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Abstract: The state of the art terahertz-frequency quantum cascade lasers have opened a
plethora of applications over the past two decades by testing several designs up to the very limit
of operating temperature, optical power and lasing frequency performance. The temperature
degradation mechanisms have long been under the debate for limiting the operation up to 210 K
in pulsed operation in the GaAs/AlGaAs material system. In this work, we review the existing
designs and exploit two main temperature degradation mechanisms by presenting a design in
which they both prove beneficial to the lasing operation by dual pumping and dual extracting
lasing levels. We have applied the density matrix transport model to select potential candidate
structures by simulating over two million active region designs. We present several designs
which offer better performance than the current record structure.
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distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Quantum cascade lasers (QCLs) have been initially proposed by Kazarinov and Suris in 1971 [1]
as periodic two level resonant tunnelling superlattice structures. The first realization came in
1994 [2] at 4.2 µm which gave rise to multiple designs that lase across mid-infrared spectrum
with high power and room temperature operation [3,4]. The paradigm of maintaining population
inversion via resonant tunnelling has shown promise for scaling towards higher frequencies and
reaching the traditionally "invisible" far-infrared portion of electromagnetic spectrum. In 2002
the first terahertz–frequency (THz) QCL [5] has been realized, lasing at 4.4 THz up to 50 K in
pulsed operation. Since then, a variety of designs [6] generated structures with lasing frequencies
in the range 1.2–5.6 THz [7–10], with high output power [11] and with operating temperature
up to 210 K [12,13] in pulsed and 129 K [14] in continuous wave (CW) operation (without the
assistance of external magnetic field). These limits have all been achieved in GaAs/AlGaAs
heterojunction superlattice which has shown the best performance for THz technology, however
the hope for improvement currently lies in other material systems [15,16] which exhibit better
material parameters, but require further technology improvements.

The lower frequency limit of 1.2 THz is expectedly present since the required lasing levels
energy separation is just ∼4.9 meV, while the upper frequency limit is a consequence of highly
absorbent Reststrahlen band [17].

The temperature limit comes from the very need of small lasing levels energy separation (of
∼12 meV), detrimental scattering of electrons and longitudinal optical (LO) phonons which in
GaAs is most dominant at ∼36 meV, and parasitic leakage between states which do not participate
in lasing process directly, but cannot be avoided by the design itself. All these problems are

#410014 https://doi.org/10.1364/OE.410014
Journal © 2020 Received 21 Sep 2020; revised 31 Oct 2020; accepted 2 Nov 2020; published 9 Dec 2020

https://orcid.org/0000-0003-1335-6156
https://orcid.org/0000-0002-3950-4359
https://orcid.org/0000-0002-9121-9846
https://creativecommons.org/licenses/by/4.0/
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.410014&amp;domain=pdf&amp;date_stamp=2020-12-10


Research Article Vol. 28, No. 26 / 21 December 2020 / Optics Express 38789

hard to avoid and solutions to particular issues usually counteract the other ones, leading to
compromising designs. The best THz QCL designs for high temperature performance [12,13]
are usually focused around 3.2–3.8 THz where the waveguide loss is predicted to be minimal
[18], the LO–phonon scattering is exploited to assist the lasing process, and parasitic leakage
may be suppressed by using higher barriers [13] which on the other hand causes higher thermal
heating of the device.

Historically, vast majority of lasers may be represented by three–level and four–level schemes
[19]. In Section 2, we classify common THz QCL designs by effective three- and four–level
schematics, and discuss their performance issues at high temperature. In Section 3 we formulate
a novel four–level design which takes advantage of detrimental processes to act beneficially
towards maintaining the population inversion. Section 4 proposes several structures that match
our design paradigm. We used our numerically highly efficient density matrix transport model
[20,21] that allowed brute–force search by simulating over two million candidate structures.

2. THz QCL designs

Lasing process in THz QCL is based on the same principles as in almost all other semiconductor,
solid or gas lasers: lasing transition occurs between two levels – upper lasing level (ULL) and
lower lasing level (LLL) where the main aim is to maintain population inversion by efficiently
injecting carriers into ULL and extracting them from LLL. In many cases intermediate lasing
level (ILL) is introduced to assist the pumping/extraction process. Every QCL exploits resonant
tunnelling effect usually to extract LLL and pump ULL or ILL in the next period. Multiple ILLs
may be introduced to form three, four or more level lasing systems and it is also possible to form
LLL and/or ILL as a miniband with narrowly spaced states to achieve faster relaxation of the
levels.

Band–structure designs of THz QCLs are usually classified as bound–to–continuum (BTC),
resonant (or LO)–phonon, and hybrid designs [22]. The latter combines advantages of the
former two, however resonant phonon structures display the best temperature robustness [12,13].
An additional classification introduces scattering–assisted designs [23–26] in which the role
of pumping/extraction of lasing levels processes is either reversed (in comparison to typical
LO–phonon design) or enhanced (ILLs are added to the design so that both pumping and
extraction are performed via LO-phonon scattering).

If we adopt a simplified view where we allow any state apart from ULL to be formed out of
a mini–band of narrowly spaced levels, we can represent the majority of THz QCL designs as
effectively three- and four–level lasing systems, depicted in Fig. 1 [13,23–29].

The simplified schematics shown in Fig. 1 may be applied to nearly every experimentally
realised THz QCL. The hybrid design would simply represent the case of resonant phonon
structure in this schematics, where LLL and/or ILL are minibands instead of discrete levels. Note
that original classification to BTC, LO–phonon, scattering assisted and hybrid structures is not
definite and in the literature a hybrid design would often be referred to as scattering-assisted BTC
design, or scattering-assisted designs would all refer to schemes in Figs. 1(c)–(f).

QCL is a periodic structure, and resonant tunnelling occurs at the resonant electric field bias
which causes alignment of states from two adjacent periods in such a way that one period performs
the pumping process to the second period, while the second period performs the extraction
process from the first period or vice versa. The resonant bias K across QCL period of length LP
therefore depends on the required energy splitting ∆ER needed to bring the desired states into
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Fig. 1. Schematic diagram of effectively two (a), three (b,c) and four (d,e,f) level schemes of
common THz QCL designs. The rectangles illustrate the typical wavefunction localisation
(probability density) of each state within the QCL period. The dotted arrow line denotes
the tunnelling process between two adjacent periods, while the solid arrow lines denote the
transitions. Each level (apart from ULL) may be envisaged as a cluster of narrowly spaced
quasi–bound levels, transitions between the effective "levels" also exist, however dominant
mechanisms are shown.
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resonant tunnelling position:

K =
∆ER
eLP

∆ERa = ℏω + ∆Eminibands

∆ERb,c = ℏω + ℏωLO + ∆Eminibands

∆ERd = 2ℏω + ℏωLO + ∆Eminibands

∆ERe,f = ℏω + 2ℏωLO + ∆Eminibands

(1)

where ω is the lasing frequency, ℏωLO is LO-phonon energy (∼36 meV in GaAs), ∆Eminibands is
added to account for cases in which some of the states in effective schematics in Fig. 1 consist of
a cluster of narrowly spaced states, and indices a–f refer to particular values of ∆ER for cases
presented in Fig. 1.

The BTC design in schematics in Fig. 1 uses tunnelling effect to pump ULL in the next period,
however the extraction from LLL within the period needs a miniband which does not lead to
good performance at higher temperatures. The electron–LO–phonon scattering mechanism is
highly dominant in semiconductor materials and although originally detrimental, all designs
(apart from BTC) exploit its efficiency to implement some form of ILL. The following processes
have detrimental effect on the temperature performance [26]:

1. Electron–LO–phonon scattering activates on a similar energy scale as the lasing energy
difference at higher temperatures. It has a peak around 36 meV in GaAs, however the
effect persists for a wide range of energy differences (∼ 12 - 60 meV at high temperature
[30]). If this mechanism is used to assist extraction of LLL (typical designs place ILL 36
meV below LLL), it may also inherently extract carriers from the ULL (i.e. in typical
resonant phonon design ULL may be ∼15 meV above LLL). Similarly, if this mechanism
is used to pump ULL (i.e. typical scattering-assisted design) it may also pump the LLL.
We will refer to this detrimental effect as LO-phonon leakage.

2. Tunnelling effect requires the two states from adjacent periods to about hybridize and reach
resonant energy difference equal to their anticrossing energy. It is clear that tunnelling
process may also interact with an undesired level. We will refer to this effect as tunnelling
leakage.

3. Electrical heating dictates many trade-offs in THz QCL designs. The electrical power
depends on current and applied voltage (which is proportional to the bias). Resonance bias
depends on design, as illustrated in Eq. (1), and is dependent on the period length and the
desired energy difference. Since LO–phonon energy in GaAs is ∼36 meV, the designs in
Fig. 1 that exploit two LO–phonon scattering processes need higher bias.

4. Period length has a twofold effect on temperature performance: it affects electrical heating
and it also affects the number of states per period. This causes a trade off, because if a
miniband of states is formed in THz QCL, the temperature performance drops down, since
a narrow cluster of states may exhibit multiple undesired absorption and non-radiative
processes at high temperature. On the other hand, short period designs have more
pronounced dependence on ∆ER, which leads to higher values of current and voltage
threshold, and thus increases the electrical heating. For this reason, BTC and hybrid THz
QCL designs perform well in CW operation, while typical resonant phonon devices operate
poorly in CW, but are highly suited for high temperature performance in pulsed operation.

5. Parasitic leakage may occur due to quasi–bound levels that are not part of the desired
transport schematics (or are in continuum), but cannot be avoided. For instance, construction
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of a three level resonant phonon THz QCL can be obtained by using only two quantum
wells [13]. One well needs to be very wide to generate ILL and LLL, while the second one
needs to be narrow in order to form ULL at a high energy. Unfortunately, the wide well
will also cause formation of additional higher levels that may trigger thermal backfilling.
This can be suppressed by using higher barriers [13], however this would increase the
effective mass (thus reducing gain), and require higher doping which will cause higher
electrical heating.

Analyzing the temperature performance of all designs in Fig. 1 would reveal a different trade-off
between the processes mentioned above. The current record temperature performance limit
is 210 K [13]. This structure implements a two–well design that directly generates the three
quasi–bound states. However, two–well designs need high barriers in order to suppress the
parasitic leakage, and this design has very high doping, and therefore very high threshold (24 V,
9.5 A), which causes significant electrical heating, that was avoided by using very low duty cycle
in [13].

We can formulate a rough electrical heating prediction [30] which uses a linear dependence
T = T0 + δRTHIV , where T0 is the heat sink temperature, RTH is the thermal constant, δ is the
duty cycle, I is the current and V the voltage. Note that transport models usually deal with current
density J and electric field bias K, which can be approximately taken to scale uniformly across
the emitting surface and active region ridge height, respectively. We can describe the electrical
heating by introducing the heating factor, as follows:

T − T0 = δRTHVQCL × JK = Tγ × HF;
Tγ = 1012 · δRTHVQCL = δRTHVQCL[m · µm2]

HF = J
[︃

kA
cm2

]︃
× K

[︃
kV
cm

]︃ (2)

where VQCL is the volume of QCL ridge. This linear approximation is a rough description of QCL
heating, the thermal constant depends inversely on the volume of the device, thus a QCL with
larger volume would not counter-intuitively cause a significant heating. A rough approximation
for RTH is presented in the Appendix. For δ = 2%, VQCL = 0.002 [m] · 150 [µm] · 12 [µm] and
RTH = 7

[︁ K
W
]︁
, it follows that Tγ ≈ 0.5

[︂
Km3

W

]︂
. The 210 K structure [13] has HF ≈ 65

[︂
MW
cm3

]︂
,

meaning that a QCL driven with 2% duty cycle would have ∼ 32 K higher temperature than the
cold finger temperature. Therefore, any prediction of material gain dependence on temperature
would show a significant shift. Note that in [13] the duty cycle was 0.01 % in order to avoid this
effect.

We will also focus specifically on transport leakage effects in designs presented in Fig. 1.
The tunnelling leakage was often discussed as the main limiting process in the temperature
performance. Several "exotic" designs with variable barrier heights [31] have been attempted, and
scattering-assisted structures have shown that tunnelling effect may be used for LLL extraction
instead of ULL pumping. Although several theoretical works [32–34] propose three–level
scattering-assisted THz QCLs with shorter injection barriers, nearly all realised devices still use
the barrier thicknesses as in the resonant–phonon devices. This may be attributed to tunnelling
leakage, or to a lack of experimental design exploration, however the main issue of these structures
is typically a high operating bias (and therefore electrical heating). A design that does not
experience any tunnelling leakage to undesired levels is phonon–photon–phonon (PPP) structure
[23,24,26], and a high operating temperature was achieved at low frequency [23,26], however
the design for a higher frequency [24] did not deliver any significant improvement despite lower
waveguide loss. Performance of PPP design may be attributed to the need for a significantly
higher operating bias and the leakage caused by LO–phonon scattering process.
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It is clear that LO–phonon scattering leakage mechanism may appear in all the presented three-
and four-level schemes. In PPP design this may be twice worse than in the resonant–phonon
structure since both ILL states may start pumping/extracting the undesired lasing level. Prevention
of LO–phonon leakage may be achieved by designing ILL states to be>ℏωLO away from ULL/LLL.
This is the case in [13], and will be the aim of the design that we will present in the next section.

3. Dual resonance phonon–photon–phonon THz QCL design

The following design has been inspired by the three-level scattering-assisted design [25] and
PPP structure [23,24,26]. It is rather clear that the issue with the three-level scheme in [25]
was in inefficiency of tunnelling to extract carriers from the LLL, and while the PPP design has
solved this issue, it caused additional problems by operating at very high voltage and also led to
increased LO–phonon leakage. Note that a large number of PPP structures have been realized
in [6], where some levels were formed as minibands, however this did not provide any better
temperature performance, as expected. Interestingly, a variant of the PPP design presented in
Fig. 2 has (to our knowledge) never been attempted or proposed in the literature so far.

Fig. 2. Schematic diagram of the proposed new THz QCL design. The rectangles illustrate
the desired wavefunction localisation of each state within the period. The dotted arrow lines
denote the tunnelling processes between adjacent periods, while the solid arrow lines denote
the desired transitions.

The structure proposed in Fig. 2 can be viewed as a four–level phonon–photon–phonon design
that uses two tunnelling processes, or as a three-level resonant phonon scheme where ILL1 is
added to act as a parasitic state that assists the extraction and pumping processes. In either case,
this proposed design offers the following advantages:

• The required potential drop is identical to that in the three–level resonant phonon designs
(in Eq. (1): ∆ER = ℏω + ℏωLO.

• Pumping mechanism of ULL is achieved by the usual tunnelling process as in the resonant
phonon design and the additional LO phonon process with a state above which is in
resonance with LLL from the previous period.

• Extraction of carriers from LLL is achieved by the usual LO phonon process as in the
resonant phonon design and the additional resonant tunnelling process with a state from
the next period, that would undergo efficient LO–phonon scattering process with ULL in
the adjacent period.

• The operating bias may be lower than in three–level designs, since additional well (and
barrier) is needed, in order to generate ILL1 state, which results in larger period length.
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The potential disadvantages are:

• The design may require high barriers to generate the ILL1 state in order to suppress the
higher parasitic states created by the widest well (that is needed to create ILL2 and LLL)
and to achieve operating frequency that has low loss (3.2 – 4 THz). Higher barriers may
also be needed to suppress the leakage into continuum, since ILL1 is a high state.

• The dual tunnelling process may be affected by growth, as this design needs precise layer
widths to avoid parasitic depopulation of ULL.

This design has high symmetry in its transport mechanisms. It essentially implements three-
level scattering assisted design over resonant phonon design, with the aim to collect and recycle
any potential leakage. This design seemingly solves the parasitic processes issues that may be
responsible for temperature degradation in designs discussed in the previous section. The full
symmetry of transitions acts in the following way at high temperature: if ILL1 starts to pump the
LLL as well, a part of population of LLL will be re-injected into ILL1 of the next period, and
similarly if ILL2 starts to extract the ULL as well, a part of population of ULL will be injected
into ULL in the next period. Similar issues arise in case that one of the tunnelling processes
starts to pump/extract the undesired state.

This design paradigm has been obtained through the review presented in the previous section.
The next challenge is to find the layer sequence which matches the design criteria. Note
that potential parasitic states occurring in the vicinity of ILL1 would be highly detrimental.
Additionally, designs similar to this one do not exist in the literature (to the best of our knowledge),
thus it is not possible to just tune the layers’ widths around the values in already known designs.

4. Numerical results

In the previous work [20,21] we have presented a density matrix model applicable for any
number of states per module, and found that it is capable of very good estimation of the cut–off
temperature for a variety of QCL designs [35]. This DM model is a generalization of the model
from [36] that was used to optimize the earlier record high operation temperature structure
[12]. Another model, very similar to ours, has also shown good agreement [37] in the cut–off
temperature prediction. For instance, the theoretical model for 210 K record structure [38]
predicted positive material gain over 20 cm−1 up to 300 K, and waveguide loss around 30-35
cm−1, while our density matrix model [20,21] predicts the material gain of >30 cm−1 exactly up
to 210 K and pronounced deterioration of material gain towards higher temperatures. Similarly,
our model predicts exactly the cut off temperature of 200 K [12] structure for which the authors
predicted the loss around 17 cm−1.

Our DM model, [20,21] uses tight binding approximation for determination of quasi-bound
states in one QCL period meaning that we set the QCL period layer structure starting and ending
with half a thickness of the injection barrier. Then the injection barrier halves are additionally
extended to infinity on both ends (numerically this is satisfied by using padding around the period
ends of ∼ 20 nm). We define the injection barrier to be the barrier between injector state ILL2 and
upper lasing state ULL from neighbouring period in Fig. 2. The Schrödinger - Poisson equation is
then solved in self-self-consistent manner where we use equithermal approximation for subband
temperatures which determines the electron temperature through minimization algorithm. Such
solutions are then plugged into DM model that requires information on scattering mechanisms
within periods and coherent effects between period’s nearest neighbours. The scattering effects
we considered in this work include interactions of electrons with optical and acoustic phonons,
alloy disorder, interface roughness and ionised impurities. Carrier-carrier scattering has not been
included due to its heavy computational load. The inter-period coherent interaction in our DM
model requires information on Rabi coupling strengths energies (proportional to anticrossing
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energy if states are in resonance) and we used a model in [39]. A more general approach is
available in [40]. Note that since we are extending the injection barrier due to tight binding
nature of the model, this barrier does not affect the energies and wavefunctions in our model,
however the actual injection barrier thickness affects the calculation of Rabi coupling strengths.

Non–equilibrium–Green–Function (NEGF) models are frequently used in the literature [13,33],
however they typically suffer from very high computational cost. The algebraic simplification
we have made in [21] allowed simulation of three- and four-well structures in 8–15 s per
single bias input, where the simulation time bottleneck is not the DM model, but rather the
Schrödinger–Poisson solver. The typical approach for QCL optimization would be to fix the
operating bias in accordance to the desired transition, as in Eq. (1), and vary the critical layers of
the structure [38]. However, with the high speed performance of our model and access to high
performance computing cluster (ARC4), we were able to vary all layers of three- and four-well
QCL structures and sweep the bias over 40 steps while keeping the barrier heights, doping and
injection barrier widths constant, thus performing a brute–force numerical approach.

Simulation of several million THz QCL structures was performed in searching for the best
designs that meet the paradigm presented in Fig. 2. The initial methodology was focused on
three–well THz QCL, where the aim was to take a two–well THz QCL and add one narrow well
to generate ILL1 state at high energy (>36 meV above ULL). The findings of these simulations
pointed that a four–level design would perform better, and we then conducted an even more
extensive set of simulations for four-well structures. We should note that all layers apart from the
injection barrier were varied, since our model is tight–binding, and the lattice temperature was
fixed at 250 K.

Although our design shares the properties of both the resonant phonon and scattering-assisted
design, we decided to follow the common doping practice by doping only the widest well, as in
the resonant phonon design. We chose to dope mostly the second half of the well. The common
procedure in latest two temperature records [12,13] was to dope the narrow central portion of the
widest well, however in the present design we assumed that it is not detrimental to shift doping
towards the injection barrier, as we want another resonant tunnelling process. It should be noted
that the output of our model shows negligible dependence on what part of the well is doped,
however this would need to be taken into account in the experimental growth.

There is some inconsistency between theory and experiment in literature regarding the injection
barrier width in scattering-assisted designs. As discussed in Section 2, there are several proposals
with thinner injection barriers [32–34], while the realised structures [23,24,26] (that we found)
used the injection barriers thickness typical for LO-phonon structures. For this reason we kept
the values commonly used in LO-phonon designs, however from most simulations it appears that
using a thinner injection barrier may yield higher material gain, as will be discussed.

4.1. Three–well design

The layer variation details for three–well design are presented in Table 1 where we simulated
∼500,000 candidates.

The simulations in Table 1 were performed for Al molar fractions x = 0.15, 0.16, 0.17, 0.23,
0.24, 0.25, where we changed the injection barrier thickness to 42.375, 42.375, 39.55, 33.9, 33.9,
33.9 Å, respectively, as is commonly done in designs with high barriers. Only the widest well has
been doped. 84.75 Å of the well was undoped, while the rest of the well’s width was doped so to
correspond to 2 · 1010 cm−2 sheet doping density for all Al fractions. The lattice temperature was
250 K.

The focus on barriers with x = 0.15 − 0.17 is because x = 0.15 is a value typical in majority of
THz QCLs, and it is also desirable in most experimental equipment calibration. Additionally, the
higher barriers in QCL design have higher effective mass and therefore may have lower material
gain for the same value of sheet doping density.
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Table 1. The layer thickness variation of a three-well structure.
The variation step is the single monolayer thickness (2.825 Å),

and the fourth column indicates the variation resolution of each
layer for one value of Al molar fraction x .

Layer no. x Range [Å] Number of points

1. 0 50.85 − 73.45 9

2. 0.15–0.25 5.65 − 19.775 6

3. 0 19.775 − 50.85 12

4. 0.15–0.25 5.65 − 33.9 11

5. 0 132.775 − 163.85 12

Total: 6 variations 214.7 − 341.825 85536 per one x value

The structures with high value of the material gain did in fact follow the paradigm presented
in Fig. 2, however we noticed that state ILL1 (the highest state in the period) would also be
the highest state set in the simulation. In a three well design, we are interested in finding layer
sequence with four levels in a period and hope that higher states would not be too detrimental to
transport. However, if e.g. six states are allowed in the simulation, the best candidates would
have state six as ILL1 and we noticed that if we add just one more state above, the material gain
deteriorates because state seven would most likely be in close resonance with ULL or cause some
other form of leakage. The initial paradigm in Fig. 2 already requires ILL1 to be quite high, and
any state higher than that would be nearer to the continuum, thus we have decided that this set of
simulations that predicted high material gain with six and seven states (the eight state is typically
in the continuum) are invalid.

This issue was rectified by implementing the following algorithm:

• Perform simulation with only four states included

• Detect the subset of simulations with high value of material gain (> 15 cm−1)

• Perform additional simulations for the selected subset by allowing five states, six states
and seven states per period

• The final analysis is focused on the data obtained from the seven-state simulation, with
caution, since state seven may have ended up in the continuum.

In this way we were investigating the effect of leakage caused by undesired higher states
present in the simulation. Ideally, structures that do not suffer from significant material gain or
lasing frequency change with the number of states in the simulation would be the best candidates,
and we have indeed found such structures only for higher barriers.

Interestingly, simulations done for x = 0.18 − 0.22 (not presented in Table 1) generated
candidate structures with low material gain and with slightly different transport principle than the
one proposed in Fig. 2: The state above ILL1 would be in resonance with ULL from the previous
period, thus creating a dual lasing channel. However this channel would not be very efficient
because this high state has no efficient way of being pumped and acts mainly as a parasitic state.

We introduce a nomenclature for our designs as follows: D_3_x_# where 3 means that this is a
three-well structure, x (in [%]) is the Al mole fraction and # is the simulation number obtained
through nested loop variation of the ranges displayed in Table 1. Note that thickness step was
set to 2.825 Å in all simulations, and both values in each range in Table 1 were included. We
labelled the simulations from 0 to 85535, thus it is possible to obtain the layer sequence directly
from our nomenclature and Table 1, more info is provided in the Appendix.

Figure 3 shows the material gain for all simulations performed with x = 0.24. All structures
that had material gain >15cm−1 were selected into a subset over which we conducted additional
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simulations by restricting number of states per period to investigate the leakage effects. Figure 3
does not provide much information on design quality, however, since the layer variation was
constructed through nested loops, we can observe the effect of variation of each layer in Table 1.
For example, the first layer was varied in nine steps and every section depicted by red dotted
lines in Fig. 3 corresponds to a different thickness in the range 50.85 - 73.45 Å. If we enlarge one
of these sections, we would get 6 regions that correspond to variation of the second layer. The
choice of ranges in Table 1 was made so that we observe a parabolic envelope every time we
enlarge the layer effect in order to ensure the correct search for the optimal design.

Fig. 3. Material gain in the simulation with x = 0.24, where the number of states per period
was limited to four. Dotted red lines indicate the nine regions that correspond to the variation
range of the first layer as depicted in Table 1.

Table 2 presents the designs found to be promising candidates. We conducted a very large
amount of simulations, and the best 10 designs for each Al molar fraction are available in
Supplement 1, along with more detailed information (best designs per each molar fraction).

We will use the data with most states per QCL period in discussion, however we do acknowledge
that the highest state may have ended up in the continuum, making some data unreliable.

One of the observations made in simulations was the appearance of designs with very high
material gain, while there was no transition to support the frequency corresponding to that gain
(offsets over 1 THz). These simulations were filtered as false results and we set the tolerance of
200 GHz. This tolerance was set only in the initial simulation with four states and, as Table 2
shows, some designs have offset over 200 GHz. This offset means that DM model reports the
lasing frequency to be f , however the lasing transition should normally correspond close to the
energy difference E32.

In our experience with the DM model, this is a somewhat common effect. Similar behaviour
occurred in the former record temperature design of 200 K [12] and was attributed to competing
oscillatory strengths and the fact that LLL was formed of two narrowly spaced states. In our
simulations of 200 K structure, the DM model yields a frequency of 3.13 THz and energy
separation of 3.3 THz at the peak of material gain dependence on bias, while the experimentally
observed frequency was 3.22 THz (at threshold), thus 3.3 THz is a more reliable result due to
Stark effect. However our simulation of 210 K structure [13] yielded a frequency of 3.88 THz and
energy separation corresponded to 4.15 THz, while the structure lased at around 3.88 THz at peak
power [13] (which most likely corresponds to the peak of the material gain in our simulation).

https://doi.org/10.6084/m9.figshare.13182659
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This offset is caused by the other states present in the design and, interestingly, is proportional
to the anticrossing energy between resonant states that DM model does take into account, and we
will rely on using the frequency obtained by DM model, with caution towards very high offsets
from the transition frequency corresponding to E32.

Our first criteria was finding a design with the highest value of material gain around 3.5 THz,
where we expect the minimal loss. Our second criteria was having a design with low electrical
heating which we roughly described by HF introduced in Eq. (2), simply as a product of current
density and resonant bias. To join these into a single target, we initially introduced a quality
factor Q simply as the ratio of material gain and HF. However, in the simulations we have
noticed somewhat unusual behavior in current density dependence. In our experience with QCL
modelling, a change of monotonicity in current density dependence on electrical bias, commonly
referred as non-differential-resistance (NDR) region, typically causes a sudden break in lasing
performance [13], even though theoretical models (like our) may still indicate the positive net
gain which was the case in some of our simulations. The sudden termination of lasing in NDR
has been attributed to the fact that, in typical LO–phonon structure, the tunnelling process stops
at some bias and since QCLs are mainly driven by the current, a sudden shift in voltage occurs
in order to find a better "channel" to conduct the driving current, therefore breaking the lasing
process. The design in Fig. 2 has two resonant tunnelling processes, and it is possible that it may
be more resilient to sudden breakdown of lasing. If for instance ILL2 → ULL stops, but LLL →
ILL1 is still ongoing, the entire design behaves as the scattering assisted structure presented in
Fig. 1(c)). This property of our design needs experimental verification, which is why in Table 2
we present the model output at two bias points: at the peak of material gain dependence (K) and
at the peak of the current density dependence (which occurs at bias Kn). This issue is negligible
in Table 2, but will be further discussed in four-well design analysis.

The data in Table 4 leads to several conclusions:

• The inclusion of higher states in the simulation decreases the material gain and increases
the current density. This illustrates the leakage processes due to higher undesired states
present in the simulation.

• The previous effect is significantly weaker in designs with higher barriers, as expected.

• The Q factor is somewhat higher for higher barriers. This was not initially expected, as
higher barrier designs should have lower material gain, since the sheet doping was constant
in all simulations. The main reason that somewhat opposite effect occurred was most
likely due to thinner injection barriers that were used for x = 0.23 − 0.25.

• The lasing frequency is more stable with inclusion of higher states in simulation in designs
with higher barriers, and there is a significantly larger number of designs around 3.5 THz
(we found none with high material gain in simulations with x = 0.15).

• The structures whose peak material gain does not occur at the peak of the current density
vs. bias dependence are present, but not significant in designs of our interest (around 3.5
THz).

The discussion of results in Table 4 is nearly identical to the discussion of two-well LO-phonon
THz QCLs [13]. The main difference however, is in the fact that we used sheet doping density of
only 2 · 1010 cm−2, smaller than in the record structure [13] that uses 4.5 · 1010 cm−2, and we can
improve the material gain by either increasing the doping or using a thinner injection barrier.
We found that x = 0.23 − 0.25 provides the best designs since the leakage due to high states is
negligible, the NDR gain difference is also negligible, and Q factor is the highest. We will now
further analyze these designs:
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• D_3_24_81341 - the highest Q factor, layer structure: 16.95/73.45/14.125/31.075/11.3/
84.75/62.15/16.95 Å, the italicized well is doped to 3.218·1016 cm−3.

• D_3_25_79626 - the lowest current density, layer structure: 16.95/73.45/11.3/28.25/11.3/
84.75/64.975/16.95 Å, the italicized well is doped to 3.0781·1016 cm−3.

• D_3_16_81344 - promising lower barrier structure, layer structure: 21.1875/73.45/14.125
/31.075/11.3/84.75/70.625/21.1875 Å, the italicized well is doped to 2.8318·1016 cm−3.

The structures presented in Fig. 4 have very similar layer sequences and they all share similar
properties in terms of transport mechanisms. The first four states are colored as in Fig. 2, to
reflect that the goal for finding such design has been achieved, although ILL1 is localized more
centrally for x = 0.24 and x = 0.25 in the period. As discussed in Section 2, the simulation
yielded best designs with LO-phonon separation above 36 meV, which was also one of the main
design arguments in [13] that prevents LO-phonon leakage. Interestingly, all designs display a
very interesting formation of higher, undesired states in the period. Both in D_3_24_81341 and
D_3_25_79626, the fifth and the seventh state are spaced by approximately LO-phonon energy,
meaning that these two undesirable states would additionally assist the ILL1 state, thus offering
a different paradigm to the design in Fig. 2. This is present to an extent in the lower barrier
design D_3_16_81341 as well. Note that the seventh state in this design is critically close to
the continuum, and Table 1 shows a distinct deterioration of the material gain when this state is
included in the simulation. In our experience, including a continuum state in the simulation often
causes the Schrödinger–Poisson solver to break down, because some matrix elements needed for
LO-phonon scattering calculation would have non-physical values, however, a state critically
close to the continuum allows the simulator to calculate the transport. We cannot asses whether
the sudden drop in material gain reflects an actual physical effect, or is a numerical issue. It
is possible that only six state simulations should be considered, however, in our experience,
including higher states in simulation of resonant-phonon structures typically does not deteriorate
the material gain as significantly as in Table 1 and we decided to keep the analysis with seven
states per period, as it is a worse scenario.

The best structure in three-well simulation is D_3_25_79626 (as it was also promising in
x = 0.24 simulations), however we would recommend for D_3_16_81344 to be experimentally
tested as well, since the six state simulation data are promising, and x = 0.16 structures may have
smaller growth fluctuations than x = 0.23 − 0.25 structures. We also recommend changes in
doping (and injection barrier widths), whose effect is illustrated in Fig. 5. The model shows a
linear increase of current density with doping, the material gain on the other hand undergoes
the saturation effect, while frequency is not significantly affected. Since a high current density
would cause higher electrical heating, the optimal value needs to be found experimentally. The
saturation effect of material gain in Fig. 5 suggests that value in the range 2.5 − 3 · 1010 cm−2 is
potentially optimal.

4.2. Four–well design

The simulations with x = 0.18 − 0.23 in three-well structures did not provide significantly
promising designs. This can be understood through a closer look at states five and six in Fig. 4.
For lower barriers, ILL1 is constructed properly, however the fifth state is in close resonance with
ULL from the previous period, thus creating an inefficient dual lasing channel. The fifth state
rises with the increase of barrier height, where the optimal distance from ILL1 would be the
LO-phonon energy, which is the reason why designs with x = 0.24 and x = 0.25 have shown the
best performance.

The previous temperature record of 200 K [12] used a three-well structure with x = 0.15. This
was a resonant phonon design, where there was another level below LLL that was assisting the
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Fig. 4. Band potential in two periods and quasibound states with the corresponding
wavefunction moduli for three selected designs.

Fig. 5. Material gain dependence on external electric bias for structure D_3_25_79626 for
different values of sheet doping density NS. The bottom inset shows the current density
dependence on bias, while the top inset shows the lasing frequency change with NS at peak
material gain (circles) and at peak of current density (crosses).
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extraction process. It is clear that detrimental effect of the fifth state for lower barriers can act
beneficially if we implement the paradigm in Fig. 2 in a four-well structure (simply find a layer
sequence that adds ILL1 state in typical three-well LO-phonon design). Another major advantage
of such four-well structure would also be in a significant reduction of resonant bias and current
density.

We therefore conducted additional set of simulations of four-well designs by altering all layers’
widths (apart from the injection barrier) and keeping the sheet doping density to 2 · 1010 cm−2,
as shown in Table 3.

Table 3. The layer thickness variation of a four-well structure.
The variation step is the thickness of a single monolayer (2.825) Å,
the fourth column indicates the variation resolution of each layer

for one value of x .

Layer no. x Range [Å] Number of points

1. 0 50.85 − 64.975 6

2. 0.15–0.25 8.475 − 14.125 3

3. 0 36.725 − 56.5 8

4. 0.15–0.25 19.775 − 33.9 6

5. 0 62.15 − 73.45 5

6. 0.15–0.25 31.075 − 45.2 6

7. 0 135.6 − 149.725 6

Total: 11 variations 333.35 − 432.225 155520 per one x value

The simulations in Table 3 were performed for Al mole fractions x = 0.15, 0.16, 0.17, 0.18,
0.19, 0.20−0.25 where we changed the injection barrier thickness as 42.375, 42.375, 39.55, 39.55,
36.725, 33.9 Å, respectively. Only the widest well has been doped. 73.45 Å of the well was
undoped, while the rest of the well’s width was doped so to correspond to 2 · 1010 cm−2 sheet
doping density for all Al mole fractions. The lattice temperature was 250 K in all simulations.

In Table 4 we present the designs that were found as promising candidates with similar criteria
as discussed for three-well designs. The 3.5 THz designs were our main focus, which are not
necessarily the designs with best Q factor or material gain. In Supplement 1, Dataset 1 [41],
Dataset 2 [42], Dataset 3 [43], and Dataset 4 [44], we provide a more extensive simulation
tables and simulation results. The only difference in the simulation procedure is that now we
are looking for structures with five states, where LLL state would have an additional assisting
level for efficient extraction. This means that ILL1 would be the fifth state in the period, we can
still view this design with paradigm in Fig. 2 where we allow LLL to be effectively a miniband
instead of single quasibound state. To account for leakage effect, we first made simulations with
five states per period, selected promising candidates and then conducted additional simulations
on that subset by allowing six, seven and eight states per period.

Table 4 typically displays higher Q values than Table 4. This is mainly because of lower values
of resonant bias and current density than in three-well structures. The table values offer similar
conclusions as discussed previously, the difference is that in some designs the material gain
has sudden drop when the sixth state is included in the simulation, and some designs may have
slightly higher gain with eight states in a period. This occurs due to more complicated structure
where the undesired states (six, seven, eight) interact with ULL or with both states that form the
LLL. We also found that most designs in Table 4 have the sixth state acting as ILL1, instead of
the fifth state.

The issue with the frequency offset between DM prediction and E43 energy is also present,
however cases with very high offset may indicate the lasing states do not correspond to E43
difference. Similarly, as in three-well simulations, frequencies around 2.6 THz are more favoured

https://doi.org/10.6084/m9.figshare.13182659
https://doi.org/10.6084/m9.figshare.13173197
https://doi.org/10.6084/m9.figshare.13173194
https://doi.org/10.6084/m9.figshare.13173203
https://doi.org/10.6084/m9.figshare.13173200
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in designs with lower barriers x = 0.15, 0.16, and we noticed that optimal structures occur for
x = 0.18 − 0.23.

We will further analyze these structures:

• D_4_18_79421 - high Q factor and low current density, layer structure: 19.775/59.325/8.475/
39.55/28.25/64.975/31.075 /73.45/76.275/19.775 Å, the italicized well is doped to
2.6221·1016 cm−3.

• D_4_23_103899 - high material gain, layer structure: 16.95/62.15/8.475/36.725/22.6/
64.975/31.075/73.45/70.625/16.95 Å, the italicized well is doped to 2.8319·1016 cm−3.

Figure 6 displays two nearly identical structures, and in fact most of the structures selected in
Table 4 share similar behavior and excellent performance, making the selection of the optimal
structure challenging. Our main aim is low current density, high material gain and low resonant
bias. The success of these designs lies in the fact that parasitic state which is in resonance
with ULL from the previous period has virtually no effect on transport. The three-well designs
needed higher barriers to "shift" this state away from ULL (Fig. 4). An interesting deviation from
paradigm in Fig. 2 is that ILL1 is the sixth state in period and it is separated from the parasitic
fifth state by a similar energy as that between the lasing states, thus creating a potential dual
lasing channel, and the energy difference between ILL1 and ULL is significantly higher than
energy of LO-phonon resonance and of the order of ∼ 50 meV. The paradigm in Fig. 2 is still
satisfied, as LO–phonon process may occur on that energy scale at very high temperatures [30],
however it is also possible that the structure operates with two lasing processes, although the
upper transition is highly diagonal and it is somewhat unclear how the fifth state is depopulated
even though it is ∼ 36 meV from ULL.

Fig. 6. Two periods of bandstructure potential and quasibound states with the corresponding
wavefunction modulii for two selected designs.

Figure 7 shows that all designs we presented may slightly benefit from thinner injection barriers
than the ones we used. The highest material gain could be achieved with 11 monolayers in
D_4_0.23_103899 instead. However, designs with thinner injection barriers have high material
gain in NDR region and only with 13 and 14 monolayer thickness (and more) the peaks of the
current density and material gain are nearly aligned. Discussing this effect further is outside
of the scope of this paper. We used typical injection barrier thicknesses and did not vary the
doping level in our simulations, mainly because both parameters are obtained through somewhat
empirical approaches and our model is tight-binding which may have placed some unrealistic
constraints in determination of the electronic structure. Note that we also did not use any preset
value of loss, thus we did not calculate the optical power and the corresponding increase in
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current density dependence when the structure is lasing. In our experience with the DM model,
QCLs normally do not provide material gain in NDR region and the current density dependence
is somewhat imprecise [37]. In the simulation for x = 0.23 we used injection barrier width of
12 monolayers, and using thicker barriers may also provide lower values of current density at
the cost of some loss of material gain. For instance, with 15 monolayers thickness the current
density drops from 1270 to 1019 A

cm2 at the cost of material gain dropping from 14.7 to 11.9
cm−1, which is not too detrimental because this could be rectified with higher doping in order to
achieve a structure where high gain is not located in NDR region. However, this effect needs to
be verified experimentally, as it is possible that our design may operate different from other THz
QCLs since it undergoes two resonant tunnelling processes.

Fig. 7. The effect of injection barrier thickness variation on material gain (top), current
density and frequency dependence on external bias for structure D_23_103899. The
monolayer thickness was 1 m.l = 2.825 Å.

4.3. Cut–off temperature performance

The five designs we presented so far all satisfy the design criteria in Fig. 2, however the simulations
were performed at 250 K, generating the structures that at first sight do not appear convincingly
better than the two most recent record temperature structures.

The 200 K structure has the loss evaluated to be around 20 cm−1, while the 210 K structure
was designed for a higher frequency and authors [38] predicted the loss of 30 cm−1, making
the DM prediction very precise in Fig. 8(a). However the latter prediction may have been too
strict, as this structure displays material gain above 20 cm−1 nearly up to 240 K, which is in line
with our design predictions as well in Fig. 8(a). We have two main arguments that should be
considered in attempting our designs:

• The sheet doping density in the 200 K structure [12] was 3 · 1010 cm−2, while in the 210 K
structure [13] it was 4.5 · 1010 cm−2. In all the designs presented in this work, the sheet
doping density was set to 2 · 1010 cm−2, which is significantly lower and indicates that
all our designs would provide a higher material gain than the current record structure.
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Figure 8(b) clearly illustrates this. All the designs in Fig. 8(a) have the same sheet doping
density as 210 K structure. Note that this has significantly increased the current density of
our designs in Table 2 and 4, roughly by a factor of 2.25, and Ns = 4.5 · 1010 cm−2 may
not be the optimal doping value due to gain saturation effect displayed in Fig. 5. We only
did this so we can clearly illustrate the quality of our designs over the 210 K structure.

• Figure 8 also displays the slope of gain deterioration, where we can notice that three-well
designs have slopes between those for the two referent realized structures, and mainly
provide high gain due to a high gain at 10 K. The four-well structures have significantly
better slope than the current record structures, and a great argument can be made for
growing D_4_0.18_79421.

0 50 100 150 200 250 300
T [K]

0

20

40

60

80

g 
[c

m
-1

]

200 K 
210 K
3_16_81344
3_24_81341
3_25_79626
4_22_129641
4_23_103899
4_18_79421
4_23_53103

220 230 240 250
T [K]

10

15

20

25

g 
[c

m
-1

]

(a) Our structures have the sheet doping density of #B = 2 · 1010 cm−2, while 200 K structure has
#B = 3 · 1010 cm−2 and 210 K structure has #B = 4.5 · 1010 cm−2.

(b) All structures have the sheet doping density of #B = 4.5 · 1010 cm−2.

Fig. 8. The temperature dependence of peak material gain for two recent record
structures of 200 K [12] and 210 K [13] and several designs from this work. Each
simulation was conducted at respective resonant bias for each design.

Fig. 8. The temperature dependence of peak material gain for two recent record structures
of 200 K [12] and 210 K [13] and several designs from this work. Each simulation was
conducted at respective resonant bias for each design.



Research Article Vol. 28, No. 26 / 21 December 2020 / Optics Express 38808

Interestingly, the four-well designs with higher barriers provide the best slope of gain
deterioration, however designs presented in Fig. 8 do not show very high gain at low temperatures.
This can be attributed to diagonality of lasing transition and energy separation between states
that undergo LO - phonon transition. Design D_4_23_103899 has E21=48.7 meV, while
D_4_18_79421 has E21=43.3 meV. Since the LO - phonon scattering mechanism is not dominant
at low temperatures, design D_4_18_79421 would have a better optical power performance than
D_4_23_103899 at low temperatures, as displayed in Fig. 8, however as LO - phonon interaction
is dominant at high temperatures, design D_4_23_103899 is becoming more robust. For that
reason we presented the performance of additional designs in Fig. 8 as trade-off solutions, making
D_4_22_129641 potentially the best candidate, as it behaves nearly identically as D_4_18_79421,
with slight benefits in parameter values in Table 4. Note that designs with high LO-phonon
energy separation may still have high gain at low temperature if the lasing transition is more
vertical, which is the case with D_4_22_129641 which has E21=45.6 meV.

5. Conclusion

In this work we have reviewed the existing THz QCL designs by creating an effective three- and
four-level schematics that underpin the key mechanisms and differences between experimentally
realized structures. This review led us to a novel idea for a four-level structure that undergoes
two resonant tunnelling process and hybridizes scattering-assisted and resonant-phonon QCL
designs into a design that may take advantage of commonly argued processes for temperature
degradation, so to act beneficially in improving the lasing performance.

The degradation of material gain at high temperatures in resonant phonon structures was
argued mainly to occur due to the fact that LO–phonon process may depopulate the ULL as
well, since this process is active far after the resonance energy difference at 36 meV (in GaAs).
Another process that was often argued as the gain degradation mechanism was the interaction of
lasing states with undesired higher states from adjacent period (i.e. "thermal backfilling"). Both
these issues had a solution in using higher barriers, at the cost of lower material gain, that can be
compensated by a higher doping density at the cost of higher current density, which however
leads to detrimental electrical heating of the device. The current record temperature design [13]
addressed all these issues by finding the compromising trade-off solution.

The design proposed in this paper in Fig. 2 attempts to set the higher states in QCL period, that
are involved in thermal backfilling, to be in LO-phonon resonance with ULL below. This creates
a symmetric structure in terms of transport processes that provide more efficient population
inversion maintenance by collecting any potential leakage effects into another "tunnelling +
LO-phonon transition" cycle.

Majority of THz QCLs were designed by similar methods as MIR structures, where one
could design the active region (lasing states) and collector/injector (typically ILL) separately.
This comes at some cost of neglecting the ’compound’ effects when these sections are joined.
Additionally, the design procedures typically set the resonant bias beforehand and seek structures
with particular energy differences, and evaluate the design quality through oscillator strengths
which are proportional to the product of energy difference and square of dipole matrix element
(which is proportional to the wavefunction overlap). This procedure has led to lengthy discussions
on whether higher (vertical transition) or lower (diagonal transition) dipole elements between the
lasing states provide a better trade–off solution. Such techniques were historically necessary due
to models with only a few effective states, that were inherited from MIR QCL design approaches,
and only recently [38] a more powerful transport models such as NEGF are being used in designs
which yielded the current record temperature performance [13].

The NEGF model does provide high quality information on electronic structure, however it
suffers from very high numerical cost. In the numerical section of this work, in our opinion, we
performed one of the most extensive analyses of THz QCLs, by using significantly simpler DM
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model. Our model is the generalization of the DM approach used to optimize the former 200 K
[12] record design, and we observed a high quality predictions of cut–off temperature that was
also reported by authors that used a very similar model [37]. Due to very low numerical cost of
our model, and the access to supercomputer cluster, we were able to simulate a very large number
of THz QCL structures and perform brute–force technique in seeking for the optimal structure.

We do acknowledge that an optimization algorithm would have been a better approach, however,
similarly as in [12], the DM model cannot account for empirical effects and design imperfections,
electric field domain formation, or fluctuations of layer thicknesses. Additionally, the results
in Fig. 8 do not visually show the full extent of quality of proposed designs over the 210 K
record structure as the doping density is kept at very low level in our simulations. We led the
discussion in this paper that electrical heating needs to be rectified, which may not necessarily be
the requirement for high temperature operation, as the 210 K structure [13] is very highly doped
and has very high threshold. Therefor each design that we presented may provide significantly
more enhanced characteristics if electrical heating is ignored by adopting that duty cycle may be
engineered to be very low.

The main aim of this work is to present a novel design idea and we hope that similar findings
could be verified by more extensive models, such as NEGF, that would support attempting this
design experimentally. Our main argument is that LO phonon transitions should not be design
around 36 meV if high temperature performance is needed and that a very careful consideration
of states above ULL needs to be considered. The best designs in our simulations are not just the
one that placed state above ULL into LO phonon resonance, but also placed the next level above
at LO phonon resonance (Fig. 6(b)) meaning that ideal design should form all levels above ULL
in LO phonon resonance in order to pump ULL most efficiently. Note that such designs also
show a smaller parasitic leakage because the subsequent LO phonon transitions above ULL are
contributing to pumping of ULL and not to leakage processes.

We also used potentially disputable arguments for focusing on the designs at 3.5 THz, that may
not have the lowest loss or defining the Q factor as the ratio of material gain and the product of
current density and resonant bias instead of setting a predetermined value of loss and using net
material gain value instead. For this reason, we have also presented other prospective designs that
our simulations yielded, and provided an extensive data set from our simulations in Supplement
1. This data contains high level of detail and offers extended set of parameters to those presented
in Table 1 and 3 and may be used in seeking devices with different frequency, current density,
resonant bias and material gain (at 250 K).

Appendix

A.1. Simulation nomenclature

The layer variation presented in Tables 1 and 3 has been conducted through nested for loops in that
exact order, where we labelled each particular simulation with a counter that was incremented in
each simulation cycle. This counter # (the first simulation has #=0) is a part of our nomenclature
D_3_x_# and it is possible to extract from it the layer sequence for each simulation by using
layer variation information in Tables 1 and 3. This is somewhat cumbersome to do by hand, as
it requires several recursive integer-and-remainder division operations with #. Note that both
boundaries in the parameter ranges in Tables 1 and 3 are included, and the step was 2.825 Å.

Consider, as an example, D_3_15_65320. This is a three-well design with x=0.15. The
first layer in Table 1 was simulated in 9 points, thus each set of 85536/9 = 9504 simulations
corresponds to different well width in the range 50.85-73.45 Å. The division 65320/9504=6.87,
meaning that this simulation has the well with index 6 (integer part of the division) from the
range which is actually the seventh well because we started the simulation counter at 0, this
well is 67.8 Å. The second layer is simulated in 6 points, thus each set of 85536/9/6 = 1584
simulations corresponds to different barrier width in the range 5.65 - 19.775 Å. Since the

https://doi.org/10.6084/m9.figshare.13182659
https://doi.org/10.6084/m9.figshare.13182659
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first layer corresponds to the 6th point, we would need to find a whole division of (65320-
6*9504)/1584=5.23, which corresponds to the 5th (the last) point in the second layer range which
is 19.775 Å. The next layer was simulated in 12 points, in the range 19.775 - 50.85 Å, thus
the next layer in the sequence is (65320-6*9504-5*1584)/(1584/12) = 2.84 which corresponds
to 25.425 Å, the next layer is in the range 5.65 - 33.9 Å of 11 points and by similar analogy
(65320-6*9504-5*1584-2*132)/12 = 9.33 which is 31.075 Å and the final layer is simply (65320-
6*9504-5*1584-2*132)%12 = 4 which is 144.075 Å. Therefore, the design D_3_0.15_65320 has
the layer sequence 67.8/19.775/25.425/31.075/144.075 Å (where layers in bold are barriers),
the injection barrier for the 0.15 design was 42.375 Å thus this sequence needs 21.1875 Å at its
ends to fully describe the layers of this design (and, as we mentioned, the widest well was doped,
84.75 Å of it is not doped, while the rest is doped to correspond to 2 · 1010 cm−1 sheet doping
density). The second approach in decoding the layer sequence from this nomenclature would be
to notice that the terms in this calculation as (65320-6*9504-5*1584) are simply modulo division
of (65320-6*9504)%1584 and the decoding procedure can be easily numerically implemented.

A.2. Thermal constant

The ridge of QCL structure is typically grown on top of a ∼200 µm thick substrate where the
cold finger temperature is set on the bottom contact (at the substrate side). The electric power is
dissipating mainly in the ridge, thus the temperature is expectedly rising towards the top contact
(on the top of the ridge). Since the transport is occurring in one direction, the first approximation
for the heating of the device is given by the Fourier law of conduction [30]:

ρmcp
∂T
∂t
=
∂

∂z

(︃
kz
∂T
∂z

)︃
+

P
VQCL

(3)

where ρm is the material density, cp is the specific heat capacity, kz is thermal conductivity
in lateral direction, P is the electrical power and VQCL is the volume of the active region (we
assume that power is only dissipated in the volume of the ridge). In steady state, this equation
only requires the information on thermal conductivity which is spatially dependent due to the
heterostucture layers in the active region. However, for illustration let us assume that both kz
and P are constant and that bottom of the ridge is at same temperature as the cold finger (i.e
there was no heating through the substrate) and set this point as z = 0, so ∂T

∂z |z=0 = T0 and
that the top of the ridge (z = HQCL) is in the vacuum T |z=HQCL = Tsub. The analytical solution
is T = T0 +

P
2kzVQCL

(︂
2HQCLz−z2

2

)︂
. We can now obtain effective active region temperature by

integrating over z and dividing by ridge height, which results in T = T0 +
HQCLP
3kzWLc

(note that we
used VQCL = HQCLLcW where Lc is the cavity length and W the substrate thickness).

An empiric approximation for heating effects in QCL structures of the form: T = T0 + RTHP
where RTH is a thermal constant, is the usual model for thermal effects in QCLs [30] and it is
clear that the RTH constant is related to volume of the QCL ridge (as it originates from term P

VQCL
in Eq. (3), in general).

The analytically derived thermal resistance under approximation (and averaging) we made,
shows that RTH =

HQCL
3kzWLc

and this gives somewhat intuitive conclusion that QCLs with wide ridge,
long cavity and shorter active region display better thermal performance. However, the electrical
power is the product of current and voltage, which when re-scaled to the current density and
electrical field P = IV = JKWLcHQCL cancel the dimension terms in RTH and only suggest that
the height of QCL ridge HQCL has the main effect on heating (however this conclusion holds if
distribution of electric bias and current density is uniform). Although our analytical derivation
has been obtained through ambiguous approximations, it may be generally concluded that in
Eq. (2), the product of RTH and ridge volume is somewhat canceling the effect of the ridge volume
as discussed in Section 2.
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