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ABSTRACT Future Intelligent Transport Systems (ITS) will require that vehicles are equipped with
Dedicated Short Range Communications (DSRC). With these new DSRC capabilities new privacy threats
are emerging that can be taken advantage of by threat actors with little experience and cheap components.
However, the origins of these privacy threats are not limited to the vehicle and its communications, and
extend to non-vehicular devices carried by the driver and passengers. A shortcoming of existing work is that
it tends to focus on a specific aspect of privacy leakage when attempting to protect location privacy. In doing
so, interactions between privacy threats are not considered. In this work we investigate the privacy surface
of a vehicle by considering the many different ways in which location privacy can be leaked. Following this,
we identify techniques to protect privacy and that it is insufficient to provide location privacy against a single
threat vector. Privacy preservation techniques need to consider the wider threat landscape and collaborate to
ensure location privacy is protected where possible.

INDEX TERMS Location Privacy; Connected Vehicles; Privacy Surface; Technique Interaction

I. INTRODUCTION

CONNECTED and Autonomous Vehicles (CAVs) are ex-
pected to be widely deployed on road networks globally

within the next decade. As part of this, transportation net-
works are expecting to deploy ITSs to manage these vehicles.
An issue with these systems is that they raise privacy con-
cerns due to the ease in which these systems allow a vehicle
to be tracked. However, vehicle tracking has been of interest
to threat actors trying to violate privacy for some time. In
the recent past, violating location privacy has only been
generally available to resource rich threat actors for mass
surveillance, or knowledgeable threat actors that focus on
individual vehicles. For example, Automatic Number Plate
Recognition (ANPR) allows vehicles to be tracked en masse,
but it requires a deployment of ANPR cameras over a large
area that is both expensive and noticeable. Individual vehicles
can be tracked by threat actors with limited resources using
location recording devices, but physical access is required for
installation and they may be noticed by the driver. New ve-
hicular technologies provide new methods of vehicle tracking
that are cheaper with fewer limitations, easier to deploy, and

in some cases, harder to detect.
These new tracking techniques usually do not focus solely

on the vehicle’s location, but also consider its identity and the
time at which it was detected. This can be because the threat
actors are interested in who was where at specific times, or
how the location of a vehicle changes over time. Location,
time, and identity are types of context information. Protecting
the privacy of the context in which a vehicle performs actions
is often harder than protecting against content privacy leaks.
While content privacy is protected using encryption, context
privacy requires bespoke solutions for the context being
protected and the different scenarios it is protected in.

There are two main issues with existing work on protecting
vehicular location privacy. The first is that there is a lack
of positioning of the context in which location privacy is
being provided. This necessary to understand which threats
an adversary will take advantage of and why. In response, we
propose a privacy surface which identifies the threat actors,
their motivations, and capabilities. This landscape consists of
existing threats, techniques to counter them, and a classifica-
tion of both threats and techniques. In this paper, we focus
on live privacy threats and briefly cover historical. This is
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because live privacy can be converted into historical privacy
threats by threat actors logging data. Different types of live
privacy threats can be protected by the same approaches
when converted to historical privacy threats, whereas the live
threats themselves need to be protected in different ways.

The second issue is that existing privacy preserving tech-
niques tend to be developed in isolation and do not consider
the impact the wider threat landscape has on the imple-
mentation. The majority of survey papers focus on specific
areas (such as Location Based Services [1, 2, 3]) instead
of considering a wider range of privacy threats. Some look
at privacy in general [4] but do not present a wide range
of privacy threats. To address this, the privacy landscape
classes are used to predict ways in which privacy preserving
techniques will need to be adjusted to consider different
simultaneous privacy threats. We also identify a number of
specific cases that warrant future investigation into how to
protect location privacy when privacy threats interact.

The remainder of this paper is structured as follows. The
survey of privacy threats to a vehicle will be presented in
Section II. The threat actors will be identified in Section III
before the survey of privacy preserving techniques is pre-
sented in Section IV. In Section V we will analyses the
impact that privacy preserving techniques have on each other,
before discussing our work in Section VI. In Section VII
will present future work on this topic. Finally, this paper
concludes in Section VIII.

II. LOCATION PRIVACY THREATS
Modern vehicles are identifiable by more than just their
appearance and licence plate numbers. This is a result of
their increased complexity and functionality, provided by
new technologies that enable communication with road in-
frastructure and other vehicles, such as Dedicated Short-
Range Communications (DSRC). These communication vec-
tors provide possibilities for vehicle identification, and thus
may compromise privacy. If a threat actor is able to obtain a
detailed history of a vehicle’s location it will be capable of
creating analyses of this data which reveal information the
owner of the vehicle wishes to keep private. One example
analysis is a heatmap representing the frequency of locations
where the vehicle has been. An example heatmap generated
from data collected over a two week period from the same
person is shown in Figure 2. In this map there are three points
of interest, including their home, workplace, and a local bar,
accompanied by the routes used between them. Linking even

FIGURE 2: Heatmap of GPS trajectory collected over two
weeks.

this small series of GPS trajectories to a map, it is possible to
elicit the details of someone’s pattern of life [5].

In this section we identify the various privacy threats
through which the location privacy of a vehicle may be
compromised. In Section IV the privacy preserving tech-
niques that correspond to these threats will be presented. The
privacy threats are classified into eight classes: (A) Direct
Access to GNSS Data, (B) Visual Identification, (C) Services,
(D) Internal Vehicle Communication, (E) External Vehicle
Communication, (F) Non-vehicle Communication, (G) Be-
haviour, and (H) Historical Data. Each class has a number
of different techniques that can be used to preserve privacy
that will be discussed in Section IV. As threat identification
is a continuous process, not all live privacy threats may be
present in this categorisation.

A. DIRECT ACCESS TO GNSS DATA
One of the simplest ways in which a vehicle can be tracked
is to attach a Global Navigation Satellite System (GNSS)
sensor (such as GPS) to the outside of a vehicle, along with
a battery and a cellular radio to report the location to the
threat actor. Additional sensors, such as accelerometers can
be included to improve accuracy. These devices are cheap
and easy to obtain1. The downside is that a device needs to
be attached to each vehicle that a threat actor wishes to track,
which makes mass vehicle tracking infeasible.

These vehicle tracking devices may be intentionally in-
stalled by some authority. For example, a logistic firm may
wish to track and manage their fleet of vehicles. Even if
unintentional, it is possible that the data captured may be
personal to the driver and privacy sensitive. Similarly, per-
sonal information is available by insurance companies who
give preferential rates to those willing to install a black box
in their vehicle [6].

1https://www.lifewire.com/best-car-gps-trackers-4158961
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FIGURE 3: Some of the identifiable features of vehicle

B. VISUAL IDENTIFICATION
Vehicles have been partially identifiable since their inception
by their colour, shape, manufacturer, and other aspects such
as tyre tread. Since the beginning of the 20th century it has
been mandatory to have an identifying number plate attached
to the vehicle.The United Kingdom passed the Motor Car Act
1903 [7, §2(1–2)], making unique licence plates mandatory
in 1904, around the same time some states in the USA also
introduced them. Since then, it has been possible to identify
a vehicle upon inspection of the series of letters and numbers
attached to it. With the advent of Automatic Number Plate
Recognition (ANPR) [8] this identification was automated,
and widespread tracking of vehicles became possible.

ANPR operates by first finding number plates in an image
and processing it to allow optical character recognition to
identify the symbols attached to the vehicle. Due to inex-
pensive image recording equipment and the development of
reliable image processing algorithms, ANPR is now used by
law enforcement throughout the world. It is also used in many
other scenarios, such as on toll roads and bridges, and car
parks. London, for example, has several tracking systems for
the Congestion Charge, the Low Emission Zone, the Dartford
Crossing, as well as several other law enforcement systems
for speeding and other offences [9]. In total, there are over
8500 cameras deployed in the UK which process over 25
million licence plates every day [10].

If a vehicle can be identified at several checkpoints across
the road network, it is possible to build a picture of the
vehicle’s location over time. With more checkpoints in the
road network, a more accurate tracking of the vehicle’s
route can be performed. When a vehicle is identified at
one checkpoint, for example using ANPR, it is possible to
re-identify the vehicle at a later checkpoint using only it’s
visual characteristics [11], such as its shape and colour [12],
model [13], or a combination of several features [14, 15].

Another approach that does not rely on images of vehicles
is to use the patterns provided by magnetic induction loops,
which differ based on the shape of a vehicle and the metals
from which it is made [16]. While these systems in general

are less reliable than ANPR, due to the many similarities
of different vehicles, they are more robust to occlusions of
certain parts of the vehicle, such as the number plate.

C. SERVICES

Attaching an external GNSS sensor requires physical access
to the vehicle, but modern vehicles often disclose their lo-
cation directly to Location-Based Services (LBSs), in order
to provide location context to their requests. For example,
the current location can be used to improve the accuracy
and speed of searches in a navigation system, or to provide
information regarding local attractions. Depending on the
requirements, the service might use a single location or
trajectory of the owner [17], or the location and trajectories of
multiple vehicles. Temporal and identity information are also
aspects that will need to be protected [18, 19], however, con-
text linking attacks might be conducted to obtain a consistent
identity [19].

The widespread usage of LBSs has allowed service
providers to gather massive amounts of location information
about where vehicles are and at what time. This information
is often used to provide better services to the vehicles, such
as real time traffic speeds in maps apps such as Google
Maps or Waze. However, this information can be analysed
to extrapolate travel patterns and traffic analysis [2] such
as an individual’s driving behaviour, hobbies, home and
work locations, and other personal information. The service
providers are trusted to not abuse this information and to
protect it from other threat actors. Further threats against
historical information will be discussed in Subsection II-H.

D. VEHICLE COMMUNICATION (INSIDE VEHICLE)

Vehicles are equipped with many sensors to report on various
statuses, including the wheel speeds, steering angle, and
suspension movements. The majority of sensors are hard-
wired to an Electronic Control Unit (ECU), as this offers high
reliability and fast communication. ECUs are connected via
a Controller Area Network (CAN) bus (or equivalent), which
can be accessed using a On Board Diagnostic (OBD) reader
on the OBD port or using vulnerabilities that enable remote
access [20]. Modern vehicles typically have a GNSS sensor
connected to an ECU, meaning that location is usually avail-
able via the CAN. Installing an OBD reader requires internal
access to the vehicle, and remote access is challenging and
limited, meaning it would likely be easier for a threat actor to
attach their own external sensor.

Due to lower costs and practical restrictions, some sen-
sors transmit their readings wirelessly. For example the Tire
Pressure Monitoring System (TPMS) consists of a sensor
inside each tire that transmit pressure measurements wire-
lessly. Messages in the TPMS contain a unique identifier that
cannot be changed, and are broadcasted unencrypted [21]
to a range of around 40 metres. This unencrypted broadcast
enables a nearby adversary to eavesdrop the messages and
identify the vehicle. Further, as the identity cannot be altered
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FIGURE 4: Vehicle Communication Threats

without changing the tires, certain protection schemes (such
as pseudonyms [22]) are unsuitable to protect privacy.

Another wireless vehicular communication system that
uses unique identifiers, and thus are a vector for location
privacy leakage, is Remote Keyless Entry (RKE) [23]. When
a button press is required, there is only a single sequence
of short-range broadcasts when the key is used, which is
likely to be insufficient to track the vehicle [24]. Passive RKE
(PRKE) systems, which unlock the vehicle when the key is in
proximity, rely on a periodically broadcasted beacon in either
the key or the vehicle. While the low power of these broadcast
make them difficult to intercept, this repeated communication
containing the unique identifier increases the possibility of
tracking and is a particular issue when the beacon is in the
key, which travels with the driver even outside the vehicle.

E. VEHICLE COMMUNICATION (V2X)
While internal vehicle communications can reveal the loca-
tion context of the vehicle, one of the most likely privacy
threats are when the vehicle broadcasts its own location.
The cooperative awareness message (CAM) is a European
Telecommunication Standards Institute (ETSI) Intelligent
Transportation System (ITS) standard that is periodically
broadcasted by ITS Stations (including vehicles) [25]. CAMs
are mainly used to facilitate vehicular awareness of vital
traffic events by exchanging status information, where the
content differs depending on the station type. For vehicles,
the CAM contains the time, location, speed, heading, time,
acceleration and other attributes. The information transmitted
by CAMs are essential for many safety services in ITS
network such as hazardous location warning, road condition
warning, traffic condition awareness, and collision avoid-
ance [26].

CAMs are sent with a digital signature that allows re-
ceivers to verify the authenticity of the message. They are not
encrypted to minimise the processing time of the messages in
safety critical scenarios, as the processing time is not allowed
to exceed 50 milliseconds to maintain safety [27]. This com-
bination leaks identity information (via the digital signature)
and highly accurate information on where a vehicle is at a
given point in time. By recording multiple CAMs a vehicle’s
route can be tracked. As CAMs are expected to be generated
frequently (between 0.1 and 1 second [25]) this information

has a very high time resolution.
In ITS networks, the applications can be classified into

three groups such as traffic management, user-oriented ser-
vices and safety services. Although ANPR systems are em-
ployed for traffic management, alternatives include barcodes,
Radio Frequency Identification (RFID), Dedicated Short-
Range Communications (DSRC), and Bluetooth. Barcode
systems are rarely used to track moving vehicles, as they
are affected negatively in adverse weather conditions and,
as with ANPR, requires line of sight to the vehicle. Vehi-
cles equipped with an RFID transponder can communicate
receivers on the roadside, enabling vehicle tracking and au-
tomatic toll payments [28]. In Norway, autoPASS requires
vehicles to have a DSRC transponder, which communicates
with toll plazas even when the vehicle travelling up to
100 kph. The unique identifiers broadcasted from vehicles
in the autoPASS system can be recorded by anyone with
appropriate DSRC equipment.

Safety services have mandatory requirements of bounded
transmission delay and low access delay to keep the highest
level of safety while user-oriented services require broad
bandwidth. The Medium Access Control (MAC) layer has
an important role fulfilling these needs [29]. User-oriented
services are the value-added services, which can provide
road information, advertisements and entertainment during
the travels. One example are Time-Division Multiple Access
(TDMA) based MAC protocols, that divide time into slots
and allocates the slots so no more than one ITS node has
access to send messages in a specific slot. The advantage of
this is that wireless collisions are avoided and the timeliness
of protocols can be guaranteed. However, the slot in which
a vehicle broadcasts acts as an identifier. This means that a
unique TDMA MAC slot will allow a semi-local threat actor
to track the trajectories of vehicles by listening to the wireless
communication channel.

F. NON-VEHICLE COMMUNICATION
It is not just communication from the vehicle that can leak
privacy, but also communication from additional devices and
peripherals within the vehicle. For example, when a mobile
phone is within range of a single cell tower, the telecommuni-
cation companies will be aware that the phone is within range
of that single tower. Multiple towers can be used to accurately
trace the location of a phone over time [30]. This information
is often recorded and shared with authorities, including the
police. This kind of tracking is applicable to vehicles because
cellular devices are usually within the vehicle (such as mobile
phone), but also because vehicles increasingly ship with
cellular radios to support standards such as eSIM2.

Many of the location privacy violations that will be pre-
sented require a unique identity to allow tracking a user over
time. The first example of such an identity is the International
Mobile Subscriber Identity (IMSI), which is unique across

2https://www.gsma.com/newsroom/press-release/automotive-industry-
adopts-gsma-embedded-sim-specification
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all mobile phone users worldwide. IMSI catchers are devices
that can be used to obtain the IMSI of active users. The
different cellular protocols require different approaches to
obtain the IMSI number. Typically, a device is required to
act as a fake base station that has mobile devices connect
to it instead of the real base station, allowing a man-in-the-
middle attack to be performed [31]. This is easy to perform
in 2G/GSM as there is authentication in only one direc-
tion (the phone does not authenticate the cellular network).
Man-in-the-middle attacks are possible on both 3G [32] and
4G/LTE [33]. Eavesdropping attacks against the 4G network
can also allow an attacker to recover the IMSI number of
targets [34]. Other techniques have also been investigated
where IMSI numbers can be obtained over WiFI [35]. To
avoid privacy issues with the ISMI number, Globally Unique
Temporary Identifiers (GUTI) are allocated and used in most
scenarios in an attempt to provide identity privacy. However,
the GUTI values do not change frequently enough across a
city area to obfuscate the user’s identity. The work in [36,
Table 1] concluded that the GUTI tended to remain the same
over the 3 days a device was monitored in a city.

The problem with IMSI leakage for vehicles is that users
will bring their mobile phones into vehicles, so leaking
a uniquely identifying number for users will also leak a
uniquely identifying number for the vehicle the user is in.
The downside is that location context is only leaked via the
proxy of signal strength. An adversary would need multiple
IMSI catchers, or a mobile IMSI catcher in order to track a
vehicle over a long distance.

An alternative to using ISMI numbers to track users is
to instead take advantage of vulnerabilities in the 4G/LTE
Radio Resource Control (RRC) protocol [36]. As the user
equipment (UE) (i.e., a phone) does not verify (intentionally
for one case, and unintentionally — a bug — for the other)
that a request for information comes from a telecoms operator
and because the request and response are unencrypted, a

threat actor can trigger these messages to obtain a user’s
location. The responses can contain the radio tower the phone
is connected or GPS coordinates if supported.

Bluetooth devices utilise a short range wireless link to
communicate with each other. Examples of typical de-
vices include MP3 players, wireless headphones, and mobile
phones. An example of an application of mobile phones
using Bluetooth is the rSAP (remote SIM access protocol),
which allows a vehicle to access the SIM card of a phone to
make calls. However, Bluetooth devices perform a periodic
broadcast of an advertisement packet in order to inform
nearby devices of their presence. Privacy is leaked by the
inclusion of the device’s MAC address in the advertisement
packets [37]. By recording where and when Bluetooth MAC
addresses have been detected, the route a device has taken
can be calculated.

Cars are increasingly being equipped with IEEE 802.11
WiFi hotspots that devices within the vehicle can connect
to. These hotspots are intended to offer internet connectivity
via a cellular radio, or to allow devices to control certain
aspects of the vehicle (such as the infotainment system). To
enable connectivity WiFi hotspots broadcast beacon frames
which contain the Service Set Identifier (SSID) among other
information important for devices looking to connect to the
hotspot. The SSID gives the network a name and this leads to
identity leakage. Similar to Bluetooth, both the hotspot and
802.11 devices will broadcast their MAC addresses [38], the
channel the hotspot communicates on is another dimension
that can be used to identify a target in more detail, and there
are a variety of additional pieces of information that can be
used to fingerprint an IEEE 802.11 device [39].

In certain cases it is not necessary for the content of the
message to be leaked for an adversary to be able to trace a
target. For example, in the case of wireless sensor networks
(WSNs) [40] just using the direction from which a message
was received (a kind of context information) an attacker
could trace back to a valuable asset. This direction context
could be obtained using directional antennas, but it is more
likely that multiple omni-directional antennas will be used
instead. An attacker just receiving a CAM or DENM leaks
the time and location of a vehicle. The velocity can be cal-
culated by the difference in distance of subsequent messages,
and those subsequent messages can be linked by checking
that aspects of the calculated values are sensible. Examples
of these checks include, position change and velocity change.

G. BEHAVIOURAL DATA
Different drivers behave differently and have different styles
when interacting with the controls of the vehicle [41]. Some
drivers may typically brake more sharply than others at
traffic lights, for example, and some drivers may maintain
a consistent speed whereas others may fluctuate regularly.
These differences can be used to categorise their driving
style [42, 43] and to assess skill of a driver [44], but the
very personal behaviours behind a wheel can be used to
identify the driver behind the wheel [41, 45], of if there is
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a change of driver [46]. Using twelve signals from the CAN,
including steering wheel angle, velocity, pedal positions, and
torque, Hallac et al. [47] were able to determine the driver
from data collected around single corners.

It is possible to measure the driving behaviours visually
and using RADAR, but velocity, road position, and acceler-
ations can be observed only coarsely and intermittently. An
alternative may be to use the accelerometers and other sen-
sors in smartphones, which some apps may have permission
to access. While GPS provides the location directly to apps,
privacy conscious users may disable localisation while giving
access to other sensors that are not obvious privacy issues.
In [48], for example, the magnetometer is used to detect
changes in the driving angle and then map those changes onto
a potential route.

H. HISTORICAL DATA
Organisations may wish to legitimately collect location infor-
mation about a user after being given affirmative consent to
do so. This data could be used for a wide range of purposes.
For example, Google gathers the live location of users to
provide a number of features, such as live traffic densities
and estimated journey times, how busy a venue is, and many
others. The historical data used to provide these services
will need to reside in a database. The information in this
database could potentially be leaked to a threat actor who was
not expected to be allowed to view the database3. This may
be through vulnerabilities, such as SQL injections, insider
attacks, or other attacks.

All the threats previously mentioned could potentially
have data that leaks privacy stored in a database. This trans-
forms the threat from gathering live information to gath-
ering historical information. While this reduces the impact
duration of the threat, it is possible to gain access to a
database remotely, and the likelihood increases for threats
with difficult and long setups. For example, whereas ANPR
tracking requires a lengthy setup of cameras, networking,
and software, accessing an ANPR database with locations
can be remote and is more likely. In general, the number of
vehicles impacted also increases, as a single database is likely
to contain information about many vehicles.

Data summaries might be published with the intention to
provide useful information but protect the privacy of specific
individuals. However, it is important to ensure that privacy
about a population or organisation is also not leaked. One
example where this was not the case, is when the fitness
tracking app Strava published heat maps of user activity.
However, this data ended up revealing the physical layout of
military bases around the world [49]. A privacy radius can
be used, such that locations within a radius (typically centred
on a user’s home or workplace) are not disclosed. However,
these are imperfect with overlapping privacy zones providing
insight into their origins as well as the risk they may be part
of a database leak.

3https://turtler.io/news/top-11-worst-location-data-privacy-breaches

Impact Low Medium High

Vehicles
Impacted

Single: A
single vehicle
is impacted

Some: A
small number
of vehicles
are impacted

Many: A
large number
of vehicles
are impacted

Threat Actor
Presence Local Semi-local Remote

TABLE 1: Ranking dimensions used to measure location
privacy threats

Name Class # Vehicles
Impacted

Presence
Required

Physically Attached
Sensor TA Single Local

Fleet Management and
Black Boxes TA Single Remote

Smartphone Sensor
Data (Permission —
GNSS)

TA Single Remote

ANPR Tracking TB Many Semi-Local
Tracking via Visual
Features TB Many Semi-Local

Location Based
Services TC Some Remote

CAN Bus Access TD Single (Varies)
Vehicular Sensor
Network Identifier TD Single Semi-Local

PRKE TD Single Semi-Local
Signal Direction
Context

TD /
TE / TF

Single Semi-Local

TDMA MAC Slots TE Single Semi-Local
CAM/DENM Identifier TE Single Semi-Local

Triangulation (e.g., via
Cell Tower) TF Many Semi-Local

ISMI Catchers TF Many Semi-Local
Bluetooth Identifier TF Single Semi-Local
WiFi Identifier TF Single Semi-Local

Driving Style TG Single Semi-Local
Smartphone Sensor
Data (Permissionless
— Magnetometer)

TG Single Remote

Database Leak TH Many Remote

TABLE 2: Privacy Threat Summary

I. SUMMARY
In summary, there are many privacy threats against a vehicle,
some of which actually come from the devices within the ve-
hicle. Table 2 presents a summary of the identified threats and
includes the presence the attacker requires to take advantage
of that privacy threat. This summary includes the number
of vehicles impacted by the privacy threat and the attacker’s
presence as defined in Table 1. The attacker’s presence will
be elaborated on in Section III. Note that a Database Leak
is shown separately as any of the previous threats could be
transformed into an attack on historical data by storing it in a
database.
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III. THREAT ACTORS
In order to properly understand how a privacy threat will
be exploited, it is necessary to understand the threat actor
performing the exploitation. There exist multiple actors who
wish to violate the location privacy of a vehicle. These actors
each have different capabilities, resources, and expertise,
which changes the ways in which they are able to obtain
location information about vehicles. These actors also have
different intents, for some threat actor the usage of this
data will have a malicious purpose, others will be interested
in gathering data to provide services, whilst others will be
looking to benefit all road users. This section will analyse the
threat actors who may wish to violate location privacy and
will consider the desire to protect against them.

To perform this analysis we identify four key attributes that
indicate what actions threat actors can perpetrate: (i) capabil-
ities, (ii) equipment, (iii) intent, and (iv) presence. Where ca-
pabilities indicates the knowledge, skills and experience the
threat actor has, equipment specifies the resources available
to the threat actor, intent is for what purpose the threat actor is
violating location privacy, and presence indicates the location
of the adversary.

A. THREAT ACTOR CAPABILITY
Layman→ Proficient→ Expert→ Multiple Experts

• Layman: Basic knowledge and low technical profi-
ciency. Uses existing tools to exploit vulnerabilities.

• Proficient: Able to develop new tools to exploit vulner-
abilities based on having experiences in the past.

• Expert: Extensive knowledge in the system domain.
• Multiple Experts: Multiple individual with expert

knowledge of the system. Will have insider knowledge
that has not been made public.

The knowledge and skills that the threat actor has will
specify the threats that the threat actor can take advantage of.
Typically less capable threat actors will be able to perpetrate
fewer privacy violations. However, more proficient threat
actors may develop highly technical privacy attacks that with
the intent of providing them to less capable threat actors
to deploy. The capability level will also link with the setup
time before privacy can be violated, with a higher capability
leading to a lower setup time.

B. THREAT ACTOR RESOURCES
Off-the-shelf→ Standard→ Specialised→ Bespoke→

Multiple Bespoke

• Off-the-shelf: Access to reasonably priced off-the-shelf
equipment. This equipment will be limited in its capa-
bilities.

• Standard: Access to expensive widely available off-
the-shelf equipment.

• Specialised: Access to expensive specialised equip-
ment.

• Bespoke: Able to purchase or design custom equipment,
but limited to small deployments.

• Multiple Bespoke: Able to purchase or design multiple
piece of custom equipment and deploy in bulk.

The equipment that a threat actor has access to will deter-
mine which threats it is capable of taking advantage of. In
some of the privacy threats discussed so far, such as track-
ing via Bluetooth and WiFi, simple and cheap off-the-shelf
equipment will be sufficient. Other threats will require stan-
dard equipment such as cameras to perform ANPR tracking.
Whereas, specialised equipment would be necessary to track
CAM/DENM identifiers sent over 802.11p, and bespoke
equipment needed to deploy ISMI Catchers. Alternatively, it
may be possible to use standard equipment such as Software
Defined Radios (SDRs) instead of the specialised or bespoke
equipment. For example, a threat actor could implement an
802.11p radio using an SDR rather than purchasing 802.11p
equipment. The downside to this is that the threat actor would
require a greater technical knowledge and the setup time
would be higher.

C. THREAT ACTOR INTENT
Benign→ Unintentional→ Malicious

• Benign: A threat actor that collects information that
is kept secure and private. The information is used for
good purposes, such as providing a service, or improv-
ing the transportation network.

• Unintentional: A threat actor that collects information
and intends to keep it secure and private, but fails to
do so. This may be due to poor security leading to
data breaches, or released datasets not being properly
anonymised.

• Malicious: A threat actor that intentionally obtains in-
formation that aims to use it for bad purposes. This may
involve releasing or selling unanonymised data.

It is important to understand the intent of a threat actor.
Different threat actors intend to collect data that violates the
privacy of a vehicle for different reasons. The typical intent
that is protected against is malicious, where the threat actor
intends to violate privacy in order to cause harm to the vehicle
or person privacy is violated against. However, in other cases
the threat actor may not intend to violate privacy of users,
but may unintentionally reveal it to many people. Command
examples include government officials leaving unencrypted
disks on public transport. It may also be the case that privacy
violating information is collected to improve the lives of peo-
ple the data is gathered about. Privacy preserving techniques
will be different when considering different intends of the
threat actor. Additional techniques will also be available to
benign and unintentional threat actors to protect privacy.

D. THREAT ACTOR PRESENCE
Internal→ Local→ Semi-Local→ Remote

• Internal presence is when the threat actor is able to
access the inside of the vehicle. This includes physical
access to components within the vehicle’s body, but also
if malware is deployed to internal components remotely.
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Threat Actor Motivations Capability Opportunity Impact Resources

Amateur (Cracker)
Curiosity, Self-
actualisation,
Passion

Layman Open access
knowledge (Low)

Unlinkable data,
unidentified
vehicle tracking

Low financial,
Off-the-shelf
equipment

Unorganised Crime
(Hacktivist)

Financial gain,
Vehicle theft,
Passion

Proficient
Restricted
knowledge
(Medium)

Single identified
vehicle tracking

Standard
equipment

Organised Crime
(Cyber Criminal)

Financial Gain,
Ideology Expert

Sensitive
knowledge
(Medium or
High)

Single or
multiple
identified vehicle
tracking

Specialised
Equipment

Organised
Corporation

Financial Gain,
build services
based off data,
Ideology

Multiple Experts
Sensitive
knowledge
(High)

Multiple
identified
vehicles tracking

High financial,
large bespoke
deployments

Government

Improve
infrastructure,
track criminals,
Political

Multiple Experts
Critical
knowledge
(Critical)

Single-multiple
identified
vehicles and
traffic tracking

Nationwide
bespoke
deployments

TABLE 3: Example Threat Actors

• Local presence is when the threat actor is physically
located outside of the vehicle (typically within several
meters of the vehicle). This threat actor is able to attach
devices to the outside of the vehicle.

• Semi-Local presence is when the threat actor is phys-
ically nearby the vehicle. They may be out of sight of
the vehicle, but still in wireless range. This threat actor
may be capable of eavesdropping or visually observing
vehicles.

• Remote presence is when a threat actor only has access
to vehicle information via the internet. This threat actor
is incapable of observing the vehicle locally, but may
gain control of devices within the vehicle in order to
obtain Internal presence to observe events.

The presence of the threat actor is important in under-
standing the threats it can perpetrate. A local threat actor
will be capable of perpetrating more privacy violations, but
this comes at an increased difficulty and risk for the threat
actor (such as capture by authorities). Whereas remotely
violating privacy is limited in the privacy violations that can
be performed, but comes with a lower risk to the threat actor.
There is also an impact regrading the quantity of vehicles that
a threat actor can violate privacy for, as semi-local and remote
threat actors will likely be able to impact more vehicle’s
privacy.

E. EXAMPLE THREAT ACTORS
A table of example threat actors is shown in Table 3 which is
created based on the works in [50, 51, 52]. These threat actors
are specific examples of different combinations of intent, ca-
pabilities, and resources, but also includes details specifying
the threat actor’s: motivations (why does it want to violate
location privacy), opportunity (how aware of situations in
which privacy can be violated), and the impact it can have on
location privacy. It is important to consider who is violating

privacy, because there will be limitations to the privacy a
technique can achieve based on the type of threat actor that is
violating privacy.

IV. PRIVACY PRESERVING TECHNIQUES
With an understanding of the threats to vehicular location
privacy and the threat actors that perpetrate the threats, the
techniques used to provide privacy can be examined. There
has been much work performed in developing techniques
to protect location privacy. This section will examine pri-
vacy protection techniques and classify them into five cat-
egories: (A) Signal Jamming, (B) Perturbing Identity, (C)
Perturbing Data, (D) Changing Communication Patterns, and
(E) Changing Behaviour. These categories are intentionally
broad due to the wide range of privacy threats being consid-
ered. More specific categorisations have been considered in
other work that focuses on specific location privacy threats
(such as in [1]), but are not suitable for this broad range of
threats.

A. JAM SIGNAL
To protect against certain types of threat a vehicle may seek to
jam signals being broadcasted. For example, if a threat actor
has attached a GNSS sensor to the vehicle, then jamming the
GNSS signal would prevent location logging. The downsides
are that (i) the vehicle would also not be aware of its location
via GNSS, (ii) an additional signal is present that a threat
actor could possibly track, and (iii) GNSS jamming is illegal
in many parts of the world (e.g., Title 47 U.S.C §§ 301,
302(b) and 333 for the USA4 and Section 68 of the Wireless
Telegraphy Act 2006 for the UK5). For many threats, jam-
ming signals would be unsuitable to provide location privacy
because it denies availability.

4transition.fcc.gov/eb/jammerenforcement/jamfaq.pdf
5legislation.gov.uk/ukpga/2006/36/pdfs/ukpga_20060036_en.pdf
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B. PERTURBING IDENTITY
To protect the identity, one option is to encrypt the uniquely
identifying number broadcasted in messages. For example,
in a TPMS encrypting the per sensor identifier while leaving
the rest of the message unencrypted protects the identity and
facilitates issue diagnosis by humans due to the unencrypted
contents [53]. Each time a message is broadcast a different
encrypted value would be sent, essentially making it appear
as if a random identifier was being used. This means that the
message contents can still be used by existing tools, meaning
both backwards compatibility and privacy are provided. To
obtain a stronger encryption the authors of [53] propose the
encrypted identifier be lengthened from 32 bit to 64 bit, but
this would break backwards compatibility.

This technique works for TPMS because the sender and
receiver are only a single communication hop away from
each other, and hardware deployers can ensure the vehicle
is aware of what TPMS identifiers to expect and how they
will be encrypted. For other systems that do not have such a
tight integration, this approach of encrypting the identifying
information such that it is different with each broadcast may
not be feasible.

To enable vehicle tracking, having a consistent identity
that can be observed at different locations and times allows
a threat actor to link individual observations into a more
comprehensive dataset of the route taken. One of the key
techniques to protect location privacy of vehicles is the use of
temporary pseudonyms that change frequently. By changing
pseudonyms the threat actor is less able to link between
individual observations [54]. Such a technique is useful for
a variety of communication protocols, such as V2X, WiFi,
Bluetooth and others.

Pseudonyms can be used in different circumstances. For
example, a benign threat actor may be gathering data (which
they have been given permission to do so) and anonymising
the data by generating pseudonyms for users themselves.
Alternatively, the vehicles themselves may be periodically
changing the pseudonyms they broadcast to other vehicles
and road-side infrastructure to protect against data gathering
by malicious threat actors.

One of the recent innovations currently being experi-
mented with are digital number plates [55]. They use an e-ink
display to show the vehicle’s registration number and open
the possibility to show alerts that change along with other
messages. Because the number plate displayed is customis-
able, the registration number could be a pseudonym that is
periodically changed. As this technique would then be similar
to pseudonyms used in wireless broadcast techniques, unlink-
ing strategies would be needed to ensure the old pseudonym
could not be linked to the new pseudonym. An alternate
approach could be to use adversarial machine learning. As
the display on the number plate is customisable, it may
be possible to display a pattern that prevents the optical
character recognition component of ANPR from being able
to discern the characters in the number plate [56].

Identity anonymity-based approaches are commonly used

to protect the location privacy of LBS users. This is neces-
sary because LBS providers are assumed to correctly pro-
cess and respond to requests, but they might attempt to
disclose identity of a user [57]. k-anonymity [58] is one
of the most popular anonymity-based approaches, where it
focuses on controlling the release of quasi-identifiers of users
in a dataset, where quasi-identifiers are a combination of
characteristics that enable linking to a user. The technique
requires that the each quasi-identifier of an individual must be
indistinguishable from k− 1 other individuals, where k > 1.

In the context of protecting vehicular location privacy
within LBS, the linking attack is successful if the user’s
location is revealed by the queries sent to a LBS. Anonymity
can be achieved by cloaking a location area, such as by New
Casper [59], Prive [60], and PrivacyGrid [61] which provide
k-anonymity by cloaking an area that contains at least k users
at the time of a query submission. Other approaches (such as
[57]) introduced personalised minimum level of anonymity
and used query submission delay to provide the minimum
level of anonymity.

However, it can be difficult to achieve k-anonymity for
LBS users in practice. The number of k vehicles might
be very less in sparse traffic and keeping the boundaries
of the cloaked location area is very large might cause a
significant loss in the utility. Furthermore, a shortcoming of
k-anonymity is that if an adversary has sufficient background
information it may be capable of distinguishing an individual
from the k others [62].

There are limitations to perturbing identity because certain
aspects of the vehicle are immutable (or sufficiently difficult
to change). For example, the colour and shape of a vehicle
can contribute to uniquely identifying it and both would
be difficult to change. Also as digital licence plates are in
their infancy, nearly all vehicles will be fitted with standard
number plates which require time and effort to change. The
frequency that these kinds of identity can be changed is lower
than other aspects of identity (such as wirelessly broadcast
pseudonyms), which means they can be used to link higher
rate identity change techniques.

There can also be limitation against specific privacy
threats. For example, using temporary pseudonyms to prevent
tracking of WiFi devices is insufficient as there are a number
of implicit characteristics of using WiFi devices (network
destinations, advertised SSIDs, IEEE 802.11 options, and
sizes of broadcast packets) that allows a threat actor to be
able to potentially identify a device [39]. This means that
multiple privacy preserving techniques will need to be used
for a subset of privacy threats.

C. PERTURBING DATA
Privacy of individuals can be also protected by perturbing
records in a database. The existing data perturbation tech-
niques include additive noise, aggregation, swapping records,
or generating synthetic data based on statistics of the original
data [63]. The data perturbation techniques recently got more
attention in research as a consequence of being simple and
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cost-efficient compared to most of the other Privacy Preserv-
ing Data Mining (PPDM) techniques [64]. The data perturba-
tion can be analysed in two categories as input perturbation
and output perturbation. Input perturbation techniques, where
the original data are randomised and the computation is done
on the randomised data; and output perturbation, where the
computation is done on the original data but the answers
are published with noise [65]. Differential Privacy (DP) is
an emerging privacy preserving technique which guarantees
a strong privacy preserving. Centralised Differential Privacy
(CDP) and Local Differential Privacy (LDP) are the main
models used to achieve DP, however there are emerging
studies on hybrid DP models [66]. CDP works based on
output perturbation where the original data is aggregated in
a trusted curator and the amount of perturbation is calibrated
according to the query outputs. The main propose of CDP is,
ensuring the query outputs are almost same with addition or
removal of a single record in a database. Besides that, input
perturbation techniques such as Randomised Response [67]
can be used in LDP. In LDP, data owners locally perturb their
data before transmitting them to the any other parties. The
computations and analysis are run directly on the perturbed
data. Thus the need of a trusted curator disappears for LDP
and the data owners can have plausible deniability. LDP pro-
vides stronger privacy guarantee than CDP but concomitantly
induces greater noise [68]. Alvim et al. [69] discussed the
usage of some LDP techniques for metric space including
location data. The challenge of LDP is that it can drop off the
usability of data more than CDP depending upon the size of
the data set. The extensive data sets with deployment of LDP
provides better utility.

The application of DP for location data is an emerging
research area. Most of the studies considered the CDP model.
The notion of geo-indistinguishability [70] is proposed to
preserve the exact locations of individuals in a radius r with
the level of privacy preserving depending on r and a distance-
based probabilistic noise is introduced to the location data.
However, due to the distance based sensitivity measurement
and sparsity of location dataset, it might be needed to add
a large amount of noise to ensure DP. Cormode et al. [71]
applied a hierarchical tree structure to decompose geometric
areas into smaller areas. Herewith, they could reduce the
amount of needed noise. Ou et al. [72] claimed the privacy
model should not only LBS user‘s privacy but also location
correlation among multi-user. They have proposed a model to
quantify location correlation of two users by hidden Markov
model and protect the multi-user location correlation. DP
techniques promise a rigorous privacy preserving; there are
limited applications that adopted DP in practise. In particular
to the vehicular domain, the implementation of DP investi-
gated for protection of floating car data [73].

D. CHANGING COMMUNICATION PATTERNS
As the MAC time slot assignment can be linked to the identity
of a vehicle, if a vehicle changes its pseudonym then the
MAC time slot remaining the same would allow a threat

actor to link the old and new pseudonym. The work in [74]
synchronises the change in MAC time slot and pseudonym to
prevent the attacker from performing this linking.

To prevent a threat actor from gaining information, one
option is for the vehicle and the devices to cease broadcasting
for sufficient time to reduce the linkability of its location
before it stopped broadcasting and the location after it starts
broadcasting again. In most situations this is undesirable
as it limits the availability of the services being provided,
which could potentially lead to safety issues. It would also
be unacceptable to users to cut off certain services whilst
they are in use (e.g., during a call). However, there are some
situations where staying silent does not lead to a significant
safety decrease. For example, CAM pseudonym schemes
rely on a silent period after changing pseudonyms in a
large group to prevent linkability between the old and new
pseudonyms [54]. Without the silent period a threat actor
would be able to link the CAM pseudonyms.

The Received Signal Strength Indicator (RSSI) is a value
that indicates how strong a wireless signal is while a message
is being received. Base on this value the distance of the
vehicle can be estimated [75]. By varying the DSRC transmit
power the accuracy of the localisation of the vehicle can be
reduced.

To resolve the issues with the way Bluetooth devices leak
identity information that facilitate tracking, in the Bluetooth
4.2 standard a new feature called LE Privacy was introduced.
The aim of this technology is to randomise the MAC address
used to advertise the device [76, 77]. Once devices are paired
they will both possess an Identity Resolution Key (IRK)
which allows translation of the randomised MAC address
into the real MAC address. This way devices can connect
to each other and know if identity of the connected device,
but observers see MAC addresses that appear to randomly
change at a rate set by the manufacturers.

It is important that manufacturers provide a way to disable
backwards compatibility with the old advertising technique,
because if it and LE Privacy are both enabled then no privacy
is provided. For example, in 2016 a report into fitness tracker
privacy found that all devices except one of those investigated
(Apple Watches) leaked persistent MAC addresses by not
using BLE Privacy [78].

For WiFI additional perturbations need to be made as it can
be insufficient to just change pseudonyms [39]. Additional
aspects of using WiFi also need to be varied, including:
network destinations, SSID probes, broadcast packet sizes
and MAC protocol fields.

In order to track vehicles a correlation often needs to be
made with the location at which the vehicle was detected
and when that vehicle was detected. In order to prevent
this correlation messages can be delayed and reordered [79].
However, this has limited uses in a vehicular context, as many
message will be safety critical and therefore need to have
minimal delay.

Rather than delaying and reordering messages, if possible
the messages could cease broadcasting. This technique would

10 VOLUME 4, 2016



M. Bradbury et al.:Privacy Challenges with Protecting Live Vehicular Location Context

Class Name Privacy Protection Feasibility Cost

PA Jam Signal Denies access to GNSS sensor,
or a communication link.

Low feasibility. Jamming is
illegal in many places. Users
will still want services.

Denies availability to services that are
jammed.

PB

Encrypt Unique
Identifier Prevent identity leakage.

Useful in specific
circumstances, but infeasible
in general.

Computational and communication
overhead.

Temporary
Pseudonyms

Decorrelates identity of
vehicle at specific time and
location

High. Useful to many different
privacy threats.

Computation and communication in
obtaining pseudonyms and handling
identity change. Safety costs in some
applications (due to required silent period).

k-anonymity

Group k data of individuals
into a range to make each
individual indistinguishable
from k − 1 others.

High. Can be used to group
LBS users

Challenges when data has
high-dimensionality, plus vulnerabilities to
composition and background knowledge
attacks.

PC

Differential
Privacy

Ensures the outcome of any
analysis is not significantly
affected by the removal or
addition of a single record by
perturbing data in a controlled
manner.

Useful for providing strong
privacy guarantee but the
real-life applications are still
under the research.

Introduces a trade off between privacy and
efficacy (e.g. Privacy and Safety, Privacy
and Efficiency).

Generative
Adversarial
Networks

Generates new datasets with
similar patterns based on large
anonymised datasets.

High in general.
Computationally expensive
and still relies on a large
quantity of real-world data.

Generated data is not real-world data and
may not share all its detail and properties,
meaning applications or models using it
may be less successful. Privacy is not
guaranteed and synthetic data may disclose
information about participants in the
training set.

PD

Vary Transmit
Time

Decorrelate the time at which
a message was sent.

High in general. Low for
applications where low latency
is important.

Increase in delivery latency.

Vary Transmit
Power

Decorrelate the location and
direction from which a
message is sent.

High. Decreased range in which other vehicles
can receive messages.

Cease
Broadcasting

By not broadcasting a signal is
not available for a threat actor
to track.

Low in general, as this denies
availability to the services
provided. In specific use cases
this may applicable.

Denies service availability.

PE
Change route
taken

Instantaneous position leaked,
obfuscation over long-term
history.

Limited by opportunities to
drive in different ways (e.g.,
by road network layout and
network degree).

Increased cost to driver (fuel, mental effort
- thinking of new routes).

TABLE 4: Privacy Provision Techniques Summary

only be feasible to be used to protect certain types of privacy
threats. For example, in PRKE systems, the key does not need
to inform the car to unlock the doors when the driver is still in
the car or while the car is moving. The key could detect these
and similar scenarios and cease broadcasting the beacon to
save power [80] and also to provide privacy.

E. BEHAVIOUR CHANGE

A vehicle can be tracked more easily if it takes the same route
each day, compared to when its route varies. In particular,
it is possible to use the same static sensors and cameras to
track the vehicle when the same route is taken. One way
to increase privacy, therefore, is to vary the route taken by
a vehicle each day. Ideally, this would mean changing the
end destination and the roads taken to get there. However,
commuters typically travel to a single destination, meaning
the vehicle is only able to vary the route taken. In this way,

the vehicle is seen by different trackers and some uncertainty
is introduced to its whereabouts and/or destination. However,
with networked or centralised identification and tracking over
a sufficiently large area, altering routes taken each day will
likely be ineffective in providing privacy.

F. OPTIONS AVAILABLE TO A BENIGN THREAT ACTOR

To a threat actor that has gathered location information data
for a non-malicious purpose there are additional techniques
to protect privacy that those organisations can take. It may
be important for them to provide this protection as there may
be financial (e.g., fines) or reputation repercussions that the
organisation wishes to avoid.

One of the simplest techniques to protect privacy is to
delete the gathered information. For example, Transport for
London is only allowed to keep ANPR tracking data for 28
days and the London Police are allowed to keep it for 2
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years [9]. By deleting the data it will not be a resource that
another threat actor could attempt to obtain.

An alternate to differential privacy may be to use Gen-
erative Adversarial Networks (GANs) [81]. GANs can be
trained on the anonymised location traces stored in a
database, and then be used to generate a new dataset with
similar patterns to the datasets it was trained on. This could
potentially allow a dataset to be released to the public (or sold
to another entity) whilst protecting the privacy of the users
whose location data was used to generate the new dataset.
This technique would only be applicable to benign threat
actors.

G. SUMMARY
There are many options to protect location privacy threats
which are summarised in Table 4. However, to protect loca-
tion privacy a trade-off often needs to be made. For example,
when changing pseudonyms used in Cooperative Awareness
Messages a silent period is needed to decorrelate the previ-
ous identity of a vehicle from the subsequent identity. This
silent period means that some safety is traded-off for the
proper functioning of the privacy preserving technique. It is
important to understand what users are giving up in order for
privacy to be provided. In some cases the cost may be too
high compared to the privacy gained.

V. ANALYSIS
A. IMPACT OF TECHNIQUE INTERACTION
The techniques presented here mostly focus on individ-
ual problems, with the exception being MAC slots and
pseudonyms in [74]. This means that the interaction of so-
lutions is not considered by existing techniques. This is a
problem for certain solutions, for example, when a vehicle
changes the pseudonym it uses in the CAMs it broadcasts, un-
less all the other techniques that also use pseudonym change
simultaneously no privacy will be provided. This is because
an adversary will be capable of linking the old CAM identity
to the new CAM identity via the other sources of identity
within the vehicle. An example of this is shown in Figure 6
with a time period in the centre where an attacker can link
pseudonyms. This is problematic for vehicles because there
are many devices present in the vehicle that it may not have
authority over to manage which pseudonyms are used to
certain points, or how other privacy preservation techniques
work.

To understand how threats and techniques relate Figure 7
shows a mapping between the class of threats and class of
solutions that can be used to provide location privacy for that
threat. This mapping has been created by first classifying
privacy threats in Section II, classifying privacy techniques
in Section IV, and then observing the class of techniques that
can be used to protect against threats in a specific class.

Using this mapping between threats an techniques, a ma-
trix of privacy threat interactions is presented in Figure 8
which is generated from Algorithm 1. It shows how the
privacy preserving technique for the threat on the left may

Algorithm 1 Technique Interaction Consideration

. What changes in the provision of privacy against
threat1 might need to be made when also protecting
against threat2?

1: function COMBINE(threat1, threat2)
. Get the set of techniques used to protect against these
two specific threats

2: technique1← TECHNIQUE(threat1)
3: technique2← TECHNIQUE(threat2)
4: if threat1 = threat2 then
5: return technique1

. Which techniques are used by both threats?
6: comb← technique1 ∪ technique2

. The threat class the specific threats are in
7: threatclass1← THREATCLASS(threat1)
8: threatclass2← THREATCLASS(threat2)

. The techniques used to protect a threat class
9: threattech1← THREATTECHNIQUES(threatclass1)

10: threattech2← THREATTECHNIQUES(threatclass2)
. Which techniques are used by threattech2?

11: comb← comb ∪ threattech2
. Only consider techniques possible to protect

against threat1
12: comb← comb ∩ threattech1
13: return comb

need to be changed when the privacy threat on the top is
being considered. For some threats multiple aspects of the
privacy techniques need to be considered (two triangles of
different colours), but for others the entry is empty because
the solution interaction either does not interact or there are no
overlapping ways to protect privacy, and therefore changes
do not need to be made to the privacy preserving technique.
This interaction matrix is intended to be updated as new
techniques are developed, or new privacy threats identified.
The source code used to generate this diagram can be found
at6.

A consideration highlighted by Figure 8 is that privacy
preserving techniques that previously only used one kind of
protection may need to use new kinds of techniques when
considering new threat combinations. For example, when
broadcasting over WiFi, Bluetooth or DSRC 802.11p the
device’s identity needs to periodically be changed. But when
considering threat actors who are analysing the directional
context of signals, the transmit power or transmit time needs
to also be varied to protect location privacy.

Similar considerations are need when privacy preserving
techniques of different kinds of threats interact. For example
in LBSs when moving from one area to another the vehicle’s
LBS queries will be mixed with a different set of vehicles,
because of this the vehicle should change its identity (which
should lead to other devices in the vehicle changing their
identities) to prevent linking between the two different areas.

6https://github.com/MBradbury/vehicle-privacy-analysis
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FIGURE 6: Identity Change Interactions
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FIGURE 7: Mapping of Location Privacy Threat Classes to
Privacy Preserving Technique Classes

Alternatively as indicated by Figure 8 the contents of V2X
messages may need to change to protect privacy. However,
due to the functional constraints on the accuracy of these
messages (to ensure safety), protecting privacy in this manner
may be infeasible.

B. THREATS CLASSIFICATION
What data does the threat actor obtain and how does it reveal
the location of the vehicle?

• Direct: The data specifies the location of vehicle
• Indirect: The data needs to be analysed to obtain the

location of the vehicle.
Direct access to the location means that a threat actor can

see where the vehicle is at over time, without any further
processing. For example, GPS coordinates from a GNSS
sensor provides the location over time with high fidelity, and
can be immediately viewed on a map. Indirect access requires
some processing in order to extract or interpolate detailed
trajectories. ANPR systems are able to view a vehicle driving
through a road network, but the data is sparse and must be
interpolated estimate where the vehicle is over time.

When is the data from?

• Current: The threat actor has access to the live stream
of data

• Historical: The threat actor has access to old data

In Figure 9 the difficulty of different classes of threat actors
violating different classes of privacy threats is shown. Note
that violating real-time privacy is typically harder than vio-
lating historical location privacy [19]. A real-time violation
requires an attacker to either set up their own network of
sensors, or gain access to an existing system. In either case,
they must have the capabilities to process the data in real-
time, and they may be thrown off a breached system at any
time. A historical violation requires only access to a database,
or database leak. This allows the attacker to proceed in their
own time, and reduces the computational requirements.

The impact of violating different classes of privacy can
be different based on the historical data present. A real-
time attack which allows the vehicle’s current location to be
revealed, but depending on the age and time period of the
historical data significant information may also be inferred.
For example, if a historical violation grants access to old and
out of date information, it may be less relevant to the vehicle
and its user. However, historical data of a recent time period,
or over a long duration can have a greater impact as it can be
used to infer additional information about the vehicle’s user.
For example, by pattern of life analysis an adversary could
predict where the vehicle will be in the future. This means
both historical and real-time privacy leaks can be high impact
threats.

VI. DISCUSSION
This paper has examined many privacy threats, threat actors
interested in violating privacy, and privacy preserving tech-
niques. However, there are many additional considerations
when considering vehicular location privacy, especially as
there are instances where tracking of vehicles is necessary,
and other cases where violating privacy leads to a greater
utility than protecting privacy. This section will discuss some
of these additional issues around vehicular location privacy.

VOLUME 4, 2016 13



M. Bradbury et al.:Privacy Challenges with Protecting Live Vehicular Location Context

P
h
ys
ic
al
ly

A
tt
ac
h
ed

S
en
so
r

Physically Attached Sensor
F
le
et

M
g
m
t
an

d
B
la
ck

B
ox

Fleet Mgmt and Black Box
S
m
ar
tp
h
o
n
e
G
N
S
S
S
en
so
r

Smartphone GNSS Sensor
A
N
P
R

ANPR
V
is
u
al

T
ra
ck
in
g

Visual Tracking
L
o
ca
ti
o
n
B
as
ed

S
er
vi
ce
s

Location Based Services
C
A
N

B
u
s
A
cc
es
s

CAN Bus Access
V
eh
ic
u
la
r
S
en
so
r
N
et
w
or
k

Vehicular Sensor Network
P
R
K
E

PRKE
S
ig
n
al

D
ir
ec
ti
o
n
C
o
n
te
xt

Signal Direction Context
E
av
es
d
ro
p
T
D
M
A

M
A
C
S
lo
ts

Eavesdrop TDMA MAC Slots
E
av
es
d
ro
p
V
2
X

Eavesdrop V2X
C
el
l
T
ow

er
L
o
ca
lis
at
io
n

Cell Tower Localisation
IS
M
I
C
at
ch
er
s

ISMI Catchers
E
av
es
d
ro
p
B
lu
et
o
o
th

Eavesdrop Bluetooth
E
av
es
d
ro
p
W
iF
I

Eavesdrop WiFI
D
ri
vi
n
g
S
ty
le

an
d
B
eh
av
io
u
r

Driving Style and Behaviour
D
at
ab

as
e
L
ea
k

Database Leak

Legend: How may aspects
of existing solution for threat
on left need to be adjusted
to consider threat on top

Jam Signals

Perturb Identity

Perturb Contents

Change Communications

Change Behaviour

Same Technique

No Solution / Interaction

E
xi
st
in
g
P
ri
va
cy

S
o
lu
ti
o
n
F
or
:

Want to Extend to Consider Privacy For:

FIGURE 8: Threat Interaction Matrix

A. WHO SHOULD WE EXPECT TO BE ABLE TO TRACK
VEHICLES?

This work has focused on the protection of vehicular location
privacy, but there are many examples where users gain utility
from revealing their location. Users will want to provide
locations to LBS in order to get recommendations that are
targeted to their journey. Autonomous vehicles will want to
inform nearby vehicles of their location, velocity, identity
and the time at which this data was recorded to ensure that
other vehicles collaborate to ensure that no safety properties
are violated. Toll Roads and Car Parks will track vehicles
to ensure the owners are correctly billed for using those
services. It is also the case that Governments will want to
understand the behaviour of their citizens to better design
services in a cost effective manner based on where demand
is. The police force of a country will need to be able to
track vehicles to ensure that criminals can be captured. For
example, the EU Cross-Border Enforcement Directive [82]
aims to track users who commit traffic offences in an EU
member state different to the one the vehicle is registered in.
Part of this directive involved sharing databases on drivers,
which may contain sensitive location information.

These are just a subset of examples where vehicle tracking
is required. There are many use cases where a user desires
location information to be shared, where there is a contrac-
tual requirement to share location information, and where
there is a legal requirement to share location information.
It is important to consider these cases and their interactions
with location privacy threats and techniques, as they add
additional considerations when location privacy needs to be
provided. However, they potentially allow privacy provision
to be ignored and the cost of providing privacy protection to
be avoided under certain use cases.

B. ACCEPTABLE PRIVACY VIOLATIONS

In certain cases the desire to remain private may be exceeded
by the utility gained by a user revealing their location. One
example of this is the eCall system, where upon a serious
collision authorities will be automatically notified. The data
sent to them may include “the triggering mode (automatic
or manual), the vehicle identification number, vehicle type
and propulsion, timestamp, vehicle direction, current and
previous positions, and number of passengers” [83]. The key
aspect of eCall is that it does not broadcast continuously, but
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only in case of an emergency. This means that no privacy
is leaked during the normal use of the vehicle. However, in
rare circumstances where lives are at risk the vehicle will
intentionally leak privacy with the intent to speed up life
saving responses. It is likely most users would be willing to
give up privacy to obtain a higher chance of survival.

C. LIMITATIONS
Many social media sites and messaging apps allow a user
to provide their location to the LBS which is then shared
with other users of the service. In some cases the user will
share with a select few people, but in other cases the user
may not have set up their privacy settings and will broadcast
their location publicly on the internet. In this scenario, the
user has wilfully chosen to opt-out of location privacy and
therefore it is unnecessary to attempt to consider the privacy
protection interactions from other privacy threats.

For some scenarios it may be desirable to provide short-
term linkability, but long-term unlinkability. This means that
in one event each vehicle should be aware of who is present,
but in subsequent events it should not be possible to link
vehicles between participating in these events. This long-
term unlinkability will only be protected again certain threat
agents, such as other vehicles on the road or malicious
eavesdroppers. There may be the need to unpack the long-
term unlinkability of a vehicle by a trusted authority. For
example, in the case of a car crash the investigators and
insurance companies may need to violate privacy in order
to determine the events that occurred. Such a scheme could
be provided by group signatures in [84]. An issue with this
approach is that the trusted authority who issues the group

signing keys and maintains a database of how to reveal the
identities becomes a new privacy threat.

D. EFFECT OF AUTONOMY
As autonomous vehicles are going to become increasingly
common on roads, they will lead to new privacy threats,
but will also reduce the risk of existing privacy threats. For
example, currently it is possible to use vehicle sensors data to
identify different driving styles and drivers from their driving
signatures [85, 86]. Once a driver’s identity is disclosed, it
allows linking other trajectories to that driver. However, the
driving signatures will become less useful with autonomous
vehicles because a human driver will not be in control of the
vehicle (when it is fully autonomous). Any analysis of the
driving behaviour will leak information about the systems
controlling the vehicle, but the driving behaviour is unlikely
to leak privacy of the passengers. To resolve other issues the
movement of vehicles may be adjusted to arrive at a hub
at the same time in order to synchronise the time at which
pseudonyms are changed. Autonomy also facilitates coop-
erative driving of multiple vehicles. Within this context, the
autonomy might remove some of the identifying behavioural
information leaked while driving and enhance the location
privacy [87].

E. LOCATION SHARING IN A MILITARY SCENARIO
Sharing location information within a collaborative work
might be necessary in many cases. In an operation with
multiple parties, each party might need to conduct computa-
tion based on the others location information; however, none
of them might be willing to disclose their privacy. One of
the most appropriate example for this case is the military
operations consisted of allies who have mutual benefits of
cooperation but cannot fully trust each other. To be more
precise, in the case the multiple allies are proceeding to
the same target, they would like to know about each others
location to prevent friendly fire. The other scenario might be,
the country A decided to bomb a target x location. However,
A does not want to damage its relationship with its allies who
might have some area of interests around x such as secret
military bases or agencies. None of the countries would like
to disclose their private areas to each other. While A would
not like to disclose the exact location of x, similarly the allies
would not like to disclose their private areas [88]. The similar
scenario is valid for the proceeding military vehicle units of
allies in an operation. While they might need the location of
other units to ensure coordination among them, none of the
allies would like to disclose their privacy. The question here
is, how to do computation based on the data from multiple
owners without disclosing the privacy. An external trusted
third-party aggregator can solve this problem. However, the
solution without using trusted aggregator has been assigned
to the secure multi-party computation in the literature [89].

VII. FUTURE WORK
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A. LOCATION PRIVACY AGAINST MULTIPLE
SIMULTANEOUS THREATS
This work has argued that it is insufficient to consider pro-
tecting location privacy threats against vehicle in isolation. It
is necessary to consider the wider privacy threat landscape,
because the way privacy preserving techniques interact can
lead to no privacy actually being provided. So when design-
ing privacy preserving techniques, multiple threats need to be
simultaneously considered.

As privacy provision must consider other privacy threats
concurrently, another issue is how to coordinate the privacy
provision between multiple devices. This could involve a
central authority (such as the vehicle) being in control of how
privacy techniques synchronise. Alternatively a consensus
based protocol could be developed where multiple devices
agree to synchronise privacy provision at specific times. A
third alternative might be a reactive protocol where devices
respond to changes in privacy techniques. Such techniques
needs to be carefully designed to ensure a threat actor cannot
alter how privacy is provided.

This means it will not longer be sufficient to look at
privacy in a single domain, but necessary to provide cross-
domain privacy. Here multiple sources of privacy leakages
from different domains will need to collaborate to protect
privacy. This may be difficult as technologies can evolve
in unexpected ways (such as vehicles hosting WiFi access
points). This collaboration will also need to occur in a way
that does not leak privacy.

B. IMPACT ANALYSIS OF PRIVACY THREATS
When considering a privacy threat it is important to clearly
understand which threat actor is being protected against.
This includes understanding their motivations, resources and
capabilities. For each threat actor a risk assessment can then
be performed to analyse the likelihood and impact of a threat
actor violating privacy. The risk analysis can then be used
to (i) identify changes that need to be made to the system
to preserve privacy, (ii) identify which changes needs to be
focused on with a higher priority, and (iii) which privacy
leakages to specific threat actors are acceptable (and do not
necessarily need a privacy preserving technique implemented
— e.g., eCall). When changes to the system are made the risk
analysis can be re-performed to ensure that the likelihood of
privacy loss and its impact have decreased. However, privacy
provision is difficult to identify, as the interactions between
privacy techniques can lead to unexpected privacy loss. The
possibility for privacy preserving techniques failing to protect
privacy needs to be addressed in the risk assessment.

VIII. CONCLUSION
There exists many ways in which a vehicle can be tracked,
and much work has been done on individually addressing
some issues. However, an issue is that the existing work
focuses on their specific problem and does not consider
attempting to protect context information leakages from other
sources. The conclusion from this work is that it is important

to not consider vehicular location privacy in isolation as lo-
cation privacy schemes can be circumvented by simply using
an alternate tracking method. The existing work mostly does
not consider the impact of their privacy schemes on other
privacy techniques. For example, [74] is the only example
known to the authors where two sources of privacy leakage
are addressed simultaneously. One of the key points of the
work, was the need to synchronise pseudonym and MAC
slot changes. Such synchronisation will be needed across
the privacy preserving techniques that use pseudonyms to
prevent vehicle tracking.
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