Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/144270

How to cite:

Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions.

Copyright © and all moral rights to the version of the paper presented here belong to the
individual author(s) and/or other copyright owners. To the extent reasonable and
practicable the material made available in WRAP has been checked for eligibility before
being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further

information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

warwick.ac.uk/lib-publications


http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/144270
mailto:wrap@warwick.ac.uk

ABOUT LOCAL CONTINUITY WITH RESPECT TO L, INITIAL DATA FOR
ENERGY SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

TOBIAS BARKER

IN MEMORY OF MY STEPFATHER BRIAN RUDDLE (1950-2019)

Abstract In this paper we consider classes of initial data that ensure local-in-time Hadamard
well-posedness of the associated weak Leray-Hopf solutions of the three-dimensional Navier-
Stokes equations. In particular, for any solenodial L initial data uy belonging to certain
subsets of VMO~1(R?), we show that weak Leray-Hopf solutions depend continuously
with respect to small divergence-free Lo perturbations of the initial data u (on some finite-
time interval). Our main result is inspired and improves upon previous work of the author
[4] and work of Jean-Yves Chemin [9]. Our method builds upon [4] and [9]. In particular
our method hinges on decomposition results for the initial data inspired by Calderén [7] to-
gether with use of persistence of regularity results. The persistence of regularity statement
presented may be of independent interest, since it does not rely upon the solution or the
initial data being in the perturbative regime.

Keywords Navier-Stokes equations, Hadamard well-posedness, Fourier analysis, Littlewood-
Paley theory, real interpolation, Besov spaces, persistence of regularity

Mathematics Subject Classification (2010) 35Q30, 76D05, 35D35, 35D30, 35A99, 35B35,
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1. INTRODUCTION

At the beginning of the 20th century, Jacques Hadamard introduced a notion of well-
posedness of partial differential equations. In particular, a evolutionary partial differential
equation is said to be Hadamard well-posed if

(1) (Existence) A solution exists for all time.
(2) (Uniqueness) The solution is unique for all time.
(3) (Continuous Dependence) The solution depends continuously on the initial data.

The issue of Hadamard well-posedness depends not only on the equation under considera-
tion, but also on the notion of ‘solution’ and the classes considered for the initial data.

For the Navier-Stokes equations, a popular notion of solution (with certain physical rel-
evance) is that of weak Leray-Hopf solutions. In particular, for any Ly(R?) divergence-free
initial data we say that u : R? x (0,00) — R? is a weak Leray-Hopf solution associated to
uQ if

o u € Cy([0,00); J(R?)) N L2(0, 00; H'(R3))L.
e 1 solves the Navier-stokes equations in the distributional sense:

Oru—Autu-Vu+Vp=0 in R®x (0,00), divu=0, u(-,0)=up.

Date: November 10, 2020.
I Throughout this paper J(R?) := {uo € L2(R?): divug = 0}. Cyw([0,00); J(R?)) denotes continuity in
time with respect to the weak Lo topology.
1



2 T. BARKER

e 1y satisfies the energy inequality for all ¢ > 0:

t
o)y +2 [ [ (Vo 5) s < ol
0 R3

For any uy € J(IR?), global-in-time existence of an associated weak Leray-Hopf solution
of the Navier-Stokes equations was established by Leray in [25] in 1934. Up to the present
date, whether or not weak Leray-Hopf solutions are unique remains an outstanding open
problem in mathematical fluid mechanics. Recently, sufficient conditions for nonuniqueness
were provided in [20] and numerical evidence that these sufficient conditions hold was
provided in [18].

Let us now give a definition that expresses the continuous dependence requirement for
Hadamard well-posedness in the context of weak Leray-Hopf solutions.

Definition 1. Let ug € Lo(R3) be weakly divergence-free. We say that weak Leray-Hopf
solutions are ‘locally continuously dependent with respect to g’ if the following holds
true.
There exists a finite positive 7', ¢ > 0 and a continuous function ¥ with ¥(0) = 0 such that
if

e v € Br,(ug,e) == {wog € J(R?) : ||wo — uo||, < €}

e v(-,v9) and u(-, ug) are global-in-time weak Leray-Hopf solutions associated to u

and vg

then for all ¢ € (0, T'] one has the estimate
t

W) oeot) = ul Ol ey +2 [ [ 1900 = w)Pyds < W0 — ol )
0 R3

The above definition can be readily modified to give a notion of global-in-time Hadamard
well-posedness for energy solutions of the Navier-Stokes equations. In this paper, we do
not address the global-in-time case. We refer the reader to [26] for an interesting discussion
relating to potential barriers for extending local-in-time Hadamard well-posedness to cor-
responding global-in-time versions. In [26], this potential barrier is referred to as ‘the real
butterfly effect’.

Whilst Definition 1 expresses the notion of Hadamard’s continuous dependence condition
in the context of weak Leray-Hopf solutions, it also has ramifications for the regularity of
solutions with initial data close to those which generate smooth solutions. In particular,
suppose that

a) Weak Leray-Hopf solutions are locally continuously dependent with respect to
uQ-.
b) The weak Leray-Hopf solution (-, ug) (unique on (0,7")) belongs to C*°(R? x
(0, 7).
Then a)-b) imply that for any compact set K contained in R? x (0, T"), there exists a positive
e(K, ¥) such that

[vo—uo| 1,r3y < e(K,¥) = any suitable? weak Leray-Hopf solution v(-, vg) € L (K).

ZWe say that a weak Leray-Hopf solution (v, q) is suitable on R® x (0,7 if for every non-negative ¢ €
C§°(R? x (0,T)) v satisfies the local energy inequality

T T
2//|VU\2¢dwdt < //[|v|2(6tg0 + A) + (Jv]* + 2q)v - Voldxdt.

0 R3 0 R3
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Such an statements follow immediately from a contradiction argument and the ‘persistence
of singularities’ in [27].
In this paper, we are concerned with the following natural question:

(Q) Which Z C S'(R?) are such that uo € J(R?) N Z implies that weak Leray-
Hopf solutions are locally continuously dependent with respect to u(?

From Definition 1, we see that positive answers to (Q) provide classes of initial data for
which weak Leray-Hopf solutions are Hadamard well-posed locally in time.

In [4], the author provided the current widest’class of initial data for which the associated
weak Leray-Hopf solutions are unique on some time interval. In particular the following
Theorem was proven in [4].

Theorem 1.3 [4] . Suppose that there exists ¢ > 3 and s € (—1 + %, 0) such that
) up € JR*) VMO~ (R*) N B ,(R?).

Then, there exists a T’ (ug) > 0 such that all weak Leray-Hopf solutions on ), with initial
data ug, coincide on Q7 \ = R3 x (0, T (up)).

The main result of this paper, which we state below, shows that for such classes of initial
data, weak Leray-Hopf solutions are Hadamard well-posed locally in time.

Theorem 1. Suppose that there exists ¢ > 3 and s € (—1 + %, 0) such that
3) up € JR*)NVMO™(R®) N By,

Let T (up) be as in the above Theorem and let u be the unique Leray-Hopf solution asso-
ciated with wy. Then for any positive 1 € (0,1) there exists T(n, ug,s,q) € (0,1] and
C(n,uo, s,q) > 0 such that the following holds. For any weak Leray solution v associated
with vy with

S llvo — uollr2®s) <1,
we have that for all t € [0,T]

t
) Hdﬂ—UWWQ+/WV@—@WHEﬁ%ﬂWm—UM§%
0

1.1. Comparison with previous literature. The classical approach to determining Z such
that (Q) holds true dates back to Leray in [25] (we refer to this as ‘Leray’s approach’). Let
us now describe this in more detail.

Let v(-,vg) and u(-, up) be two weak Leray-Hopf solutions with ug € Z N J(R3), vy €
J(R3)* and w = u — v. In Leray’s approach, one requires the existence of u(-,ug) in
path spaces X7 possessing certain properties. In particular, b, ¢ € Cy([0,7T]; J(R3)) N
L2([0,T); H'(R%)) and a € Xp =

t
F(a,b,c,t) := //(a@b) : Vedzdt < oo
0 R3

3For the subclass of weak Leray-Hopf solutions called ‘local Leray solutions’, Lemarie Rieusset built upon
ideas in [4] to show in [24] that short-time uniqueness holds for a wider class of initial data than those considered
in [4].

“4Throughout this paper J(R3) := {uo € L2(R?): divauo = 0}.
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for t € [0, 7] and F satisfies certain continuity estimates (see, for example, [12]). Once X1
satisfies this requirement, the approach in [25] gives a positive answer to (Q) by applying
Gronwall’s lemma to the energy inequality

t

t
(6) Hw(,t)H%% +2// Vw2 dzdt’ < |jug —’U()H%% +2//u®w : Vwdzdt'.
0 R3 0 R3

Leray’s approach was first used in [25] to show that for Z = H'(R?) and Z = L,(R3)
(3 < p < o0) we have local-in-time Hadamard well-posedness of ‘turbulent solutions’
(which are a subclass of Leray-Hopf solutions). Leray’s approach has been applied to many
other cases and we only attempt to list the cases most relevant to this paper. At the start of
the 215 century, [13] utilized Littlewood-Paley theory and Leray’s approach to provide a
positive answer for question (Q) for the homogeneous Besov spaces

L1432
zZ = Bp,qup (R3)

with 2 < p < 00,2 < ¢ < oo and
3 2
- +-2>1
P q

Certain further extensions were provided in [12].

3
For the wider yet class® Z = IB%; ;r P (p € (3,00)), arguments in [81° imply that
there exists a T'(up) and a weak Leray-Hopf solution u(-, ug) that is infinitely smooth on
R3 x (0, T (uo)). However, for this case the main difficulty is that it is unknown if Leray’s
approach is applicable. Specifically, when wuq belongs to the above class and w belongs to
the energy space (without assuming w solves an equation) it is not known that this trilinear

term
T
//u(-,uo) ®@ w : Vwdzdt’

0 R3
in (6) is even convergent.
These difficulties were tackled by Jean-Yves Chemin in [9], which provided a positive

. 143
answer to (Q) for Z = H(R?) ﬂIB%p,o:p (o > 0and p € (3, 00)) by means of the following
theorem.

Theorem 2. Suppose that there exists o« > 0 and p € (3,00) such that

. 143
%) o € J(R®) N HYR3) N By e "

Furthermore, let T' be such that the strong solution u associated with g is defined on
R3 x (0,T). Then for any positive 1, a constant C exists such that, for any weak Leray
solution v associated with vy, we have that if ||vo — uo|| L, is small enough that

t
1 _
®) el = w(Ol, + [ 190 = a)(¢) e < Clloo - wl 37
0

3

3 L1432
? to be the homogeneous Besov space and B, o, ” to be the subspace of closure of

T
SWe denote Bp,so
Schwartz functions.

SFor an exposition of these arguments, we also refer to [4].
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The heuristic idea of Jean-Yves Chemin is to split the strong solution u into a low fre-
quency part’ Sju and a high frequency part. Then w; := v — Sju satisfies the equation

9 ékwj — ij + Sju . ij + wj - VSJU + wj - V’LU]' = —ij —V- Fj
(10) diij = 0, wj(-, 0) =V — Son

(an R]’ Z:V'Fj, FJZSJU®SJU—SJ(U®U)
A major part of Chemin’s work involves paraproduct type analysis in frequency space to
3

143
estimate the Reynolds stress I2; of the strong solution v with initial data By, o * N Lo. He
gets

i
(12) 1 Ej 1l 2o(0,7:02(r3)) < Cur2 P2,

When one applies Gronwall’s lemma (which can be done since S;u belongs to subcritical
spacesg) one gets
13)

t t
s @)1+ [ IV @It < ool +Cllao=S; w0+ [ [ 8w, 5 Vdade.
0 0 R3

He then uses that v ‘just misses’ by a logarithm belonging to a ‘good’ critical’ space (that
allows the trilinear term in (6) to be estimated in a way that allows Gronwall to be per-
formed). In particular, S;(u) belongs to such ‘good’ spaces but has a corresponding norm
which grows like €5 (for arbitrary ¢ > 0) as the frequency parameter j grows. Once the
Gronwall argument is performed this produces

lwi ()17, < CllvollZ, + lluo = Sj(wo)lZ, + IF5l1Z0.1:2.)) exp(ed).

The fact that ug € H® gives an exponential decay as j grows of ||ug — S;(ug) H%2 This,
in conjunction with the exponential decay for the Reynold’s stress (12), crucially offsets
the small exponential growth coming from Gronwall’s lemma. With a bit more work, this
allows Chemin to conclude the proof of Theorem 2.

For the case ug = vg the author has shown weak-strong uniqueness for wider yet classes
of initial data than those considered by Chemin in [9]. Specifically, vy € J(R®)NVMO~'N
Bqu with s € (=1 + %, 0) and ¢ > 3 (see also Lemarie-Rieusset [24] for recent extensions
for the class of ‘local Leray solutions’). For such classes of initial data, the author showed
that

(14) (DI, < C#°.

Such a decay depletes the singularity near the initial time for the trilinear term in (6) due to
u having rough initial data. This allows us to infer that

t 1
(suPocacr 5%, )l )
)y < € [ SRoesr (-, )12, ds.
0

7Forj > 0, the Fourier transform of S;u is compactly supported in B(0, §2j).

8we sayX C S ' (R® x R) is a subcritical space for the Navier-Stokes equations if there exists a o > 0 such
that ||ux||x = A%||ul|x for any A > 0. Here u (z, ) := Au(Az, \2t).

We say Y C S (R? x R) is a critical space for the Navier-Stokes equations if [|u||y = |Jux ||y for any
A>0.
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Then the conclusion of weak-strong uniqueness in reached in [4] by a comparison of the
quantity'”

lw(-, t)]2,

B
Unfortunately, such a strategy cannot prove Theorem 1, since w in that case isn’t zero as
t | 0. Hence w has no decay in time to deplete the singularity in time of u that occurs when
estimating the trilinear term (6). Hence despite weak-strong uniqueness being known for
such initial data, the stronger result of Lo stability remained open. In this paper we settle
this case by means of Theorem 1.

(15)

1.2. Novelty of our results. The proof of Theorem 1 requires involves two observations
that differ from from Chemin’s proof of Theorem 2

The first observation is somewhat similar to the author’s work on weak-strong uniqueness
[4], which was in turn inspired by the work of Calderén [7] (see also splitting arguments
contained in [19] and [5]). The difference compared to the author’s work on weak-strong
uniqueness is that the space H% was not used for the splittings, since Lo instead played a
prominent role. However, here this extra information must be kept to get the Lo stability.
Specifically if uy € J(R3) N VMO~YR3) N Bé’q with s € (=1 + %, 0) and ¢ € (3,00),
then we show that ug = u(l] + u% with

14345 )
ut € By, RHNJR?) and uy € HYNVMOH(R?) N J(R?).
We then reduce to considering Lo stability of energy solutions of the perturbed Navier-
Stokes equations.

(16) QU — AU + U -VU +e®ud - VU + U - Ve'®ud + VP = —e'®ud - Vel ul

(17) divU =0, U(-,0) =u}

In particular, the main goal reduces to showing an analogy of Theorem 2 but for this per-
turbed Navier-Stokes system and with initial data u.

Recall that in Chemin’s proof the exponential decay of the Reynold’s stress (11) is crucial
to offset the exponential growth in frequency parameter coming from estimates of the low
frequency part S;u used for the application of Gronwall’s lemma. However, notice that the
estimate of the Reynold’s stress (12) does not possess any decay in j as p tends to infinity.
Consequently, the main difficulty in proving Theorem 1 is that u}, belongs to an L based
critical space VM O™!. In particular, the arguments in [9] seem to not give the required
exponential decay for the Reynold’s stress (11) for the spaces that u(l) belongs to.

The second observation and main new idea of this paper is to overcome this difficulty by
using additional information about the strong solution U (-, u(l)) which was not exploited in
Chemin’s paper. In particular, we use u}, € H* N J(R?) N VMO~ (R?) to show!! (see
Proposition 1) that there exists a(&, d) € (0, &] such that

(18) U € Loo(0,T; H®).

10Comparison of this quantity was previously exploited by Dong and Zhang to prove weak-strong unique-
ness results in [11].

1We mention that persistency arguments proven in [17] applied to strong solutions to the perturbed Navier-
Stokes equations would also suffice to show (18) with &« = &. By comparison the Proposition we show does
not require initial data that generates the existence of a local-in-time strong solution (such as uy € VMO™h).
Furthermore, the Proposition we give does not require that the solution U is in critical spaces.
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This gives a decay of the L{°L2 space-time norm involving the high frequencies of U,
which gives that the associated Reynold’s stress for the perturbed Navier-Stokes equations
(16) has an exponential decay in j depending on c.

We finally mention that it is crucial that emu% belongs to subcritical spaces. In particular
this means the extra terms in the perturbed Navier-Stokes equations do not destroy the
arguments involving Gronwall’s lemma.

1.3. Points of Independent Interest and Further Remarks.

1.3.1. Partial Propagation of Regularity for the Perturbed Navier-Stokes Equations. In
Section 3.2, we prove the following propagation of regularity result.

Proposition 1. Let T > 0 be finite and § € (0,1). Suppose that V is divergence-free and

(19) Ve LFL?  sup 20|V, 1)||Le < oo
o<t<T v

Furthermore, suppose that there exists & € (0, 1) such that

(20) up € J(R?) N HY(R?) N B (R?).

Assume that U € Cy, ([0, T]; J(R*))NL?((0,T); H'(R?)) is a weak solution to the equation
Q) QU —-AU+V -VU+U-VV+U-VU+V-VV +VII=0 in R*x (0,T)

(22) divU =0, U(-,0) = u}.
Furthermore, assume that U satisfies the energy inequality for t € [0, T:
(23)

t

t
UG Baqey+2 [ [ 90 Pdyds < bl +2 [ [ (VaU+var) : VUdyds
0 R3 0 R3

In addition, assume that U satisfies
(24) sup 12| U (-, 1)|| poo (g3) < 00-

0<t<T
Then the above assumptions allow us to conclude that there exists o(&,9) € (0,4] such
that

(25) U € L*>(0,T; H*(R?)).

In [17] it is shown that when the initial data is in VA O~!, the strong solution con-
structed by an iteration scheme propagates any additional regularity of the initial data on
the homogeneous Besov scale. Furthermore, in [28] it is shown that when b is divergence-
free and belongs to certain critical spaces that one can propagate the Holder continuity of
the initial data for the drift-diffusion equation with pressure

(26) Ou—Au+b-Vu+Vg=0, divu=0, u(-,0) =ug.

Although the proof of Proposition 1 is concise and elementary, perhaps at first sight the
statement seems somewhat unexpected. Indeed, it is not known if strong solutions can be
constructed for u} satisfying (20). Furthermore, the result of Proposition 1 even holds true
when the assumption (24) is replaced by certain supercritical'”> assumptions (see Remark
2). Such propagation results may be of independent interest and of use in other contexts.

Zwe say X C S / (R?® x R) is a supercritical space for the Navier-Stokes equations if there exists a o > 0
such that [|ux || x = A™||u||x for any A > 0. Here uy (x,t) := Au(Az, A*t).
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1.3.2. Conjectures and remarks. Arguments from [21] and the subsequent paper [23] show
that when ug € J(R3) N VMO~L(R3) there exists a T'(ug) and a weak Leray-Hopf so-
lution (-, ug) that is infinitely smooth on R3 x (0,7 '(ug)). Specifically, u(-,ug) can be
taken to belong to &p defined below (29). We refer to such a w as a ‘strong solution’,
which is typically constructed by a Picard iteration scheme. If ug and vy both belong to
J(R3) N VMO~L(R3), with u(-,up) and v(-,vp) being associated strong solutions, then
known arguments give the following. There exists a positive T"(ug, vg) such that for all
t € (0,T(ug, vo)) one has the estimate

t

||U('7t)—u('at)H%Q(mﬁ?//|V(U—U)’2dyd5 < Clluo—wol|72 sy +Clluo—voll L2z lwo—voll Brro-1 s)-
0 R3
Therefore, the class of strong solutions with initial data in J(R®) N VMO™1(R3) are
Hadamard well-posed locally-in-time. Let us emphasize that in this paper we are concerned
with Hadamard well-posedness issues for the wider class of weak Leray-Hopf solutions. In
particular, the continuous dependence we examine is for J(R3) perturbations of the initial
data, as opposed to J(R3?) N VMO~ (R?) perturbations.
The classes of initial data for which weak-strong uniqueness is proven in [4] (and for

which local Hadamard well-posedness is proven by means of Theorem 1) just miss the case
up € J(R3) N VMO~Y(R3). In particular,

up € JR*)NVMO™'(R?) = JR*) N VMO (R*) N B},

with s = —1 4+ % and g € (2,00), whereas Theorem 1.3 in [4] assumes s € (—1 + %, 0).
Despite this, the following conjecture was made in [4]

(C) If ug € J(R?) N VMO~(R3), the associated weak Leray-Hopf solutions
coincide on some time interval.

Let us recap reasoning from [24] as to why such a conjecture seems plausible. For ug €
J(R3), Leray proved existence of at least one global-in-time weak Leray-Hopf solution by
first considering the mollified system

27 Oue — Aue + (pe * ue) - Vue + Vpe =0

(28) divue =0, ue(-,0) = up.

Here, p € C°(R3), [ ¢(x)dz = 1 and p.(z) = 6%90(%) Then Leray uses energy
3

estimates and compactﬁess arguments to obtain global-in-time weak Leray-Hopf solutions

in the limit as € | 0. In [24], solutions obtained in such a way are called ‘restricted Leray

solutions’. Using arguments from [23] (see also [4] for an exposition of those arguments)

one gets that for ug € VMO~' N J(R?) there exists T'(ug) such that for all T € (0, T) the

following holds true. Namely, if u(-, ug) is a restricted Leray solution then

(29) e < 2[euolle,

Here,
[ulley := sup Villu(-t)| w3+
0<t<T

1
(30) + bup / / |u|? dyds 2
(2,t)€R3x (0,T) \B (0, \f 1)
O Jy—al<vi
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and e'®uq represents the heat-flow acting on ug. Then (29) implies that (C) holds true for
restricted Leray-solutions'® by means of the uniqueness of mild solutions constructed in
[21].

In some sense the above reasoning justifies why conjecture (C) is plausible for weak
Leray-Hopf solutions. However, it appears to be an open problem to even show local
Hadamard well-posedness when Z = V M O™, for restricted Leray solutions. In turn this
makes corresponding conjectures surrounding (Q) when Z = VMO~! seemingly more
speculative than (C).

2. PRELIMINARIES

2.1. General Notation. Throughout this paper we adopt the Einstein summation conven-
tion. For arbitrary vectors a = (a;), b = (b;) in R™ and for arbitrary matrices F =
(Ej), G = (GZJ) in M" we put
a-b=a;b;, la| =+/a-a,
a®b=(abj) € M",
FG = (FyGyj) e M", FT = (F;;) e M",
F:G:Fi]‘Gi]‘ and |F|: VF:F.
Let e'® v denote the heat kernel convoluted with .

For A € R, |\| denotes the greatest integer less than \. Furthermore, [\| denotes the
smallest integer greater than .

If X is a Banach space with norm || - || x, then L¢(a,b; X'), with a < band s € [1,00),
will denote the usual Banach space of strongly measurable X -valued functions f(¢) on
(a,b) such that

s

b
HfHLS(a,b;X) = /Hf(t)’%dt < +00.

The usual modification is made if s = co. Sometimes we will denote L?(0, T'; L9) by L%.L4
or LP(0,T; L%).

Let C([a, b]; X') denote the space of continuous X valued functions on [a, b] with usual
norm. In addition, let C\,([a,b]; X') denote the space of X valued functions, which are
continuous from [a, b] to the weak topology of X.

2.2. Function spaces. For a tempered distribution f, let

FNE) = [ explia-€)f(a)da
R3
denote its Fourier transform. Let d,m € N\ {0}. We begin by recalling the definition of
the homogeneous Besov spaces BI“’;’q(Rd; R™). There exists a non-negative radial function
¢ € C°°(R?) supported on the annulus {¢ € R? : 3/4 < [¢] < 8/3} and y € C§°(B(4/3))
such that

31 X +> p27¢) =1, ¢eR?
Jj=0
(32) > (2778 =1, £eR*\{0}.
JEZ

Bpor analogous statements in bounded domains for initial data in Besov spaces, we refer to [14]-[16].
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The high frequency cut off Sj and the homogeneous Littlewood-Paley projectors Aj are
defined by

(33) Ajf=927D)f, jeL,

(34) Sif =x(27D)f, jEL

for all tempered distributions f on R? with values in R™. The notation (277 D) [ denotes
convolution with the inverse Fourier transform of ¢(277-) with f. Notice that S; = I —
> e y Ay,. Furthermore, for tempered distributions such that ) _, ., A f converges to f (in

the sense of tempered distributions) we have that S’j f= ZZ?_ ; Apf.
Let p,q € [1,00] and s € (—00,d/p)."* The homogeneous Besov space B;q(Rd; R™)

consists of all tempered distributions f on R? with values in R satisfying
1

(35) nyyB;q(Rd;Rm) = (Z (zjsHAijLp)q) a
JEZ
and such that ) ez Aj f converges to f in the sense of tempered distributions on R? with
values in R™. In this range of indices, B;’q(Rd; R™) is a Banach space. When s > 3/p
and ¢ > 1, the spaces must be considered modulo polynomials. Note that other reasonable
choices of the function ¢ defining A; lead to equivalent norms.
Itis known thatif 1 < q; < g3 < 00,1 < p; < p2 <ooands € R then

. . 5_3(L_L)
(36) By o (R?) < By, g, ™
See Proposition 2.2 p.64 of [3], for example.

(R).

We now recall a particularly useful property of Besov spaces, i.e., their characterization
in terms of the heat kernel. For all s € (—o0, 0), there exists a constant ¢ := ¢(s) > 0 such
that for all tempered distributions f on R3,

(37) ¢ supt™ 2| fl porsy < I1F1 ®3) = csupt ™2 ||e" f| Lo ().
t>0 pree t>0
We will need the following Proposition, whose statement and proof can be found in the
book [3] (Proposition 2.22 there). In the Proposition below we use the notation
(38) S}, := { tempered distributions w such that lim [Sjull L (r3y = 0}
Jj——00
Proposition 2. A constant C' exists with the following properties. If s1 and sy are real

numbers such that s1 < sy and 6 € (0,1), then we have, for any p € [1,00] and any
u € S/,

¢ /1 1 0 1-0
(39) el goss +a-0102 s < <§ t1- 9> lullgs: @y llul e ms)-

59 — 81
Furthermore, we define the Chemin-Lerner norm'>

(40) il ) = 122 1Al 0 710 oz

The following useful Lemma was proven in [3] (Lemma 2.4 there). We state in below.

Lemma 1. Let C be an annulus. Positive constants c and C' exist such that for all p € [1, ]
and any couple (t, \) of positive real numbers, we have

suppt C A\C = HemuHLP < C’e*C/\thuHLp.

14The choice s = d/p, ¢ = 1 is also valid.
15This was introduced in [10] for the special case s = g +1,r=1,p=2and ¢ = 2.
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Lemma 1 yields two useful estimates immediately. Namely, for s € R and p, ¢ € [1, 00]?

we have

(41) leull 2 < Cs,pa)llull, -
A vl
Second, by interpolation for homogeneous Sobolev spaces we have that for any o > 0
Cl
“2) el < SO,

We will also make use of the following Lemma contained in the book [3] (Corollary 2.54
there).

Lemma 2. Suppose that (s,p,r) € (0,00) x [1,00]? with s < %. Then there exists a

constant C(s) such that

Cs+1
@3 uwlpy msy < (e lull g @) + 0l 0] 5, @)

Finally, BMO~!(IR3) is the space of all tempered distributions such that the following
norm is finite:

R2
1
(44) lullprro-r@s) == sup oo / / Byt
BMOTHR) "= g3 rs0 | B(0, R)]
0 B(z,R)

Note that VM O~1(R3) is the subspace that coincides with the closure of test functions
C§°(R3), with respect to the norm (44).

2.3. Decompostions of Besov spaces. Now, we can state a Lemma regarding decomposi-
tion of homogeneous Besov spaces taken from the authors paper [4] (Proposition 2.8 there).
For more general decomposition results, we refer to [1].

Proposition 3. For i = 1,2,3 let p; € (1,00), s; € Rand 6 € (0,1) be such that
s1 < 8¢ < sg and pa < pg < p1. In addition, assume the following relations hold.:

45) s1(1 — 0) 4 fs9 = s,
1-6 6 1
(46) ==
b1 b2 po
and
3
“n S < —.
pi
Suppose that ug € Bzgm (R3). Then for all € > 0, there exists u™¢ € B;}’pl (R3), u?c €
: 3
B2, (R®) such that
(43) u = ub€ + u?,
49 Lejpa, < ¢P1—Po Po_
(49) el <Pl
and
(50) lu? |72, < Cls1, 52,00, 01,2, |F 0l 2, )P 70 fluo [,
Bps,po Bpg,po

The following corollary is essentially contained in the author’s paper [4]. However, in
that case we did not show that one piece of the initial data had better regularity than Ls. For
completeness, we therefore provide further details.
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Corollary 1. Suppose that q > 3,
. 2
(51) ug € BS (R*) N Ly(R®) with s € (—1+ =,0)
’ q

and div ug = 0 in the sense of distributions.
Then the above assumption imply that there exists max (q,4) < p < oo, 0 € (0,1 — %)

and & € (0, %) such that for any € > 0 there exists weakly divergence-free functions u'¢ €

- —1+3 46 -
Bpp 7 (R?) N La(R3) and u* € H*(R?) N Ly(R®) such that
(52) up = at* + u*,
(53) [a I s s < € luoll,
b,p
(54) 11 sy < Css0,0,0, [F ollzy) e uoll,
9,9
and
(55) 17N oy 12N 2o < CUF ol luoll s

Proof. Take p > max(q,4). The assumption that s € (—1 + %, 0) implies that there exists
£€(0,1—- %) such that

2
(56) s =—14—-+¢.
q
Then,
2 2
=—1 3 1 —=+1
z 18—(—14-*):—*4‘ z 1~
i p p —q+
So )
P 3 1
lim(p s — —1+7):7€>0.
proo \2 — 1 ( p) —241

Thus, there exists a p sufficiently large and a 4 > 0 such that
1—
1—

DN

3 .
s=—14+—-+9.
p

(57)

QN

Referring to the previous proposition, let pg = ¢, p1 = p and p» = 2 and let 8 be such that

1—9+Q_1
p 2 q
Thus
1—0:1_2.
p
Thus, (57) implies
3 3 +  ba )
(58) sz(l—e)(—1+5+5):(1—9)(—1+5+5_m)+9a,
Choose
A . (3 6(1—0)
(59) o€ (0, min (5, T))
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Now, define § := § — % >0,8 :=—-1+ % + 4, sp = s and sy := &. The above relations

allow us to apply Proposition 3 to obtain the following decomposition: (we note that for
&< 3, gQ(RS) coincides with H%(IR?) with equivalent norms)

(60) ug = ul,e + UZ’E,

61 ube||P < L7 |upl|2

(61) 7 s < @l

and

(62) [ %a < Clasp, g, [|F olln) e luoll, -
q,q

For j € Z and m € Z, it can be seen that
(63)

1A, ((Ajuo)xmjuo\zzv(j,e)) l22: 1A ((AjUU)X|Aju0|§N(j7e)) 22 < CUF el ))IIAjuol L,

It is known that ug € Lo implies

luollZ, = > 1AzuollZ,-
JEZ
Using this, (63) and the expression of u !¢ given by Proposition 2.8 of the author’s paper [4]
, we can infer that

[y, lu"L, < CUF el luoll L,
The Leray projector P, which projects onto divergence free vector fields, is defined as
Pf:= f+ V(=A)"'(div f).
To establish the decomposition of the Corollary, we apply the Leray projector to each of

ub€ and u?€, which is a continuous linear operator on the homogeneous Besov spaces
under consideration.

O

3. PROPERTIES OF STRONG SOLUTIONS OF THE NAVIER-STOKES EQUATIONS

In this section, we first describe certain properties of the strong solution u(-, ug) with
initial dataug € VMO~Y(R3)NJ(R?) NB; ,(R?) (s € (=1+2,0) and ¢ > 3) that will be
needed to prove Theorem 1. We must mention that the first subsection is mostly a collection
of results already contained in the literature, gathered for the reader’s convenience. Where
the context is slightly different to the previous literature, or when fixes are needed, we
provide the reader with details.

In the second subsection we prove Proposition 1. This will imply that some of the
Sobolev regularity of uj persists for U(xz,t) := u — emu%. This will be a crucial ingredient

in proving Theorem 1.

3.1. Regularity properties of strong solutions. First, we discuss the construction and
regularity of the strong solution u described in Theorem 1. For initial data in VMO~ (R3),
local-in-time strong solutions to the Navier-Stokes equations were shown to exist by Koch
and Tataru in [21]. Such solutions belong to the pathspace Pr where

(64) Pri={ueS (R (0,T)): ||lullg, <o}
Here,
Julle, == sup Vellu(-, )| @s)+
o<t<T
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1
(65) + Sup / / |u 2dyds 2
(2,t)€R3 % (0,T) IB (0, \/ t)| |
0 |y—az|<vi

Furthermore, the Koch-Tataru solutions satisfy the integral formulation of the Navier-Stokes
equations

¢
(66) u(z,t) == ePug + /e(t_S)AIP’V (u®@u)ds.
0

Here, ¢'® denotes the heat semigroup in R? and P denotes the projection of vector fields
onto divergence-free vector fields. Throughout this paper, we denote the bilinear term by

t
(67) / E=)APY . (f ® g)ds
0

From (44), we see that for 0 < T' < oo
(68) ug € BMO_l(R3) = [|S(t)uolle, < Clluollparo-1-

Since C§°(R?) is dense in V M O~ (IR?), we can see from the above that for ug € VMO~(R3)

69 lim_|[S(t = 0.
(69) A [[S(t)uoller

It was shown in [21] that there exists a universal constant C' such that for all f, g € Ep

(70) 1B 9ller < Clifllerllgller-

Here is the needed proposition related to the construction of the ‘strong solution’. The
statement and references can also be found in [4].

Proposition 4. Suppose that ug € VMO~ (R3)NJ(R3). There exists a universal constant
€o > 0 such that if

(71) 1S (#)uoller < co,

then there exists au € Ep, which solves the Navier-Stokes equations in the sense of distribu-
tions and satisfies the following properties. The first property is that u solves the following
integral equation:

(72) u(z,t) := S(t)uo + B(u,u)(z,t)
in R3 x (0,T), along with the estimate
(73) [uller < 2[[SE)uoller)

The second property is that u is a weak Leray-Hopf solution on R? x (0, T).
If Tugu Is the associated pressure we have (here, A € (0,T) and p € (2,00)):

(74) Tusu € L3 (R x (0,T)) N L¥(\, T; L5 (R3)).
Furthermore for A € (0,T)andk =0,1...,1=0,1...
(75) sup 0]V ul + |0}V mugul < c(po, A, lluoll saro-1, luollzy, k. D).

(2,)ER3x (A,T)
Finally, when e is sufficiently small there exists constants C(k) such that for k = 0,1, ...

(76) sup (V) | VFu(, 1)l ey < O (k).
o<t<T
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Proof. Conclusions (72) and (73) are due to [21]. The fact that u is a weak-Leray Hopf
solution follows from ideas in [23] (see also the appendix of [4]). The proof of (74)-(75)
are also described in [4].

Let us focus on proving (76), which will be required to prove Theorem 1. First, we recall
the known fact that 7, is a composition of Riesz transforms acting on u ® u. Thus, using
(73) and the Caldero6n-Zygmund theory we get that for r € (0, /1)

C'el
(77 ||7Tu®u||L°°(tfr2,t;BMO(R3) < CHUH%M(RSX(tir?,t) < ‘_ ??2‘
Using this, we obtain that for all € R3
¢
1 3 C"T3€3
(78) S [ W e — (Run)pa et < T2
r (t—r2)}
t—r2 B(z,r)
Here, C” is a universal constant. Taking r := g we get
A ¢
3
(19) 2 e - (s sl et < C7,

=1 B(x, %)
If C"e} < eckn, we can apply the Caffarelli-Kohn-Nirenberg theory [6] to immediately
infer (76). O

Next will discuss some further regularity properties of Koch and Tataru’s strong solution
that will be needed to prove Theorem 1. First we begin with a lemma taken from [29]
(Lemma 2.1 there).

Lemma 3. Let ¢ € Z, (z,t) € R3 x (0,00), 4, ,n € {1,2,3} and ¢ be as in the definition
of the Littlewood Paley projectors'®. Define

(80) g @) = o5 [ e (271 I (5 - S €ude

) §
81 i () e A [ giwE 91 —t\§|2<5i‘ ERIIAW
( ) gl,q(x’ ) 87_[_3R/3v6 SO( 5)6 J |§|2) 5

1 i€ o—qey,—té?
(82) g2,4(x,t) := 3 e p(279¢)e dg.
]R3

Then, we have the estimates

o C. . 24qe—ct22q

2,7,M < univ
and

i Cuniv23q€_0t22q

(84) gy (@, )]+ [ga,q(2, )] < ——o—s—

1+ (29[a])°

Now, we state the main further regularity properties of the solutions in Proposition 4.

16gee section 2.2 ‘Function Spaces’
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Proposition 5. Let u be the strong solution as in Proposition 4, with initial data ug €
VMO~YR3) N J(R3). Then one also has that

(85) HUHLOO(U,T;B;}{OO) < Cuniv([[uollBrro-1 + HUH%T)7
(86)
A A
lull 20751, ) < Cunio(l[uller + lle"Suoller + llulle, OquTSHVU(wS)HLOO) +lle ol 1o mp )
: s :

A A
< Conin(lleuoller + lle ol z o 71, ))-

Proof. The proof of (85) is proven in [29] (Proposition 2.2 there) for the case when T' = oo.
The adjustment for 7" finite is not difficult and we omit it. In [29], a proof of (86) is also
presented for 7' = oo (Proposition 2.3 there) but there seems to be a minor error in the
argument. We find it instructive to present their arguments here, but with the minor fix.
From the definition of the Chemin-Lerner spaces (40), we need to show
(87)
T

sup 2‘1/ 1Aqu( ) dt < Cuniv(llulley + [l uolle, + llulle, sup_s|Vu(-, )] L)
acZ 0<s<T

A
+ e uoll o, )

For the case of ¢ such that 2724 > T we have

T 2724
. 1
(88) 2 [ 1At < 2, | St < Clule,
2
0 0

We are left to consider the case 7' > 2727 and we see that for this case, it suffices to show
(39)
T

2 / 1A B (1, w) (-, )l 2t < Cunio(luller+leuoller Huller sup_s[Vul-,s)lL.).
5 2q 0<s<T
Following the proof given in [29], we have that

(90)

3 ¢
A B(u,u)(z,t) = /Aqe(tS)AIP’V (u®u)ds + //gl,q(y, t—5)V-(u(z —y,s) @u(zr —y,s))dsdy
0 % R3
= Fig(z,t) + Foq(x, t).

We treat Iy 4 in the same way as in [29]. First observe that

Frg(z,t) = /gz,q(% ;(U(x -, E) — e2Pug(z —y))dy.

2
R3
Using Lemma 3, we get that
oD
T T C 23q —ct229
1 €
21 Mmuwmws%mwmm+wﬂwmy//lw“ —dydt
2 L (4 2y

< Cumv(HuHc‘,’T + HetAUOH&)-
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The very minor fix required for the proof in [29] regards F5 4. In [29], the integral is split
into the regions B(0,2+/t) and R? \ B(0,2+/%). In the outer region the authors in [29]
integrate by parts but seem to not account for the boundary traces on the sphere of radius
2v/t. The very minor fix we propose is to not integrate by parts and then to proceed with
similar arguments to the estimates used in [29] for the integral over the ball B(0,2+/).

Indeed, using Lemma 3 we get that
(92)

T t
C 23qe—ct 5)2%4
24 / | Fo,q(-, t) || Lo dt < Cunin2?(||ulle; Sup s[|Vu(-, s)||z.) /// univ dydsdt
0<s<
2— 2q

o 82 (L 27
2

< Cuniv|ulle; sup s[|Vu(:, 8)l| -

0<s<T
This completes the proof. O
Remark 1. Using that BMO~! is continuously embedded into BOO o0 We get from (41)
that
(93) le* S uoll 72 g, s e uoll o gpzry < lluollparo-1-

Furthermore, if ug is smooth and compactly supported we have

T
A A A
||6t UOHEIT(BQ,O o) :blelé) <2q/HAqet u0||Loo(R3)dt) < CTHUOHBéooo
, q ,

Using this, (93) and a density argument allows us to infer that

T NI _
94) up € VMO = 1T1% lle UOHLlT(Béo,oo) = 0.

3.2. Propagation of Sobolev Regularity for the Navier-Stokes Equations.
Lemma 4. Define

t
(95) /et VAPV - (-, 8)ds
0

Assume that for some finite T' > 0 and p € (2, 00)
(96) feLyL;.
Then for every B € (0,1 — %) we have

©7) Iz r0 < CB, Ty max (1l 2 1112322
Proof. ltis classical that

(98) IL(Nzgerz < W fllzzze-

Applying (42) and using the continuity of the Leray Projector P on homogeneous Sobolev
spaces, we get that

CNIfCs)llez
e

[PV - f(- 8] s < Clle D2 F ()| o < P
— S 2
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We then apply Holder’s inequality in time to get

t d 1-1
LDl < Wl ([ (H) g
t

— 5) 2(p—1)
This converges for p € (2,00) and 8 € (0,1 — %) O
Lemma 5. Let T > 0 be finite and § € (0,1). Suppose that V is divergence-free and
(99) Ve LFL?  sup 20|V, 1)||e < oo
o<t<T

Furthermore, suppose that there exists q € (3,00) and s € (—1 + %, 0) with

(100) up € J(R*) N B,

Assume that U € Cy ([0, T]; J(R3)) N L2(0,T; H'(R®)) is a weak solution to the equation
(101) U —AU+V -VU +U -VV +U -VU +V -VV + VII =0 in R® x (0,T)

(102) divU =0, U(-,0) = uo.

Furthermore, assume that U satisfies the energy inequality for t € [0,T):

(103)
t

¢
100122 ) +2 / / VU (y, 5) 2dyds < |22 gs) +2 / / (VeU+VeV) : VUdyds.
0 R3 0 R3
Then the above assumptions imply that there exists a (s, q,d) > 0 such that
1U(t) — e®uoll 12
sup < 00

0<t<T t

(104)

R

Proof. Since V € L{°L2 and V belongs to subcritical spaces, the proof of the above can
be completed using similar reasoning in the author’s paper on weak-strong uniqueness ( in
particular Lemma 1.5 in [4], which treated the case V' = 0). For the case V = 0, we also
refer to section C.3.2 in [2]. Since the adjustments required due to V' are insignificant, we
omit the details. U

Proof of Proposition 1
First, it is known that U satisfies the mild formulation of the Navier-Stokes equations

(105) U t)=e®up + LVRQU+UQV +V @ V)(-,t)+ LU RU)(-1).
First, using (20), it is immediate that
(106) etPud € L=(0,00; HY).

Using that U € Cy, ([0, T]; J(R?)) and (19), it easily follows that there exists a p(§) > 2
such that

VeoU+UV+VeVellL
We can therefore apply Lemma 4 to get that there exists a positive 1 (p) such that

(107) LVQU+UQV +VV)(-t) € L°0,T; H™).
The term L(U ® U)(-, t) requires more work. First, notice that by Lebesgue interpolation

. é_l . o . . A .
(@G Ajugln)t < @77 NAubllze)* (1A ugll ).
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La_1
Thus, v} € B2, 2. Since & € (0,1), we may apply Lemma 5 to infer that there exists
0 4.4 Yy apply

v(&) > 0 such that

U(-,t) — eBul| 12
w08 p 1760 = el
0<t<T t2

By the heat-flow characterization of homogeneous Besov spaces, we have
1
Cllug pE-t

tA, 1 4,4
(109) le" P ugll sy < P

[
2

1 . . .
We also get that supg., t2||e!2u}|| Lo®3) < Cuuniv || ud]| Bl (r3)- Using this in conjunc-
tion with (24), we infer

(110) sup t%HU(-, t) — etAU(l)HLoo(RS) < 0.
0<t<T

Now, we write

(111)

LU @U)(-,t) = L(({U = eup) @ (U — e"2up) + ePug @ (U — ePug) + (U — ePup) @ ePup)) (1)
+ L{e™u} ® e ud) (-, 1).

Using (108)-(110), we infer that there exists ¢(&,~y) > 2 such that
(U—eud)@(U—e®ud) +e'2ub@(U—e®ud) +H(U—ePud)@e P ul+e P uf@e®ul € LLL2.

We then can apply Lemma 4 to deduce that there exists éa(g) > 0 such that

(112) LU @U)(-,t) € L=(0,T; H@),

Using this, along with (105)- (107), we get the desired conclusion with & = min(&, dy, d2) >

0.

Remark 2. Let~ € (0, 1) be as in (108). Note that the Proposition still holds if the critical
assumption (24) is replaced by the supercritical assumption

sup t2]|U (1) poomsy < 00 with § € (1,7 +1).
o<t<T

4. REYNOLD’S STRESS

4.1. Reynold’s stress expression. Suppose that a and b are Schwartz functions. In the
proof of Theorem 2 in [9], Chemin evaluates the Reynold’s stress (11) of the form
Bj(a,b) = $;(a)$;(b) — $;(ab).

To do this, Chemin uses a decomposition of the Reynold’s stress that somewhat resembles
the classical paraproduct decomposition. We recall Chemin’s expression now. First if Ny is
a large enough integer, it is argued in [9] that

(113) Sj-No (@) Sj-No (b) = 5(Sj-no (a) S, (B)).

Indeed, Sj, No@ and S i—N,b have Fourier transforms supported in the ball B(0, %2j —N 0).
Thus, in Fourier space S;_x,aS;_n,b is supported in B(0, 80i=Noy c B(0,2/~No+2),
Next thgl Fourier multiplier of A ;+ is compactly supported on the annulus {{ € R? : 27 '% <
€] < 27°2}. Thus

43 . . .
2J . > 207 NoH2 = A/ (SN (a)Sj—n, (D)) = 0.
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If Ny is a fixed large integer (which can be chosen to be independent of j, for example
Ny = 3), the above is satisfied for all j* > j. In particular this gives (113).

Using (113), in [9] Chemin writes
Bj(a,b) = Sj(a)S;(b) — Sy (@) Sy (b) + 55(Sj— Ny (@) Sy (b) — ab).
So Bj(a,b) = Y_;,_, B¥(a,b) Here,

(114) Bj(a,b) := (S — Sj-n,)(a)S;(b)

(115) Bj(a,b) := Sj_n(a)(Sj — Sj—n,) (b)
(116) B (a,b) == 8;((Sj-n, — I)(a)Sj-n, (b))
(117) Bj(a, ) = Sj(a(Sj-n, — 1)(b)
Furthermore, BY(a,b) = B3(b,a) — B(a,b). Here,

(118) Bj'(a,b) == S;((I = Sj-no)(a)(I = Sj-ny) (b))

In order to reduce the frequency interactions in B;“(a, b), Chemin uses that for a large
enough fixed integer /Ny

(119) §Zi+N, 5 < —2= 8(Ajadb) = 0.
To see this, notice that

supp F(Ajalub) C 27°C + 27" C
with C = {£: 2 < |¢] < 8}, Now for j” < j' — 2 we have

2'C +27"C c 20+ B(0,27'728/3) c 27" C".

Here, C' = {{: 3 < [§] < 10 3 }- Next the Fourier multiplier of Sj is compactly supported
on the ball B(0, 42J) Thus,

j4 94’ . )

If j/ > j + Ny, the above is true provided N7 > 5. This then gives (119). Using (113),
Chemin writes

J+N1
315" >34+N1, 3" —5'1<2 37,4 =j—Ny

4.2. Reynold’s stress estimate. Let ug € J(R3) N VMO~ (R®) N B, withs € (—1 +
%, 0) and g > 3, then we apply Corollary 1 show that ug = u(l) + ug with

w2 e B P R A J(RY) and b € 9 0 J(RP).

Here, p € (4,00),6 € (0,1 — f) and & € (0, 3). From (36) and Proposition 2, we see that

+7
uOEBpp P CVMO™! Thus,

uy € H*NVMO~YR3) N J(R?).
Furthermore, by (41) and the Sobolev embedding we have

TS NN S
"®uf € LF (Bpoo ") N L(Bgoo) N Lip(Bl o0) N LF L.
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tA

Recall we consider U =u — e u% which solve the perturbed Navier-Stokes equations.

(121) QU — AU 4+ U - VU + €2u2 - VU + U - Vetrul + VP = —et2ul - vet™u

(122) divU =0, U(-,0)=u}

Then S’jU satisfies the equation
(123) S :
0.S;U—AS;UAS;U-VS;U+e 2 ud-VS;U+S;U-Ve*ud +V P = V-Fj—e'®ul- Vel u}

(124) divS;U =0, S;U(-,0) = S;up.
Using that U and e*”u2 are divergence free, we can write!’
(125) Fj = 26:1?}’“

k=1
(126) FY = 8,(U) @ $;(U) — 5;(U o U)
(127) F® = (euf — 8 uf)) @ $;(U)
(128) FY = 852 ud) © §;(U) — (™ ud @ U)
(129) FiY = 8;(U) ® (e — 8j(e'™ud))
(130) FY = $;U @ $;(eud)) — 5;(U @ (¢"*ud))
(131) F(6) = " @ ePud — S ud @ e Pud)).

Now, we state a proposition regarding estimates of F);, which is a crucial ingredient in
proving Theorem 1.

Proposition 6. Suppose that there exists o € (0, ) and finite T > 0 such that
(132) Ue @Bl nihBL N IFEHe.

Furthermore, suppose that there exists p > 4 anda 6 € (0,1 — %) such that

- —14+345
(133) e B, " nJRY.
With this U and u% let F; be defined by (125)-(131). Then we conclude that

(134)
—ia . 1
1E5l 102 < (@2 90U e o GV 22 30y + TRV ety

i 1 tA LA

+ e(@) 279U o0 o il ug\lp o T T2l e )

1— % S ,_js, 9 2

||U||L (12) TC(6)T42 2||u0”L2”u0||Bfl+%+5‘

D,p

_i
+C(p)27 7 [l u 2H HUH

B L (Bxhoo)
p

""Here, a ® b denotes a matrix with (a ® b);; = a;b;. Furthermore, (V - (a ® b)); = 8;(a;b;). Here we
adopt the Einstein summation convention.
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Remark 3. In proving Theorem 1, we are concerned with an estimate for F}; that exhibits
exponential decay for large frequencies. The precise estimate above is not required, so we
will often use the more compact estimate

(135) 1F5l 2.2 < Cuuo pair,s2 7000

[\G][S%

Here, 7q,p,s := min(§, -, 5) > 0.

D=

Proposition 6 will immediately follow as the result of three lemmas, the first of which
handles the estimate of Fj(l).

Lemma 6. Suppose that for some o« > 0 and some finite T’
(136) be L¥By N LpBL, o NLFH®.
Then we conclude
i . 1
137 By(0.B)l s < c@)2 9 [ o e (1022 (5. + T2 bl oty

Remark 4. Notice thatif b € L B!, N LLBL  then

T ~oo,00
. L. 1 . 1
A0l e llza < 1221450l zge N7, 1277 Ajbllrgell e
Thus
1
2

1
1ol 728, ) < HbH%%o(B;l’ 1ol 21520 )

)

Proof. First we estimate Sjb = k< -1 Ayb. In particular we have,

j—1
“Sjb”LQTLgO < Z HAkaLQTLgO + Z ”AkaLZTLgo

k<0 k=0

. 1 kA
(138) < Glbllzapo, )+ T2 D 28127 Awbl el

k<0
, 1
< CUlblzz By, ) + T2 100 zee (520

Now, let Ny be a fixed integer as in the expression of the Reynold’s stress in the previous
subsection. Next we estimate

7j—1
Sib—Sinb= > Ab.
k=j—No

In particular,

j—1

1556 — Sj—NobHL;SH < Z Q_ka@kaHAkaL;OL?)
k=j—N
(139) . J—o
7j—1
< HbHL%OHD‘ Z 27 < CNO,OCHbHL%OHa2 I
k=j—No
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Next, we estimate b — Sj_nyb = S5y, Agb. We get

o
b= S5 nobllrgere < D 2725 Ayl oo r2)

k=7— N
(140) . I
—k i
< ||b||L%<>Ha Z 277 < CNo,aHbHL%OHaQ e
k=j—No

Using (138)-(140), together with the continuity of Sj on Lebesgue spaces (with bounds
independent of j), it is not difficult to see that the following holds. Namely for¢ = 1,2,3
(B;(b,b) as defined in the previous subsection), we have

% —Jo . 1
183 (b, b)HLZ’TB < (o, No)27™7 ||bHL°T°Ha (JHbHL%(BgOm) +12 Hb”Lg?(Bgo{oo))-

Now, we must estimate B;-“(b, b). Using the continuity of Sj on Lebesgue spaces (with
bounds independent of j) and Holder’s inequality, we get

(141)
J+N1
1B3 (b, 0) 2 12 < > 1Al g2l Agrbllzpoe + D I1Apbllger2llAgnbll 2 o
j/7j//>j+N1’|j//_j/‘<2 j/’jll:j_NO
. I
<Crnimlblzz s (X I18bllrrz) < Onvmalbllzz s (0 2772 Aublpsre)
3'2j—No 3'2j—No
< O Non2 P bl 23 0.y 1Bl e
This estimate is of the required form. Thus the proof is completed. g

The following Lemma treats the estimates of F’

J.(Q) ~ F®n Proposition 6. Specifically,

(144) handles F\*) and F\”, whilst (145) deals with F\>) and F\").

Lemma 7. Suppose that there exists p € (4, 00) such that

- 143 - .3 - .
(142) a € L¥(Bpoo 7)) N LE(Bhoo) N Lp(BY, ) N LF L.
Suppose that there exists o € (0, 3) such that
(143) be L¥By NLpBL, o N LFH®.

Then we conclude
2 2

_1 = 1-=
B30, D)lzgz < C@25Nall s IBI7 s ) IPltce

3
P
P,00

(144)

_ . 1
(@) bl o e (lal 23,y + T all =t

2 2

(145 [I(S;(0))(a = Sja)l 212 < 0(19)2_%Halli2 .

2 s
4 P
T(B§w>Hb”in;%w)”b”L%%Lz)

Remark 5. Notice that by Bernstein’s inequality

% 00 ( o <
”CLHL;O(BOO{OO) = C”CLHJZ;O(B;E%)'

Thus, by the previous remark a € E%(Bgooo)
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Proof. The first estimate we need to prove Lemma 7 is
2

. 1_7
(146) 1831, ) < ()2PHbHLm(Bl LIPS
By interpolation
(147)
. .2 . 1-2 2k g -2
1ARBH 22 < CIARDI L o) 1 BRI ) < 27 (2 A4l 1)) 1 A L§F(L2)
_2
=E e (N

Here, we used '
[Akbll 2 < Cuniv||b][ 22
Summation over £ < j — 1 then yields (146).
Now we proceed with the main part of the proof of Lemma 7. We start with B} (a,b) as
defined by (114). Using Holder’s inequality and (146) gives

2

1-2 . .
(148)  [|B}(a,b)] 1312 < C(p)27 IIbII”oo (Bt 1Pl 72 (S5 = Si-no)all Lz Lo
Now,
] ! 3k 3k
”(S S No)aHLQLPS Z HAWHLQLPS Z pHAkaHLQTLP)Qiy < C(p,No)2 7
k=j—No k=j—No
Combining this with (148) gives
1 _i 2 1-2
(149) 1B; (a,b)ll 2.2 < C(p, No)2 PIIaHpT 5 (L L1/

Next, verbatim reasoning to Lemma 6 gives
_i . 1
(150) | B2(a,b)llz3 12 < ele, No)2 bl e pra (lall 2 (0. + T2l oozt

Now, we estimate B;’ (a,b) defined by (116). Using that Sj is a bounded operator on
Lebesgue spaces with bound independent on j, Holder’s inequality and (146), we get that

1B2(@,b)ll 1202 < CuninllSi—noa — allpz | Sj-nobl 2 <
LOO

7 LE?)
(151) 2j 1-2
< C(No,p)2» Z HAWHL2 LP”proo = ”b”L%opLg'
k>j—N
Now,
, ET 3k 3
> NAalzre < 3 v Avallzz )2 < CpNo)27 7 all s
- ; (Bf.oo)
k>j—No k>j—No e

Combining this with (151) gives
_2

=J
(152) 187 (a,b)ll 2 12 < C(No,p)27 llall s HbH

Loo(B— HbHLOOpLQ
L7 (By o) e

Next, we must estimate B?(b, a). We get by Holder’s inequality and the continuity of Sj
that

15 (b, a)ll 322 < Cunioll (Sj-nob = b)l| 5o 22 17— Noall 12 1.0
We then use (138) and (140) to conclude

_ . 1
(153) [ B3(b )l 12 < el No)2 bl o e Gllall 2 gy + T3 lall e (s _y).
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Next, by identical reasoning to the previous lemma we obtain
41 —j
(154) 185 (a: D)l 1312 < CniNoa2 " llallz2 30, )10l e e

Combining the above estimates gives (144).

Finally, we mention that the proof of (145) follows from verbatim arguments as those
used for (151)-(152). O

(6)

The final lemma below estimates Fj in Proposition 6 and thus completes the proof.

Lemma 8. Suppose that for some § € (0, 1)

(155) uy € B! (R®) N Ls.

Then for finite T' > 0

(156) [l ufe™ud — $j(ePue™ u)| 12,12 < C()T 12773 |[ud]| o || 15
Proof. By the heat flow characterization of Besov spaces (37), we have

_ OOl

157 tA 2
(7 e uglzes 1100
Applying (42) with o = g gives

C(6)||ud
(158) HetAu(Q)H 5 < ( )H:’LOHLZ )

H?2 tZ
Using Lemma 2 and (157)-(158), we see that
C(O)lugll g-reslludllz

(159) [l uZeBu] g < OOl g e udlr.. < P

t2" 4
Using this, we see that

leAude ud — (e ude™ud) 2 < Y 2775 (23 | Ag (e ude ud)| 2)
k>j

(160) s
C(0)277 2 |lugll pores gl .

< CO)27 [l Budet a5 < 5

R
Integrating over (0, T") then gives (156). O
5. PROOF OF THEOREM 1

Step 1: collecting properties of the strong solution v (-, ug)
Recall that there exists ¢ > 3 and s € (—1 + %, 0) such that

(161) up € JR)NVMO ' (R*) N B;

Applying Theorem 1.3 in [4], Proposition 4, Proposition 5 and Remark 1 we conclude that
for all ¢ > 0 there exists T'(e, up) > 0 and weak Leray-Hopf solution u(-, ug) (unique on
R3 x (0,7')) with the following properties. Namely,

1
(162) sup (s2|u(:, 8)[| Lo ra) + s[[Vu(, 8)|| oo r3)) < 00,
0<s<T

(163) we L=(0,T; By,
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and

(164) °

lellzao.zi81, ) < 5

Step 2: splitting the initial data and properties of the solution to the perturbed equa-
tion

Using (161), we apply Corollary 1 to show that there exists p(s, ¢) > max(4, q), &(s,q) €
(0,2)and é(s,q) € (0,1 — %) such that

14245
"

(165) up = up +ud, ud e By, RN J(R3) and u) € HYN J(R?).
3

: . S R iy
From the continuous embedding L2 < B,, 7 and Proposition 2 we see that u3 €
3

=142 .
Bp,p+p — VMO™! — B!, . Hence,
ug € H*N VMO~ (R3) N J(R3).

Define U := u — etAug. Using that u € VMO™!, the heat-flow characterisation of
homogeneous Besov spaces, Remark 1 and the properties of u in step 1, we see that there
exists T'(T', e,u3) € (0,7 such that U satisfies the following properties. Namely,

(166) sup 52U (-, 5)| oo gy < 00,
0<s<T

(167) UeL>®0,T; By )

and

(168) U 0.8, ) <€

From (165), the continuous embedding and the heat flow characterization of homoge-
neous Besov spaces, we have

(169)
t

1l
sup t30 2 sy < OBl s and e udluaquoy 2 [ [ 19 udfPdyds = e
p,p
0 R3

The fact that u(-, ug) is a weak Leray-Hopf solution, together with .(165) and (169), allows
us to infer that U := u — e®u? € C\,([0,T]; J(R?)) N L2(0,T; H'(R?)) is a solution of
the following system:

(170) 8U — AU +U - VU + e2ud - VU + U - Ve'®u2 + VP = —e'2ul - Vet ul

(171) divU =0, U(-,0)=u} e H NVMO YR nJ(R?).

Using that u(-,ug) is a weak Leray-Hopf solution, (165) and (169), we can use known
arguments'® to infer that
(172)

t t

||U(~,t)||%2(R3)+2// VU (y, s)|?dyds < Hu[I)HQLz(Rg)-kQ//(eSAu%®U+eSAu3®eSAu3) : VUdyds.
0 R3 0 R3

The above properties of U, together with (166) and (169), allows us to apply Proposition 1

(taking V' := e'®u2). Consequently, there exists a(d, d) € (0, &) such that

(173) U e L*(0,T; H*(R?)).

18gee [1], [5] or [22] for example.
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Step 3: properties of the high frequency cut-off operator acting on U
Using (167)-(168) we see that for j € N

(174)
HVSJUHLlTLgO < Cuniv Z 2/ "Aj’U"L%Lgo

J'<i-1
< Cunio (31U 10,1, ) + D T2 @718y Ullispre ) < Cunivge + Cunsn TN o780

3'<0

By redefining ¢, Tand T appropriately, we have

(175) IVSiU s e < jelog2+ Cupr.

Since U belongs to the global energy class, the high frequency cut-off S (U) also belongs
to Cy, ([0, T]; J(R?)) N L2(0, T; H'(R?)). Additionally, S;U satisfies the equation in R? x
(0,T)

(176)

0S;U—~AS;U+S;U-VS;U+e2ud -V S;U4S;U-Ve'rud +VP; = V-Fj—e'®ud- Ve ud

(177) divS;U =0, S;U(-,0) = S;up.

Here, F is defined by (125)-(131). The properties (165), (167)- (168) and (173) allow us
apply Proposition 6 and Remark 3. From this one infers that

(178) 1Fjl 2212 < CUgugpar2 Tor,

Here, Vo p5 := mln(i,*,§) > 0.

Finally, it is immediate that since U belongs to the energy class we have SjU € L>®(R3x
(0, 7)) N L>=(0,T; L2). Together with (169) and (178), we get that

S;U @ S;U + e®ud @ S;U + S;U @ e!®ul — Fj + e'®uf @ e'®ud € LAL2.
This implies that
(179) S;U € C([0,T); J(R?))
and that the following energy equality holds for ¢ € [0, T':

15 (U)o )22 gy + 2 / [ 1985w 5) s = 3081
(180) 0 R?
+2// Bud @ S;(U) + e*Pul @ ef2ul — Fy) - VS;(U)dyds.
0 R3

Step 4: Comparing SjU with other weak Leray-Hopf solutions

Let v(-,vg) be any weak Leray-Hopf solution to the Navier-Stokes equations with initial
data vy € J(R3). Define v} := vg — u2 € J(R?) and V := v(-,vg) — e ud. Utilizing
the same reasoning applied to U in Step 2, we see that V € C,,([0,T7; J(R?)) N L2.H"
satisfies the following properties in R? x (0, T). Namely,

(181) 8V — AV +V -VV 4242 - VV 4 V - Vel2ud + VII = —e'2u - Vel2u,

(182) divV =0, V(-,0)=uv}ec JR?
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and for t € [0, 7]
(183)

t
VGO Baqeey 2 [ [ 9V o)Pdyds < b Bagesy 2 | [ (eSudoV+eoesad) s Vdyds.
0

0 R3 R3

Now notice that v(+, vo) —u(-, ug) = V (-, v}) —U(+,u}) and vo — ug = v§ — ul. Therefore,
to prove Theorem 1 it is sufficient to show that for all € (0,1) there exists positive
T(n,ug,U,s,q) and C(T, U, uy, s, q) such that for all ¢ € [0, T] we have

1
(184) S[[V(1) UMz, + /HV (V = U)(O)|2,d¢' < C(T, U, uo, 5, 0)w — wgll2""-

Following Chemin’s idea in [9], we now compare V' with the high frequency cut-off of U
S;(U). Specifically, define W, := V—S;U. Then W; € Cy,([0,T]; J(R?))NL2(0, T; H'(R?))
is a weak solution to the following equation. Namely,

(185)

W, — AW+ W, VW;+e2ud- YW+ W, Ve 22 + W,V S;U+S;U-V W+ VIl = —V-F}

(186) diviW; =0, W;(-,0) = v} — Sjul € J(R?).
Since U € L L2 we have that for every k € N that
(187) VFS;(U) € L®(R? x (0,T)).

Using U := u — e'®u, u3 € J(R?) and Proposition 4, we see that for A\ € (0,7) and
k=0,1...,01=0,1...:

(188) IVES,U € L®(R? x (A, T)).

From (179), (187)-(188) and the fact that V' and SjU satisfy global energy inequalities,

standard arguments (see [22], [5] or [1] for example) imply the following. Namely that for
t € [0, T], W; satisfies the global energy inequality

(189)

t
1
SIWC Ol + [ [ 19W;fPdyds

0 R3
t

1 .
5”1)0 S; UOHL2 R3) // (Fj + ("2ud @ W;)) : VIW;dyds — //(W] -VS;U) - Wjdyds.
0 R3 0 R3

Step 5: Conclusion
Applying the Holder and Young inequality to (189) yields

(190)

W, Ol + / [ 19W;Pdyds < Cuninll = 30z + Cun / / By (9.5) s
0 R3

/ W5, 8) 3z (203 3 + IV ST, 8) ey ) s
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Using (169) and (178), we have that for ¢ € (0,7)

(191)
t

15, Ol oy + / / VW 2dyds < Cunisllog — Sublae) + Cosugpa? ews
0 R3

umv/HW HL2 (R3)

Applying Gronwall’s lemma gives that for ¢ € [0, 7]

Ju OHB
(5= IVEU () e a) ) s

15 (o D)le oy + / / VW 2dyds < (Cuniollod — Syub 22z
0 R3
t

+ CU syuppia, 12 212078 ) exp <C1lmw / 817_?00 +|VS;U(, S)HLOO(RB)dS)
0

< CU7UO7P75,017T(HU(% - Sju(l]”%2(R3) + 2_2j%47p’5) exXp ( umv“vs UHL1 LOO)

(192)

Putting £ := C’ . ¢ and using (175) gives

unv
(193)
t

W () 3 + / / VW 2dyds < Cpy s o ([0 — Sjubl|3aas) + 272 ers)29¢
0 R3
Notice that the same reasoning as we used to get (193) applies to the high frequencies

U — S;(U) of U. In that case one has

(194)
¢

=850 DMt | [ 1908500 s < Clpp e s 20002
0 R3
Noting that V — U = W, — (U — S;(U)) and v} —u$ = v} — Sjud + (Sjup — ub), we can
combine (193)-(194) to get
t
IV = OBy + [ [ 19V = 0Py
0 R3

/! . _ o9 s
< Cuugpaar(luo = Sjuglzams) + lug — vgll7; +27%72rs) 27,

(195)

Recall from (165) that u$ € H® with & € (0, 3). Thus,
lug—Sjupll 2 sy < D Q7 A upll )27 < Jlugll e D 277 < C(A)|upll a2
27 J'2j

Combining this with (195) gives that for all j € N we have

(196)
t

||(V—U)(-,t)y\iz(R3)+//|V(V—U)|2dyds < CU’u07p757a7T(\|u(1]—véH%Q(Rg,)—i—272jmm(%’l’v“’d))?é.
0 R3
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For any fixed n € (0,1), we take € to satisfy

(197) € = 2nmin (Y ps, &)).
Now, we treat two cases
(1) uf = v}

(2) 0 < Jjug —vgllre < 1.

In the first case, we have

(198)
¢

IV = OOy + [ [ 190 = O)Pdyds < €y g2 207 01452
0 R3
With the smallness assumption (197), we see that taking j 1T oo results in V' = U in
R? x (0,T). This recovers the author’s weak-strong uniqueness result in [4].
In the second case, take
19 Jo [Flomall — )]

min (’7@,}0,57 d)

We then get that

(200) 272 min Oaps ) < lug — vh|7,
and

. 9¢
(201) 278 <

e
Substituting (200)-(201) into (196) gives
t

02) (V= 0l + [ [ 19V = U)Pdyds < Cog s
0 R3

2(1—
jub — w75 ™"

Putting cases 1 and 2 together gives (184). As explained in Step 4, this implies the conclu-
sion of Theorem 1.
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