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Abstract. Structural damage in offshore wind jacket support structures are relatively unlikely 
due to the precautions taken in design but it could imply dramatic consequences if undetected. 
This work explores the possibilities of damage detection when using low resolution data, 
which are available with lower costs compared to dedicated high-resolution structural health 
monitoring. Machine learning approaches showed to be generally feasible for detecting a 
structural damage based on SCADA data collected in a simulation environment. Focus is here 
given to investigate model uncertainties, to assess the applicability of machine learning 
approaches for reality. Two jacket models are utilised representing the as-designed and the as-
installed system, respectively. Extensive semi-coupled simulations representing different 
operating load cases are conducted to generate a database of low-resolution signals serving the 
machine learning training and testing. The analysis shows the challenges of classification 
approaches, i.e. supervised learning aiming to separate healthy and damage status, in coping 
with the uncertainty in system dynamics. Contrarily, an unsupervised novelty detection 
approach shows promising results when trained with data from both, the as-designed and the 
as-installed system. The findings highlight the importance of investigating model uncertainties 
and careful selection of training data.  

1.  Introduction 
The evaluation of the structural health of offshore wind turbines strongly relies on on-site practical 
assessments (inspections), which are associated with significant costs and risks, especially for 
structural failures below water level [1]. With respect to data-driven techniques, vibration-based 
methods have been applied to structural damage detection of wind turbines [2], [3]. The methods for 
the estimation of modal properties and their deviation due to a damage have been extensively used in 
the structural health monitoring of civil structures (e.g. bridges and building) [4], [5]. These techniques 
aim to identify the damage by using either natural frequencies or mode shapes and their derivatives 
such as displacement modal curvature. Their potential for  structural damage detection in monopile 
and gravity based offshore wind was already proven in [6], [7]. A feasibility study on several 
structural modifications and environmental phenomena of an offshore wind jacket structure was 
conducted in [8]. In this work it was generally acknowledged that natural frequencies have low 
sensitivity to structural damage (e.g. member loss, scour, corrosion). On the contrary, mode shapes 
showed to have greater sensitivity to damage. Nonetheless, it is known that the application of 
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operational modal analysis for the extraction of modal parameters faces some main challenges for 
offshore wind structures [9]–[11]. Furthermore, the measurement of a mode shape requires several 
high-resolution sensors distributed on the structure. These structural health monitoring systems 
consisting of accelerometers, inclinometers and/or strain gauges are usually installed on no more than 
10% of the turbines across the farm [12]. On the other hand, standard signals and their statistics are 
continuously collected via SCADA (supervisory control and data acquisition) systems throughout the 
service life of each asset. Supervised and unsupervised data-driven techniques have extensively been 
tested on these data for fault detection of the wind turbines [13], [14]. Such approaches have been 
mainly applied to condition monitoring of wind turbine mechanical and electrical components [15]. 
Machine learning techniques to drivetrain related failures might be trained and supported by real data 
from both the normal behavior and the damaged condition. However, the collection of the monitoring 
signals consequent the structural failure of an offshore wind turbine is unlikely, as such events have 
been rarely measured to date. Thus, the analysis has to strongly rely on models for representing the 
turbine dynamics in case of structural damage (see e.g. [16], [17]). An overview of the current practice 
and other potentially applicable approaches for structural health monitoring is given in Table 1. 

Table 1. Structural damage detection approaches and sensors required  

Type Damage Indicator(s) Installed sensor(s) Resolution Detection approach 
Inspection Visual testing examination - - On-site practical 

assessments  
Data-driven Natural frequencies and/or 

mode shapes deviation 
• Accelerometers 
• Strain gauges* 

≥ 20 Hz Vibration-based 

Anomaly in 
SCADA data 

• Standard signals 
• Additional: 

o Tower/nacelle 
accelerometers 

o Inclinometers 
o Temp. measurements 

from 10-min 
to ≥ 20 Hz  

Machine learning: 
• Supervised 

(classification) 
• Unsupervised 

(anomaly detection)  
* generally less reliable than the accelerometers  

2.  Aim and objectives 
This work aims to discuss the applicability of machine learning techniques to the detection of 
structural damage in the jacket structure of an offshore wind turbine by employing standard SCADA 
data. In a previous work of the authors [18], the feasibility of such an approach was proven, by using 
well-known binary classifiers for the detection of the status of the turbine (either healthy or damage). 
Nonetheless, the supervised models strongly relied on the quality and type of simulated data for the 
collection of the virtual monitoring signals after the structural failure.  

This paper focuses on the capability of the classifiers to accommodate the uncertainties associated 
with the model used for the training of the algorithms, as illustrated in Figure 1. The model of the 
structure used for the design purpose is thought to give a good representation of the behavior of the 
real structure. However, this “virgin” model is aimed to meet required safety levels. In contrast, the 
real structure differs from the designed structure (described with system uncertainty ∆3) due to 
manufacturing tolerances, deviation in environmental parameters and changes during lifetime as e.g. 
corrosion and scouring. For this reason, the finite element (FE) model of the structure is updated to 
mimic the behavior of the real structure based on measurements [11]. The FE-update can be described 
with an uncertainty ∆1 with respect to the virgin model. Representing the as-installed status of the 
turbine, the system uncertainty to the real structure (∆2) should be small compared to the one from the 
virgin model (∆2≪ ∆1). The objective of this study is to verify if the algorithms trained on the data 
from the as-designed model of the jacket are successful in classifying the status of the turbine when 
tested on the datasets from the FE-updated model. If this is achieved, then it will prove that the virgin 
model, and the algorithms trained on it, have the potential of being directly employed for the damage 
detection task of the real structure (based on the fact that ∆3~∆1). 
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Figure 1. Relationship between the modelled as-design, as-installed 

and real systems (∑), and theuncertainties (∆) among these. 

3.  Methodology 
Simulated data is used to train and test classifiers for damage detection in a binary form 
(damaged/healthy). Tests with unseen conditions for stochasticity of the loading conditions and 
variability of wind inflow parameters are conducted, compare [18].  

In a first step, the best performing algorithm using the as-designed data are tested on the set of data 
from the FE-updated simulations (as-installed status). In a second step, a hybrid training is attempted 
by including the dataset of healthy status condition from the as-installed structure dynamics into the 
training. In a third step, the potential implementation of anomaly detection algorithms is briefly 
studied. Here, unsupervised algorithms are used based on healthy data only from the as-installed 
system. The algorithm is instructed to recognize the normal behavior of the structure and to spot 
anomalies when fed with simulated data associated to the damaged structure. A flowchart of the 
approach is presented in Figure 2. 

 

Figure 2. Workflow for the 
applicability of machine 
learning for the structural 
damage detection by the 
use of simulated data. The 
dashed lines are used to 
indicate the data flow for 
the testing of the 
algorithms. 

4.  Data generation 
 The data for the measurements during the normal operation of the turbine, and consequently to the 
introduction of a structural damage, are obtained from semi-coupled hydro-elastic and aero-servo-
elastic simulations. The FE model of the jacket in the Ramboll’s ROSAP software is combined with 
the aero-servo-elastic model of the turbine and tower by using Ramboll’s LACFlex tool. More 
information on the setup and assumptions of both healthy and damaged status simulations of the jacket 
structure are reported in [18]. 

4.1.  Wind turbine jacket models 
Two models of the wind turbine jacket structure are used in this study:  

• Virgin model, used for the representing the as-designed system; 
• FE-updated model obtained by modifying a set of parameters of the virgin FE model to better 

represent the as-installed turbine dynamics. The steps for matching of the structure 
eigenfrequencies (1st and 2nd fore-aft and side-side global bending modes) to the one derived 
from a short-term measurement campaign are according to a Ramboll’s in-house procedure 
presented in [11], [19], [20].  

The structural damage is then introduced, for both models, as a reduction in the stiffness of a brace 
element at the K-node closest to the seabed. 

� as−designed
(virgin model)

� as−installed
(FE−updated 

model)

�
real

∆1 ∆2

∆3

(∆3∼ ∆1)

(∆2≪ ∆1)
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4.2.  Datasets 
The semi-coupled simulation for either the as-designed or the as-installed model of the structure, in 
healthy and damaged conditions, are run for the same set of environmental and operational conditions. 
The Jonswap spectrum for normal sea state conditions is used for the estimation of the wave 
parameters. Additionally, wind-generated sea current is derived according to the normal current model 
and considered aligned with the wave. Six short-term stochastic time histories of turbulent wind 
inflow and irregular wave (“seeds”) are then realised. The load combination and the number of 
simulations run per wind turbine status are reported in Table 2. 

Table 2. Number and type of load combination simulated per jacket status (healthy/damaged) and 
jacket model (as-designed/as-installed) 

 Wind speed Wind 
direction 

Wind-wave 
misalignment TI* Seedings Total 

Number cases 6 6 3 3 6 1,944 
Configurations 4, 6, 8 m/s  

(below rated) 
14, 18, 22 m/s 
(above rated) 

0°, 60°, 
120°, 180°, 
260°, 320° 

-60°, 0°, 60° 
 

upper bound, 
90th percentile, 
lower bound 

 

 

* Effective turbulence intensity  

The results presented in this paper are according to the sensors setup presented in Table 3, looking 
for minimal combination necessary for satisfactory detection. The features, defined as the measured 
characteristics of each signal, for the training of the algorithms are the low frequency statistics 
minimum, mean, maximum, and standard deviation, usually collected for the SCADA data, and the 
damage equivalent load (DEL) for the tower bottom bending load. 

Table 3. Sets of sensors and signals considered for the detection purpose 

Sensor Measurement Setup 10-min aggregates 
S1 S2 S3 mean min max std DEL 

SCADA 

Nacelle direction x x  ● ● ● ●  
Wind direction x x  ● ● ● ●  
Yaw angle (misalign. error) x x  ● ● ● ●  
Wind speed x x  ● ● ● ●  
Power x x  ● ● ● ●  
Rotor speed x x  ● ● ● ●  
(Collective) Pitch angle x x  ● ● ● ●  

 2D tower top acceleration  x  ● ● ● ●  
Inclinometer 2D tower bottom rotation  x x x ● ● ● ●  
Strain Gauge 2D tower bottom moment  x      ● 

Of the total amount of simulation run, the dataset splits and the samples number are, hierarchically 
• 3,888 for each structural health condition (healthy and damaged), of which: 
• 1,944 for each represented status (as-designed and as-installed), of which: 
• 648 for each of the three TI levels, of which: 
• 108 for each of the six seedings. 

 The use of each dataset for the training and testing of the detection algorithms, is reported in 
Table 4. Additional details are there given, distinguishing between the utilization of each dataset for 
the supervised and the unsupervised approaches training, as presented in this paper (in sections 6 and 
7.2, respectively), and for the TI levels. 
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Table 4. Overview of the data type and utilisation for the training and testing of the supervised and 
unsupervised algorithms 
  Jacket status 
  Healthy Damaged 

 TI upper 90th perc. lower upper 90th perc. lower 

Ja
ck

et
 m

od
el

 Virgin  
(as-designed) 

• S: train/test 
• SH: train/test 
 

• S: test 
• SH: test 

 

• S: train/test 
• SH: train/test 

 

• S: train/test 
• SH: train/test 
• U: test 

• S: test 
• SH: test 
• U: test 

• S: train/test 
• SH: train/test 
• U: test 

FE-updated 
(as-installed) 

• S: train/test 
• SH: train/test 
• U: train/test 

• S: test 
• SH: test 
• U: train/test 

• S: train/test 
• SH: train/test 
• U: train/test 

• S: test 
• U: test 

• S: test 
• SH: test 
• U: test 

• S: test 
• U: test 

S: supervised algorithms 
SH: supervised-hybrid algorithms 

U: unsupervised algorithms 
“train/test” refer to a training vs testing seed ratio of 4:2 

5.  Training methodology and performance evaluation 

5.1.  Algorithms training techniques 
The selection of the type of algorithms to be trained on the datasets of Table 4 is: 

• for supervised approach, based on the most promising classifiers identified in [18], namely 
Support Vector Classifier (SVC) and Random Forest Classifier (RFC) 

• for the unsupervised approach, guided by considerations on characteristics of the datasets for 
the as-installed condition and the typology of the detection wanted, as explained more in detail 
in section 7.  Here, a one-class support vector machine (OCSVM) is selected. 

For the training of these algorithms a “grid search” method is followed [21]. This implies that 
various combinations of configurations of the hyperparameters are tried during the training phase. For 
the supervised approaches, the best set is then selected as the one giving the best accuracy on sub-sets 
of the training dataset, so-called cross-validation (CV). On the other hand, the hyperparameters 
selection is done manually for the unsupervised algorithm, targeting satisfactory results of precision, 
recall and false alarm rate (refer to Section 5.2) on both the training and the test sets. The 
hyperparameters were varied as follows [22]: 

• SVC: kernel = {linear, polynomial, radial-based function (rbf)}, C = {0.01:1000}, 
gamma = {0.01:1000} 

• RFC: number of estimators = {10:100}, node split criterium = {“gini”, “entropy”}, 
maximum number of features = {“sqrt”, “log2”, “dataset features”}, maximum depth = 
{5:30} 

• OCSVM: kernel = {sigmoid, polynomial, rbf}, nu = {0.01:1}, gamma = {0.01:1000} 
The classifiers are trained on balanced datasets containing both the healthy and damage samples. In 

contrast, the anomaly detection algorithm is instructed to build a decision function for recognizing the 
healthy data only and considering all data samples not experience during the training phase as 
damaged. 

5.2.  Performance indicators 
The following indicators are adopted to quantify the performance of supervised or unsupervised 
machine learning approaches:  

• Accuracy (acc), representing the total amount of correct predictions over the total amount of 
samples in the dataset tested 

acc = 
tp+tn

Total samples
 (1) 

• Precision (pr), defined as the percentage of correctly detected damaged case with respect to 
the total amount of cases predicted damaged  

pr = 
tp

fp + tp
 (2) 
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• Recall (re), defined as the percentage of correctly detected damaged case with respect to the 
total amount of damaged cases in the dataset tested 

re = 
tp

fn + tp
 (3) 

• False alarm rate (f-a), represented the percentage of false alarm raised (the classifier predicts 
damaged status although the structure is healthy) with respect to the total amount of healthy 
cases in the dataset 

f-a = 
fp

tn + fp
 (4) 

were tn and tp refer to the correct prediction of healthy and damaged cases, respectively, and fp and fn 
give the false alarms and miss, respectively, as common in the confusion matrix. 

6.  Classification results 
The previous work in [18] addressed the training and testing of supervised detection algorithms on the 
as-designed model. SVC and RFC showed satisfactory performances in predicting the correct label, 
healthy or damaged, on unseen sets of data associated to: 

• variation of the level of turbulence intensity (upper bound, 90th percentile, lower bound),  
• stochasticity (seedings) of the wind and wave loadings, and 
• the presence of a damage in the jacket structure.  

The best set of data for the generalization of the prediction over a broad set of inflow wind 
conditions was found by including the extreme (upper and lower bound) turbulence intensity levels per 
wind speed. The optimal sensor setup for the detection task was identified by substituting the tower 
top accelerometer with a 2D inclinometer installed at the bottom of the turbine tower (set S1), cp. 
Table 5. 

6.1.  Testing on as-installed structure  
The applicability of these classifiers, trained on the as-designed model, to datasets of the as-installed 
structure needs to be verified. In Table 5 shows the training and testing performances for below rated 
operating condition, having obtained similar but slightly worse results for the above rated condition 
(not shown). It is observable that both classifiers have a random guess on test sets derived from the as-
installed model, for all levels of turbulence intensity. The addition to the training set of the 10-min 
equivalent load from the tower bottom strain gauge (set S2) – seen to be a possible predictor of this 
damage  [18] – leads only to minor improvements. 

Table 5. Performances of the classifiers trained on the datasets from the as-designed structure.  
 Train on as-designed Test on as-designed Test on as-installed 

 
Tuned hyperpar. Set CV seedings 90th percentile TI 90th p. Upper Lower 

 acc acc pr re f-a acc pr re f-a acc acc acc 

SV
C

 • kernel: rbf 
• C = 1000 
• gamma: scale  

S1 93.3 100 100 100 0 84.0 81.3 88.3 20.4 51.9 50.0 53.7 

S2 91.4 100 100 100 0 83.8 83.5 84.3 16.7 50.9 50.5 54.6 

R
FC

 

• criterion: entropy 
• max depth = 15 
• estimators = 80 

S1 95.6 100 100 100 0 91.7 94.1 88.9 5.6 52.8 55.6 49.5 

• criterion: entropy 
• max depth = 20 
• estimators = 100 

S2 95.4 100 100 100 0 89.8 93.9 85.2 5.6 53.2 54.6 49.5 

6.2.  Hybrid training on as-designed and as-installed 
Consequently, a hybrid training approach is pursued, providing the classifiers with the datasets of the 
loadings and responses of the as-installed structure in its healthy status. This approach could close the 
gap for the real application of the detection algorithms, by screening at first the potential detectability 
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of the structural damages on the as-designed model of the structure, to then extend the training set with 
the data collected from the real structure. The results are reported in Table 6, for below rated cases 
only.  

It can be noticed that overall unsatisfactory performances on the as-installed dataset are obtained 
for both investigated supervised algorithms. Nonetheless, it seems that some improvements could be 
further obtained for the SVC trained on the sensor setup S1. Despite of the low accuracy associated to 
the low detection rate (only 10%) of the damaged samples in the dataset, this algorithm raises a low 
percentage of false alarm (about 6%) while detecting a promising amount of damaged cases per 
number of alarms.  

Table 6. Performances of the classifiers trained on the healthy and damaged status datasets from 
the as-designed structure, and the healthy status dataset from the as-installed structure. 

Train on (upper/lower TIs): 
- as-designed (healthy/damaged) 
- as-installed (healthy only) 

Test on 
seedings 

Test on as-designed 
(90th percentile) 

Test on as-installed 
(90th percentile) 

 
Tuned hyperpar. Set CV 

 acc acc acc pr re f-a acc pr re f-a 

SV
C

 • kernel: rbf 
• C = 1000 
• gamma: 0.1  

S1 70.7 100 70.8 80.0 55.6 13.9 52.3 64.7 10.2 5.6 

S2 71.5 100 86.1 89.0 82.4 10.2 50.0 0 0 0 

R
FC

 

• criterion: gini 
• max depth = 20 
• estimators =  

S1 67.1 100 67.6 88.0 40.7 5.6 50.0 0 0 0 

• criterion: gini 
• max depth = 15 
• estimators =  

S2 63.7 100 82.4 85.0 78.7 13.9 50.0 0 0 0 

 

6.3.  Applicability of supervised detection algorithms 
The classification approach trained on the as-designed data failed to identify healthy and damaged 
status on datasets from the as-installed condition. An adapted training set including the variety in 
dynamics from the as-installed healthy condition seems to have the potential to overcome this issue. 
For what concerns the SVC, some dataset balancing techniques should be applied during the training 
phase to improve the damage detection performances. In addition, it should be noted that the 
difference of the as-designed and as-installed systems (∆1) is likely to be greater than the uncertainty 
that the detection approach will face if applied to reality, cp. Figure 1 (∆2≪ ∆1) when the algorithms 
are trained on the simulated data from the FE-updated model. Nonetheless, questions towards the 
capability of this approach to sufficiently accommodate uncertainty remain.  

As further study for demonstration of its applicability, the number of samples for the training of 
these algorithms should be extended with filtering for the conditions leading to misclassification.  

7.  Anomaly detection alternatives 
Although the applicability of a supervised method has not been fully disproved yet, an anomaly 
detection approach on the as-installed datasets is attempted as an alternative solution for the detection 
task. Several algorithms can be applied for this purpose, from a simple principal component analysis 
(PCA) applied in a semi-supervised manner to more complex normal behaviour models based on deep 
learning methods.  

To guide the selection of a suitable approach, a normal PCA is conducted to understand and 
visualize the distribution of the healthy and damaged datasets for the as-installed structure. In Figure 3 
a low separability of the healthy and damaged data from the PCA can be observed. This indicates the 
need for a method which does not apply linear separation techniques (e.g. linear SVM, PCA, etc.), but 
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that either can map the data to a higher dimensional space (i.e. via the use of kernel transformations) 
or can handle non-linearities (e.g. tree-based algorithms and neural networks). 

For the attempt presented, the OCSVM algorithm is selected, due to its advantage in learning a 
decision function. Thus, as opposed to other normal behavior models, either semi-supervised PCA or 
neural network models, it does not require an arbitrary selection of a threshold. In addition, 
preliminary tests showed superior results of OCSVM when compared to other algorithms which aim to 
isolate the anomalies (such as isolation forest and local outlier factor). This behavior was excepted 
because of the good compatibility of the datasets to the SVC and the observed low separability 
between the two classes. 

 

 

Figure 3. Number of principal 
components (PC) for 80% of the 
cumulative explained variance 
(on top), and representation of the 
missing separability of the classes 
for the first three PC (on the 
right), for a dataset of the as-
installed structure (90th p. TI). 

7.1.  OCSVM detection 
The results from the unsupervised detection are shown in Table 7 for the hyperparameters combination 
leading to the best performances on the dataset of the as-installed structure in the healthy status. It is 
observed that the trained algorithm makes correct decisions only on the data for stochastic variations 
of the environmental conditions, with a relatively small deviation from the data experienced in the 
training phase. Thus, it is unable to generalize the prediction for different levels of turbulence 
intensity. For this reason, all the datasets from the healthy as-installed condition (cp. Table 4) had to 
be fed in during the training. Nonetheless, this approach shows potentially satisfactory results even 
when the algorithm is instructed on the information the tower bottom inclinometer only (set S3). 
Though, the more complete dataset - with additional statistics from the other SCADA signals - leads to 
improvements in the learned decision function. Task of a future analysis is the identification of the 
best set of signals, dependent on their reliability and availability.  

Table 7. OCSVM performances  
Train on healthy datasets           
as-installed structure Test on as-installed  Test on as-designed 

 
  Set Best set hyperparameter training 

dataset 
damaged 
datasets seedings 

 nu kernel gamma f-a re acc pr re f-a acc pr re f-a 
S1 0.04 rbf 100-1000 7 100 96-95 92-93 100 8-9 50 50 100 100 
S3 0.06 rbf 1000 16 100 91 85 100 17 50 50 100 100 

7.2.  Applicability of anomaly detection  
The main criteria for the selection of the best tuning parameters is based on the successful fitting of the 
model to the healthy conditions in the training set, targeting thus a low number of false alarms. Yet, 
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the testing on the unseen damaged cases is necessary for the selection of a model with satisfactory 
detection performances. Therefore, even if the data from the normal operating turbine are available for 
the training task, the FE-updated model of the jacket structure should be setup for the collection of the 
reference damage state database. Future studies could investigate whether damage data statistics from 
the virgin model are sufficient for this purpose, or if the variation of the modal properties between as-
installed and as-designed systems is too big for this assumption. 

Additionally, the high value of the kernel function parameter (gamma) and of the finetuning 
parameter (nu) are indicators of potential overfitting of the model to the dataset. Thus, the ability of 
the model to accommodate other slight variations in the environmental conditions should be tested as 
well.   

8.  Conclusions 
The analysis carried out in this paper investigates the applicability of supervised and unsupervised 
learning techniques for the detection of a damage in an offshore wind jacket structure. Differently 
from alternative approaches utilising high frequency data from ad-hoc installed sensors, the 
methodology here suggested is employing only low frequency aggregates from the standard collected 
SCADA data and, if necessary, few additional sensors. Although a brace loss is used as exemplary 
case, the analysis proposed is extendable to any other type of damage, once identified the set of 
environmental and operating condition and the main indicators (i.e. predictors) for its detection. 

The supervised detection approaches showed to be successful for the classification task based on 
data simulated from the model of the as-designed structure. The trained algorithms were then tested on 
the datasets derived from to the model of the as-installed structure, to verify their ability to cope with 
uncertainties related to the updated model dynamics. While the random forest-based classifier showed 
overall unsatisfactory results, the support vector classifier seemed to have room for improvements. For 
instance, a pre-processing data filtering could be put in place to perform the detection task only on the 
set of environmental and operating conditions with the smallest number of misclassified cases.   

To give an alternative to this supervised method, the feasibility of a novelty detection approach 
based on healthy status data only is verified on the database of simulated data from the as-installed 
structure. Among the algorithms of common use for this task, a one class support vector-based model 
was selected for its suitability to the as-installed datasets, having little separability between healthy 
and damaged status. Although the number of damage case detected and false alarm raised are 
acceptable, this algorithm can only perform the detection for small variations of the training set, being 
unable to correctly generalise the prediction on several levels on turbulence intensity. Nonetheless, its 
ability to cope with a good prediction based on the minimum set of signals, consisting of the 
inclinometer statistics only, make it interesting for a real application where a high availability and 
reliability of the data is not always possible. 

Finally, the main take-away from this analysis is the need for the finite element model of the jacket 
structure representing dynamics of the structure at its as-installed conditions. The availably of data for 
damage status of the as-installed structure is required for either the validation of the supervised 
approach or the selection of best hyperparameters for the unsupervised approach.  
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