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We study the dependence of the electric conductivity on chemical potential in finite-density SU (2)
gauge theory with Nf = 2 flavours of rooted staggered sea quarks, in combination with Wilson-Dirac
and Domain Wall valence quarks. The pion mass is reasonably small with mπ/mρ ≈ 0.4. We concen-
trate in particular on the vicinity of the chiral crossover, where we find the low-frequency electric con-
ductivity to be most sensitive to small changes in fermion density. Working in the low-density QCD-
like regime with spontaneously broken chiral symmetry, we obtain an estimate of the first nontrivial
coefficient c (T ) of the expansion of conductivity σ (T, µ) = σ (T, 0)

(
1 + c (T ) (µ/T )2 +O

(
µ4

))
in powers of µ, which has rather weak temperature dependence and takes its maximal value
c (T ) ≈ 0.10 ± 0.07 around the critical temperature. At larger densities and lower temperatures,
the conductivity quickly grows towards the diquark condensation phase, and also becomes closer to
the free quark result. As a by-product of our study we confirm the conclusions of previous studies
with heavier pion that for SU (2) gauge theory the ratio of crossover temperature to pion mass
Tc/mπ ≈ 0.4 at µ = 0 is significantly smaller than in real QCD.

I. INTRODUCTION

Since quarks in QCD have finite electric charge, a hot
QCD medium is characterized by some finite electric con-
ductivity. It can be directly accessed in heavy-ion colli-
sion experiments via the dilepton emission rate [1, 2],
and is also of direct importance for the lifetime of strong
magnetic fields generated in off-central heavy-ion colli-
sions [3, 4].

The temperature dependence of the electric conduc-
tivity in QCD and QCD-like theories has been exten-
sively studied by now. A lot of first-principle results
are available from lattice gauge theory simulations [5–12]
(see also [13] for a recent summary of the lattice studies
of electric conductivity). The electric conductivity was
also calculated using a variety of approximation methods
which complement lattice simulations, for instance, based
on Boltzmann or Schwinger-Dyson equations [14–16], or
hadron gas models [17, 18].

However, there are practically no first-principle results
regarding the dependence of the electric conductivity on
baryon chemical potential, apart from AdS/CFT calcu-
lations [19, 20] which are not directly applicable to non-
supersymmetric QCD. Symmetries of the QCD action
suggest that the electric conductivity should be an even
function of the chemical potential µ, and thus can be
expanded in powers of µ as

σ (T, µ)

T
=
σ (T, 0)

T

(
1 + c (T )

(µ
T

)2
+O

(
µ4
))

. (1)
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In a calculation based on the off-shell Parton-Hadron-
String Dynamics (PHSD) transport approach [21] the
coefficient c (T ) in (1) was estimated as c (T ) ≈ 0.46
for T near the deconfinement transition [21]. A study
based on the Boltzmann equation within the quasiparti-
cle approach also gives a result consistent with this es-
timate [22], although only for a single non-zero value of
µ. Within the dynamical quasiparticle model the depen-
dence of the electric conductivity on the baryon chemical
potential was found to be rather weak [23], which is con-
sistent with results obtained using the Functional Renor-
malization Group [24]. On the other hand, a kinetic the-
ory calculation based on the hadron resonance gas model
[25] suggests a strong dependence of σ on µ in the low-
temperature hadronic phase, with σ/T changing almost
by an order of magnitude as the chemical potential varies
from µ = 0.1 GeV to µ = 0.3 GeV. A detailed analysis of
pion and nucleon loop contributions to σ reveals even a
non-monotonic dependence of electric conductivity on µ
[26].

These estimates imply that a finite chemical potential
can significantly change the electric conductivity in the
physically interesting part of the QCD phase diagram
with µ & T , where the QCD critical point is believed to
be located. This region of the phase diagram is in the fo-
cus of ongoing heavy-ion collision experiments at RHIC
and LHC. Planned experiments at NICA and FAIR fa-
cilities will achieve even larger baryon densities at lower
temperatures, hence even larger values of the ratio µ/T .
Thus it is important to study the density dependence of σ
in non-Abelian gauge theory from first principles in order
to correctly interpret the experimental data on dilepton
emission rates.

As is well known, due to the notorious fermionic sign
problem, first-principle lattice QCD simulations can only
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be performed at zero chemical potential. Methods such
as Taylor series expansion, reweighting or analytic con-
tinuation from imaginary chemical potential can be used
to obtain more or less reliable results for small values
of µ/T . However, these methods often make the extrac-
tion of physical observables from lattice simulations much
more technically challenging than for the case of µ = 0.

If one is interested in obtaining qualitative estimates
rather than high-precision results, it is often helpful to
consider QCD-like theories which behave similarly to
QCD in some regions of their phase diagram, but have no
fermionic sign problem. Examples include gauge theories
with SU (2) [27, 28] and G2 [29] gauge groups, as well as
QCD at finite isospin chemical potential [30–32].

In this work we perform a numerical study of the
dependence of the electric conductivity on the fermion
chemical potential in SU (2) gauge theory with dynam-
ical fermions. “Baryons” in SU (2) gauge theory are
diquarks, bound states of two quarks, which have the
same mass mπ as the pion and are thus much lighter
than baryons in real QCD. Diquarks hence condense for
µ & mπ/2 [27, 28] (see also Fig. 5 below), significantly
earlier than for real QCD where condensation of nucleons
with mass mn � mπ happens at µ ≈ mn/3� mπ/2. At
not very large values of the chemical potential outside
of the diquark condensation phase, however, the proper-
ties of finite-density SU (2) gauge theory are expected to
be similar to those of real QCD. In particular, this sim-
ilarity makes our estimate of the coefficient c (T ) in the
expansion (1) relevant for real QCD, in a way analogous
to orbifold equivalence, see, e.g. [33].

Our main finding from the analysis of the data in
low-density QCD-like regime is that the density depen-
dence of electric conductivity is rather weak in the tem-
perature range T/Tc = 0.7 . . . 4.0 which we’ve consid-
ered in our study. The conductivity is most sensitive to
the quark density in the vicinity of the chiral crossover,
where our estimate for the coefficient c (T ) in (1) is
c (Tc) ≈ 0.10 ± 0.07, noticeably larger than the corre-
sponding free-quark result.1 This estimate implies that
the chemical potential should be at least several times
larger than the temperature in order to significantly af-
fect the electric conductivity. The temperature depen-
dence of the coefficient c (T ) also appears to be rather
weak.

Another part of the phase diagram where finite-density
SU (2) gauge theory is expected to behave similarly to
QCD is the conjectured quarkyonic phase at very low
temperatures and high densities µ � mn [34, 35]. Cal-
culation of the electric conductivity in this part of the
phase diagram could shed more light on the properties

1 Of course, for a free quark gas the exact zero-frequency limit
of the electric conductivity is ill-defined. However, it gets some
finite value within numerical analytic continuation methods used
to extract conductivity from Euclidean correlators, such as the
Backus-Gilbert method used in this work.

of the quarkyonic/color-superconducting phase. As we
will see, however, measurements of the electric conduc-
tivity in this low-T , large-µ regime are numerically very
challenging, and we will leave a detailed study of this for
further work.

We also present data on the phase diagram of finite-
density SU (2) gauge theory with Nf = 2 fermion
flavours which complements previous results [35–44] ob-
tained either on smaller and coarser lattices, or for
smaller temperatures and larger densities, or with differ-
ent lattice actions. We confirm the findings of [38] that
the chiral crossover temperature in SU (2) gauge theory
is 3 to 5 times smaller than the pion mass, depending
on the chemical potential, in contrast to real QCD where
Tc & mπ at µ = 0.

The outline of the paper is the following: in Section II
we present the details of our lattice setup and discuss
the mixed fermionic action used to calculate the electric
conductivity. In Section III we study the phase diagram
of SU (2) gauge theory with Nf = 2 rooted staggered
fermion flavours in the µ−T plane. In Section IV we dis-
cuss our numerical approach to extract the electric con-
ductivity from current-current correlators. In Section V
we present numerical results for the electric conductivity,
estimated using both the simple “correlator midpoint”
estimate as well as using the more advanced Backus-
Gilbert method. We briefly summarize our findings in
the concluding Section VI. Some technical details of our
calculations and analytic expressions for electric conduc-
tivities of a free quark gas and a free pion gas at finite
density are relegated to Appendices.

II. LATTICE SETUP

Gauge field configurations were generated using the
standard Hybrid Monte-Carlo algorithm with Nf = 2
mass-degenerate rooted staggered fermions and a tree-
level improved Symanzik gauge action. We acceler-
ate both the HMC algorithm and the measurements of
current-current correlators on GPUs. HMC is imple-
mented with single-precision arithmetics within the CUDA
framework, and measurements use double precision and
are implemented using OpenCL. The same algorithmic
and lattice setup has been also used recently in [45].

We use lattices with spatial sizes Ls = 24 and Ls = 30
and temporal sizes Lt = 4 . . . 30, changing in steps of
two. In this paper we use a fixed-scale approach, choos-
ing a single value β = 1.7 of the inverse gauge cou-
pling which compromises between being sufficiently far
from the artificial strong-coupling bulk phase [46] and
still having a reasonably large lattice spacing and lat-
tice volume. The chemical potential takes values aµ =
0.0, 0.05, 0.1, 0.2, 0.5 in units of inverse lattice spacing a
for Ls = 24, and aµ = 0.0, 0.05, 0.20 for Ls = 30. Our
largest value of the chemical potential, aµ = 0.5, thereby
represents a kind of compromise between approaching
the diquark condensation phase (see Fig. 5) while still
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staying reasonably well below half-filling and eventual
saturation of the quark density as obvious lattice arti-
facts. As discussed below, to facilitate diquark conden-
sation in a finite volume, for Lt ≥ 10 we also generate
gauge field configurations with a small diquark source
term aλ = 5 · 10−4.

The numbers of gauge field configurations used in this
work are summarized in Table I. To obtain these ensem-
bles, we have saved gauge field configurations after every
3rd full Hybrid Monte-Carlo update, which appears to
be enough to have reasonably small autocorrelations in
the data for current-current correlators.

The measurements of current-current correlators are
performed mainly using Wilson-Dirac (WD) fermions.
One of the technical advantage of using WD fermions
for measuring the electric conductivity is that all data
points in the current-current correlator in Green-Kubo
relations (3) can be treated uniformly, whereas for stag-
gered fermions even and odd time slices are typically
treated separately [47] in order to filter out the contri-
butions from non-taste-singlet states, which effectively
decreases the signal-to-noise ratio.

In addition, some of the measurements are also made
with Domain-Wall (DW) fermions [48], providing a cross-
check for the Wilson-Dirac data. We use the distance
between domain walls (lattice size along the fifth dimen-
sion) L5 = 16, which is typically sufficient to suppress
additive mass renormalization [49, 50] for DW fermions.
Such a mixed lattice action with staggered sea fermions
and DW valence fermions has already been used in a
number of studies of the nucleon axial charge [49–51].
However, our primary motivation for using DW valence
quarks is that we re-use fermion propagators entering
the current-current correlators (8) to calculate also cor-
relators of axial and vector currents. Those correlators
are related to so-called anomalous transport coefficients
[52, 53], which will be the subject of another forthcoming
work. Since the axial anomaly is very subtle for staggered
fermions, the use of DW valence fermions with good chi-
ral properties is a big advantage for this kind of calcula-
tions.

To improve the chiral properties of DW and WD
fermions without using much finer and larger lattices,
we follow [49] and use HYP smearing [54] for gauge links
in the DW and WD Dirac operators.

As in [49–51], bare quark masses in the WD and
DW Dirac operators are tuned to match the pion mass
mstag
π = 0.158 ± 0.002 obtained with staggered valence

quarks with mstag
q = 0.005. The dependence of the

squared pion mass m2
π on the bare quark masses of the

WD and DW fermions on 243×48 lattice with β = 1.7 is
illustrated in Fig. 1. One can see that with a good preci-
sion m2

π depends on mq as m2
π ∼ mq+∆m in accordance

with the Gell-Mann-Oakes-Renner relation, where ∆m
accounts for additive mass renormalization. From these
data we have estimated that the bare quark mass should
be mWD

q = −0.21 for WD fermions and mDW
q = 0.01 for

DW fermions in order to match mstag
π = 0.158 ± 0.002.

λ = 0 aλ = 5 · 10−4

Lt \ aµ 0.0 0.1 0.2 0.5 0.0 0.05 0.1 0.2 0.5

4 402 202 202 202 0 0 0 0 0

6 202 202 202 202 0 0 0 0 0

8 402 202 802 202 0 0 0 0 0

10 402 202 1661 202 503 994 202 1188 233

12 791 202 1368 202 339 639 202 802 249

14 1661 202 946 102 267 420 395 724 184

16 1661 202 635 50 397 692 292 731 267

18 1545 469 549 62 321 230 314 331 179

20 1074 0 454 0 268 418 230 451 132

22 0 0 0 0 227 324 191 274 0

24 0 0 0 0 95 132 195 161 0

26 0 0 0 0 85 104 203 0 0

TABLE I. Numbers of gauge field configurations with spatial
size Ls = 24 used in this work.

λ = 0 aλ = 5 · 10−4

Lt \ aµ 0.0 0.05 0.2 0.0 0.05 0.2

4 1602 1452 202 0 0 0

6 1602 678 202 0 0 0

8 1495 348 202 0 0 0

10 880 211 202 0 0 0

12 580 262 123 0 0 420

14 0 0 224 382 309 259

16 0 0 145 527 370 162

18 0 0 94 396 267 114

20 0 0 63 338 337 69

22 0 0 47 283 279 99

TABLE II. Numbers of gauge field configurations with spatial
size Ls = 30 used in this work.

To illustrate the effect of HYP smearing on additive mass
renormalization (and hence on the chiral properties of
the lattice fermions), let us note that for WD fermions
without HYP smearing the bare quark mass should be
as large as mq = −0.685 to obtain mπ = 0.158.

The mass of the ρ-meson obtained from the same en-
semble on 243×48 lattice with β = 1.7 is mρ = 0.36±0.07
for WD fermions and mρ = 0.44±0.05 for DW fermions,
thus the ratio of pion and ρ-meson masses mπ/mρ ≈ 0.4
is reasonably small. While not yet physical, it is smaller
than in the previous studies of SU (2) gauge theory. The
pion Compton wavelength is almost four times smaller
than the lattice size, mπLs ≈ 3.7 for Ls = 24 and
mπLs = 4.74 for Ls = 30, hence we expect finite-size
artifacts to be reasonably small.
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FIG. 1. Squared pion mass m2
π calculated with Wilson-Dirac (on the left) and Domain Wall (on the right) valence fermions as

a function of bare valence quark mass mq.

III. PHASE DIAGRAM OF FINITE-DENSITY
SU (2) GAUGE THEORY

In addition to the chiral condensate 〈 ψ̄ψ 〉 and its sus-
ceptibility which are conventionally used to map out the
chiral crossover on the QCD phase diagram, the order
parameters of SU (2) gauge theory also include the di-
quark condensate 〈ψψ 〉. In this Section we study these
order parameters within our lattice setup and map out
the boundaries of regimes which favour chiral or diquark
condensates.
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FIG. 2. The effect of subtraction (2) on the temperature-
dependent chiral condensate at zero chemical potential and
at different lattice sizes and values of the diquark source.

We first discuss the chiral and diquark condensates and
the corresponding susceptibilities. There are two sub-
tleties which have to be taken into account when inter-
preting the raw lattice data for these observables. First,
the chiral condensate contains a UV divergent additive
part which might also depend on temperature and chem-
ical potential. As discussed in [45, 55], this UV divergent
part can be removed by subtracting the first-order term
of the Taylor expansion of the chiral condensate in pow-

ers of the bare quark mass mq:

〈 ψ̄ψ 〉sub = 〈 ψ̄ψ 〉 − ∂〈 ψ̄ψ 〉
∂mq

mq. (2)

The effect of this subtraction on the Lt dependence of
the chiral condensate at µ = 0 is illustrated in Fig. 2 for
different lattice volumes and values of the diquark source.
One can see that only after subtraction one can observe
an expected temperature dependence of the chiral con-
densate and identify an inflection point which indicates a
crossover between the high- and low-temperature regimes
with (approximately) restored and spontaneously broken
chiral symmetry.

The second subtlety is that in the chiral limit and at
µ = 0 the ground states with nonzero chiral and diquark
condensates have equal energies. An introduction of a
Dirac mass term, which is inevitable in Hybrid Monte-
Carlo (HMC) simulations, breaks this degeneracy and
biases the system towards the phase with nonzero chi-
ral condensate, which makes it difficult to observe the
signatures of the diquark condensation phase. In or-
der to counteract this bias, for simulations at sufficiently
low temperatures (Lt > 10) we introduce a small di-
quark source term in the action of the form λψψ with
aλ = 5 · 10−4 (in lattice units) which makes the di-
quark condensation more energetically favourable. As
illustrated in Fig. 3, the presence of this small source
term has little effect outside of the diquark condensation
phase. As illustrated in Fig. 10 below, it also has practi-
cally no effect on the electric conductivity. On the other
hand, in the diquark condensation phase it acts to rotate
the chiral condensate into a diquark condensate and also
produces a clear wide peak in the diquark susceptibility
typical for a crossover.

In Fig. 4 we illustrate how the quark density, the sub-
tracted chiral condensate, the diquark condensate and
their corresponding disconnected susceptibilities depend
on the temporal lattice size Lt at three different values of
the chemical potential aµ = 0, aµ = 0.05, aµ = 0.2, and
at different spatial lattice sizes Ls = 24 and Ls = 30.
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FIG. 3. Chiral and diquark condensates (left) and susceptibilities (right) at aµ = 0.2 as functions of the temporal lattice size
Lt at Ls = 24 and Ls = 30 with and without a small diquark source.

For aµ = 0 and aµ = 0.05 < amπ/2 we expect the
conventional chiral symmetry breaking pattern, and for
aµ = 0.2 and sufficiently low temperatures we approach
the diquark condensation phase. Using this data we can
locate chiral crossover and diquark condensation using
the inflection points of either the chiral or the diquark
condensates, considered as functions of Lt. For aµ = 0.0
and aµ = 0.05 (i.e. at µ < mπ/2) we use the chiral
condensate, for aµ ≥ 0.1 the diquark condensate is used.
To identify the inflection point, we fit the chiral/diquark
condensate data points with a third-order polynomial.
The inflection point of the fitting polynomial is used as
an estimate of the crossover position. These fits and the
positions of the corresponding inflection points are shown
on Fig. 4 with dashed lines. The estimates of critical Lt
obtained in this way are also in good agreement with the
observed peaks in the corresponding susceptibilities.

Note that the thermodynamic singularity in the chi-
ral susceptibility is known to be associated with dis-
connected fermionic diagrams and the contribution of
connected fermionic diagrams has only a mild temper-
ature dependence (see e.g. [56]). We have measured both
the connected and the disconnected contributions to sus-
ceptibility, and our numerical results confirm this well-
known feature of the chiral crossover. For this reason on
Fig. 4 we only plot the disconnected contribution. Since
susceptibilities are much noisier observables than the con-
densates, we have decided to use the condensates instead
of susceptibility peaks to identify the crossover position.

The resulting estimates for the boundaries of the chi-
rally broken phase and the diquark condensation phase
are shown in Fig. 5. Blue and red points correspond to in-
flection points of Lt dependence of the chiral and diquark
condensates, respectively. In this plot, the two points
with the lowest temperature (corresponding to Lt = 30)
were obtained in a different way: here, we have fixed
Lt = 30 and looked for an inflection point in the µ depen-
dence of the both the chiral (blue point) and the diquark
(red point) condensates. The results coincide within sta-

tistical and fitting uncertainties, which suggests that the
two phases coexist in this region of the phase diagram.

Our findings for the phase diagram agree well with
previous results obtained in lattice simulations on suf-
ficiently fine lattices [38, 39, 44], as well as within the
functional renormalization group approach in effective
low-energy theories [57, 58]. The chiral crossover moves
towards lower temperatures as µ is increased towards the
diquark condensation threshold. In particular, above this
threshold, the critical temperature of the superfluid di-
quark condensation phase only rather weakly depends on
µ as observed previously in two-color QCD [35, 38, 59]
and analogously for the pion condensation phase in QCD
at finite isospin density as well [32].

We note that in the absence of any order param-
eter, we expect the finite-temperature confinement-
deconfinement phase transition at small densities µ .
mπ/2 to be either a crossover or a weak first-order phase
transition. The fact that temperature dependence of
both the chiral condensate and chiral susceptibility be-
comes somewhat more pronounced at a larger lattice size
Ls = 30 still leaves a possibility of a finite-order phase
transition, but can be also consistent with a crossover
scenario in which the chiral susceptibility is bounded
by a large but finite value related to finite quark mass.
In view of the fact that in the heavy quark mass limit
the deconfinement transition in SU (2) gauge theory is a
second-order phase transition [60], the scenario of first-
order phase transition seems unlikely. However, the pre-
cise nature of the deconfinement transition can only be
determined in a detailed study of volume dependence,
which is out of the scope of this paper.

An interesting feature of the phase diagrams obtained
from lattice simulations both in this work and in [38, 44]
is that the chiral crossover happens at temperatures
which are several times lower than the pion mass. From
our data we estimate Tc/mπ ≈ 0.37 at µ = 0, and
Tc/mπ ≈ 0.2 at aµ = 0.1 near the diquark conden-
sation threshold. Although the results of [38, 44] were
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FIG. 4. On the left: Quark density, subtracted chiral condensate and diquark condensate as functions of the temporal lattice
size Lt on lattices with Ls = 24 and Ls = 30. On the right: chiral susceptibility and diquark susceptibility as functions of Lt.

obtained for considerably larger pion masses (larger val-
ues of mπ/mρ), the ratios Tc/mπ at both µ = 0 and
µ = mπ/2 obtained in these works are consistent with
our estimates. Such small values of Tc/mπ are in sharp
contrast with real QCD, where Tc ≈ 155 MeV [61],
mπ ≈ 135 MeV and hence Tc/mπ = 1.15 > 1. This
difference might be explained by the fact that there are
5 Goldstone bosons in SU (2) gauge theory with Nf = 2
flavours [28], in contrast to the 3 pions in Nf = 2 QCD.

IV. NUMERICAL MEASUREMENTS OF
ELECTRIC CONDUCTIVITY

By virtue of Green-Kubo relations [62], within the
linear response approximation the electric conductivity
σ (ω) is related to correlators of same-direction vector
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currents:

1

V

∑
~x

〈 ji (τ, ~x) ji

(
0,~0
)
〉 ≡ G (τ) =

=

∞∫
0

dωK (τ, ω) σ (ω) ,

K (τ, ω) =
ω

π

cosh
(
ω
(
τ − 1

2T

))
sinh

(
ω
2T

) (3)

where ji (τ, ~x) is the vector current density in some fixed
spatial direction i = 1, 2, 3,

∑
~x

denotes summation over

spatial lattice coordinates, V = a3L3
s is the spatial lattice

volume and τ ∈ [0 . . . aLt].
While the inversion of the relation (3) is a numerically

ill-posed problem, a number of practical inversion meth-
ods have been developed which either take into account
some prior knowledge of σ (ω) or return σ (ω) smeared
over a certain frequency range of order of temperature
[62]. In this work we use the Backus-Gilbert method [62]
with Tikhonov regularization [63, 64] as implemented in
[65].

Within the Backus-Gilbert method we construct the
linear estimator of the conductivity based on the Eu-
clidean current-current correlator (3):

σBG (ω) =
∑
τ

qτ (ω)G (τ) =

=

+∞∫
0

δBG (ω, ω′)σ (ω′) ,

δBG (ω, ω′) =
∑
τ

qτ (ω)K (τ, ω′) . (4)

where the resolution functions qτ (ω) are chosen in such a
way that, combined with the Green-Kubo kernel K (τ, ω)
in (3), they yield a smearing function δBG (ω, ω′) which
approximates the δ-function as closely as possible. In
the Backus-Gilbert method, we minimize the “disper-

sion”
∞∫
0

dω′δ2BG (ω, ω′) (ω − ω′)2. This minimization re-

quires an inversion of a certain ill-conditioned matrix con-
structed from the kernel K (τ, ω). With Tikhonov regu-
larization this inversion is regularized by replacing the in-
verse singular values 1/xi of this matrix by xi/

(
x2i + ∆2

)
with some small ∆. This effectively cuts off the singular
values xi which are smaller than ∆ and thus makes the
matrix inversion well-defined.

In contrast to other regularization schemes which use
the covariance matrix for the Euclidean correlator in (3),
with Tikhonov regularization the resolution functions do
not depend on the data and thus neither on the chemical
potential µ, which allows for a more meaningful compar-
ison of data obtained at different values of µ, and with
the error-free data for free quarks as well. We calculate
statistical errors for the smeared conductivity using data
binning [63].

Since the smeared conductivity σBG (ω) in practice
quite strongly depends on the regularization of the ma-
trix inversion and the value of regularization parameters,
the Backus-Gilbert method to some extent still suffers
from the inherent ambiguity which is typical for numer-
ically ill-defined analytic continuation problems [62]. To
assess any residual ambiguity, in addition, we also con-
sider an alternative simple estimator of the low-frequency
conductivity [12]. Namely, according to the Green-Kubo
relation in (3), the current-current correlator on the l.h.s.
of Eq. (3), at the maximal Euclidean time separation
τ = aLt/2, is related to the electric conductivity as

G (aLt/2) =

∞∫
0

dωK (aLt/2, ω) σ (ω) . (5)

The function K (aLt/2, ω) = ω/π
(
sinh

(
ω
2T

))−1
is local-

ized within the region of small frequencies ω ∼ T and can
be also considered as a “smeared” δ-function similar to
the one used in the Backus-Gilbert method. The norm
and width of this function are:

N ≡
∞∫
0

dωK (aLt/2, ω) = πT 2,

∆ω =

√√√√√N−1 ∞∫
0

dω ω2K (aLt/2, ω) =
√

2πT. (6)

We can thus use the value of the Euclidean correlator
at midpoint as an estimator σMP of electric conductivity
σ (ω) smeared over frequencies in the range ω .

√
2πT ≈

4.4T :

σMP =
1

πT 2
G (aLt/2) . (7)
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In Fig. 6 we compare the resolution function
N−1K (aLt/2, ω) for the midpoint estimator (7)
with resolution functions in the Backus-Gilbert method.
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FIG. 6. Comparison of resolution functions δBG (0, ω) and(
πT 2

)−1
K (aLt/2, ω) for Backus-Gilbert and midpoint esti-

mates of the low-frequency limit of the electric conductivity.

The contribution of connected fermionic diagrams to
the current-current correlator in (3) for a single gauge
field configuration can be written as a single trace over
fermionic indices (spin, color and lattice coordinates):

〈 jx,µjy,ν 〉conn =

= Cem Tr

(
∂D

∂θx,µ
D−1

∂D

∂θy,ν
D−1

)∣∣∣∣
θ=0

, (8)

where x, y and µ, ν label the sites and the direc-
tions on the four-dimensional (for WD fermions) or five-
dimensional (for DW fermions) lattice, and D is either
the WD or DW Dirac operator in the background of the
non-Abelian gauge fields and an Abelian lattice gauge
field θx,µ, with link factors eiθx,µ . The electric charge
factor

Cem =
∑
f=u,d

q2f = 5/9 (9)

is the sum of squared quark charges for the u- and d-
quarks. In this work we follow most of the previous lat-
tice QCD studies of the electric conductivity [5–12] and
present all the results with Cem factored out.

At x = y there is also an additional contact term con-

tribution Tr
(
∂2D
∂θ2x,µ

D−1
)∣∣∣
θ=0

to the correlator (8). This

contact term affects only the high-frequency behavior of
the electric conductivity, and we disregard it in the fol-
lowing. The time slice τ = 0 in the current-current cor-
relator (3), for which this contact term is relevant, is
discarded within the Backus-Gilbert method.

In the presence of a nonzero diquark source λ the ex-
pression for the connected contribution (8) is somewhat
more complicated, and is given in Appendix C.

The contributions from disconnected fermionic dia-
grams

〈 jx,µjy,ν 〉disc = Cdisc ×

× Tr

(
∂D

∂θx,µ
D−1

)∣∣∣∣
θ=0

Tr

(
∂D

∂θy,ν
D−1

)∣∣∣∣
θ=0

, (10)

to the current-current correlator (3) are typically small
and noisy, and in addition weighted by the charge factor

Cdisc =

( ∑
f=u,d

qf

)2

= 1/9, which is five times smaller

than the charge factor Cem = 5/9 for connected dia-
grams. Nevertheless, in Section V below we explicitly
check the smallness of disconnected contribution at finite
densities.

In order to obtain the four-dimensional conserved vec-
tor current for DW fermions, one should sum the correla-
tor (8) over the fifth dimension, i.e. over x5 = 0 . . . L5−1
and y5 = 0 . . . L5 − 1 [48]. This increases the number of
Dirac operator inversions required to calculate (8) by a
factor of L5, thus making calculations with DW fermions
significantly more expensive than with WD fermions.
In Appendix B we discuss a small trick which allows
to halve this numerical cost. Further, to obtain phys-
ical results with DW fermions it is crucial to subtract
the contribution of five-dimensional bulk Dirac modes,
which becomes quite significant at high temperatures
and/or at small values of τ in (3). As discussed in [48],
this contribution can be compensated by the contribu-
tion of bosonic Pauli-Villars fields which live on the five-
dimensional lattice with two times smaller size L5 in the
fifth dimension. This contribution is equal to minus twice
the correlator (8) calculated with LPV5 = L5/2 and the
bare mass mPV = 1 in the DW Dirac operator.

V. NUMERICAL RESULTS

A. Euclidean correlators and midpoint
conductivity estimates

We start the discussion of our numerical results by
considering Euclidean current-current correlators which
enter the Green-Kubo relations (3). In Fig. 7 we plot con-
nected current-current correlators obtained with Wilson-
Dirac fermions at three different temperatures corre-
sponding to Lt = 12, 16, 20 and compare them with
the corresponding disconnected contributions, as well as
with the corresponding correlators for free quarks on the
same lattice (plots on the right). Both connected and
disconnected contributions were calculated for all config-
urations in the ensembles listed in Table I, and in addi-
tion averaged over 10 . . . 30 random source positions in
order to reduce statistical errors.

One can see that as the chemical potential gradually
increases, the connected current-current correlators (8)
around mid-point become larger and more flat, which
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FIG. 7. On the left: current-current correlators GWD (τ) obtained with Wilson-Dirac fermions on the lattice with Ls = 24.
On the right: the ratio of current-current correlators GWD (τ) in SU (2) theory to the current-current correlators G0

WD (τ)
calculated for non-interacting Wilson-Dirac quarks. On both sides, empty symbols show the corresponding disconnected
contribution, multiplied by the ratio of charge factors Cdisc/Cem = 1/5.

agrees qualitatively with the expected growth of the elec-
tric conductivity in a finite-density system. On the other
hand, the behavior at small Euclidean time separations,
which is most sensitive to the high-frequency part of the
spectrum, is practically unaffected by finite density.

We’ve also invested a significant amount of CPU/GPU
time into measuring disconnected contributions (10), and
were not able to detect any statistically significant devia-
tion from zero. For small values of the chemical potential
we were able to reduce statistical errors of disconnected

contributions such that they are at least 3 − 4 orders
of magnitude smaller than the connected contributions.
However, for larger µ and smaller T we were not able
to reduce statistical errors of disconnected contributions
below 10 . . . 20% of the connected ones. Thus we cannot
rule out that disconnected contributions might become
important at very large densities and low temperatures,
for instance, in the quarkyonic phase.

We also note that for lower temperatures and larger
values of the chemical potential the current-current cor-
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relators become significantly noisier. In addition, their
statistical distribution seems to develop heavy tails, so
that contributions from outlier configurations become
more and more important. These outlier configura-
tions present a major challenge for calculating connected
current-current correlators at low temperatures and high
densities.

A comparison with the free quark results is shown on
plots on the right in Fig. 7). For this as well as for all
other calculations with free quarks we use the bare quark
mass am = 0.01, which corresponds to the optimal value
of quark mass in the DW Dirac operator which, for in-
teracting theory, reproduces the pion mass obtained with
staggered fermions (see Fig. 1). This choice is dictated
by the expected smallness of mass renormalization effects
for DW fermions, which makes the bare and renormal-
ized masses close to each other. Clearly, for free WD
fermions mass renormalization is absent, and we can use
the same value of bare mass as for free DW fermions. In
any case, current-current correlators depend only weakly
on the bare quark mass, and changing its value by ±50%
does not lead to any noticeable change in results for our
lattice parameters.

The comparison with free-quark results shows that for
all values of the chemical potential the relative differ-
ence between current-current correlators in interacting
and non-interacting theories does not exceed 50%, which
agrees with previous studies at zero chemical potential
[12]. At not very large densities, chemical potential
moves current-current correlators closer to the free quark
result. An interesting feature is that for aµ = 0.5 this
trend is reversed, and for these values of µ the current-
current correlator around midpoint becomes smaller than
the corresponding free-quark result.

In order to check how the chiral properties of lat-
tice fermions might affect the electric conductivity,
in Fig. 8 we plot the ratios of connected contribu-
tions (8) to current-current correlators in (3) calculated
with Wilson-Dirac (WD) and with Domain-Wall (DW)
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FIG. 9. The ratio GWD (τ, Ls = 30) /GWD (τ, Ls = 24) of
current-current correlators GWD (τ) calculated on lattices
with spatial sizes Ls = 24 and Ls = 30. Solid lines show
the same relative difference calculated for free quarks. Data
points are slightly shifted away from integer values of τa in
order to improve the readability of the plot.

quarks. Around mid-point, the results obtained with
both WD and DW Dirac operators agree within statis-
tical errors. For DW Dirac operators, the latter are no-
ticeably larger due to smaller statistics (as calculations
with DW quarks are more than an order of magnitude
more expensive than with WD quarks). A salient fea-
ture of the current-current correlators for DW fermions
is that they strongly deviate from the Wilson-Dirac result
at short Euclidean time separations, where the contribu-
tion of five-dimensional bulk modes becomes important
and is not completely cancelled by Pauli-Villars regulator
fields.

In order to estimate possible finite-volume artifacts
in our study, in Fig. 9 we compare finite-density con-
nected current-current correlators calculated on lattices
with Ls = 24 and Ls = 30 using Wilson-Dirac fermions
with aµ = 0.0 and aµ = 0.05 both in the full SU (2)
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lattice gauge theory and for free quarks. The devia-
tions clearly grow towards lower temperatures and be-
come quite significant for free quarks, but do not exceed
10% for the full gauge theory. An important observation
is that in the full gauge theory deviations due to finite-
volume effects appear to have opposite sign to those in
the free quark case.

We now turn to the estimates of the low-frequency
electric conductivity σMP based on the mid-point val-
ues of current-current correlators, as defined in (7). As
discussed in Section IV above, these estimates are com-
pletely model-independent and do not depend in any way
on the method of performing numerical analytic contin-
uation of Euclidean data. An analysis of current-current
correlators for free quarks (see Appendix D) suggests that
the midpoint estimator is also somewhat less affected by
finite-volume effects.

In Fig. 10 we show the dependence of the ratio
σMP / (CemT ) on the inverse temperature 1/ (aT ) ≡ Lt
in lattice units, calculated using Wilson-Dirac fermions.
Points with error bars correspond to lattice data in the
full gauge theory, and solid lines are free quark results
on the same lattices as well as in the infinite-volume and
continuum limit. On the left plot, we present the data
for Ls = 24 and the full range of chemical potential val-
ues used in this work. On the right plot, we compare the
data obtained on Ls = 24 and Ls = 30 lattices. For both
plots we combine the data points obtained with zero di-
quark source λ = 0 at Lt < 12 and with aλ = 5 · 10−4 at
Lt ≥ 12. As we demonstrate in Fig. 11 below, introduc-
ing a small diquark mass term has no noticeable effect
on current-current correlators for all temperatures and
chemical potentials which we consider.

For small values of chemical potential the ratio
σMP / (CemT ) in full gauge theory appears to be slowly
decreasing towards lower temperatures. A comparison of
the data for lattices with Ls = 24 and Ls = 30 suggests

that finite-volume artifacts are comparable with statisti-
cal errors.

On the other hand, the corresponding free quark re-
sults grow towards lower temperatures, the faster the
smaller is the volume. As a result, at low temperatures
σMP / (CemT ) in the full gauge theory on Ls = 30 lattice
is around 1.5 times smaller than for free lattice quarks,
in agreement with the expected drop of conductivity at
low temperatures. From the right plot on Fig. 10 one can
see that for Ls = 24 lattice the difference appears to be
even larger. On the other hand, the gauge theory results
appear to be quite close to the values obtained for free
continuum quarks.

As discussed in detail in Appendix D, the growth of
σMP /T towards low temperatures for free quarks is a
finite-volume artifact, and in the infinite-volume, contin-
uum and massless limits σMP /T at µ = 0 is constant for
free fermions: σMP /T = Nc

3π = 0.212.

It is also interesting to note that for the two largest
values of the chemical potential which we use, aµ = 0.2
and especially aµ = 0.5, the mid-point estimate σMP /T
appears to be closer to the free quark result than for the
lower densities. This is probably due to the fact that
large densities move the system closer to the high-energy
regime of asymptotic freedom.

According to Fig. 5, for aµ = 0.5 and Lt = 20, 22 we
should already be in the superconducting diquark con-
densation phase. Interestingly, superconductivity does
not show up as a sharp increase in conductivity, here. In-
stead, the conductivity even falls slightly below the free
quark result as we reach the diquark condensation phase
with lowering the temperature at aµ = 0.5. Most likely,
the dramatic changes expected in the transport-peak part
of the electric conductivity are simply not captured by
our frequency-smeared conductivity estimates, and are
also to some extent compensated by the suppression of
the higher-frequency conductivity at large µ. A more
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detailed study of the electric conductivity in the super-
conducting phase would certainly be interesting, but is
beyond the scope of this work.

In order to further check the independence of our esti-
mates on the choice of the fermionic action and diquark
source term, in Fig. 11 we compare the temperature de-
pendence of the midpoint estimator σMP /T for Domain
Wall fermions and for Wilson-Dirac fermions with and
without the diquark source term. One can see that all
estimates agree within statistical errors.

Finally, we use our results for σMP /T to estimate the
expansion coefficient c (T ) in (1), which characterizes the
sensitivity of low-frequency electric conductivity to chem-
ical potential. To this end we use the difference between
σMP at µ = 0 and aµ = 0.05. This value of aµ is a
compromise between having a finite difference which is
considerably larger than statistical errors, and being still
in the small-µ QCD-like regime far from the diquark con-
densation phase. We thus approximate c (T ) as

c (T ) ≈ σMP (T, aµ = 0.05)− σMP (T, µ = 0)

(aµLt)
2
σMP (T, µ = 0)

. (11)

The resulting temperature dependence of c (T ) for
Wilson-Dirac fermions on lattices with Ls = 30 and Ls =
24 is illustrated on the left plot in Fig. 12, along with ref-
erence results for free fermions on the lattice and in the
continuum. While in the infinite-volume, continuum and
massless limits the coefficient c (T ) based on the midpoint

estimate for free quarks is c (T ) = 15−π2

9π2 = 0.0578 and
thus temperature-independent, the lattice data shows
some temperature dependence, which is especially strong
for free quarks and the full gauge theory on Ls = 24 lat-
tices. In particular, for sufficiently low temperatures the
coefficient c (T ) becomes negative. As discussed in Ap-
pendix D, for free quarks this behavior is a finite-volume
artifact, and in the large-volume limit the lattice free-
quark estimate of c (T ) becomes closer to the continuum
value and depends weaker on the temperature.

A noticeable feature is that the temperature depen-
dence of c (T ) in the full gauge theory is quite different
from the free quark result, especially in the vicinity of
the chiral crossover, where c (T ) takes its maximal value

for both lattice sizes Ls = 24 and Ls = 30. The value of
c (T ) appears to be larger than the free quark result, with
rather significant deviations between the data for Ls = 24
and Ls = 30 lattices. The temperature dependence of the
data for Ls = 30 appears to be weaker than for Ls = 24.
Both data sets, however, show a peak around crossover
temperature - a pronounced one for Ls = 24 and a small
one for Ls = 30. This suggests that the electric con-
ductivity should be most sensitive to finite density in
the crossover regime. Since this statement is based on
the data obtained in the low-density QCD-like regime
of SU (2) gauge theory, it should be also qualitatively
correct for the full QCD. While our data still has quite
large statistical and also systematic errors due to afore-
mentioned finite-volume effects, a conservative estimate
of the value of the coefficient c (T ) around crossover tem-
perature is c (T ) = 0.10±0.07, which is noticeably larger
than the free quark result.

B. Estimates of electric conductivity from the
Backus-Gilbert method

In this Section we turn to the estimates of the elec-
tric conductivity based on the Backus-Gilbert method
outlined in Section IV. We implement the resolution
functions in the Backus-Gilbert transformation (4) on
the discrete grid of frequency values ω = j T with
j = 0, 1, . . . 2Lt. For each Lt we tune the value of
the Tikhonov regularization parameter ∆ in the Backus-
Gilbert method as follows: we perform the analysis with
∆ = 1 · 10−10, 2 · 10−10, 5 · 10−10, 1 · 10−9, . . . , 5 · 10−7,
starting from ∆ = 1 ·10−10, and choose the least value of
∆ for which the Backus-Gilbert estimate σBG (ω) of the
electric conductivity on the lattice with Ls = 24 is pos-
itive and its maximal relative error is less than 10% for
all values of chemical potential. Such tuning yielded the
following values: ∆ = 1 · 10−10 for Lt = 12, ∆ = 1 · 10−9

for Lt = 14, ∆ = 2 · 10−9 for Lt = 16 and ∆ = 2 · 10−7

for Lt = 18, 20, 22. As illustrated in Fig. 6, with these
values of ∆ the resolution functions δBG (0, ω) are still
very close to resolution functions calculated with a very
small reference value ∆ = 10−12. They are noticeably
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FIG. 12. Numerical estimate of the coefficient c in (1) from the finite difference between estimate of the low-frequency electric
conductivity at µ = 0 and aµ = 0.05. On the left: using the mid-point estimate σMP for Ls = 24 and Ls = 30. On the
right: comparison of the results obtained using the mid-point and the Backus-Gilbert estimates for Ls = 30.

narrower than the resolution function N−1K (aLt/2, ω)
for the midpoint estimate (7).

In Fig. 13 we show the Backus-Gilbert estimates of the
electric conductivity σBG (ω) for Wilson-Dirac fermions
on lattices with Ls = 24 at different values of chemical
potential and different temperatures, and compare them
with corresponding estimates for free quarks. To un-
derstand how the inherent smearing within the Backus-
Gilbert method as well as lattice artifacts and finite-
volume effects affect the frequency-dependent conductiv-
ity, in the plots on the right in Fig. 13 we also compare the
Backus-Gilbert estimates σBG (ω) for free quarks with
analytically calculated conductivities in the continuum
theory. Analytic expressions for electric conductivity are
summarized in Appendix A. For illustrative purposes, in
Fig. 13 we have replaced the infinitely narrow transport
peaks of free continuum quarks (the term proportional
to the δ-function in (A2)) by Breit-Wigner distributions

(α/T ) /
(

1 + (ω/T )
2
)

of unit width, where α is the δ-

function prefactor in (A2).

Finite chemical potential affects the electric conduc-
tivity of free continuum quarks in two competing ways,
which become especially evident in the zero-temperature
limit (see equation (A8)). On the one hand, the height of
the transport peak at ω = 0 grows approximately as µ2

(neglecting the small quark mass), i.e. in proportion to
the area of the Fermi surface. On the other hand, chem-
ical potential makes the finite-frequency part of the elec-
tric conductivity vanish for w < 2 max{mq, µ}. In the
condensed-matter physics language, the transport peak
and the finite-frequency part of the electric conductiv-
ity originate from intraband and interband transitions,
respectively.

For low frequencies the Backus-Gilbert estimator
σBG (ω) receives contributions from both the transport
peak and the finite-frequency electric conductivity. As
a result, the strength of the transport peak is rather
strongly over-estimated for low densities, as one can also

see from the plots on the right in Fig. 13. For larger den-
sities (aµ = 0.2 and aµ = 0.5) the finite-frequency part
of electric conductivity is separated from the transport
peak by a rather wide gap, wider than the width of the
resolution functions in the Backus-Gilbert method. As a
result, for large densities the Backus-Gilbert method cap-
tures the strength of the transport peak more precisely.
As could be expected, the Backus-Gilbert estimates of
electric conductivity most strongly deviate from the con-
tinuum results in the vicinity of the gap between the
transport peak and the finite-frequency part of electric
conductivity. This is a direct consequence of the smear-
ing which removes sharp threshold effects and also smears
out the transport peak. The deviation of lattice and con-
tinuum results in the high-frequency tails of conductivity
is most likely a lattice artifact.

Comparing now the Backus-Gilbert estimates for the
full gauge theory and for free quarks, we see that, as
the temperature is decreased, the low-frequency elec-
tric conductivity becomes significantly smaller for the
full gauge theory at all values of the chemical poten-
tial. On the other hand, for ω/T ∼ 5 (corresponding
to aω ≈ 0.2 . . . 0.4), the data for the full gauge theory
shows a kind of bump, where it becomes significantly
larger than the free quark result. We associate this bump
with a ρ-meson resonance, which becomes very wide due
to smearing. At the largest value of the chemical poten-
tial aµ = 0.5 this bump seems to vanish, but the gap
between the transport peak and the finite-frequency part
of electric conductivity is still much shallower than for
free quarks. This suggests a strong broadening of the
transport peak in full gauge theory.

On Fig. 14 we also illustrate the lattice volume
dependence of electric conductivity by comparing the
frequency-smeared estimates of electric conductivity on
lattices with spatial sizes Ls = 24 and Ls = 30 and tem-
poral size Lt = 20. For smaller Lt (higher temperatures)
finite volume effects are smaller. As already discussed
in Subsection V A above, volume dependence is much
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FIG. 13. On the left: Frequency-smeared electric conductivity σBG (ω) extracted from Euclidean correlation functions on
lattices with Ls = 24 using the Backus-Gilbert method (points with error bars). Solid lines are the smeared electric conductivity
obtained for free quarks using the same procedure. On the right we compare these free-fermion smeared conductivities
(points) with analytic expression (A2) for the electric conductivity of continuum Dirac fermions (solid lines). To illustrate
the magnitude of the “transport peak” term in (A2), the delta-function δ (ω) was replaced by a fixed-width Breit-Wigner
distribution (α/T ) /

(
1 + (ω/T )2

)
, where α is the δ-function prefactor in (A2).

stronger for free quarks than for the actual gauge theory
data.

We now use the zero-frequency limit of the smeared
electric conductivity obtained with the Backus-Gilbert
method to estimate the low-frequency conductivity as a
function of temperature and chemical potential. As dis-
cussed in Section IV above and illustrated in Fig. 6, the
resolution of the Backus-Gilbert estimate is better than

that of the midpoint estimate, which comes at the cost of
the dependence on the regularization parameter ∆. The
results of these estimates are illustrated in Fig. 15, both
as functions of temperature at fixed µ and as functions
of µ at fixed temperature. Data points with error bars
correspond to the full gauge theory, and solid lines corre-
spond to Backus-Gilbert estimates for free quarks on the
same lattices. The overall picture is consistent with the



15

 0.2

 0.5

 2

 0.1

 1

 0  5  10  15  20  25  30  35  40

s
B

G
(w

)/
(C

e
m

 T
)

w/T

Lt = 20

a m=0.00,Ls=30
a m=0.05,Ls=30
a m=0.20,Ls=30
a m=0.00,Ls=24
a m=0.05,Ls=24
a m=0.20,Ls=24

 0.2

 0.5

 2

 0.1

 1

 0  5  10  15  20  25  30  35  40

s
B

G
(w

)/
(C

e
m

 T
)

w/T

Lt = 20

a m=0.00,Ls=30
a m=0.05,Ls=30
a m=0.20,Ls=30
a m=0.00,Ls=24
a m=0.05,Ls=24
a m=0.20,Ls=24

FIG. 14. On the left: A comparison of frequency-smeared electric conductivities σBG (ω) extracted from Euclidean correlation
functions on lattices with Ls = 24 and Ls = 30 using the Backus-Gilbert method (points with error bars). Solid lines are the
frequency-smeared electric conductivities obtained for free quarks on the same lattices using the same procedure. On the right
we compare these free-fermion conductivities (points) with analytic expression (A2) for the electric conductivity of continuum
Dirac fermions (solid lines). The magnitude of the “transport peak” for continuum free fermions is illustrated in the same way
as on Fig. 13.

 0.2

 0.5

 1

 2

 12  14  16  18  20  22

s
B

G
(w

=
0

)/
(C

e
m

 T
)

Lt

a m=0.00
a m=0.05
a m=0.10

a m=0.20
a m=0.50

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.1  0.2  0.3  0.4  0.5

s
B

G
(w

=
0

)/
(C

e
m

 T
)

am

Lt=12
Lt=14
Lt=16

Lt=18
Lt=20
Lt=22

FIG. 15. On the left: Backus-Gilbert estimate of the ω → 0 limit σBG (ω = 0) /T of the electric conductivity as a function of
the inverse temperature Lt = 1/ (aT ). On the right: σBG (ω = 0) /T as a function of chemical potential at different Lt. For
both plots Ls = 24. Data points are slightly shifted away from integer values of Lt in order to improve the readability of the
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results from the midpoint estimators - for the full gauge
theory the temperature dependence of the conductivity
is much weaker than it is for free quarks. Our estimate
σ (Tc) ≈ 0.25± 0.02 of electric conductivity in the vicin-
ity of the crossover near Lt = 16 is in a good agreement
with other lattice QCD results [13].

While at high temperatures the conductivity is close
to the free quark result, it differs by a factor of 2− 3 at
low temperatures. For large densities the difference be-
tween the gauge theory results and the free quark results
is somewhat more pronounced than for the midpoint es-
timators. In agreement with the midpoint estimates, in
the presumably superconducting phase at aµ = 0.5 and
Lt = 20, 22 our estimate of low-frequency conductivity
slightly drops.

On Fig. 16 we also illustrate the effect of finite volume

on the Backus-Gilbert estimate of low-frequency electric
conductivity. Especially for aµ = 0.05 finite-volume ef-
fects appear to be somewhat larger than for the midpoint
estimate, but are still significantly smaller than for free
quarks.

Finally, we also use results from the Backus-Gilbert
method to estimate the first nontrivial coefficient c (T )
in the expansion (1) of electric conductivity in powers
of µ/T . We again use the finite-difference approxima-
tion (11), replacing σMP with σBG (ω = 0). The result
is shown in Fig. 12 together with the result based on the
midpoint estimate. Both results appear to be consistent
with each other, within statistical errors, and they ex-
hibit the largest deviations from the free quark result in
the vicinity of the chiral crossover.
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VI. CONCLUSIONS AND DISCUSSION

We have studied the low-frequency electric conductiv-
ity in finite-density SU (2) gauge theory with dynam-
ical fermions at various temperatures across the chi-
ral crossover, both within the phase with spontaneously
broken chiral symmetry and around the transition to
the diquark condensation phase. As a by-product of
our study, we have also obtained new estimates of the
phase boundaries of SU (2) gauge theory, as summarized
in Fig. 5. An interesting observation, which confirms
the findings of [38, 44], is that in SU (2) gauge theory
the chiral crossover happens at rather low temperatures,
Tc/mπ ≈ 0.37. In contrast, in real QCD Tc/mπ & 1.

We found that introducing finite density expectedly
increases the electric conductivity. However, at low tem-
peratures and small densities lattice data can show a very
weak trend in the opposite direction due to finite-volume
artifacts (see Fig. 12 and Appendix A). For our largest
chemical potential aµ = 0.5 and low temperatures near
the boundary of the diquark condensation phase, which
is absent in real QCD, the conductivity can increase by
a factor of about 5 as compared to its zero-density value.

Our zero-density result σ (0) /T ≈ 0.25± 0.02 at tem-
peratures around Tc (see e.g. Fig. 15) is in agreement
with the results obtained in full lattice QCD [8–10].
The decrease of the absolute value of σ (0) /T across the
crossover in SU (2) gauge theory turns out to be not as
significant as in full QCD. This is expectable, since for
smaller Nc the difference in the number of degrees of
freedom between confinement (O (1)) and deconfinement
O
(
N2
c

)
regimes is also smaller. However, in compari-

son with the free quark result the conductivity in the
full gauge theory drops by around 50% at T/Tc ∼ 0.8,
which is again in agreement with [8–10]. It is interest-
ing that for all temperatures and densities which we have
considered the conductivity is still much larger than the
conductivity of a free pion gas, calculated in Appendix A.

The result which should be most relevant for real QCD

is our estimate of the first nontrivial coefficient c (T ) in
the expansion (1) of low-frequency electric conductivity
in powers of chemical potential over temperature µ/T .
This result is obtained within the low-density QCD-like
phase with spontaneously broken chiral symmetry and
no diquark condensation. The maximal value of c (T ) is
c (T ) ≈ 0.10± 0.07 in the vicinity of the chiral crossover,
that is, noticeably larger than the free quark result in
the continuum. The temperature dependence of c (T )
appears to be rather weak for the Ls = 30 data.

This estimate suggests that even for T ≈ Tc and
µ/T ∼ 1 finite density cannot change the conductivity
by more than 15−20%, which validates zero-density cal-
culations of the conductivity as being reasonably good
approximations also at finite densities corresponding to
values of the chemical potential as in the vicinity of the
QCD critical endpoint. Away from the crossover, c (T )
becomes closer to the free quark result.

The maximum of c (T ) in the vicinity of the chiral
crossover can be also explained by the following qualita-
tive argument. As shown in Appendix A, c (T ) decreases
towards higher temperatures for free quarks, but grows
for free pion gas. Thus a maximum can be expected
for intermediate temperatures between the regimes where
each of these two approximations are valid.

We have also observed that, as the quark density in-
creases and the temperature decreases, the contribution
of disconnected fermionic diagrams to the current-current
correlators becomes more significant. We cannot rule out
that it can be as large as ∼ 10 . . . 20% of the connected
contributions for the largest value of the chemical poten-
tial aµ = 0.5 which we have used. Therefore, discon-
nected contributions might potentially become as impor-
tant as the connected ones in the quarkyonic phase.
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Appendix A: Current-current correlators and
electric conductivity for free quarks and free pions

Using the standard tools of finite-temperature field
theory, we obtain the following expression for the Eu-
clidean current-current correlator of free quarks with Nc

colors:

GqE (τ) =
Nc

12π2

∞∫
m
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The corresponding electric conductivity in the Green-
Kubo relation (3) is

σq (ω) =
αqNc
24π T

δ (ω) +

+
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24π
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where
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In the phase with spontaneously broken chiral sym-
metry, the conductivity is expected to be dominated by
charged pions contributions. The leading-order contri-
bution is just the conductivity of free massive charged
scalar fields at finite chemical potential [18], with elec-
tric current defined as

jµ =
i

2

(
φ̄∂µφ−

(
∂µφ̄

)
φ
)
. (A4)

A straightforward calculation yields the following expres-
sion for the Euclidean correlator of spatial currents of a
charged scalar field:
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The corresponding AC conductivity is

σπ (ω) =
απ

48π T
δ (ω) +

+
1
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where
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It is instructive also to consider the low-temperature limit
of these expressions. In the limit T → 0, free quark
conductivity takes the form

lim
T→0

σq (ω) =
Nc

12
√
π

Re
(
µ2 −m2

) 3
2

µ
δ (ω) +

+
Nc
24π

Re
(
ω2 − 4m2

) 3
2

(
1 +

2m2

ω2

)
θ (ω − 2µ) , (A8)

where θ (x) is the Heaviside unit step function. In the
same limit, the free pion conductivity takes the form

lim
T→0

σπ (ω) =
1

48π

Re
(
ω2 − 4m2

) 3
2

ω2
θ (ω − 2µ) . (A9)

In contrast to the free fermion case, the term with the
δ-function vanishes in the limit of zero temperatures as
√
2πmT

3
2

8π δ (ω) e(µ−m)/T . Of course, for free bosons the
conductivity is only defined for µ ≤ m.

It is instructive to compare the midpoint estimates
of the low-frequency electric conductivity, which we use
in Subsection V A, for free quarks and free pions. To
this end we use the bare quark mass m = 0.01, and
the pion mass mπ = 0.158, as determined in Section II.
With chemical potential aµ = 0.05, which is below the
pion/diquark condensation threshold, and temperatures
in the range 1/(aT ) = 16 . . . 22, we find that the mid-
point conductivity estimate is 5 . . . 10 times smaller for
the pion gas than for free quarks. On the other hand, the
midpoint estimate for the pion gas conductivity shows
much stronger dependence on the chemical potential, as
also noticed in [12, 66]. Also, for pion gas the coefficient
c (T ) in (1) grows with temperature, whereas for the free
quark gas c (T ) decreases with temperature.

Appendix B: Efficient calculation of correlators of
conserved currents for Wilson-Dirac and Domain

Wall fermions

Since for either the Wilson-Dirac or Domain Wall
fermions the conserved current operator jz,µ =

ψ̄x
∂Dxy
∂θz,µ

ψy with the single-particle current operator

∂Dxy

∂θz,µ
=

= iP+
µ Uz,µδx,zδy,z+µ̂ − iP−µ U†z,µδx,z+µ̂δy,z. (B1)

is localized on two lattice adjacent lattice sites z and z+µ̂,
a straightforward calculation of the connected part (8) of
current-current correlators requires

2× 2×Nd ×Nc (B2)

inversions of the Dirac operator. In this expression Nc
is the number of independent source vector orientations
in color space which is obviously equal to the number
of colors, Nd = 4 is the number of independent source
orientations in spinor space, the first factor of two comes
from the necessity to have source vectors localized at two
lattice sites z and z + µ̂, and the second factor of two
accounts for the inversions of both D and D†.

Especially for Domain Wall fermions these inversions
become extremely costly due to the summation of five-
dimensional vector current over the fifth dimension,
which is necessary to obtain the conserved vector cur-
rent and the correct form of the axial current.

Here we describe a small trick which was used in this
work to halve the number of Dirac operator inversions.
A straightforward idea is to try to diagonalize the single-
particle current operator in the 2NcNd-dimensional lin-
ear space spanned on source vectors localized either at z
or z + µ̂ and having all possible colour and spin orienta-
tions. However, a simple check reveals that the matrix
∂Dx,y
∂θz,µ

(with x, y and the corresponding implicit spinor

and color indices considered as matrix indices, and z and
µ as parameters) is nilpotent and cannot be diagonalized.
A physical reason for this nilpotency is that the current
operator jx,µ moves electric charge from lattice site x to
site x + µ̂. After the first application of jx,µ to some
state there is no electric charge at site x, thus applying
jx,µ second time just produces zero. Instead of diago-
nalization, in this situation one should rather use Jordan

decomposition. We have found that
∂Dx,y
∂θz,µ

admits Jordan

decomposition of the following form:

∂D(x,α,a);(y,β,b)

∂θz,µ
=

∑
A,γ=1,2

Nc∑
c=1

ψ(A,γ,c)
x,α,a χ̄

(A,γ,c)
y,β,b ,

ψ(1,γ,c)
x,α,a = iδx,zφ

(+γ)
α κ(c)a eiθc ,

χ
(1,γ,c)
y,β,b = δy,z+µ̂φ

(+γ)
β κ

(c)
b ,

ψ(2,γ,c)
x,α,a = −iδx,z+µ̂φ(−γ)α κ(c)a e−iθc ,

χ
(2,γ,c)
y,β,b = δy,zφ

(+γ)
β κ

(c)
b . (B3)

Here φ
(±γ)
α are orthonormal eigenspinors of the projection

operators P±µ , with(
P±µ
)
αβ

=
∑
γ=1,2

φ(±γ)α φ̄
(±γ)
β . (B4)
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Similarly, orthonormal color vectors κ
(c)
a and phases eiθc

form an eigensystem of the link matrix Uz,µ:

(Uz,µ)ab =

Nc∑
c=1

κ(c)a eiθc κ̄
(c)
b . (B5)

Omitting all matrix indices, the Jordan decomposition
(B3) can be compactly written as

∂D

∂θz,µ
=
∑
A,γ,c

ψ(A,γ,c)χ̄(A,γ,c). (B6)

Inserting this decomposition for one of the current oper-
ators in the current-current correlator (8), we obtain

∑
~y

Tr

(
∂D

∂θz,µ
D−1

∂D

∂θy,ν
D−1

)
=

=
∑
A,γ,c

χ̄(A,γ,c)D−1

∑
~y

∂D

∂θy,ν

D−1φ(A,γ,c), (B7)

where Dirac vectors χ and φ are constructed for the link
(z, µ) according to (B3) and

∑
~y

denotes summation over

spatial lattice volume with time-like component y0 fixed.

The operator
∑
~y

∂D
∂θy,ν

is obviously a local lattice opera-

tor which can be applied to Dirac vectors in CPU time
comparable with the application of the Dirac operator
itself. Expression (B7) suggests that the connected con-
tribution to current-current correlators (8) can be cal-
culated as follows. For each A = 1, 2, γ = 1, 2 and
c = 1 . . . Nc we have to do two Dirac operator inver-
sions, one to calculate D−1φ(A,γ,c) and the other to cal-

culate χ̄(A,γ,c)D−1 =
(
D†
)−1

χ(A,γ,c). This amounts to
8Nc Dirac operator inversions in total, to be compared
with 16Nc inversions which would be required for a more
straightforward calculation.

The same trick can be applied to the calculation of
disconnected current-current correlators of the form∑

~y

〈Tr

(
∂D

∂θz,µ
D−1

)
Tr

(
∂D

∂θy,ν
D−1

)
〉. (B8)

In this case one can use the Jordan decomposition trick

to calculate the trace Tr
(

∂D
∂θz,µ

D−1
)

, and stochastic es-

timator techniques for the second trace.

Appendix C: Current-current correlators in the
presence of diquark sources

In the presence of diquark sources, the current-current
connected correlator is different from (8) and takes some-
what more complicated form:

〈 jx,µjy,ν 〉conn =
∂2

∂θx,µ∂θy,ν
Tr ln

(
DD† + λ2

)
=

= Re Tr

(
D†
(
DD† + λ2

)−1 ∂D

∂θx,µ
D†
(
DD† + λ2

)−1 ∂D

∂θy,ν

)∣∣∣∣
θ=0

+

+λ2 Re Tr

((
D†D + λ2

)−1 ∂D

∂θx,µ

∂D†

∂θy,ν

)∣∣∣∣
θ=0

+

+ Re Tr

(
D†
(
DD† + λ2

)−1 ∂2D

∂θx,µ∂θy,ν

)∣∣∣∣
θ=0

(C1)

In the usual conductivity measurement setup, the last
two terms in (C1) are contact terms which only affect
the time slice with τ = 0. This time slice is anyway
discarded in our analysis.

Appendix D: Finite-volume and lattice artifacts for
current-current correlators and electric conductivity

for free quarks and free pions

In Section V we have seen that the T - and µ-
dependence of the electric conductivity on the lattice is
quite different from the one in infinite-volume contin-

uum theory. In this Appendix we quantify the finite-
volume and lattice artifacts in electric conductivity for
free Wilson-Dirac and Domain Wall quarks on the lat-
tice and demonstrate that lattice results agree well with
continuum theory in the large-volume limit. We consider
both midpoint and Backus-Gilbert estimators. For esti-
mates made with the Backus-Gilbert method, we use the
same values of ∆ as for the analysis of the real lattice
data.

In Fig. 17 we show the temperature dependence of
zero-density electric conductivity, obtained with both the
midpoint and the Backus-Gilbert estimators on lattices
with different spatial volumes. As already discussed in
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FIG. 17. Temperature dependence of the low-frequency electric conductivity of free quarks at zero chemical potential and
different lattice volumes. On the left: estimated from the correlator midpoint according to (7) compared with the free
continuum result at the same bare quark mass. On the right: estimated using the Backus-Gilbert method.

Section V, for lattice size Ls = 24 the deviations from
the infinite-volume limit are very large, and for Lt = 22
the lattice and the continuum results differ by a factor of
2.5 for midpoint estimates. For Backus-Gilbert estima-
tor the deviations are even larger. Only for twice larger
lattice size these deviations reduce to few percents. How-
ever, we expect that for real gauge theory the correlation
length is considerably smaller than for free quark gas,
and hence finite-volume artifacts should be smaller. For
higher temperatures, Lt . 14, where free quark approxi-
mation is not unreasonable, finite-volume effects are con-
siderably smaller and do not exceed 20%. A comparison
of Wilson-Dirac and Domain Wall fermions suggests that
all deviations are finite-volume rather than discretization
artifacts, and discretization artifacts only become impor-

tant for Lt . 6. They are much larger for Domain Wall
fermions due to large contributions from bulk modes and
Pauli-Villars regulator fields which compensate them.

In Fig. 18 we also illustrate the finite-volume effects in
the estimates of the coefficient c (T ) in the expansion (1),
calculated from the finite difference between aµ = 0.05
and µ = 0. We use both the midpoint and Backus-
Gilbert estimates. Again we see that c (T ) quickly be-
comes negative towards lower temperatures, and becomes
sufficiently close to the continuum value only for Ls & 48.
For estimates based on the Backus-Gilbert method the
finite-volume artifacts are clearly larger than for the mid-
point estimates. A comparison of Domain Wall and
Wilson-Dirac fermions shows that these artifacts are in-
deed finite volume artifacts rather than discretization ar-
tifacts.
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FIG. 18. Temperature dependence of the second-order expansion coefficient c (T ) of electric conductivity in powers of µ (1)
at different lattice volumes. On the left: estimated from the correlator midpoint according to (7) compared with the free
continuum result at the same bare quark mass. On the right: estimated using the Backus-Gilbert method.
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