4 in the algorithm for constructing (Gt,�,Pt,�) ,
respectively (Color figure online)

742	 Algorithmica (2021) 83:726–752

1 3

4.1 � Overview

Our first aim is to define the data table the algorithm is going to dynamically com-
pute for individual nodes of the tree-cut decomposition; to this end, we introduce two
additional notions. For a node t, we say that Yt (or Gt ) contains an unmatched termi-
nal s if {s, e} ∈ P , s ∈ Yt and e ∉ Yt ; let Ut be the multiset containing all unmatched
terminals in Yt (one entry in Ut per tuple in P which contains an unmatched termi-
nal). For a subgraph H of G, let PH

2
⊆ P denote the subset of terminal pairs whose

both endpoints lie in H.
Let a record for node t be a tuple (�, I,F, L) where:

•	 � is a partitioning of Et into four subsets: an even-sized set I′ (internal), a set L′
(leaving), an even-sized set F′ (foreign) and a set (U�) (unused);

•	 I is a set of subsets of size 2 of I′ that is a perfect matching between the edges in
I′;

•	 F is a set of subsets of size 2 of F′ that is a perfect matching between the edges in
F′;

•	 L is a perfect matching between Ut and the edges in L′.

Intuitively, a record captures all the information we need about one possible inter-
action between a solution to EDP and the edges in Et . In particular, unmatched ter-
minals need to cross between Yt and G − Yt using an edge in Et and L captures the
first edge used by a path from an unmatched terminal in the solution while L′ is the
set of all edges in Et that are used for this purpose. I and F then capture information
about paths which intersect with Et but whose terminals both lie in Yt and G − Yt ,
respectively,1 and the sets I′ and F′ contain all edges used for these two purposes.
Finally, the set U′ simply contains edges which are not used by a given solution. We
formalize this intuitive description below through the notion of a valid record.

Let � = (�, I,F, L) be a record for t. Then, the instance (Gt,�,Pt,�) is obtained from
(Gt,P

Gt

2
) and � by the following algorithm (see Fig. 3 for an illustration):

1.	 initialize Gt,� to Gt and Pt,� to PGt

2
,

2.	 For each {{a, b}, {c, d}} ∈ I where a, c ∈ Yt , add a new vertex into Gt,� and con-
nect it to a and c by edges (note that if a = c then this simply creates a new leaf
and hence this operation can be ignored).

3.	 For each {s, {a, b}} ∈ L where a ∈ Yt , add a new tuple {s, e�} into Pt,� and a new
leaf e′ into Gt,� adjacent to a.

4.	 For each {{a, b}, {c, d}} ∈ F where a, c ∈ Yt , add two new leaves b′, d′ into Gt,� ,
make them adjacent to a and c respectively, and add {b�, d�} into Pt,�.

1  For technical reasons, F will also store information about paths with unmatched terminals which use
multiple edges in E

t
—see Definition 4 later.

743

1 3

Algorithmica (2021) 83:726–752	

Definition 3  A record � = (�, I,F, L) is valid for t if (Gt,�,Pt,�) is a YES-instance of
EDP.

We are now ready to define our data tables: for a node t ∈ V(T) , let D(t) be the set
of all valid records for t. We now make two observations. First, for any node t in a
nice tree-cut decomposition of width k, it holds that there exist at most 4k ⋅ k! distinct
records and hence |D(t)| ≤ 4k ⋅ k! ; indeed, there are 4k possible choices for � , and for
each such choice and each edge e in Et one has at most k options of what to match
with e. Second, if r is the root of T, then either D(r) = � or D(r) = {(�, �, �, �)} ; fur-
thermore, (G, P) is a YES-instance if and only if the latter holds. Hence it suffices to
compute D(r) in order to solve EDP.

The next lemma shows that D(t) can be computed efficiently for all leaves of t.

Lemma 6  Given (G, P), a width-k tree-cut decomposition (T ,X) of G and a leaf
t ∈ V(T) as the input, it is possible to compute D(t) in time kO(k2).

Proof  We proceed as follows. For each record � for t, we construct the instance
(Gt,�,Pt,�) as per Definition 3 and check whether (Gt,�,Pt,�) is a YES-instance of
EDP. Since V(Gt,�) ≤ 2k , a simple brute-force algorithm will suffice here. For
instance, one can enumerate all partitions of the at most 4k2 edges in Gt,� , and for
each such partition one can check whether this represents a set of edge-disjoint paths
which forms a solution to (Gt,�,Pt,�) . If (Gt,�,Pt,�) is a YES-instance of EDP then we
add � into D(t), and otherwise we do not.

The number of partitions of a set of size 4k2 is upper-bounded by kO(k2) [1], and
|D(t)| ≤ 4k ⋅ k! . Hence the runtime of the whole algorithm described above is domi-
nated by kO(k2).� □

At this point, all that is left to obtain a dynamic leaves-to-root algorithm which
solves EDP is the dynamic step, i.e., computing the data table for a node t ∈ V(t)
from the data tables of its children. Unfortunately, that is where all the difficulty
of the problem lies, and our first step towards handling this task will be the intro-
duction of two additional notions related to records. The first is correspondence,
which allows us to associate each solution to (G, P) with a specific record for t;
on an intuitive level, a solution corresponds to a particular record if that record
precisely captures the “behavior” of that solution on Et . Correspondence will,
among others, later be used to establish the correctness of our algorithm.

Definition 4  A solution S to (G, P) corresponds to a record � = (�, I,F, L) for t if
the conditions 1.-4. stated below hold for every a-b path Q ∈ S such that Q ∩ Et ≠ � .
We let s = |Q ∩ Et| and we denote individual edges in Q ∩ Et by e1, e2,… es , ordered
from the edge nearest to a along Q.

1.	 If a, b ∉ Yt , then for each odd i ∈ [s] , F contains {ei, ei+1}.
2.	 If a, b ∈ Yt , then for each odd i ∈ [s] , I contains {ei, ei+1}.

744	 Algorithmica (2021) 83:726–752

1 3

3.	 If {a, b} ∩ Yt = {a} , then L contains (a, e1) , and for each even i ∈ [s] F contains
{ei, ei+1}.

4.	 There are no elements in I, F, L other than those specified above.

Note that “restricting” the solution S to the instance (Gt,�,Pt,�) used in Defini-
tion 3 yields also a solution to (Gt,�,Pt,�) ; in particular, for each path Q ∈ S that
intersects Et , one replaces the path segments of Q in G⧵Yt by the newly created
vertices to obtain a solution to (Gt,�,Pt,�) . Consequently, if S corresponds to �
then � must be valid (however, it is clearly not true that every valid record has
a solution to the whole instance that corresponds to it). Moreover, since Defini-
tion 4 is constructive and deterministic, for each solution S and node t there exists
precisely one corresponding valid record �.

The second notion that we will need is that of simplification. This is an opera-
tion which takes a valid record � for a node t and replaces Gt by a “small rep-
resentative” so that the resulting graph retains the existence of a solution cor-
responding to � . Simplification can also be seen as being complementary to the
construction of (Gt,�,Pt,�) used in Definition 3 (instead of modeling the implica-
tions of a record on Gt , we model its implications on G − Yt ), and will later form
an integral part of our procedure for computing valid records for nodes.

Definition 5  The simplification of a node t in accordance with � = (�, I,F, L) is an
operation which transforms the instance (G, P) into a new instance (G�,P�) obtained
from (G − Yt,P

G−Yt
2

) and � by the following algorithm (see Fig. 4 for an illustration):

1.	 initialize G′ to G − Yt and P′ to PG−Yt
2

,
2.	 For each {s, {a, b}} ∈ L where (s, e) ∈ P and b ∉ Yt , add a new vertex s′ adjacent

to b to G′ and add (s�, e) to P′.
3.	 For each {{a, b}, {c, d}} ∈ I where a, c ∈ Yt and a ≠ c , add vertices a′ and c′ into

G′ and make them adjacent to b and d respectively, and add (a�, c�) into P′.
4.	 For each {{a, b}, {c, d}} ∈ F where a, c ∈ Yt and b ≠ d , add a new vertex x to G′

and make it adjacent to b and d.

G−Yt

b

a

s

e

G−Yt

b d

a c

a c

G−Yt

b d

a c

x

Fig. 4   Illustration of the simplification of t in accordance with � . Green vertices and edges represent new
elements that are added to (G�,P�) and dashed edges represent terminal-pairs. The left, middle, and right
picture corresponds to the steps 2, 3, and 4 in the algorithm given in Definition 5, respectively (Color
figure online)

745

1 3

Algorithmica (2021) 83:726–752	

With regards to simplification, observe that every vertex added to G − Yt has
degree at most 2 and that simplification can never increase the degree of vertices
in G − Yt.

Observation 1  If there exists a solution to (G, P) which corresponds to a record
� = (�, I,F, L) for t, and if (G�,P�) is the result of simplification of t in accordance
with � , then (G�,P�) admits a solution. On the other hand, if (G�,P�) is the result of
simplification of t in accordance with a valid record � and if (G�,P�) admits a solu-
tion, then (G, P) also admits a solution.

Proof  For the forward direction, consider a solution S to (G, P) which corresponds to
� = (�, I,F, L) . Comparing Definition 4 with Definition 5, we observe the following:

1.	 for each s-e path Q ∈ S such that s, e ∉ Yt and Q ∩ Et ≠ � , it holds that each path
segment of Q in Yt begins and ends with a pair of edges in F and in particular is
replaced by a single vertex in (G�,P�);

2.	 for each s-e path Q ∈ S such that s, e ∈ Yt and Q ∩ Et ≠ � , it holds that each path
segment of Q outside of Yt begins and ends with a pair of edges in I and in par-
ticular is replaced by a pair of new terminals in (G�,P�);

3.	 for each s-e path Q ∈ S such that {s, e} ∩ Yt = {s} , it holds that the path segment
of Q in Yt containing s ends with an edge in L and is replaced by a new terminal
in (G�,P�) , and all other path segments of Q in Yt begin and end with a pair of
edges in F and are hence replaced by single vertices in (G�,P�).

From the above, we observe that S can be transformed into a solution S′ for
(G�,P�) . The backward direction then follows by reversing the above observa-
tions; in particular, given a solution S′ for (G�,P�) , we use the fact that � is valid to
expand S′ into a full solution S to (G, P).� □

4.2 � The Dynamic Step

Let us begin by formalizing our aim for this subsection.

Lemma 7  There is an algorithm which takes as input (G, P) along with a nice
width-k tree-cut decomposition (T ,X) of G and a non-leaf node t ∈ V(T) and D(t�)
for every child t′ of t, runs in time (k|P|)O(k2) , and outputs D(t).

Finally, we introduce two simple reduction rules which will later help us reduce
our problem to Simple EDP. The first ensures that two vertices of degree at most 2
are not adjacent to each other.

Reduction Rule 1  Let (G, P) be an instance of EDP containing an edge ab between
two vertices of degree at most 2.

746	 Algorithmica (2021) 83:726–752

1 3

1.	 If a is not a terminal, then contract ab and replace all occurrences of b in P by
the new vertex;

2.	 If {a, b} ∈ P , then remove {a, b} from P and remove the edge ab from G;
3.	 If {a, b} ∉ P and each of a and b occurs in precisely one element of P, then delete

the edge ab;
4.	 Otherwise, reject (G, P).

Proof of Safeness  The safeness of the first three rules is straightforward. As for the
fourth rule, let us consider the conditions for when it is applied. In particular, the
fourth rule is only called if either a or b occurs in three terminal pairs, or if a occurs
in at least one terminal pair and b in at least two but {a, b} ∉ P . Clearly, (G, P) is a
NO-instance in either of these cases.� □

The second reduction rule will allow us to replace thin nodes with data tables by
small representatives; these representatives will only contain vertices of degree at
most 2 adjacent to the original neighborhood of the thin node. For brevity and as a
slight abuse of notation, we use the symbol ↦ to identify how the first element � in a
record partitions the edges in Et.

Reduction Rule 2  Let t be a thin node in V(T) with non-empty D(t).

1.	 If Et = {{a, b}} where a ∈ Yt and if

•	 (({a, b} ↦ L�), �, �, {s, {a, b}}) ∈ D(t) for some s ∈ Ut , then delete Yt⧵{s}
and create the edge sb;

•	 otherwise, (({a, b} ↦ U�), �, �, �) ∈ D(t) and we delete Yt.

2.	 If Et = {{a, b}, {c, d}} where a, c ∈ Yt , Ut = � and if

•	 (({a, b} ↦ F�, {c, d} ↦ F�), �, {{a, b}, {c, d}}, �) ∈ D(t) , then delete Yt and
create a new vertex v adjacent to b and d; else, if

•	 (({a, b} ↦ U�, {c, d} ↦ U�), �, �, �) ∈ D(t) , then delete Yt;
•	 otherwise, (({a, b} ↦ I�, {c, d} ↦ I�), {{a, b}, {c, d}}, �, �) ∈ D(t) and we

delete Yt⧵{a, c} and add {a, c} into the set P of terminals.

3.	 If Et = {{a, b}, {c, d}} where a, c ∈ Yt , Ut = {s} and if

•	 (({a, b} ↦ L�, {c, d} ↦ U�), �, �, {s, {a, b}}) ∈ D(t) and also
(({c, d} ↦ L�, {a, b} ↦ U�), �, �, {s, {c, d}}) ∈ D(t) , then delete Yt⧵{s} and
make s adjacent to b and d;

•	 otherwise, (({a, b} ↦ L�, {c, d} ↦ U�), �, �, {s, {a, b}}) ∈ D(t) and we delete
Yt⧵{s} and make s adjacent to b.

4.	 If Et = {{a, b}, {c, d}} where a, c ∈ Yt , Ut = {s1, s2} (not necessarily s1 ≠ s2 ) and
if

•	 (({a, b} ↦ L�, {c, d} ↦ L�), �, �, {{s1, {a, b}}, {s2, {c, d}}}) ∈ D(t) and
(({a, b} ↦ L�, {c, d} ↦ L�), �, �, {{s2, {a, b}}, {s1, {c, d}}}) ∈ D(t) , then add

747

1 3

Algorithmica (2021) 83:726–752	

a new vertex s′ adjacent to b and d, replace all occurrences of s1 and s2 in P
by s′ , and delete Yt;

•	 otherwise, (({a, b} ↦ L�, {c, d} ↦ L�), �, �, {{s1, {a, b}}, {s2, {c, d}}}) ∈ D(t)
and we delete Yt⧵{s1, s2} , and make s1 adjacent to b and s2 adjacent to d.

5.	 Otherwise, (G, P) is a NO -instance.

The safeness of Reduction Rule 2 follows directly from the definition of D(t) (one
simply needs to check each case separately) and hence we do not provide an explicit
proof for each case. To provide intuition for Case 5., we note that:

•	 Case 1. captures the only two possible outcomes when |Et| = 1;
•	 Case 2. captures the only admissible outcomes when |Et| = 2 and Ut = � : the two

edges in Et can either be used to connect a terminal pair outside of Gt , or remain
unused, or used to connect a terminal pair inside of Gt;

•	 Case 3. captures the only admissible outcomes when |Et| = 2 and Ut = {s} :
either it is possible to route s to either of the two edges in Et , or only one of these
two edges can be connected to s via an edge-disjoint path;

•	 Case 4. captures the only admissible outcomes when |Et| = 2 and |Ut| = 2 : either
it is possible to route both of the unmatched terminals in Ut to either of the two
edges (in parallel), or parallel routing of both unmatched terminals to Et requires
each terminal to be routed to precisely one fixed edge in Et.

With Lemma 4 and Reduction Rules 1, 2 in hand, we have all we need to handle
the dynamic step. It will be useful to recall the definitions of At and Bt , and that
|At| ≤ 2k + 1.

Proof of Lemma 7  We begin by looping through all of the at most 4k ⋅ k! distinct
records for t; for each such record � , our task is to decide whether it is valid, i.e.,
whether (Gt,�,Pt,�) is a YES-instance. On an intuitive level, our aim will now be to
use branching and simplification in order to reduce the question of checking whether
� is valid to an instance of Simple EDP.

In our first layer of branching, we will select a record from the data tables of each
node in At . Formally, we say that a record-set is a mapping � ∶ t� ∈ At ↦ �t� ∈ D(t�) .
Note that the number of record-sets is upper-bounded by (4k ⋅ k!)2k+1 , and we will
loop over all possible record-sets.

Next, for each record-set � , we will apply simplification to each node t� ∈ At in
accordance with �(t�) , and recall that each vertex v created by this sequence of sim-
plifications has degree at most 2. Next, we exhaustively apply Reduction Rule 1 to
ensure that each such v is only adjacent to (V(G)⧵Yt) ∪ Xt . At this point, every ver-
tex contained in a bag Xt′ for t� ∈ At has degree at most 2 and is only adjacent to
Xt ∪ (V(G)⧵Yt).

Finally, we apply Reduction Rule 2 to replace each thin node by vertices of
degree at most 2 adjacent to Xt . At this point, every vertex in V(Gt,�)⧵Xt is of degree
at most 2 and only adjacent to Xt , and so (Gt,�,Pt,�) is an instance of Simple EDP. All

748	 Algorithmica (2021) 83:726–752

1 3

that is left is to invoke Lemma 4; if it is a YES-instance then we add � to D(t), and
otherwise we do not.

The running time is upper bounded by the branching factor (4k ⋅ k!)2k+1 times
the time to apply our two reduction rules and the time required to solve the
resulting Simple EDP instance. All in all, we obtain a running time of at most
kO(k2)

⋅ |P|O(k2) = (k|P|)O(k2).
We conclude the proof by arguing correctness. Assume � is a valid record. By

Definition 3, this implies that (Gt,�,Pt,�) admits a solution S. For each child t� ∈ At , S
corresponds to some record �S

t′
 for t; consider now the branch in our algorithm which

sets �(t�) = �S
t�
 . Then by Observation 1 it follows that each simplification carried out

by the algorithm preserves the existence of a solution to (Gt,�,Pt,�) . Since both our
reduction rules are safe, the instance of Simple EDP we obtain at the end of this
branch must also be a YES-instance.

On the other hand, assume the algorithm adds a record � into Dt . This means that
the resulting Simple EDP instance was a YES-instance. Then by the safeness of our
reduction rules and by the second part of Observation 1, the instance obtained by
reversing the reduction rules and simplifications was also a YES-instance; in par-
ticular (Gt,�,Pt,�) is a YES-instance and so � is a valid record.� □

We now have all the ingredients we need to prove our main result.

Theorem 2  EDP can be solved in time at most O(n3) + kO(k2)n2 + (k|P|)O(k2)n ,
where k is the tree-cut width of the input graph and n is the number of its vertices.

Proof  We begin by invoking Theorem 1 to compute a tree-cut decomposition of
G of width at most 2k and then converting it into a nice tree-cut decomposition
(this takes time kO(k2)n2 and O(n3) , respectively). Afterwards, we use Lemma 6 to
compute D(t) for each leaf of T, followed by a recursive leaf-to-root application of
Lemma 7. Once we compute D(r) for the root r of T, we output YES if and only if
D(r) = {(�, �, �, �)}.� □

5 � Kernelizing EDP Parameterized by Feedback Edge Set

The goal of this section is to provide a fixed-parameter algorithm for EDP which
exploits the structure of the input graph exclusively. While tree-cut width can-
not be used to obtain such an algorithm, here we show that the feedback edge set
number can. More specifically, we obtain a linear kernel for EDP parameterized
by the feedback edge set number. Our kernel relies on the following two facts:

Fact 1  A minimum feedback edge set of a graph G can be obtained by deleting the
edges of minimum spanning trees of all connected components of G, and hence can
be computed in time O(|E(G)| + |V(G)|).

749

1 3

Algorithmica (2021) 83:726–752	

Fact 2  [14] EDP can be solved in polynomial time when G is a forest.

Consider an instance (G, P) of EDP and let X ⊆ E(G) be a minimum feedback
edge set X. Let Y be the set of all vertices incident to at least one edge from X. For
the purposes of this section, it will be useful to view P as a multiset rather than
a set. We begin with two simple reduction rules which allow us to remove some
degree 2 vertices and all leaves disjoint from Y.

Reduction Rule 3  Let v, a, b ∈ V(G) be such that NG(v) = {a, b} , v ∉ Y and
ab ∉ E(G) . If v does not occur in any terminal pair in P, then delete v and add the
edge ab into E(G).

Proof of Safeness  Observe that every solution to the original instance which uses an
edge incident to v must contain a path which traverses through both av and vb, and
after the reduction rule is applied one can simply replace these two edges in that
path by ab. Any solution in the reduced instance can be similarly transformed into a
solution to the original instance. Moreover, X clearly remains a feedback edge set in
the reduced instance.� □

Reduction Rule 4  Let v ∈ V(G) be such that NG(v) = {w} . Then:

1.	 if v occurs in no terminal pair in P, delete v from G;
2.	 if v occurs in precisely one terminal pair {v,w} in P, delete v from G and delete

{v,w} from P;
3.	 if v occurs in precisely one terminal pair {v, y} in P where y ≠ w , delete v from G

and replace {v, y} in P by {w, y};
4.	 if v occurs in at least two terminal pairs in P, reject (G, P).

Proof of Safeness  In the first case, it is easy to see that no path in the solution can
contain v. For the second and third case, safeness follows by the fact that every path
connecting v to its assigned terminal pair must use the edge vw and no other path
can use vw. For the last case, simply observe that a leaf cannot appear in more than
one edge-disjoint path.� □

Observe that the exhaustive application of Reduction Rules 3 and 4 results in an
instance (H, L) where every leaf lies in Y. Moreover, every vertex of degree 2 must
lie in at least one terminal pair, or lie in Y, or be adjacent to a vertex in Y (since
Reduction Rule 3 does not apply to a C3 ). We now introduce a new rule and lemma
which will help us deal with the potentially large number of vertices of degree 2 that
occur in terminal pairs.

Reduction Rule 5  Let vw ∈ E(H) be such that {v,w} ∈ L . Then remove vw from
E(H) (and also from X, if it was in X), and remove {v,w} from L.

750	 Algorithmica (2021) 83:726–752

1 3

Proof of Safeness  If the solution connects the terminal pair {v,w} via the edge vw,
the solution is preserved even after applying the rule. If the solution connects the
pair using a different path, we can obtain an equivalent solution by instead connect-
ing v to w via the edge vw and—if this edge was used to connect a different terminal
pair—using the old v-w path as a replacement for that edge. Finally, if the reduced
instance admits a solution, it is easy to see that the graph also had a solution before
the application of the rule to delete vw and {v,w}.� □

We can now prove the following for the instance (H�, L�) obtained from (H, L) by
exhaustively applying Reduction Rule 5.

Lemma 8  Let a, b, c ∈ V(H�)⧵Y be three degree-2 vertices in H′ such that
N(b) = {a, c} . Then (H�, L�) is a NO-instance.

Proof  By the exhaustive application of Reduction Rule 3, the vertex b must occur in
at least one terminal pair. Moreover, since we have also exhaustively applied Reduc-
tion Rule 5, this terminal pair can be neither {b, a} nor {b, c} . And since both a and
c have degree 2, each of these must also occur in some terminal pair, say {a, a�} and
{c, c�}.

Now, to reach a contradiction let us consider a hypothetical solution S for (H�, L�) .
Clearly S must contain an a-a′ path, and this path cannot start with the edge ab
(since then it would have to continue with bc, preventing b from using any edge to
reach its own terminal pair). By symmetry, S must also contain a c-c′ path which
does not start with the edge cb. But now the only two vertices reachable by an edge-
disjoint path from b are a and c, and we have argued that b has a terminal pair with
a vertex different from a and c. Hence, we have reached a contradiction to the exist-
ence of S.� □

At this point, we can prove that we have a linear kernel, as desired.

Theorem 3  EDP admits a linear kernel parameterized by the feedback edge set
number of the input graph.

Proof  Let us consider the graph (H�, L�) obtained by the exhaustive application of
Reduction Rules 3–5. Since we have already established the safeness of these rules,
it suffices to argue that the instance has size linear in |Y|. We now check if Lemma 8
applies—if yes then we reject, and otherwise we proceed knowing that G contains
no path of 3 consecutive degree-2 vertices disjoint from Y.

Let us now consider the number of vertices in H′ , which is the same as the num-
ber of vertices in the graph Q = H� − X . By the exhaustive application of Reduction
Rule 4, every leaf in Q lies in Y and hence in particular Q contains at most |Y| leaves.
Consequently, the number of vertices of degree at least 3 is also upper-bounded by
|Y|. It remains to bound the number of vertices of degree precisely 2 in Q.

To this end, let Z be the union of Y with the set of all vertices of degree at least
3, and recall that |Z| ≤ 2|Y| . By the exhaustive application of Reduction Rule 3 and

751

1 3

Algorithmica (2021) 83:726–752	

our use of Lemma 8, every vertex of degree 2 in Q must be a neighbor of at least one
vertex in Z. The number of such vertices is upper-bounded by 2 times the number of
edges of a tree with at most |Z| vertices, i.e., at most 2 ⋅ (2|Y| − 1) . We conclude that
Q (and hence also H′ ) contains at most 6|Y| vertices. Moreover, Q contains at most
6|Y| edges and hence G contains at most 6|Y| + |X| ≤ 7|Y| edges.

To conclude the proof, it suffices to bound the size of L′ . Here, we simply observe
that a YES-instance cannot contain more terminal pairs than the number of edges
in H′ (since terminal pairs always contain two distinct vertices), and so either
|L′| ≤ 7|Y| or we can correctly reject (H�, L�).� □

Acknowledgements  Robert Ganian acknowledges support from the Austrian Science Fund (FWF, Pro-
ject P31336). The authors wish to thank the anonymous reviewers for their helpful comments.

Funding  Open access funding provided by Austrian Science Fund (FWF).

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

References

	 1.	 Berend, D., Tassa, T.: Improved bounds on bell numbers and on moments of sums of random vari-
ables. Probab. Math. Stat. 30(2), 185–205 (2010)

	 2.	 Chekuri, C., Khanna, S., Shepherd, F.B.: An O(sqrt(n)) approximation and integrality gap for dis-
joint paths and unsplittable flow. Theory Comput. 2(7), 137–146 (2006)

	 3.	 Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of
bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

	 4.	 Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Sau-
rabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

	 5.	 Cygan, M., Fomin, F.V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Sau-
rabh, S.: Parameterized Algorithms. Springer, Berlin (2014)

	 6.	 Diestel, R.: Graph Theory, 4th edn. Springer, Heidelberg (2010)
	 7.	 Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Sci-

ence. Springer, Berlin (2013)
	 8.	 Ene, A., Mnich, M., Pilipczuk, M., Risteski, A.: On routing disjoint paths in bounded treewidth

graphs. In: Proceedings SWAT 2016, vol. 53 of LIPIcs, pp. 15:1–15:15. Schloss Dagstuhl (2016)
	 9.	 Fleszar, K., Mnich, M., Spoerhase, J.: New algorithms for maximum disjoint paths based on tree-

likeness. In: Proceedings ESA 2016, pp. 42:1–42:17 (2016)
	10.	 Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An

EATCS Series, vol. XIV. Springer, Berlin (2006)
	11.	 Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width. In: Proceedings

MFCS 2015, vol. 9235 of LNCS, pp. 348–360. Springer (2015)
	12.	 Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the bounded-degree vertex

deletion problem. In: Proceedings STACS 2018, pp. 33:1–33:14 (2018)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

752	 Algorithmica (2021) 83:726–752

1 3

	13.	 Ganian, R., Ordyniak, S., Sridharan, R.: On structural parameterizations of the edge disjoint paths
problem. In: Proceedings ISAAC 2017, vol. 92 of LIPIcs, pp. 36:1–36:13. Schloss Dagstuhl - Leib-
niz-Zentrum fuer Informatik (2017)

	14.	 Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow
and multicut in trees. Algorithmica 18(1), 3–20 (1997)

	15.	 Giannopoulou, A.C., Pilipczuk, M., Raymond, J.-F., Thilikos, D.M., Wrochna, M.: Linear kernels
for edge deletion problems to immersion-closed graph classes. In: Chatzigiannakis, I., Indyk, P.,
Kuhn, F., Muscholl, A. (eds.) 44th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2017, 10–14 July, 2017, Warsaw, Poland, vol. 80 of LIPIcs, pp. 57:1–57:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

	16.	 Karp, R.M.: On the computational complexity of combinatorial problems. Networks 5(1), 45–68
(1975)

	17.	 Kawarabayashi, K., Kobayashi, Y., Kreutzer, S.: An excluded half-integral grid theorem for digraphs
and the directed disjoint paths problem. In: Proceedings STOC 2014, pp. 70–78. ACM (2014)

	18.	 Kim, E., Oum, S., Paul, C., Sau, I., Thilikos, D.M.: An FPT 2-approximation for tree-cut decompo-
sition. In: Sanità, L., Skutella, M. (eds.) Proceedings WAOA 2015, vol. 9499 of LNCS, pp. 35–46.
Springer (2015)

	19.	 Kolliopoulos, S.G., Stein, C.: Approximating disjoint-path problems using packing integer pro-
grams. Math. Program. 99(1), 63–87 (2004)

	20.	 Marx, D., Wollan, P.: Immersions in highly edge connected graphs. SIAM J. Discrete Math. 28(1),
503–520 (2014)

	21.	 Nishizeki, T., Vygen, J., Zhou, X.: The edge-disjoint paths problem is NP-complete for series–paral-
lel graphs. Discrete Appl. Math. 115(1–3), 177–186 (2001)

	22.	 Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem. J. Combin. Theory
Ser. B 63(1), 65–110 (1995)

	23.	 Robertson, N., Seymour, P.D.: Graph minors. XVIII. tree-decompositions and well-quasi-ordering.
J. Combin. Theory Ser. B 89(1), 77–108 (2003)

	24.	 Scheffler, P.: Practical linear time algorithm for disjoint paths in graphs with bounded tree-width. In:
Technical Report TR 396/1994. FU Berlin, Fachbereich 3 Mathematik (1994)

	25.	 Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Combin. Theory Ser. B 110,
47–66 (2015)

	26.	 Zhou, X., Tamura, S., Nishizeki, T.: Finding edge-disjoint paths in partial k-trees. Algorithmica
26(1), 3–30 (2000)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	The Power of Cut-Based Parameters for Computing Edge-Disjoint Paths
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Parameterized Complexity
	2.2 Edge-Disjoint Path Problem
	2.3 Tree-Cut Width

	3 The Simple Edge-Disjoint Paths Problem
	4 An Algorithm for EDP on Graphs of Bounded Tree-Cut Width
	4.1 Overview
	4.2 The Dynamic Step

	5 Kernelizing EDP Parameterized by Feedback Edge Set
	Acknowledgements
	References

