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Abstract

We synthesise, optically trap and rotate individual nanovaterite crystals with a mean

particle radius of 423 nm. Rotation rates of up to 4.9 kHz in heavy water are recorded.

Laser-induced heating due to residual absorption of the nanovaterite particle results

in the superlinear behaviour of the rotation rate as a function of trap power. A finite

element method based on the Navier-Stokes model for the system allows us to determine

the residual optical absorption coefficient for a trapped nanovaterite particle. This is

further confirmed by the theoretical model. Our data show that the translational Stokes

drag force and rotational Stokes drag torque needs to be modified with appropriate

correction factors to account for the power dissipated by the nanoparticle.
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Rotational control over optically trapped particles has gained significant prominence in

recent years. The marriage between light fields possessing optical angular momentum and

the material properties of microparticles has been useful to controllably spin microparticles

in liquid, air and vacuum.1–7 The rotational degree of freedom adds new functionality to

optical traps: in addition to allowing fundamental tests of optical angular momentum, the

transfer of spin angular momentum in particular can allow measurements of local viscosity2,8

and exert local stresses on cellular systems.9 Complementing bulk rheology, such techniques

add key information about variation in material response, both with position and time-scale,

providing information up to relatively high frequencies.

Spin angular momentum (SAM) of photons (±~ per photon) can be efficiently trans-

ferred to both dielectric birefringent microparticles and metallic nanoparticles. In the latter

case, laser trapping of single gold nanoparticles induces dramatic heating that results in a

temperature rise close to the critical temperature of water, Tc ≈ 650K, for a modest laser

power of 50mW.5 Consequently a gas vapour around the nanoparticle reduces the local

viscosity enabling the nanoparticle to rotate at frequencies of several kHz.5 However such

significant laser-induced heating may limit their wider use, both in biomedically relevant

applications and for fundamental studies.10 To mitigate this heating issue, the fast rotation

of gold nanocylinders was demonstrated with a rotation rate of 2 kHz with a modest temper-

ature rise of 22 ◦C for a trapping laser power of 5mW, which was mediated through resonant

light scattering.11 However, due to the large scattering cross-section, these nanoparticles

were trapped only in 2D against a glass substrate, which limits the applicability of the tech-

nique. Furthermore, the use of any shape other than spherical would complicate the model
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to predict optical torques and the Stokes drag acting on the particle under consideration

making it more challenging for use in microrheology.

In contrast to metallic nanoparticles or nanorods, a birefringent dielectric particle may in-

duce a phase retardation between the ordinary and extraordinary components of the beam,

resulting in a change in output polarisation and thus the SAM present in the circularly

polarised (CP) incident light, leading to a torque upon, and rotation of, the particle. No-

tably, the key enabling dielectric material for many microrheological studies has been the

development of micrometre-sized birefringent spheres. Previously, a range of birefringent mi-

croparticles have been used in optical traps including calcite fragments,1 fabricated quartz

cylinders12 and liquid crystal probe microparticles.13 Solid vaterite microparticles, which

possess a spherical morphology, have been particularly prominent in this regard, with sizes

ranging from 1µm to 10µm in diameter.14 Notably microparticles with 4µm − 5µm have

dominated the reported experiments to date. Rotation rates for vaterite microparticles

have ranged from a few tens of Hz up to a few hundred hertz in liquid8 and MHz rates in

vacuum.4 Importantly, a number of key opportunities for studies, e.g. in levitated optome-

chanics and in micro-rheological properties of cells, would be opened up with the synthesis

of submicrometre-to-nanometre scaled vaterite spheres allowing both higher rotation rates

and higher trap oscillation frequencies. This property may be useful for future studies in

levitated optomechanics.15,16 For biological studies, reducing the size of vaterite crystals

would facilitate more facile uptake by cells by endocytosis or pinocytosis and may aid cell

viability.17

Furthermore, little information is available regarding the heating effects of these types

of rotating nanoparticles in optical traps. While isothermal Brownian motion is well under-

stood, non-equilibrium rotational Brownian motion of heated nanoparticles has only been

discussed theoretically.18 Importantly, this study shows that heating affects the translational

and rotational degrees of freedom and frictional coefficients of a hot nanoparticle in differ-

ent ways. Our results agree with this conclusion. Previously, Parkin et al. considered a
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shell-model for calculating the rotation rate of the fluid shells as a function of distance from

the centre of the heated microparticle, which depends on the temperature gradient along

the distance. For micrometre-sized vaterite crystals, a temperature increase of 66 ◦CW−1

was inferred for trapping at the near infra-red wavelength of 1064 nm.9 However this model

simulates the dynamics of fluid around the microparticle rather than the microparticle itself.

Therefore there is scope for a detailed understanding of the role of particle absorption and

its influence on the ultimate nanoparticle dynamics for both the rotational and translational

degrees of freedom.

In this article, we have tailored our experiments to study the absorption of the rotating

particle itself. This is in contrast to previous studies where both absorption in the liquid and

particle both needed to be taken into consideration. We present an optical trapping system

with a 532 nm laser beam, and using a medium (heavy water) that has virtually no absorption

at this laser wavelength. In turn this means we can truly isolate the temperature distribution

around the particle, due to particle absorption, from any issue arising with regard to laser

absorption by the surrounding medium. Such a system is invoked to test a limit to spin

angular momentum transfer to nanoparticles and to clearly reveal the connection between

heating and the rotational and translational degrees of freedom.

We demonstrate the synthesis, optical trapping and rotation of birefringent nanovaterite

crystals in heavy water. We record rotation rates up to 4.9 kHz in liquid. We study the rota-

tional and translational dynamics of nanovaterite and measured the trap rotation frequency

and trap corner frequency as a function of laser power. In turn they are both indicative

of the nanoparticle surface temperature and corresponding viscosity. Our numerical model

for the experimental data shows that the translational Stokes drag force is higher than that

of the rotational Stokes torque. We define correction factors for both degrees of freedom

to account for the power dissipated by the nanoparticle. Our study represents a detailed

understanding of the heating effects on rotating dielectric nanoparticles held in an optical

trap. Such information is crucial not only for micro/nano-rheological studies of biological
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media, but also for future studies in levitated optomechanics in vacuum.

Results and Discussion

Vaterite is a polymorph of calcium carbonate (CaCO3) with a spherical morphology and is

polycrystalline, which is typically composed of 20−30 nm sized nanocrystals. However, such

nanocrystals are highly oriented in such a way that the direction of the optical axis is in

a hyperbolic distribution throughout the formed vaterite crystals.19 The effective refractive

index as a whole particle is anisotropic and therefore vaterite is considered to be effectively a

positive uniaxial birefringent material. Previously, the main drive for synthesis of nano-scale

vaterite has been for use as localised delivery systems. We synthesize nanovaterite crystals

via the co-precipitation method in 83% ethylene glycol solvent. The fabrication protocol

for nanovaterite crystals is described elsewhere.20 It is to be noted for such small vaterite

crystals, the procedure varies significantly from that for standard vaterite microparticles14

(see Methods section for details). Fig. 1 shows the images of nanovaterite crystals acquired

by a scanning electron microscope (SEM) at different scales. The mean particle radius was

found to be 423 nm ± 63 nm (σ) with a surface roughness of 13 nm (σr) for a given batch

of nanoparticles (see Supplementary Fig. S1 for a histogram of the distribution counts of

particle radius). In experiment these particles are further filtered to reduce the polydispersity

to achieve an effective standard deviation σe ≤ ±25 nm.

We note that we may isolate particles much smaller in size using appropriate filtration to

eliminate larger ones. The current method for the synthesis of nanovaterite can yield a large

quantity of submicron crystals with polydispersity, which allows us to preselect the particle

size desired. Fig. S1 shows the particle size distribution of nanovaterite crystals, which covers

particle radii smaller than 250 nm. The efficiency of obtaining such smaller particles is low

but we obtain an acceptable rate of around 5− 10% of the total quantity.

In general calcium carbonate minerals such as calcite or vaterite are chemically unstable
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momentum to the particle. The vaterite particle experiences a restoring force towards the

focus of the beam, Fgrad = κx, where κ is the trap stiffness and x the distance of the particle

travelled from the trap. Over a long time-scale the particle is confined, however, over shorter

time-scales the particle is free to diffuse. This corresponds to fluidic damping of the particle’s

motion in the free-diffusion case, but the confining potential acts as a cut-off to the particle

displacement. A sphere of radius r, translating in a fluid of viscosity µ, experiences a drag

force Fdrag = 6πµrv, where v is the velocity of the particle. In the over-damped case, Fdrag is

balanced by the optical restoring force, Fgrad, yielding a time scale for traversal of the trap

τ = x/v = 6πµr/κ. The roll-off frequency from the power spectral density (PSD) is then

given by fc = τ−1 = κ/6πµr ∝ P . Thus the corner frequency, fc depends linearly on the

optical power, P , assuming the steady-state temperature of the system.

Fig. 3a shows the rotation rate, frot (blue open circles) and the corner frequency, fc

(green open squares) as a function of optical power using the same nanovaterite particle

(423 nm in radius) trapped by CP (for rotation) and subsequently LP (for translation) light

fields. Superlinear behaviour is observed both in frot and in fc depending on the optical

power, which suggests the local heating of the surrounding medium caused by the residual

optical absorption of the nanovaterite crystal. We have modelled the rotation rate and the

corner frequency of the nanovaterite particle taking into account the fluid dynamics drag

torque/force acting on the nanoparticle, which is dependent on the nanoparticle motion,

either rotational or translational. The drag torque and force are related to the viscosity

of the surrounding water which is itself temperature dependent.21 Considering the residual

absorption of the nanovaterite particle, we can determine, using heat transfer equations,22

the water temperature gradient and therefore its local viscosity. A laminar Navier-Stokes

model23 is used which can then deliver the overall drag torque or force for the rotational and

translational motion of the nanoparticle.

We have used finite element method (implemented in COMSOLR©) to calculate the overall

drag torque or drag force for different residual optical absorption powers.24 Assuming the

8

Page 8 of 22

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Page 9 of 22

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



proportionality of optical torque (blue dashed line in Fig. 3a) and trap stiffness (green dashed

line in Fig. 3a) with the incident power it is possible to fit the numerical model with the

experimental data and determine the residual optical absorption coefficient, which links the

incident power to the absorption of the nanovaterite particle. Further, using the theoretical

model it is possible to determine the surface temperature, Ts of the sphere depending on the

absorbed/dissipated power (Fig. 3b). In a first order approximation, the surface temperature

of the nanoparticle can be calculated using

Ts =
Qabs

4πrk(Ts)
, (1)

where Qabs is the absorbed/dissipated power and k(Ts) the thermal conductivity of heavy

water.25 Solving this equation for the surface temperature, Ts gives a analytical approxima-

tion which is in a good agreement with the full numerical model using COMSOL R© (Fig. 3b).

The simultaneous fit to both the rotation rate (blue solid line in Fig. 3a) and the cor-

ner frequency (green solid line in Fig. 3a) data implies a global absorption coefficient of

1.59× 10−5 for nanovaterite with a particle radius of 423 nm, i.e. for an incident beam with

a power of 1W, the nanoparticle dissipates 13.4µW, which leads to the surface temperature

of 24.2 ◦C equivalent to a rise of 4.2 ◦CW−1. To show the validity of this surface temperature

for different particle sizes, we study the lower and upper limit cases of rL = 373 nm and

rU = 473 nm based on the particle size distribution of r = 423 nm± 50 nm (2σe). We found

that Ts = 24.2 ◦C for an incident power of 1W remains unchanged within this particle size

range. This is due to the fact that the change in particle size affects both the power ab-

sorbed/dissipated by the particle and its surface area in such a way that maintains Ts within

these limits. We note that nanovaterite particles used in experiment are not spheres (see

Fig. 1b). Here we assume that the error due to the non-spherical form of the nanovaterite

particles is taken into account in the polydispersity error (σe). Indeed, the drag coefficient

of a rotating non-spherical nanoparticle can, in most circumstances, be approximated by a

spherical nanoparticle with a different effective radius.
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It is worth contrasting the transfer of angular momentum from light by absorption with

that by phase retardation (polarisation change). For a particle that absorbs power Pabs

from an incident circularly polarised beam, the resultant torque is τabs = Pabs|σz|/ω, where

σz = ±1 for circularly polarised light and ω the angular frequency of the trapping light.

By using a global absorption coefficient of 1.59 × 10−5 for nanovaterite (particle radius of

423 nm), we obtain Pabs = 0.5 × 10−20 Nm for an incident power of 1W. The rotational

Stokes drag torque τdrag = 8πµr3Ω can be equated to τabs to obtain Ω, which results in a

rotation rate of 2Hz for this incident power. Considering the total observed torque and the

resultant rotation rates, we conclude the torque by absorption is negligible, which suggests

that the internal birefringence of nanovaterite crystals is responsible for the rotation of these

particles.

We also note that nanovaterite particles can be rotated at a rate about 10Hz with a low

laser trapping power of 10mW, which would cause a negligible rise in particle temperature

of about 0.04 ◦C. For cellular studies, nanometric sized particles such as nanovaterite are

attractive as they can be more preferably internalised by cells via endocytosis or pinocyto-

sis17,26 potentially without compromising cell viability. Whilst we do concentrate on studies

at 532 nm, we remark that we are readily able to rotate these particles at 780 nm and 1064 nm,

leading to their future use for biomedical applications. Controlled rotation of nanovaterite

(even at a low rate of a few tens of Hz) without heating would allow quantitative measure-

ments of local viscosity of intracellular environments9 and exerting local stresses on cellular

systems.27

The finite element model gives also access to the local temperature and viscosity variation

around the nanoparticle.24 Fig. 4a shows the variation of the temperature (blue solid line) and

the corresponding viscosity (red solid line) depending on the distance from the nanoparticle

surface. The temperature of a fluid varies with the distance from the nanoparticle surface,

which means that there will be a non-uniform distribution of fluid viscosity around the sphere.

This non-uniform distribution implies the need for a correction factor when calculating the
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nanoparticle, we introduce a correction factor, cτ (Ts) and ck(Ts) into the Stokes drag formula

for both the rotational and translational motion.

τdrag = cτ (Ts)8πµ(Ts)r
3Ω, (2)

Fdrag = ck(Ts)6πµ(Ts)rv, (3)

where Ω and v define the rotation rate and linear motion of the nanoparticle. Fig. 4b show

the behaviour of these correction factors as a function of the surface temperature considering

our particular experimental setup. When the surface temperature of the nanoparticle, Ts

is maintained at the same temperature as the surrounding water (20 ◦C), i.e. a uniform

temperature distribution around the nanoparticle, these correction factors are unity. In this

case, cτ = ck = 1. As Ts increases (creating a non-uniform distribution of temperature thus

fluid viscosity), the translational Stokes drag force will have a higher correction factor than

that of the rotational motion, i.e. ck > cτ > 1. An interesting case occurs when Yb3+-doped

crystals are trapped by a tunable, near-infrared continuous-wave laser.28 In this case, heat

can be dissipated through the crystal lattice across the solid-liquid interface by anti-Stokes

(blue-shifted) photons following upconversion of Yb3+ electronic excited states mediated by

the absorption of optical phonons. In such a case, Ts can be colder than the surrounding

medium, where the correction factors satisfy ck < cτ < 1.

It should be noted that these correction factors are dependent on the particle radius and

the surface temperature of the particle. Further, the difference between the rotational and

translational Stokes drag correction factors may be understood by considering the nanopar-

ticle’s temperature in its immediate environment. When rotating the nanoparticle is only

in contact with liquid at the surface temperature whereas during translation it explores a

temperature variability.
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Conclusion

In summary, we have synthesised nanovaterite crystals with a mean particle radius of 423 nm.

We have demonstrated trapping and rotation of such nanoparticles, achieving rotation rates

up to 4.9 kHz. Superlinear behaviour of the rotation rate as a function of laser power is

observed. This behaviour arises from the variation of the local viscosity as a consequence of

local heating of the medium due to the absorption of the birefringent nanovaterite crystal. We

have developed a full numerical and theoretical model to determine the surface temperature

of the nanoparticle by simultaneously fitting the model to the experimental data based

on the trap rotation frequency and the trap corner frequency. Our data reveals that the

nanoparticle experiences a different Stokes drag torque or force depending on whether we

consider rotational or translational motion, which is in a good agreement with the theoretical

prediction of the rotational hot Brownian motion. The data allow us to determine the

correction factors for the local viscosity for both the rotational and translational motion

of the nanoparticle. The use of nanovaterite particles opens up new studies for levitated

optomechanics in vacuum as well as microrheological properties of cells or biological media.

For these latter studies, nanovaterite offers prospects of microviscosity measurements in ultra

small volumes and, due to its size, potentially simpler uptake by cellular media.17

Methods

Nanovaterite synthesis. Our highly spherical nanovaterite particles are grown via the

controlled precipitation of concentrated solutions of calcium chloride (CaCl2) and sodium

carbonate (Na2CO3).20 The final diameter of these nanovaterite spheres can be controlled

by altering a number of variables. This includes the concentration of the reactants, the

reaction time and the speed of rotation during mixing. A key issue in the fabrication of

these spheres is avoidance of rapid recrystallisation into the calcite phase, which can occur

due to the enhanced solubility of the particles as the particle size decreases. To avoid such
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problems, ethylene glycol was added to the water used as the solvent for this reaction.

This reduces the crystal growth rate and diminishes the chance of calcite phase nucleation.

For the nanoparticles used in this study, 0.33M solutions of calcium chloride and sodium

carbonate were prepared in 83% ethylene glycol (v/v), mixed at room temperature while

stirring at 500 rpm for 3 hours. The resultant precipitate was obtained through centrifugation

at 3000 rpm for 20 minutes prior to washing with ethanol and repeating twice. The resultant

nanoparticles were then dried for at least 1 hour at 60oC. In a typical batch of nanovaterite

samples, the mean particle radius was found to be 423 nm± 63 nm (σ). See Fig. 1 for SEM

images.

Experimental setup. A schematic diagram is shown in Supplementary Fig. S2. The ex-

perimental apparatus comprises of a trapping laser beam (Lighthouse Photonics Inc., Sprout-

G: continuous wave, wavelength 532 nm, power up to 10W) propagating through a half-wave

plate (λ/2) followed by a polarizing beam splitter (PBS) cube. The linearly polarised beam

is collimated and expanded (5mm in radius) to overfill the back aperture (4mm in radius)

of the microscope objective (Nikon, E Plan ×100, NA = 1.25 in oil, transmission efficiency

0.58 at 1070 nm) in order to obtain a diffraction-limited focal spot. A quarter-wave plate

(λ/4) placed immediately before the objective creates a circularly polarised light field. Once

a single nanovaterite particle is trapped and set into rotation, the transmitted light through

the trapped nanoparticle is collected using a condenser lens (Mitutoyo, ×50, NA = 0.43 in

air) and directed onto a quadrant photodiode (QPD) array (First Sensor, QP50-6SD2, −3dB

at 150 kHz) after the PBS. Back-focal plane interferometry is used to track the nanoparticle

position and the rotation rate (see Detection scheme) at optical powers ranging from 0.05W

up to 3W (measured at the back aperture of the microscope objective, MO).

Experimental protocol. For our experiment, the nanovaterite particles are re-suspended

in heavy water (deuterium oxide, D2O). This minimises laser-induced heating of the medium

by the absorption of the trapping laser at 532 nm, which is estimated to be < 0.1 ◦CW−1
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.29,30 Syringe filters (PALL, Acrodisc, pore size 1.0µm) are used to remove particles larger

than 1µm in diameter, if necessary, from the sample prior to the trapping experiments. The

sample of colloidal suspension is prepared in a miniature cylindrical chamber (circular vinyl

sticker spacer of 10mm in diameter and 100µm in thickness), which is enclosed with type-1

glass coverslips. Nanoparticles are trapped at an axial distance of 10µm above the glass

substrate.

Detection scheme. The rotation rate, frot = Ω/2π of a trapped and spinning nanovaterite

particle is determined from the power spectra obtained from a QPD array. (see Fig. 2) We

observe optical beating at 2frot when the nanoparticle rotates at frot due to the angular

Doppler effect.4 In practice, frot is also detected because of the variation in the photodiode

signal induced by a small optical asymmetry of the nanoparticle. The QPD and a photodiode

measures the right (PR) and left (PL) CP components of the scattered light, which are used

for the determination of the optical torque, τopt = ∆σCPP/ω, where ∆σCP = (PL − PR)/P ,

transferred to the particle.2
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Figure 1: SEM images of nanovaterite crystals. (a) A selection of nanoparticles (b) An
expanded view of the enclosed field with dashed line boundary.

Figure 2: Power spectral density (PSD) of a rotating nanovaterite particle showing a rotation
rate, frot of 4.9 kHz and its high harmonics of 2frot and 3frot.

Figure 3: Nanoparticle rotation rate, frot and trapping corner frequency fc as a function
of the incident optical power. (a) Measured data (frot represented by blue open circles and
fc by green open squares) together with model results24 (curved solid lines take heating
into account and dashed lines neglect heating). (b) Nanoparticle surface temperature, Ts

as a function of the dissipated power using a finite element approach24 and an analytical
approximation (Eq. 1).

Figure 4: Temperature dependent dynamic viscosity correction factor.24 (a) Radial tempera-
ture profile and the corresponding dynamic viscosity of heavy water surrounding a nanopar-
ticle dissipating 100µW. (b) Viscosity correction factors (as defined in the main text) for
rotational (blue solid line) and translational (green solid line) motion of the nanoparticle
(radius of 423 nm) as a function of its surface temperature.
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