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ABSTRACT

We use a newly developed code to investigate cross beam energy transfer via Brillouin scattering in the strong coupling limit. The code
couples a single fluid model of the plasma to the complete set of Maxwell’s equations. The code can describe beam interaction at arbitrary
angles. We observe that the formation of a transverse structure on both beams is caused when the pump beam is fully depleted within the
width of the beam. We present a simplified envelope model that confirms the results of the simulation. This transverse beam structure
formation has implications for short pulse amplification. The results may also be relevant for fast ignition schemes for inertial confinement
fusion.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0010872

The interaction of two or more laser beams in the presence of a
plasma is a topic that is receiving growing interest. It is relevant, among
others, for plasma-based amplifiers,1–4 cross beam energy transfer
(CBET) in inertial confinement fusion (ICF),5–7 and the creation of
transient photonic crystals.8 In the context of pulse amplification, a
plasma wave couples to the electromagnetic modes and transfers
energy from a long pump beam to a short seed pulse. In the case of
stimulated Raman scattering (SRS), the EM waves couple through an
electron plasma wave,3,9,10 and in the case of stimulated Brillouin scat-
tering (SBS), the coupling is through an ion acoustic wave (IAW).4

While pulse amplification through SRS has been found to suffer from
limitations due to electron trapping and wave breaking,3,11 amplifica-
tion via SBS has recently gained increasing interest, especially in the
strong coupling regime, because wave breaking is greatly reduced in
this case.12–14 CBET for direct drive and indirect drive typically takes
place at laser intensities that correspond to the weak coupling SBS
limit,15–17 and at densities near the target at which SRS is suppressed.10

However, strong coupling SBS may be important in the shock ignition
scheme for ICF,18 where peak laser intensities can reach several
1016 W=cm2.

Traditionally, simulations of SBS use one of two approaches. In
the envelope approximation, the laser field is separated into a rapidly
oscillating carrier wave and a slowly varying envelope.19 The introduc-
tion of a spatial envelope means that the model acquires a defined axial
direction. In the paraxial approximation, laser propagation is limited

to small angles in the axial direction. In the context of CBET, most
simulations based on the envelope approximation additionally
consider the strong damping limit.20,21 Recently Myatt22 presented
simulations in which the damping is deemed appropriate for typical
direct-drive experiments—which is about 10% of the real frequency.
This could be considered strong, but the strong damping approxima-
tion was not used and therefore the response of the ions is not instan-
taneous. In Ref. 22, the ion-acoustic density perturbations, described
by a second order differential equation in time, do not instantaneously
follow the laser amplitude, but it does describe strong coupling
physics.23 In this work, we present a simulation model that includes
damping without making the strong damping assumption. For the
beam intensities considered here, the strong coupling dominates
damping and, when the ion temperature is less than the electron tem-
perature, Landau damping can be neglected altogether.

In order to capture a more complete picture of the physics of
SBS, particle-in-cell (PIC) simulations can be used.12,24 However, due
to the numerical cost of PIC simulations, these investigations are lim-
ited to one-dimensional systems or very small simulation domains. In
addition, PIC simulations add numerical noise which makes the inter-
pretation of the results harder.

In this contribution, we use a newly developed hydro-code that
includes the laser beams with a full Maxwell field solver to investigate
cross-beam energy transfer in the strong coupling regime. We find
that two laser beams intersecting at right angles not only transfer
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energy, but also imprint a transverse structure onto each other. Similar
structures are well known in the context of Brillouin or Raman ampli-
fication,3,12,25 but appear there only in the longitudinal direction. We
show that the structures are formed once the seed beam is able to
completely deplete the pump beam on a scale length smaller than the
pump diameter. Transverse beam structure formation has implications
for short pulse amplification in the strong coupling SBS regime. It may
also be relevant for CBET in shock ignition schemes where laser beams
have high intensities during the shock acceleration phase.

In Sec. I, we present the basic equations and the simulation
model. Section II presents the simulation results. In order to isolate the
specific process of transverse beam structuring in the strong coupling,
weak damping limit, we present results for an idealized geometry.
While the conditions in different types of applications may be more
involved, we believe that the results presented here may be relevant for
short pulse amplification as well as fast ignition schemes. In Sec. III,
we derive a semi-analytical model of the energy transfer between two
orthogonal beams in the strong coupling, weak damping limit. Section
IV contains the conclusions.

I. SIMULATION MODEL

We implemented a 2D code to simulate the plasma response to
crossing laser beams and the influence of the plasma on the laser prop-
agation. In contrast to previous codes,21,22 we do not use an envelope
model for the laser beams, nor do we linearize the plasma equations.
Especially, the latter can be important when the density perturbations
grow to become comparable to the equilibrium density. The plasma
will be modeled by a single fluid description. In order to derive this
model, we start from the general two fluid description of a plasma,

@tns þr � ðnsvsÞ ¼ 0; (1)

ms@tðnsvsÞ þ r � msnsvsvs þ ps½ � ¼ nsqs Eþ vs � Bð Þ þ Rs: (2)

Here, the index s ¼ e; i represents the fluid species. Multiplying the
continuity equations (1) for each species by their respective masses me

and mi and adding them, provides us with the mass continuity
equation

@tqþr � ðqvÞ ¼ 0: (3)

Here, q ¼ mini þmene is the mass density and v ¼ ðminivi
þmeneveÞ=q is the mass flow velocity. Adding the momentum equa-
tions (2) for each species, the electric field terms cancel exactly due to
the assumption of quasineutrality ne ¼ Zni. The combined momen-
tum equation then reads

@tðqvÞ þ r � qvv þ p½ � þ Zmen ve � rð Þve ¼ je � B� �qv: (4)

This equation also assumes that the electric current j is carried mostly
by the light electrons j � je. In the derivation of these equations, no
temporal averaging was carried out. This means that all quantities
retain their full time dependence. The pressure is assumed to be domi-
nated by the electrons, p � pe, assuming that the ion temperature is
small. We assume the electrons to be adiabatic. In the remainder of
this article, we will be restricting ourselves to a two-dimensional geom-
etry in which the seed beams are s-polarized. Under these assumptions
the electric field and hence the fast electron quiver motion is directed
perpendicular to the simulation plane. As a result, the last term on the
LHS of Eq. (4) vanishes exactly in our choice of polarization.

These equations are simulated using the central upwind scheme
by Kurganov et al.26 In this flux conservative scheme, the quantities q
and v are given on the cell centers. Their time derivatives are deter-
mined by evaluating the fluxes on the cell boundaries. Time integra-
tion is then carried out using a third-order Runge–Kutta scheme.

The equation for the electron current is obtained from Eq. 2.
Assuming that the main driver of the electron current is the transverse
oscillating electric field, we can neglect the spatial derivatives. Also, the
influence of the magnetic field is small compared to the electric field
for non-relativistic electrons. We end up with the Drude model for the
electron current.

@je
@t
¼ Ze2

memi
qE� cje: (5)

This is a local equation that can be directly integrated using the same
Runge–Kutta scheme as above. The coefficient c is the damping coeffi-
cient for the electron current in the fast electromagnetic field. Unlike
the strong damping limit, we do not place restrictions on the damping
coefficients and the plasma density is allowed to evolve freely in time
through Eqs. (3) and (4). We note that there are, of course, limitations
on the type of damping that can be described stemming from the
nature of the hydrodynamic model. We assume in the following that
kinetic effects such as Landau damping can be neglected. The electron
current enters the equations only in the calculation of the je � B force
on the plasma and in Ampère’s law. Note again that Eq. (4) results
from adding the electron and ion momentum equation and assuming
quasineutrality. Hence, the force from the electrons on the ions
through the electric field is contained implicitly in the momentum
equation. The resulting equations model the effect of the ponderomo-
tive force on the electrons, and since we are considering the ion time-
scale, also the bulk plasma. The equations are thus capable of
describing the generation of ion sound waves. Due to the assumption
of quasineutrality, the equations exclude Langmuir waves. Note that,
by neglecting the je � B term in Eq. (5), we are assuming that the elec-
tron current is purely transverse. In an exact description, there will be
a small contribution in the longitudinal direction due to the pondero-
motive force. Most of the longitudinal electron current will, however,
be canceled out by an equivalent ion current that maintains quasineu-
trality. The error made by this approximation is of the order kkD � 1.
The electromagnetic field equations are

r� E ¼ � @B
@t
; (6)

r� B ¼ 1
c2
@E
@t
þ l0je; (7)

where the contribution of the ion current density has been neglected.
These fields are advanced using the standard Finite Difference Time
Domain (FDTD) scheme on the Yee grid.27 This is a standard
method,28 also widely used in many PIC simulations.29,30 We stress
here again that we are solving the full set of Maxwell’s equations with-
out reverting to an envelope model. The boundaries are assumed to be
absorbing and modeled using a perfectly matched layer.31 More details
on this particular implementation of the FDTD solver can be found in
Schmitz andMezentsev.32

At this point, a few remarks about the model equations (3)–(7)
are in order. Maxwell’s equations (6) and (7) describe the full evolution
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of the electromagnetic field. In the case of two overlapping beams with
frequencies x1 and x2, both E and B will contain both beam frequen-
cies as well as the beat frequency ðx1 � x2Þ=2. The je in Ampère’s
law, Eq. (7), accounts for the electron current and, together with Eq.
(5), the dispersion for electromagnetic modes in the plasma are recov-
ered. In the region of overlapping beams, je will also contain the beam
frequencies and the beat frequency since it is linearly driven by the
electric field. Then, the je � B term subsequently is a non-linear driver
for the bulk plasma motion that contains both the sum frequency
x1 þ x2 as well as the difference frequency x1 � x2. The latter of
these can drive slow ion acoustic modes that are responsible for
Brillouin scattering. The ion acoustic modes create periodic density
fluctuations that, in turn, create periodic modifications of the disper-
sion relation for electromagnetic waves through the electron current
equation (5). These are then the cause for the scattering of the electro-
magnetic waves from one beam into the other. We conclude that the
model presented here contains all necessary physics to describe
Brillouin scattering. We have carried out numerical tests and con-
firmed that the code recovers both the dispersion relation for electro-
magnetic waves as well as the dispersion relation for ion acoustic
modes. Due to the nature of the single-fluid model, any kinetic effects
have been neglected. This implies that the model will naturally break
down once the wave breaking limit is reached.

II. SIMULATION RESULTS

The simulation is initialized with a homogeneous plasma at rest
with a density of ne ¼ 0:3ncrit, where ncrit is the critical density for the
laser wavelength k0 ¼ 0:351lm. The choice of ne suppresses any
Raman scattering which cannot exist for densities ne > ncrit=4. The
pump beam is injected along the x-axis. It has an intensity of
6:5� 1015 W cm�2. The seed beam, injected along the y-axis, has an
intensity of 5� 1014 W cm�2. Both beams have a half-width of 30lm
and a rise time of 10 lm=c. The rise time corresponds to a bandwidth
of Dx � 2� 1013 s�1. This bandwidth is almost ten times larger than
the frequency of the ion acoustic wave at ki ¼ k0=2 of
xi � 3:4� 1012 s�1. For this reason, the pump and the seed beam
can exchange energy through Brillouin scattering, even though they
have identical frequencies and do not meet the matching conditions
precisely. The seed is injected with a delay of 20 lm=c as compared to
the pump. The beams are s-polarized with respect to the simulation
domain. For these simulations, we neglect any damping of the ions,
�¼ 0. Assuming that the ion temperature is less than the electron tem-
perature, Ti < Te, Landau damping of the ion wave can be neglected.9

A small damping rate of the electromagnetic wave, c ¼ 10�3xpe, has
been included mainly for numerical stability. The resulting simulation
required about 500 CPU hours for a system of 38002 grid cells.

Figure 1 shows the out of plane electric field during the interaction
of the two beams. At a simulation time of t¼ 1.75 ps, the beams have
just crossed. The beating of the two beams has not yet had a chance to
noticeably affect the plasma density and the beams propagate without a
change in their amplitude. At t¼ 2.5 ps, energy transfer from the
pump to the seed beam due to Brillouin scattering can be observed.
The amplification of the seed beam reaches saturation as the pump is
depleted. One can observe that only the leftmost part of the seed beam
is amplified. This is due to the fact that the depletion of the pump
beam takes place on a scale length that is shorter than the width of the
seed. At t¼ 3.5 ps, the amplified portion of the seed moves further

FIG. 1. The out of plane electric field at times t¼ 1.75 ps (top panel), t¼ 2.5 ps
(middle panel), and t¼ 3.5 ps (bottom panel).
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upstream with relation to the pump beam. A regular structure of the
amplified beam perpendicular to the propagation direction is observed.
This pattern is mirrored in the downstream pump beam which shows
a similar modulation perpendicular to its propagation direction. It
should be noted that similar patterns can be seen in the simulation
results presented by Lancia et al.,33 but were not discussed there.

Figure 2 shows a line out of the amplitude along the x-axis for
the times t ¼ 2.5 ps, 3 ps, and 3.5 ps. The amplitude has been averaged
over a 10 lm interval in the y-direction from y ¼ 125lm to y
¼ 135 lm as indicated in the top panel of Fig. 1 by the dashed lines.
This slice is well outside the pump beam and clearly shows the trans-
verse amplitude variation of the seed beam as it leaves the interaction
region. The transverse profile exhibits a multi-peaked structure. As
time advances, the height of the peaks increases and the width
decreases. In addition to this, the peaks move to the left and new,
smaller peaks start appearing on the right. As the seed beam gathers
energy and increases in amplitude, it eventually fully depletes the
pump pulse. Where the pump is depleted and the seed has gained
maximum energy, the roles of pump and seed reverse and energy is
transferred back into the pump. Thus, the energy oscillates back and
forth between the pump and seed. Shortly after the times shown here
at about 4 ps, the amplitude of the density perturbation grows to
match the absolute value of the plasma density. At this time, we expect
wave breaking to occur and the single-fluid model to break down.

Within the interaction region, one can observe that the electric
field structures are elongated and curved, approximately along the
hyperbolic contours xy ¼ const, given a suitable coordinate origin.
This will be exploited in the semi-analytical theory developed in Sec.
III. Outside the interaction region, the structures appear to bend in on
themselves, away from the axes. This can be explained by the free
propagation of the features once they leave the interaction region and
are no longer modified.

III. ANALYTICAL MODEL

We now provide a semi-analytical theory of the initial growth
based on the envelope appropriation for the electromagnetic fields.
The theory presented here has superficial similarities to the analysis of
cross beam interaction by McKinstrie et al.34,35 Here, the amplification

of a seed beam by a pump intersecting at arbitrary angles was investi-
gated. However, in those investigations, the focus was mainly on time-
independent solutions in which collisions limited the growth of the
instability. In contrast, we focus on the rapid time evolution of the
density in the strong coupling regime. This evolution takes place on a
timescale that is comparable to or smaller than the ion acoustic period.

The coupled wave equations for Brillouin scattering are

x@tA1 þ c2 k1 � rð ÞA1 ¼
x2

pe

4n0
~nA2;

x@tA2 þ c2 k2 � rð ÞA2 ¼ �
x2

pe

4n0
~n�A1;

@2t ~n þ c2s k
2
3~n ¼ �in0k23

Ze2

mmi
A1A

�
2:

(8)

Here, A1 and A2 are the envelopes of the vector potential of the pump
beam and the seed beam, respectively, Ai ! Ai exp ðiðki � x � xitÞÞ.
The plasma ion density n is split into a constant background and a
small variation, n ¼ n0 þ ~n exp ðik3 � xÞ. By making this approxima-
tion, the model presented here will capture only the initial linear
growth of the density perturbation. It turns out that this is sufficient to
explain the transverse beam structures observed in the simulations.
Note, that ~n is the envelope of the density perturbation in space only
and still contains the full time dependence. The three waves have wave
vectors ki and frequencies xi with i¼ 1 for the pump beam, i¼ 2 for
the seed beam, and i¼ 3 for the ion acoustic wave. The frequency of
the ion plasma wave is small compared to the frequencies of the laser
beams. This allows the approximations x1 � x2 ¼ x and
jk1j � jk2j ¼ k. Assuming that the pump beam propagates in the posi-
tive x-direction and the seed beam in the positive y-direction, the cou-
pling conditions for the wave vectors read, k1 ¼ k2 þ k3

k1 ¼ kx̂; (9)

k2 ¼ kŷ ; (10)

k3 ¼ k x̂�ŷÞ;ð (11)

where x̂ and ŷ are the coordinate vectors. Inserting this into equation
(8) gives

x@tA1 þ c2k@xA1 ¼
x2

pe

4n0
~nA2; (12)

x@tA2 þ c2k@yA2 ¼ �
x2

pe

4n0
~n�A1; (13)

@2t ~n þ 2c2s k
2~n ¼ �2in0k2

Ze2

mmi
A1A

�
2: (14)

In the strong coupling regime, the second term on the left-hand
side of Eq. (14) is small compared to the first and can be dropped. We
introduce normalized quantities

s ¼ 1
T
t; n; g ¼ x

c2kT
x; y;

n ¼
Tx2

pe

4n0x
~n; aj ¼

e
mec

Aj; j ¼ 1; 2;

T ¼ 2xmi

Zmx2
pek

2c2

 !1=3

:

(15)

FIG. 2. The normalized amplitude along the x-axis from the full-wave simulation for
the times t ¼ 2.5 ps, 3 ps, and 3.5 ps.
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The equations can then be written as

@sa1 þ @na1 ¼ na2;

@sa2 þ @ga2 ¼ �n�a1;
@2sn ¼ �ia1a�2:

(16)

In the results of the numerical simulations, we have seen that the
features in the interaction region are elongated along the hyperboles
xy ¼ const. This suggests that hyperbolic coordinates might provide a
good description of the problem.We use the transformed coordinates

n ¼ v exp ð�uÞ; g ¼ v exp ðuÞ: (17)

The v-coordinate maps onto the radial lines (u ¼ const), while the u-
coordinate maps onto the hyperboles (v ¼ const). In this system, we
can neglect derivatives along u. Any variation in this direction is much
slower that the variation across the hyperboles in the v-direction.
Neglecting @u with respect to @v does not mean that the solution does
not depend on u. However, it allows us to integrate the equations for
each value of u independently. With this, the equations simplify to

@sa1 þ exp ðuÞ@va1=2 ¼ na2; (18)

@sa2 þ exp ð�uÞ@va2=2 ¼ �n�a1; (19)

@2sn ¼ �ia1a�2: (20)

For a given u, Eqs. (18)–(20) can be solved numerically using
standard techniques. The quantities a1, a2, and n are stored on a
numerical grid in v. The derivatives with respect to v are calculated
using finite differences. Then, the integration with respect to s is car-
ried out using a standard fourth order Runge–Kutta scheme. For com-
parison, we use the same parameters as those in the 2D simulation.
The normalized beam amplitudes are calculated from the on-axis peak
amplitudes of the Gaussian beams in the simulation, a1;0 ¼ 2:42
�10�2 and a2;0 ¼ 6:71� 10�3. These amplitudes are used as bound-
ary conditions for Eqs. (18) and (19) at v¼ 0. Figure 3 shows a plot
of the intensity a2 at g ¼ 8:12 as a function of n for different times.
For each pair of g and n, the values of u and v are calculated from

Eq. (17). Equations (18)–(20) are then integrated for the given u and
evaluated at v.

The beam amplitudes in Fig. 3 show the same transverse struc-
ture as seen in the numerical results shown in Fig. 2. There are, how-
ever, several differences between the model and the full simulation
which are due to the nature of the model. The simulations show a
smooth rise of the intensity from x¼ 0 to the location of the peak. The
model does not capture this slope due to the boundary conditions in
the model that assume a perfect step transverse beam profile. This
means that, in the model, the peak intensity is located at n¼ 0. The
growth of the peak intensity is overestimated in the model during the
times shown in the figure. At these times, the density perturbations in
the simulation are nearing saturation. The model contains a linearized
approximation of the density perturbation that cannot capture the sat-
uration. As time progresses, we can observe the same increase in the
initial peak and the development of new, smaller peaks to the right of
the leading peak. Figure 4 shows a plot of the maximum intensity of
the seed beam over time. The results from the simulation are shown
by the black curve, denoted the Gaussian Beam and the model is
shown by the blue curve. In order to determine the analytical growth
rate of the leading peak of the seed beam, we have to evaluate Eqs.
(18)–(20) at n¼ 0 by taking the limit u!1. Equation (18) immedi-
ately gives @va1 ¼ 0 or a1 ¼ a1;0. This makes intuitive sense as the
pump beam propagates in the n direction and has not yet interacted
with the seed beam at n¼ 0. In this limit, Eqs. (19) and (20) can be
reduced to @3sa2 ¼ �ija1j

2a2. This equation has three solutions, one
of which has a positive growth rate of k ¼

ffiffiffi
3
p
þ i

� �
=2ja1j2=3, in

agreement with linear analysis, e.g., Ref. 10. This growth has been plot-
ted in Fig. 4 as a dashed line. The model agrees well with the analytical
result. The simulation shows a much-decreased growth that saturates
quickly. The differences can be understood in terms of the transverse
Gaussian beam shape in the simulation. The growth rate has been cal-
culated using the peak amplitude of the pump beam. In the simulation,
the seed beam will mostly encounter lower amplitudes while traversing
the pump, thus reducing the overall growth rate. In addition, it was
observed that the peak of the amplified beam gradually moves left

FIG. 3. The normalized amplitude along the n-axis resulting from the model, Eqs.
(18)–(20), for the times t ¼ 1.42 ps, 1.55 ps, and 1.68 ps.

FIG. 4. The peak amplitude a2 of the seed beam over time for the simulation and
the model. The curve for the simulation has been shifted left by 0.7 ps in order to
align with the locations of maximum growth of the two plots.
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during the simulation. At each point in time, a different part of the
seed contributes to the growth curve, and the initial amplitude of this
part decreases over time. Both effects depend on the transverse beam
shapes and should reduce when a more top-hat like beam profile is
used. To corroborate this finding, we have repeated the simulation
with a super-Gaussian beam with an order of n¼ 8. The resulting
growth rate is plotted as the red curve in Fig. 4. It can be clearly seen
that the maximum growth rate is approaching the analytical growth
rate in this case.

IV. CONCLUSIONS

Using a novel simulation code, we have shown that energy
exchange between crossing beams in the strong coupling SBS regime is
susceptible to transverse beam structuring. Traditional numerical
treatment of stimulated Brillouin scattering in plasmas has used either
envelope approximation models or full particle in cell simulations.
Using a full Maxwell solver coupled to a fluid model of the plasma, we
were able to investigate the strong coupling SBS interaction of two
laser beams intersecting at a right angle. We observed previously unre-
ported structuring of both pump and seed beams perpendicular to the
direction of propagation. These structures may have implications for a
range of topics in laser–plasma applications, such as plasma optics,
cross-beam energy transfer, or short pulse amplification.

The transverse pulse profile is reminiscent of the p-pulse in the
weak coupling regime and similar to the pulse profile in pulse amplifi-
cation via strong coupling SBS. In our case, however, the pulse profile
does not propagate with the seed beam, but instead is fixed in space at
the position of the beam intersection. We developed an analytical the-
ory which underlines the similarity between the observed transverse
structures and the longitudinal peaks observed in short pulse
amplification.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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