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We propose a new paradigm of the aerodynamics of sails that reconciles our understanding of the force
generation mechanisms of both upwind and downwind sails, and that is applicable to both attached and
separated flow conditions. Sail experience significant flow separation. Even when the flow appears to
be attached, this is sometimes only in the time averaged sense. In these conditions, the underlining as-
sumptions of thin airfoil theory and lifting line theory are violated. There is therefore a need to develop
an intuitive understanding of the force generation mechanisms that does not rely on these assumptions.
This paper aims to address this issue by proposing a new paradigm based on the impulse theory. The
force generation mechanism can be intuitively associated with the vorticity field, which can be gathered
with computational fluid dynamics or particle image velocimetry. This paradigm intuitively reconciles key
results of traditional wing aerodynamics, and provides sail designers a measurable objective to modify a
sail shape also in separated flow conditions. It will hopefully underpin both a deeper understanding of sail
aerodynamics and the development of low order models for new design tools.

1 Background

The origin of lift is one of the most fundamental questions in
sail aerodynamics and one of the most difficult to address. De-
spite its critical significance, there is not yet a satisfactory ex-
planation on the origin of lift for the layperson [1]. One of the
major efforts of disseminating fundamental fluid mechanics
knowledge to the sailing community was that of Arvel Gen-
try, who passed away two years ago and to whom this article is
dedicated. In 1973, Gentry, who worked for Douglas Aircraft
Company, wrote on Sail Magazine a series of 11 articles [2].
He explained sail aerodynamics in terms of circulation and
argued, for example, that there was not a Venturi effect be-
tween sails. The theory was so counterintuitive that most peo-
ple refused to accept it. The Venturi effect is still used in
many sailing schools to explain (incorrectly) the interaction
between sails. Soon after Gentry’s article, Peter Barrett, who
was the Vice President of North Sails, wrote on Yacht Racing:
“I am willing to state categorically that [Gentry’s] future ar-
ticles will do little, if anything, to improve directly the perfor-
mances of both sailboats and sailors.” It took almost 20 years
before Gentry’s article changed the common understanding
of sail aerodynamics. In 1990, Tom Whidden, the new Pres-
ident of North Sails, together with Michael Levitt published
the seminal book The Art and Science of Sails, which com-
pletely endorsed Gentry’s articles. Five years after this book
was published, in 1995, Doug Logan (Consulting Editor to
Sailing World) wrote: “The foundation of sailing have been
demolished, quietly and completely? [3].

Gentry explained the concept of circulation that was devel-
oped independently in the early 1900s by Lancaster [4] in
the UK, Kutta [5] in Germany and Zhukovsky [6] (sometimes

Joukovsky or Joukowsky or Joukowski) in Russia. By the
1970s, the concept of circulation was widely adopted in aero-
nautics and by the academic community involved with Amer-
ica’s Cup yacht design (e.g. Jerome Milgram [7]), but it was
still ignored by the wider sailing community.

In summary, a solid body immersed in a moving fluid results
necessarily in fluid rotation (Ω), whose measure is the vortic-
ity (ω = 2Ω); and the integral of the vorticity over a volume is
the circulation (Γ ). A solid body within a moving fluid must
be immersed in a layer of vorticity; if the overall integral of
vorticity is not null, then there is bound circulation around the
body. The circulation can be described as the strength of a
point vortex that induces a tangential velocity inversely pro-
portional to the distance from its centre. The flow around a
sail can be considered as the vectorial sum of the free stream
velocity and the induced velocity of the sail vortex. Hence,
the simplest model of a sail is a point vortex with circulation
equal to the integral of all of the vorticity in its boundary layer.

The lift force due to the combination of the free stream ve-
locity and the velocity induced by the sail vortex can be eas-
ily computed by using a convenient solid surface of arbitrar-
ily radius a around the vortex (for example, this can be in-
cluded in the complex potential as a doublet). Compute the
velocity on the cylinder surface as the vectorial sum of the
free stream velocity and the vortex-induced velocity, and use
the Bernoulli equation to compute the pressure distribution
around the cylinder. The pressure integral in the lift direction
on the cylinder surface is the lift. The result is L = −ρUΓ ,
which is the Kutta-Joukowski theorem. This theorem shows
that the lift only depends on air density ρ, the free stream ve-
locity U and the sail circulation Γ . An equivalent formulation
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was derived by Filon [8] for the drag: D = ρUQψ , whereQψ
is the net flow rate into the wake of the vector potential de-
rived by Helmholtz decomposition. Unfortunately, however,
Qψ cannot be directly measured [9].

The force production mechanisms is explained in terms of
bound circulation in virtually all of the sail aerodynamics
books (e.g. Whidden and Levitt [10], Larsson and Elias-
son [11], Claughton et al. [12], Fossati [13], van Ossanen [14],
etc.). As discussed in the following, this model is fairly accu-
rate for upwind sails where the vorticity is confined within the
sail boundary layer. Moreover, it allows explaining intuitively
the interaction between the two sails and why Venturi effect
does not apply [15,16]. On the other hand, when flow separa-
tion occurs, we are left with very little explanations. What is
most remarkable is that flow separation occurs in most of the
conditions on a yacht sail and, yet, we do not have a concep-
tual model to account for its effect.

2 Sail Aerodynamics

2.1 Sail Aerodynamics in the Sailing Literature

Except for the mainsail, sails have a sharp leading edge and
thus there is only one angle of attack, namely the ideal an-
gle of attack, where the onset flow is tangent to the leading
edge and an attached boundary layer develops on both sides
of the sail. At any other lower angle of attack, the leading edge
of the sail collapses, whilst at any higher angle of attack the
flow separates. Flow separation is often not detected because
it could be confined in a small region near the leading edge.
When flow separation occurs, vorticity is shed downstream
and rolls up into vortices, which might then roll along the sail
or be shed away [17, 18]. The rolling of these vortices along
the sail results, in a time averaged sense, in flow reattach-
ment and in a recirculation region near the leading edge that is
known as leading-edge separation bubble [19–27]. The bub-
ble, which is typically shorter than 10% of the sail chord, can
occur both on upwind [28–31] and on downwind sails [32,33].

On downwind sails, because the flow is strongly tridimen-
sional [17, 34], the circulation shed by the shear layer might
roll up into a leading edge vortex stably attached to the lead-
ing edge [17, 18]. The stability of leading edge vortices is
the objective of several recent studies [35–39] and it is not
yet clear if a stable vortex can exist on full-scale sails [40].
In addition, significant trailing edge separation always occurs
on downwind sails [29] and its effect is poorly understood.
In his seminal review, Milgram [41] stated that ”for offwind
sailing, flow separation is almost always large enough to sig-
nificantly influence the lift, so experimental data are required
to construct a mathematical model for it.”

The fraction of sail area where the flow is separated increases
by trimming in the sail and, in light wind conditions, the trim
maximising the driving force is largely separated [42]. For ex-

ample, the mainsail is largely separated in upwind, light wind
conditions. If the optimal sail shape presents significant flow
separation, then it is very difficult to intuitively identify how
to improve a sail design. In fact, it is not possible to antici-
pate how the aerodynamic forces would vary between two sail
shapes with significant flow separation. Paradoxically, while
the most adopted explanation for the generation of lift force
relies on the flow to be attached, the flow around sails is dom-
inated by separated flow.

2.2 Sail Aerodynamics in the Fluid Mechanics Literature

Firstly, it must be clarified that the sail aerodynamics intended
here is not what is called sail aerodynamics in the fluid me-
chanics literature, that is a flexible foil anchored at the edges.
This is a canonical problem that was pioneered by Cisotti [43]
and then followed by Voelz [44], Thwaites [45], Dugan [46],
Smith & Shyy [47], etc. and also extended to the three dimen-
sional problem of a flexible membrane [48–52]. Conversely,
modern sails have sufficient tension in the structure that they
behave as rigid wings, but the aerodynamics is characterised
by the sharp leading edge.

To understand the underlying fluid mechanics of yacht sails it
is useful to simplify their geometries to the essential features
that explain the key observed phenomena. The force pro-
duction mechanisms of yacht sails is that of low-aspect-ratio,
swept, twisted, cambered plate. In fact, the key force produc-
tion mechanisms of steadily translating, bidimensional, flat
plates at incidence [53–56] is the same as that of yacht sails.
The sharp leading edge of the plate and of the sail leads to
similar separated flow fields at those angles of attack where a
foil with a curved leading edge would experience an attached
boundary layer. Hence, this flow condition is adopted in this
paper to elaborate the proposed paradigm for yacht sails. For
a list of flat plate studies, interested readers can find a useful
table in Afgan et al. [57]. The effect of curvature [46, 58–60]
can be considered as an increase of the effective angle of at-
tack. Studies on highly-cambered circular arcs [61–65] al-
lows to isolate the underlying differences between flatter up-
wind sails and deeper downwind sails. The favourable pres-
sure gradient upstream of the maximum camber on curved
plates promotes reattachment and the establishment of an at-
tached boundary layer, which is unlikely on a flat plate. On
the other hand, on the rear of a cambered plate, the adverse
pressure gradient promotes trailing edge separation. For ex-
ample, Suoppez et al. [32, 33] investigated on a circular arc
how the leading edge bubble affects trailing edge separation,
which is a phenomenon that occurs on cambered plates and
not on flat plates. More studies on this subject are currently
ongoing by the same authors.

The tridimensional effects are significant on sails because of
their low aspect ratio. Whilst high aspect ratio wings have
been largely investigated due to their significance in aeronau-
tics and turbomachinery, low aspect ratio wings have received
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comparatively less attention. However, due to the fast grow-
ing interest in small aerial vehicles, where the optimum aspect
ratio of the wing is significantly lower than that of large air-
crafts, research in this area has significantly increased in re-
cent years. Interested readers on the effect of aspect ratio on
the aerodynamics of flat plates can consider the rich literature
surveys in Taira and Colonius [66], Lee et al. [67], and DeVo-
ria and Mohseni [68]. Similarly, for the effect of sweep angle,
consider the literature survey of Huang et al. [69]. The main
effect of the low aspect ratio is to enable spanwise convection
of vorticity, which, for example, can enable a stable leading
edge vortex. Finally, it is instructive to note that the effect of
sail twist is the same as that of a shear in the onset flow, and
that the twist does not change the lift slope with the angle of
attack [70].

3 Aim and Organisation of the Paper

The aim of this paper is to propose a new paradigm for the
force production of yacht sails. This is based on well un-
derstood fluid mechanics principles, which, however, are not
commonly applied to yacht sails. This is the vorticity-moment
theory, or impulse theory, that describes the forces on a flow-
immersed body as the result of the vortex flow in the whole
flow field. The advantage of this approach is that it allows an
intuitive rationale for how both lift and drag forces are gen-
erated in both attached and separated flow conditions. More
specifically, it predicts the force contribution of any element
of vorticity in the fluid, both in steady and unsteady condi-
tions, both for rigid and flexible bodies. For example, we will
show how the vorticity in different regions of separated flow
contributes to the forces on the sail. Hence, it allows interpret-
ing the force differences between two flow conditions with
separated flow. This can guide sail designers to identify the
optimum sail shape and to identify desirable and undesirable
flow features in the fluid.

This vorticity-based approach is equivalent to the most com-
mon pressure-friction approach. However, while knowledge
of the surface pressure on the sail allows the identification of
the areas of the sail that most contribute to driving force [30],
the pressure in the flow field does not provide any direct in-
formation of its effect of the sail. For example, a vortex on
the suction side of the sail is typically assumed to contribute
to lower the surface pressure and thus to lead to lift enhance-
ment. However, the presence of a low pressure in the centre
of the vortex does not necessarily result in a low pressure on
the sail surface. In fact, we will show in Section 4 that the
force on the sail due to that vortex depends on the sign of its
circulation and on its velocity. Some vortices in the separated
flow region provide a positive contribution to the lift and de-
crease the drag, while others decrease the lift and increase the
drag.

The impulse theory is an equivalent formulation to the Navier-
Stokes equations and, therefore, could be written in a formu-

lation appropriate for numerical modelling (e.g. discrete vor-
tex methods [71]). However, in this paper we do not consider
these numerical methods and we focus on how this theory can
be used to interpret the observed flow field. Interpreting the
force generation mechanisms can, in turn, underpin low-order
models to predict the forces [72–75]. Hence, whilst the pro-
posed paradigm is not presented here as a predictive model
per se (even if it could be), it is suggested that it can be used
to develop low order models for sails experiencing separated
flow, that are currently unavailable.

The rest of the paper is organised as follows. In Sec. 4 we crit-
ically review some key results of the impulse theory for bidi-
mensional (2D) and tridimensional (3D) plates. We show how
these results provide a physical interpretation of the forces ex-
erted on the sail by vortex pairs in 2D (Sec. 4.1) and vortex
rings in 3D (Sec. 4.2), and how they reconcile with thin airfoil
theory and lifting line theory. In Sec. 5 we provide our own
analysis of how vorticity observed in the flow field contributes
to the forces. Firstly we derive a potential flow model with
vorticity concentrated in discrete vortices (Sec. 5.1). Then,
we use this model to discuss the force generation mechanism
(Sec. 5.2) and to clarify misconceptions on the bound vortic-
ity (Sec. 5.3). Finally, the results and their significance are
summarised in Sec. 6.

4 Impulse Theory

From Newton second law, we readily find that the force F
on a body is given by the time derivative of the impulse. For
a volume of fluid Vf with constant density ρ and velocity u,
whose external boundaries approach infinity,

F = −
∫

Vf

ρ
du

dt
dV = −ρ d

dt

∫

Vf

udV = −ρdI
dt
, (1)

where
I =

∫

Vf

udV (2)

is the impulse. Additional terms should be considered on the
right hand side of eq. 2 to limit the boundary of the integral
to an arbitrary finite volume [76–79], but this is not necessary
for the scope of this work.

Burgers [80], Wu [81] and Lighthill [82] independently
showed that the impulse is given by the sum of the integral
over the fluid volume Vf of the first moment of the vorticity
ω, and the integral over the solid surface Sb with outward unit
normal n of the moment of tangential velocity:

I =
1

nd − 1

(∫

Vf

x× ω dV +

∫

Sb

x× (n× u) dS
)
,

(3)
where nd = 2 and 3 in two and three dimensions, respectively,
and x = (x, y, z) is the coordinate vector. A complete deriva-
tion and discussion is available in, for instance, Eldredge [83]
(p. 190).
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The second term of eq. 3 vanishes in a reference system fixed
with the body. This, in fact, is an unsteady body force equal
to the difference between the forces as observed from the ref-
erence system O(x, y, z) and those observed from a reference
system fixed with the body. Furthermore, because it is pro-
portional to the mass of the body [84, 85], it is negligible for
small body to fluid density ratio [86] and for slender bodies
with small volume to surface area ratio [87] such as sails.
Therefore, for sail aerodynamics, the second term of eq. 3
is negligible for both rigid and flexible sails, independently of
the reference system, while it should be considered to investi-
gate, for example, the dynamics of flexible masts, which have
a non-negligible volume.

This formulation (eq. 3), which Wu [81] and Lighthill [82] de-
fined as the momentum theorem (based on vorticity moments)
and impulse theory, respectively, allows computing the forces
on a body from knowledge of the vorticity in the flow field.
The convergence of the integral is not trivial because the vor-
ticity might decay like x−2 and x−3 in two and three dimen-
sions, respectively, and thus it just balances the rate at which
the volume of the integral increases with the distance from
the body [83] (p. 187). This is an issue that has to be care-
fully considered if the integral has to be numerically solved
for steady conditions [88]. However, for one way around it
is to consider a body starting from rest and a volume that
includes the whole path travelled by the body, such that the
vorticity is identically zero at the boundaries.

Key physical constrains that these models should satisfy are
the Kutta condition and the Kelvin’s theorem. In steady flow,
the Kutta condition states that the flow velocity at the trail-
ing edge of a slender body must be tangent to the bisector,
or the trailing edge must be a stagnation point. In unsteady
flow, it states that the flow must be tangent to one of the two
sides of the trailing edge [71, 89]. For an infinitely thin plate,
the plate-normal flow velocity at the trailing edge must van-
ish. In turn, this condition sets the amount of vorticity that is
shed at the trailing edge by the solid body into the wake. The
Kelvin’s theorem states that, when the viscous dissipation of
vorticity is negligible compared to its convection (e.g. at high
Reynolds numbers) and zero net viscous torque is applied to
the system by the body (e.g. for a non rotating sail), the inte-
gral of vorticity over the volume of fluid must vanish.

4.1 Bidimensional Flow

Let’s consider a bidimensional space and a reference system
fixed on the body that allows to simplify the derivation with-
out loss of generality. The impulse formulation in eq. 1 and 3
becomes

F = −ρ d

dt

∫

Sb

x× ωz dS. (4)

Also consider the vorticity as concentrated in pairs of counter-
rotating vortices with circulation −Γ and Γ . We find that the

force F in the direction orthogonal to the segment d from the
centroid of the the vortex with negative circulation to that of
positive circulation is [72, 90]:

F = ρΣi(Γ̇i × di + Γi × ḋi). (5)

This is, in fact, the time derivative of the impulse of vortex
pairs, whose impulse was found by Lamb [91] to be ρΓd. For
a single vortex pair whose centroids of the two vortices are
located at coordinate (x1, y1) and (x2, y2), eq. 5 shows that
the lift (L) and drag (D) are

L = ρ
(
(x2 − x1)Γ̇2 + (ẋ2 − ẋ1)Γ2

)
, (6)

D = −ρ
(
(y2 − y1)Γ̇2 + (ẏ2 − ẏ1)Γ2

)
. (7)

This formulation is independent of the reference system. In
the rest of the paper we consider a reference system with the
x axis along the free stream velocity U and positive anticlock-
wise angles (Fig. 1).

𝛤! < 0

𝛤" > 0
𝑦" − 𝑦!

𝑥

𝑦

+

𝑥" − 𝑥!

Figure 1: Coordinate system and vortex pair.

4.1.1 2D Plate at Low Incidence

Consider a flat plate with chord c at a small angle of attack α,
starting from rest and reaching a steady velocity U (Fig. 2).
The circulation is concentrated near the foil and in the region
where the foil was at rest, while the net circulation in the wake
must vanish in steady conditions. The wake is made of vortex
pairs continuously generated on the two sides of the plates.
The distance across which the vorticity is generated is roughly
the plate thickness, which is small for a thin plate, thus d =
(x2−x1, y2−y1) ≈ (0, 0). Also, d remains of almost constant
whilst the vortex pairs convect along the plate and then are
shed into the wake, thus ḋ ≈ (0, 0). Consequently, these
vortex pairs do not contribute to lift nor drag. However, in the
boundary layer there is a non zero net circulation. The integral
of vorticity Γb around the plate is the bound circulation, while
the integral of vorticity around the region where the plate was
at rest is the starting circulation −Γb. The bound and starting
vortex have constant circulation (Γ̇b = 0) and their distance
increases at a rate ḋ = (U, 0).

The bound circulation can be computed by imposing the Kutta
condition. For instance, by placing the bound vortex in the
centre of the plate1 and ensuring that its induced velocity at

1The bound vortex can be placed in the centre of the plate because the
circulatory vortex sheet is symmetric around the centre of the plate
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Figure 2: 2D plate at low incidence.

the trailing edge cancels the plate normal component of the
free stream velocity, we find a negative bound circulation

Γb ≈ −πUc sinα. (8)

Inserting these values in eq. 6 and 7 gives the Kutta-
Joukowski lift theorem and the d’Alembert’s paradox, respec-
tively:

L = −ρUΓb = ρU2c π sinα, (9)

D ≈ 0, (10)

and in nondimensional form

CL ≈ 2π sinα, (11)

CD ≈ 0. (12)

These results are consistent with thin airfoil theory and in ex-
cellent agreement with experiments for α . 10◦. This inter-
pretation of the Kutta-Joukowski lift theorem (eq. 9) reveals
that the bound circulation is circulation that moves with ve-
locity U , irrespectively of its nearness to the plate. In other
words, all the vorticity in the flow field that moves with ve-
locity U contributes to the bound circulation. This is also
in agreement with the concept of trapped vortex studies by
Saffman and Sheffield [92] and successively Huang and Chow
[93]. A practical consequence of this result is that the lift
can be estimated with eq. 9 by taking as bound circulation
the integral of all of the vorticity in a time averaged flow
field. This approach was adopted, for instance, by DeVoria
and Mohseni [68], who considered various aspect ratio plates
at various incidences. Because in steady conditions the net
vorticity flux into the wake must vanish, the integral can be
taken over a finite volume around the plate. For example, Lee
et al. [67] investigated flat plates with aspect ratio between 1
and 3, at both low and high angles of attack, which are condi-
tions relevant to yacht sails. They found that the forces com-
puted by integrating the vorticity in the flow field do not vary
when the integral is performed over a domain that extends be-
yond two or three chord lengths downstream of the plate.

4.1.2 2D Plate at High Incidence

Consider a flat plate at an angle of attack of approximately
π/2 (Fig. 3). This flow condition was initially investigated as
a potential flow with concentrated vorticity by von Helmholtz
[94], who developed the free-streamline theory, and then fur-
ther developed by von Kirchhoff [95] and Lord Rayleigh [96].

Vorticity is shed downstream through two shear layers of op-
posite sign and equal magnitude at the two edges of the plate.
Most of this vorticity is generated at the edges. The vortex
pair with size d = (c cosα,−c sinα), is shed rigidly down-
stream and thus ḋ = 0.

An estimate of the production of vorticity can be derived from
the integral of the flux of vorticity across the shear layers [97].
Consider a reference system O′(x′, y′) with x′ aligned with
a shear layer of thickness δSL, with streamwise velocity u′

ranging from 0 to USL (Fig. 3). The vorticity production is

|Γ̇ | = −
∫ δSL

0

ωu′ dy′ =
∫ δSL

0

∂u′

∂y′
u′ dy′ (13)

=

∫ USL

0

u′ du′ =
1

2
U2
SL. (14)

A similar result was found accurate also in unsteady flow con-
ditions [56, 89] for small angles of attack. Roshko [53] noted
that at α = π/2 and steady conditions, USL = kU with k be-
tween 1.3 and 1.4. The interesting conclusion is that, if lead-
ing edge separation occurs and thus the Kutta condition is es-
tablished at the leading edge, then there is a force contribution
due to the vorticity production where |Γ̇ | = Γ̇ ≈ k2U2/2.
When substituted in eq. 6 and 7, we find that the force due to
the production of vorticity is

Lp = ρΓ̇ c cosα ≈ 1

2
ρU2c k2 cosα, (15)

Dp = ρΓ̇ c sinα ≈ 1

2
ρU2c k2 sinα. (16)

Roshko [53] also notes that the distance between the two
vortices of the vortex pair grows from c to (1 + k′)c, with
k′ ≈ 0.35. Let dt be the period of time over which this ex-
pansion occurs. The strength of the expanding vortex pair is
the amount of vorticity produced over the period δt (i.e. Γ̇ δt),
and the growth rate of the diameter of the vortex pair is k′c/δt,
Hence, the vortex force contribution due to the wake size in-
creasing is

Lv = ρΓ̇ c k′ cosα ≈ 1

2
ρU2c k′k2 cosα, (17)

Dv = ρΓ̇ c k′ sinα ≈ 1

2
ρU2c k′k2 sinα. (18)
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Figure 3: 2D plate at high incidence.

Hence, the lift and drag of a plate at high incidence is given
by both the production of vorticity and the vortex dynamics.
The sum of these contributions, in nondimensional form, is

CL ≈ (1 + k′)k2 cosα, (19)

CD ≈ (1 + k′)k2 sinα. (20)

The coefficients k and k′ depend on the Reynolds number and
can be measured from the flow field. For example, using k =
1.3-1.4 and k′ = 0.35, eq. 19 and 20 give force coefficients
that are in good agreement with those measured on a flat plate
for α between 50◦ and 90◦ at Reynolds numbers of the order
of 104 - 105 (e.g. [98]).

4.1.3 2D plate at moderate incidence

At those angles of attack between the stall angle, where lead-
ing edge separation occurs, and where the high-incidence
model becomes accurate, we do not have a readily available
model. The vorticity production is the same as at high inci-
dence. Hence, there is a lift and drag contribution as given by
eq. 15 and 16, respectively. Because the flow is not symmet-
rical around the streamwise direction, there must be bound
circulation. Moreover, the vorticity shed by the leading and
trailing edge might not convect uniformly downstream, lead-
ing to vortex forces. While the contribution due to the bound
vorticity and the shed vortices is not easily quantifiable, some
instructive observations can be made on both of them.

Firstly, when leading edge separation occurs, the bound cir-
culation is positive and it generates a negative lift force! In
particular, two vortex sheets of equal and opposite sign are
shed by the two edges of the plate. The bound circulation en-
sures that the Kutta condition applies at the two edges. The
sum of the plate-normal velocity components due to the vor-
tex sheets, the free stream velocity and the bound circulation,
must vanish. Assuming that the vortex sheets are parallel to
the free stream velocity, and that their induced velocity on the

opposite side of the plate is negligible, the reader can read-
ily find that Γb = Γ0 cosα > 0, where Γ0 is constant with
α. Therefore, there is a force component due to the bound
circulation that is

Lb = −ρUΓb = −ρUΓ0 cosα < 0, (21)

Db = 0. (22)

This counter intuitive result can easily be verified with sim-
ulations or experiments by integrating the layer of vorticity
enclosing the plate.

Furthermore, at moderate incidence, Babinsky et al. [72]
noted that the vorticity shed at the leading edge convects
downstream at about U/2, while the vorticity shed at the
trailing edge convects with velocity U (Fig. 4). This is
also consistent with the time-averaged results of DeVoria and
Mohseni [68] on moderate incidence plates, where the time-
averaged leading edge vorticity observed in the field of view
(see FoV in Fig. 4) near the plate was about twice of the
trailing edge vorticity. The slower convection of leading edge
vorticity than trailing edge vorticity can occur only for a fi-
nite period of time δt. In fact, all of the vorticity in the wake
must convect at the same velocity. Let assume, for exam-
ple, that leading edge vorticity convects at U/2 for a length
c cosα and thus δt = 2(c/U) cosα. The additional vortex
force due to the slow convection of leading edge vorticity
ΓLEV = −Γ̇ δt = −2Γ̇ (c/U) cosα is:

LLEV = −ρΓLEV
U

2
= ρΓ̇ c cosα ≈ 1

2
ρU2c k2 cosα, (23)

Similarly, the cross-flow relative velocity of the LEV with re-
spect to the TEV could be non zero for a finite period of time,
leading to a drag force component.

Overall, the forces on a flat plate at moderate incidence are
the sum of the positive effect of vorticity production, the neg-
ative effect of bound vorticity, and vortex forces due to the
different velocity of the vorticity shed at the leading and trail-
ing edge in a region near the plate. It must be noted that the
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Figure 4: Vortex lift mechanism.

distinction between leading and trailing edge vorticity is un-
necessary, and here used only to distinguish between negative
and positive vorticity, respectively. In fact, to compute the
forces with equation 5, the flow field must be described as an
ensemble of vortex pairs with equal and opposite circulation.
The choice of which positive vorticity is associated to which
equal and opposite negative vorticity to form a vortex pair is
arbitrary. Hence, this allows estimating the force due to the
dynamics of any vorticity in the flow field.

4.2 Tridimensional Flow

In a tridimensional space, the akin of eq. 5 is

F =
1

2
ρΣi(Γ̇i × di + Γi × ḋi), (24)

where the summation Σ is intended as a vectorial sum. The
vorticity must be considered in all of the three planes. In other
words, the total force on the body are the integral of the bidi-
mensional forces in the three Cartesian planes! For exam-
ple, consider planes orthogonal to the x axis and compute the
force Fyz(x) based on the vorticity observed on that plane.
Then integrate Fyz(x) along x. Repeat the same procedure
for planes orthogonal to the y and the z axis to find the forces
Fxz(y) and Fxy(z). The total force is

F =
1

2

(∫
Fyz(x) dx+

∫
Fxz(y) dy +

∫
Fxy(z) dz

)
.

(25)

An example of how to implement this formula is provided in
the following sections (Sec. 4.2.1 and 4.2.2). However, it is
also useful to note that an alternative approach is to consider
vortex rings. If we can consider the vorticity field as made
of a combination of vortex rings, each with absolute strength
Γj , minimum surface area spanned by the vortex loop Aj ,
and unit vector nj normal to the surface and pointing in the
opposite direction of the its axial induced velocity, then eq.
24 can be written as [99]

F = ρΣj(Γ̇jAj + ΓjȦj)nj . (26)

4.2.1 3D Plate at Low Incidence

Consider a plate with a chord c and span b at a small angle
of attack α. The reference system O(x, y, z) is placed at the
leading edge at one end of the span, and has directions i, j, k
in the drag, lift, and span direction respectively (Fig. 5). The
plate forms a vortex ring enclosed between the plate’s bound
vortex, the two tip vortices and the starting vortex. Assuming
the vortex ring as flat on the y = 0 plane, then the force is in
the lift direction and eq. 25 becomes

F = L =
1

2

(∫ c′

0

Fyz(x) dx+

∫ b

0

Fxy(z) dz

)
, (27)

where c′ = c cosα. The strength of the vortex ring is constant
and equal to the bound vorticity Γb. The ring size along the
streamwise direction grows with velocity U , sustained by a
production of vorticity Γ̇b = ΓbU/c

′ at the two tips. The two
integrals in eq. 27 are identical and, hence, the tridimensional
and bidimensional solutions give the same force per unit span
(cf. eq. 9):

L = −ρ
2
((ΓbU/c

′)bc′ + UΓbb) j = −ρUΓbb j, (28)

CL = −2 Γb
Uc
j. (29)

The same results can be achieved using eq. 26 noting that
Ȧ = Ub.

In the above derivation we assumed the vortex ring to be ap-
proximately flat but, indeed, it is is at a small angle with the
free stream. If fact ,due to its own induced velocity, the tip
vortices convect along j with velocity V (with |V | � |U |),
which is the downwash velocity. This results in a drag force
akin to that for the lift:

D = −ρV Γbb i, (30)

CD = −2V
U

Γb
Uc
i. (31)

These lift and drag results (eq. 28 and 30) are consistent with
lifting line theory [100] and were independently derived by
Lanchester [4] and Prandtl [101]. They provide accurate re-
sults at small angles of incidence, where there is no leading
edge separation.
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Figure 5: 3D plate at low incidence.

4.2.2 3D Plate at High Incidence

Consider a plate at high incidence. In this case, a vortex ring
is continuously generated on the plane of the plate and shed
downstream in the streamwise direction (Fig. 6). In this case,
the direction orthogonal to the vortex ring is the plate-normal
direction and eq. 25 becomes

F = Fn =
1

2

(∫ c

0

Fyz(x) dx+

∫ b

0

Fxy(z) dz

)
. (32)

As for the bidimensional case, we can identify a force due to
the vorticity production, which is constant and uniform along
the perimeter of the plate, and a vortex force due to the growth
of the wake diameter, i.e. of the vortex ring’s enclosed area.
For both of these force components, the integrals in eq. 32
are identical and, hence, the tridimensional and bidimensional
formulations give the same force per unit span. For example,
the force due to the production of vorticity, which is the dom-
inant force generation mechanism for low aspect ratio plates,
is (see eq. 16):

|Fn| =
ρ

2

(
Γ̇ bc+ Γ̇ cb

)
= ρΓ̇ bc. (33)

The same results can be achieved using eq. 26 noting that
A = bc. This force is made of the two components in the lift
and drag directions

L = ρΓ̇ bc cosα j, (34)

D = ρΓ̇ bc sinα i, (35)

and in non dimensional form,

CL = 2
Γ̇

U2
cosα j. (36)

CD = 2
Γ̇

U2
sinα i. (37)

Assuming Γ̇ = U2/2 as in eq. 13, this formulation with-
out the vortex contribution gives CL = 0 and CD = 1 for

α = π/2. This is consistent with flat plate experiments [102],
where CD decreases from 2 for an infinite aspect ratio to 1.5,
1.2 and 1.18 for a plate with aspect ratio 20, 5 and 2, re-
spectively (White [102] states that these results are valid for
Reynolds numbers of at least 104).

5 Force Contribution of Free Vorticity in the Fluid

As highlighted in Sec. 3, a key advantage of the proposed
approach is that it allows interpreting the contribution of any
nucleus of vorticity to the force generation. In this section
we consider the effect of free vorticity outside of the bound-
ary layer on the forces, and also on the vorticity within the
boundary layer (i.e. on the bound vorticity). To investigate,
we consider a generic velocity and a vorticity field that could
represent the result of a numerical simulation or of flow vi-
sualisation. In the following section (Sec. 5.1) we derive
this flow field analytically. However, our aim is to provide
guidelines on how measured or computed flow fields can be
interpreted.

5.1 Complex Potential of an Example Flow Field

We approximate a sail section with a circular arc, and we com-
pute the bound vorticity that is necessary to ensure the Kutta
condition through a Kutta-Joukowski transformation [103].
Here we follow the approach of Arredondo-Galeana and Vi-
ola [18]. We consider a free stream velocity U and a dou-
blet, such that it results in a cylinder of radius R. We add a
vortex with circulation Γb at the centre of the cylinder (Fig.
7). The centre of the cylinder is placed in a complex co-
ordinate reference system at ζ0 = µi, such that the trans-
formed cylinder is a curved plate with maximum camber 2µ.
We add a free vortex with circulation Γv equal to the inte-
gral of the region of vorticity outside of the cylinder, at the
complex coordinate ζv = ρve

iτv + µeiπ/2, where ρv and τv
are the radial and azimuthal coordinate of the vortex, respec-
tively. The vortex has a mirror vortex inside of the cylinder at
ζ ′v = (R2ρ−1v )eiτv + µeiπ/2 to maintain the non penetration
condition on the cylinder. The sum of the bound circulation
and of the image vortex circulation, Γb − Γv (where −Γv is
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Figure 6: 3D plate at high incidence.

the image vortex circulation), is the vorticity in the bound-
ary layer. Because we want Γb to represent the total vorticity
within the boundary layer, we add an additional vortex Γv in
the centre of the cylinder. Hence, the combined effect of −Γv
at the image vortex location and Γv in the centre of the vortex
is simply to redistribute within the boundary layer the total
amount of vorticity Γb. 2 While this model includes only one
external vortex, any number of vortices can be included in the
same manner.

The overall complex potential is

F (ζ) = U(ζ − ζ0)e−iα +
UR2eiα

(ζ − ζ0)
(38)

− i(Γb + Γv)

2π
ln(ζ − ζ0)−

iΓv
2π

ln
ζ − ζv
ζ − ζ ′v

, (39)

where α is the angle of incidence. The complex velocity in
the cylinder plane is given by differentiating the complex po-
tential with respect to ζ, that is

W (ζ) =
dF (ζ)

dζ
(40)

= Ue−iα − UR2eiα

(ζ − ζ0)2
− i(Γb + Γv)

2π

1

ζ − ζ0
(41)

− iΓv
2π

[
1

ζ − ζv
− 1

ζ − ζ ′v

]
. (42)

The real and imaginary part of the complex velocity give the
streamwise and cross-flow velocity component, respectively.
The resulting flow field can be mapped into the sail plane with
the transformation

z =

(
ζ +

(R cosβ)2

ζ

)
e−iα. (43)

2With the proposed approach, which is the same as in Pitt Ford and Babin-
sky [104], we consider the bound vortex and the external vortex as separate
identities. For example, the external vortex could be a vortex gust. It should
be noted that an alternative approach is to consider the external vortex as
vorticity that was in the boundary layer such as, for example, in Corkery et
al. [105]. In this latter case, we no longer add an additional vortex Γv in the
centre of the cylinder, Γb is the vorticity that was originally in the boundary
layer, while Γb−Γv is the remaining vorticity in the boundary layer after Γv

has been shed.

The bound circulation that ensures the Kutta condition is
found by the additional condition that the sail trailing edge
on the cylinder plane, ζTE = R e−iβ+ iµ = 0, is a stagnation
point, i.e. W (ζTE) = 0.

Finally, solving eq. 40 for Γb we find an expression for the
bound circulation as a function of the circulation and position
of the external vortex: [18]

Γb = −4RπU sin(α+ β)− κΓv, (44)

where β = atan(4µ/c) is the effective angle of attack due to
the sail curvature, and

κ = 2R
R− ρv cos(β + τv)

R2 + ρ2v − 2Rρ cos(β + τv)
. (45)

The first term on the right hand side of eq. 44 is the bound
circulation of a cylinder without an external vortex. Because
it is negative, it generates a positive lift. The presence of the
external vortex modifies the bound circulation by the coeffi-
cient κ, which depends on the spatial location of the vortex
with respect to the sail. The effect of the extrenal vortex on
the force generation is discussed in the next two sections (Sec.
5.2 and 5.3). The contours of κ in the cylinder and sail plane
are shown in Fig. 8a and b, respectively. The figure also
show an example of streamlines for the arbitrary position and
strength of an external vortex.

5.2 Force Production Mechanism

For the flow condition described in Sec. 5.1, where leading
edge separation does not occur, the generation of vorticity is
negligible and thus we have not included any source of vor-
ticity in our model. The whole vorticity in the region near
the sail is modelled by two vortices: the external vortex and a
vortex with circulation Γb representing the overall vorticity in
the boundary layer (the position of this vortex within the sail
depends on the position of the external vortex because of its
image vortex). The force generation mechanisms is due to the
dynamics of the existing vortex pairs, which can be arbitrary
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nal vortex.

chosen as long as all the circulation is accounted for and that
the net circulation is zero to satisfy Kelvin’s theorem. If the
net observable vorticity is not zero, then there must be circu-
lation with equal magnitude and opposite sign somewhere far
away along the wake. For example, let’s consider the vortex
pair made of Γb in the boundary layer and −Γb at an infinite
distance downstream of the sail, and the vortex pair made of
Γv near the sail and −Γv infinitely downstream. The force is
due to the change in size and orientation of these two vortex
pairs.

The bound circulation is moving away from the starting vor-
tex at velocity U , thus leading to the Kutta-Joukowski lift (eq.
9): Lb = −ρUΓb. The contribution of the free vortex is not as
straight forward because its velocity depends on its position.
If we use this approach to interpret the results of a numerical
or experimental flow field, a critical distinction must be made.
If the flow is instantaneous, the velocity of the circulation Γv
could be approximated by the average velocity in the region
occupied by the vorticity (better if the average is weighted
by the distribution of vorticity). Its force contribution is zero
only if the free vortex convects downstream with velocity U ,
which is equivalent to the convection of the vortex pair be-
ing frozen. For example, if this vortex was a vortex gust in
turbulent flow and its trajectory was unchanged by the sail, it
would have no force contribution. Conversely, if the free vor-
tex is close enough to the sail such that the velocity induced
by the bound circulation on the free vortex is not negligible,
then the vortex pair would be modified giving rise to a gust
force. Specifically, if the streamwise velocity of a vortex with
positive circulation is higher than U , it generates a positive
lift, and vice versa if the circulation is negative (e.g. the LEV
in eq. 23). If the vertical velocity of a vortex with positive cir-
culation is positive, it generates thrust, and it generates drag if
the circulation is negative.

5.3 Effect of a Free Vortex on the Bound Vortex

The effect of the free vortex on the bound circulation can be
deducted from equations 44 and 45. In deriving this equation
we have assumed that the bound circulation is such that it en-
sures the Kutta condition. The addition of free vorticity in the
surrounding fluid contributes with an induced velocity at the
trailing edge, thus resulting in different value of the bound cir-
culation. If the free vortex is on the sail surface, then κ = 1
and the bound circulation is reduced precisely by the free vor-
tex circulation (Fig. 8). Its effect decreases with the distance
from the sail.

Let’s consider, for example, a realistic flow field with leading
edge separation and time averaged reattachment. The vortic-
ity in the LEV contributes to the generation of induced ve-
locity at the trailing edge and thus the bound circulation must
be lower than it would have been without LEV. Therefore,
while the LEV provides a positive lift contribution (see eq.
23), it also leads to a lower bound circulation. The sum of
the two effects cancel each other perfectly if the LEV remains
in a fixed position with respect to the sail (see Saffman and
Sheffield’s [92] trapped vortex) and at this position κ ≈ 1.
The lift enhancing mechanism of the LEV, firstly observed
by Ellington [106] and then well documented by many oth-
ers [107–115], must be referred to the difference in lift be-
tween a wing with LEV and a wing otherwise stalled. In fact,
the main role of the LEV is to retain leading edge vorticity
near the sail instead of letting it convect downstream at the
freestream velocity.

5.4 Time-Averaged Forces

If the flow field is time averaged, the velocity of any observed
vorticity is null. In fact, that is the vorticity that, on average, is
found at that location. Hence, we cannot use equation eq. 5 or
24 because we cannot observe ḋ. However, the time-averaged
vorticity observed near the plate is, on average, moving with
the wing. Therefore, we found that the Kutta-Joukowski
lift formula holds also for a time-averaged flow field where
the bound circulation is the integral of all of the observed
time-averaged vorticity within a region including the sail and
intersecting the wake orthogonally. The lift contribution of
the vorticity production and of the vortex lift contribution
of repeatedly shed vortices is not neglected but implicitly
included. In fact, the lower the flow velocity convecting
vorticity through an arbitrary volume, the higher the time
averaged value of vorticity in the volume.

The time-averaged drag can be estimated using Taylor’s for-
mula (Taylor’s Appendix in Bryan et al. [116]),

D =

∫

W

(p− p0)dy, (46)

which states that the drag is the integral over a line W inter-
secting orthogonally the wake, of the difference between the
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Figure 8: Contour of κ on the cylinder plane ζ (a) and the sail plane z. White dotted lines show the radial and azimuthal
coordinates ρ and τ . Black lines show an example of streamlines for the arbitrary set of values Γb/(cU) = 0.26, Γv/(cU) =
2.5, ρ/R = 1.15 and τ = π/2.

pressure in the wake p and that in the far field p0. By us-
ing the Bernoulli equation, this equation shows that the drag
is equal to the momentum loss in the wake, a result directly
verifiable by applying Newton’s second law. Wu et al. [99]
recently showed that the first order approximation of eq. 46 is

D = −ρU
∫

W

ywdy, (47)

thus enabling the use of Taylor’s formula by knowledge of
only the vorticity field along W . For example, a bidimen-
sional plate with chord c at incidence α that generates vortic-
ity at a rate Γ̇ , forms two shear layers with strength γ = Γ̇ /U
that extend from each edge of the plate to infinity. The shear
layers are the only vorticity that intersects W and thus eq. 47
becomes

D = ρUγc sinα = ρΓ̇ c sinα. (48)

Substituting γ = Γ̇ /U in eq. 48, we find precisesly eq. 16.

Liu et al. [9] showed that eq. 47 is equivalent to Filon’s drag
formula when the shear layer approximation ∂/∂y � ∂/∂x
is used. Therefore, eq. 47 is a form of the Filon’s formula
that, together with the Kutta-Joukowski formlulation, allows
the computation of the time-averaged lift and drag. These two
equations together, that we call the Kutta-Joukowski-Filon
equations, can be combined into one vectorial equation and
extended to tridimensional flow as [117]

F = ρU × Γb + ρUQ, (49)

where
Q =

1

nd − 1

∫

SW

(zωy − yωz)dS, (50)

nd = 2 and 3 in two and three dimensions, respectively. SW
is a plane orthogonally intersecting the wake. For example,
for a plate with span b and chord c at incidence α, eq. 49
becomes

F = ρUΓbb j + ρUγbc sinα i. (51)

Noting that γ = Γ̇ /U , this result is consistent with eq. 28 and
35.

6 Discussion and Conclusions

Sail aerodynamics have been traditionally explained through
thin airfoil theory and lifting line theory. However, the under-
lying assumptions of these theories are not compatible with
separated flow, which is an inherent feature of yacht sails.
Therefore, a new paradigm is proposed, that is compatible
with both attached and separated flow conditions. Based on
the impulse theory, this paradigm enables an intuitive and in-
depth understanding of some of the key results of thin airfoil
theory and lifting line theory. In addition, it provides an in-
tuitive interpretation of the force contribution of any vorticity
in the flow field. Hence, the proposed approach can guide sail
designers to improve sail performances also when flow sepa-
ration prevent them from using potential flow theories.

The proposed paradigm is as follows. To ensures the non-slip
and non-penetration condition, the sail must generate vortic-
ity. The vorticity in the fluid is exactly what is needed to en-
sure these two conditions. The Kutta condition and Kelvin’s
theorem set two further conditions that make this vorticity
field completely determined, both in the boundary layer and
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infinitely far from the sail. This vorticity field can be de-
scribed as an ensemble of vortex rings (which degenerate in
vortex pairs in two dimensions). The forces on the sail are the
rate of change of the impulse I of the vortex rings:

F = ρ
dI

dt
= ρΣj(Γ̇jAj + ΓjȦj)nj . (52)

There are three key force generation mechanisms associated
with three different ways of changing the impulse: (1) varying
the circulation Γj ; (2) varying the area of the enclosed surface
Aj ; (3) rotating the vortex ring and thus the orientation of
nj . The force experienced by a sail is the sum of the force
contributions of these three mechanisms.

1. The first one is that employed by parachutes, whose
continuous generation of vortex rings parallel to the
parachute surface results in a drag that is D = ρΓ̇A. For
a yacht sail, whose surface is not perpendicular to the
wind as the parachute, this force contribution has both a
lift and a drag component.

2. The second mechanism, is that employed by an airplane
wing at low incidence. The vortex ring is enclosed be-
tween the wing of span b, the tip vortices and the starting
vortex. The area of the vortex ring increases at a rate
Ȧ = Ub, resulting in a lift L = ρUbΓ .

3. The parachute-type vortex ring generated around the
sail surface might change shape and orientation in the
first few convective lengths before being shed into the
wake, resulting in an additional vortex force of the type
F = ρ (δU) bΓ , where δU is the difference in velocity
between different legs of the vortex ring. Any element
of vorticity around the sail is part of a vortex ring and
its force contribution is associated with the change of its
area and orientation before it is shed into the wake.

Based on this paradigm, we showed that the knowledge of the
instantaneous vorticity and velocity field allows the compu-
tation/interpretation of the instantaneous lift and drag. More-
over, we also showed that the time-averaged vorticity field
alone is sufficient to compute/interpret the time-averaged lift
and drag by using the Kutta-Joukowski-Filon equation.
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