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A Principal Component Analysis (PCA)-based framework for automated
variable selection in geodemographic classification
Yunzhe Liu , Alex Singleton and Daniel Arribas-Bel

Geographic Data Science Lab, Department of Geography and Planning, University of Liverpool, Liverpool, UK

ABSTRACT
A geodemographic classification aims to describe the most salient characteristics of a small
area zonal geography. However, such representations are influenced by the methodological
choices made during their construction. Of particular debate are the choice and specification
of input variables, with the objective of identifying inputs that add value but also aim for
model parsimony. Within this context, our paper introduces a principal component analysis
(PCA)-based automated variable selection methodology that has the objective of identifying
candidate inputs to a geodemographic classification from a collection of variables. The
proposed methodology is exemplified in the context of variables from the UK 2011 Census,
and its output compared to the Office for National Statistics 2011 Output Area Classification
(2011 OAC). Through the implementation of the proposed methodology, the quality of the
cluster assignment was improved relative to 2011 OAC, manifested by a lower total within-
cluster sum of square score. Across the UK, more than 70.2% of the Output Areas (OAs)
occupied by the newly created classification (i.e. AVS-OAC) outperform the 2011 OAC, with
particularly strong performance within Scotland and Wales.
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1. Introduction

A geodemographic classification aims to summarise the
multidimensional socio-economic and built character-
istics of small area zonal geography, and are often
referred as “neighbourhood” classification (Harris,
Sleight, and Webber 2005). Geodemographic analysis
relates to the application of such classifications and is
positioned within a history of analytical frameworks
that have aimed to explore the comparative context of
urban areas (Bassett and Short 1980; Timms 1971). The
theoretical tenet of geodemographic classification
relates to the principle of homophily, which in geo-
graphic terms is the tendency for individuals to be
attracted to areas that contain others with similar char-
acteristics to themselves (Sleight 1993; Webber and
Craig 1978). As such, the methodological objective
when creating a geodemographic classification is, there-
fore, to sort a set of small areas into clusters that share
similar characteristics, with the output of such group-
ings providing a simplified and categorical representa-
tion of the overarching multidimensional geography
(Spielman and Singleton 2015).

In general terms geodemographic classifications
are created in a series of stages that include the
gathering of input variables that describe various
characteristics of a given set of small areas; potentially
normalizing these inputs and then standardizing the
measures onto the same scale. Due to the high

dimensionality of contemporary geodemographics,
computational methods are implemented to examine
the similarity between areas. This is most commonly
achieved through an implementation of cluster ana-
lysis which refers to a family of computational meth-
ods that will typically have the general goal to
maximize within-group similarity and between-
group difference through various optimization strate-
gies (Adnan 2011; Everitt et al. 2011). Outputs may
typically be presented as a hierarchy, with larger and
coarser groupings being split into smaller more spe-
cific nested groups; with such structure again created
through various clustering or partitioning strategies.
After this process is complete, it is typical that the
characteristics of the assembled clusters are described
by looking at which input variables are over- or
under-represented within them; and these are then
used to build written “pen portraits” and illustrative
graphics.

As a methodological approach, geodemographic ana-
lysis has a lineage of application across the public and
private sectors, spanning multiple decades and geo-
graphic contexts (Bassett and Short 1980; Longley 2005;
Longley and Goodchild 2008; Singleton and Spielman
2013). However, the utility of a geodemographic classifi-
cation for a given application is substantially determined
by those methodological choices made during construc-
tion (Openshaw, Blake, and Wymer 1995). For example,
it may be pertinent to align geodemographic
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classification inputs to those drivers of a small area
differentiation within the context of a particular applica-
tion (Singleton and Longley 2009) or, for analysis of
specific localities, a classification may be enhanced by
considering inputs derived for a focused rather than
national extent (Singleton and Longley 2015).
Furthermore, standardization algorithms (e.g. z-scores,
range, and inter-decile range) can have various impacts
upon classification shape and performance (Gale et al.
2016). Given the impact of methodological choice, it is
typical that great care is taken into the testing and eva-
luation of different approaches along with their outputs,
and this is acute within the context of those national
classifications released by official statistical bodies
where extensive stakeholder consultation and ratification
are typically implemented as part of the construction
process (Gale et al. 2016; Vickers and Rees 2007).

A primary task when building any geodemographic
classification is to develop a framework for the selec-
tion of specific variables that will produce meaningful
and application-relevant clusters (Murphy and Smith
2014). Those debates about the brevity of geodemo-
graphic classification inputs have been rehearsed for
a long time. Openshaw and Wymer (Openshaw and
Wymer 1995) advocated that “the fewer the variables
the better”, whereas Harris, Sleight, and Webber
(2005) state that a more meaningful classification is
likely to be constructed through inputting more vari-
ables, unless these variables are not “reliable, robust,
and adding new information”. The dimensionality of
inputs (i.e. the number of zones multiplied by the
number of variables) also has an interaction with the
effectiveness of clustering methods to find salient
structure from the data. Clustering performance can
be hugely improved through the reduction of the
number of variables due to this “curse of dimension-
ality” (Alelyani, Tang, and Liu 2014; Guyon and
Elisseeff 2003; Pacheco 2015; Rojas 2015). Taking
such perspectives into consideration, a typical objec-
tive of variable selection is therefore to achieve input
parsimony, that is, the identification of the smallest
subset of input variables that capture the most varia-
tion within the original dataset (Debenham 2002; Gale
et al. 2016; Harris, Sleight, and Webber 2005). This
will typically be achieved by balancing both the theo-
retical and empirical rationale for variable inclusion
(Spielman and Singleton 2015). For example, it is
common that initial inputs are presented within
a framework that draws upon wider literature, guiding
the type and balance between different potential influ-
ences upon or outcomes of area differentiation. More
empirically, this will usually ensue a process of initial
candidate input variable evaluation, typically consider-
ing a range of factors about the individual candidate
variables including their correlation, distribution or
spatial coverage.

The remaining sections of this paper are presented as
follows. In Section 2, we introduce the Office for
National Statistics 2011 Output Area Classification
(2011 OAC) as an example geodemographic that has
an open and reproducible methodology; and focus par-
ticularly on the variable selection method adopted to
create it. This is followed by a consideration of alter-
native methods that have been used to select geodemo-
graphic inputs in some other past national
classifications built for either the UK or Great Britain.
We then consider the use of Principal Component
Analysis (PCA) as an alternative methodology for auto-
mating variable selection within Section 3, alongside
results of the developed methodology in Section 4. In
Section 5 we compare and contrast the results of
a cluster analysis using the variable selection method
with 2011 OAC. The limitations of this research are
discussed in Section 6, alongside some plans for further
work and extension.

2. Selecting variables in national
classifications

The 2011 OAC is a UK census-only geodemographic,
which was released in 2014 by the Office for National
Statistics (ONS) (Gale et al. 2016). This followed
a similar classification created for the UK from the
2001 Census (Vickers and Rees 2007). Both the 2001
and 2011 OAC have an open methodology and data
inputs, which enable reproducibility, and furthermore
provide a useful framework upon which comparative
studies can be designed (Gale et al. 2016). The 2011
OAC presents a three-tiered hierarchy, comprising
eight supergroups, 26 groups, and 76 subgroups.
Each output cluster presents a shorthand name and
“pen portrait” (description) depicting the most salient
multidimensional characteristics (Gale et al. 2016;
Office of National Statistics 2015).

The initial variable selection for 2011 OAC only
considered those non-redundant census variables that
were consistently provided by the three different UK
census agencies (England and Wales, Scotland,
Northern Ireland); and as a result of public consulta-
tion, was also guided by the 2001 OAC inputs. In
2011 OAC, 166 prospective variables (including 94
variables that were referenced by the 2001 OAC) and
a derived variable of the standardised illness ratio
(SIR) were tested. Moreover, the suitability of these
initial variables was also scrutinized by the ONS (Gale
et al. 2016). The initial variables were rationalized
with two main objectives. The first was to obtain
a variable mix that represented the general character-
istics of the UK’s neighborhoods, meanwhile, also
distinguishing salient characteristics that varied geo-
graphically. A second requirement was to minimize
the number of strongly correlated census variables,
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thus limiting any potential weighting effect that may
be caused by collinearity. According to Gale et al.
(2016), these requirements were achieved through
two empirical approaches. The first was to examine
the correlations of candidate variables, and specifi-
cally identifying those variable pairs for further con-
sideration where the correlation was greater than ±
0.6. A second technique implemented cluster-based
sensitivity analysis, which aimed to identify those
variables that had the greatest impact, either positive
or negative, on cluster formation. This method
assessed the total within-cluster sum of squares and
the total between-cluster sum of squares statistics
after including or excluding different variables from
a clustering run. After further evaluation including
examination of statistical distributions and mapping,
60 variables were eventually retained to build 2011
OAC, which were broadly organized into three
domains: demographic, housing and socioeconomic
(Gale et al. 2016).

However, the OAC (both 2001 and 2011 OAC)
approach to variable selection deviates from those
methods implemented by academics building geode-
mographic classifications for pre-2001 censuses in the
UK. The very different computational contexts of the
past made more sophisticated multidimensional pro-
cessing much slower or impossible (Adnan 2011;
Singleton 2016). Prior to the 2001 OAC, dimensionality
reducingmethods such as principal component analysis
(PCA) were commonly (although not universally) inte-
grated into some of the classification products that
corresponded to the decennially released Census (e.g.
Webber (1975); Webber and Craig (1978); Charlton,
Openshaw, and Wymer (1985); Robinson (1998)).
When a PCA is calculated for a dataset, a set of new
orthogonal variables (i.e. principal components) are
created which are the linear combination of the original
variables. The principal component that accounts for
the largest variance is called the first principal compo-
nent, the second principal component that accounts for
the second largest variance as the second, and so forth
(Jolliffe 2002; Pacheco 2015). Clustering a set of princi-
pal components reduces the overall number of inputs to
a geodemographics, making the clustering process
either possible or much faster to complete; which in
the past had been a key constraint given more limited
computational power/availability. However, as the data
handling and processing capacity of computers have
increased, the necessity for PCA in this context has
been reduced. Furthermore, some scholars have also
argued that use of PCA to create inputs may erase
interesting patterns, and particularly those which are
spatially heterogeneous (Alelyani, Tang, and Liu 2014;
Harris, Sleight, and Webber 2005; Leventhal 2016).

However, there are some contemporary imple-
mentations of PCA when building geodemographic
classifications. For instance, Ismail, Nayan, and

Ibrahim (2016) employed PCA as an inspection tool
that determines whether a linear relationship exists
between candidate variables; Adnan (2011) adopts
PCA as a standardization technique in the progress
of producing real-time geodemographics. Although
not a necessity in terms of computation, and as illu-
strated by Debenham (2002), PCA can have a useful
role as a tool that guides variable selection. Although,
what is under-researched is how such a process could
be automated, taking account of both the overall
importance of input variables to cluster formation,
but also those sensitivities of the extent to which such
relationships may hold between different localities.
One of the overarching objectives of this paper is
therefore to re-examine the potential for PCA within
a computationally intensive setting, where the bene-
fits of PCA for the identification of variables that
explain the main variance within a dataset can be
integral to an automated variable selection process.
We present this new methodology in the context of
a UK census-based geodemographic, contrasting the
output against the 2011 OAC.

3. Automated variable selection using PCA

As discussed in the previous section, an overarching
objective of the variable selection stage of building
a geodemographic classification is to identify the
smallest possible subset of variables that can repre-
sent the main variance within a universe of potential
inputs being considered, which may also be informed
by theoretical or practical rationale. Although accept-
ing of arguments that PCA can have an adverse effect
when used to create inputs to a geodemographic
classification (Alelyani, Tang, and Liu 2014; Harris,
Sleight, and Webber 2005; Leventhal 2016), we would
argue that PCA can still have utility as a tool in the
identification of appropriate input variables; which is
the basis of the method we introduce in the remain-
der of this section.

The flowchart presented in Figure 1 illustrates an
approach that is comprised of five main stages. The
first stage generates a set of principal components
(PCs) from the input variables. Meanwhile, by sum-
ming up of the squared factor scores for the PC, the
eigenvalue associated with each of the PCs can be cal-
culated, which is utilized to define the range of iteration
tests at stage 2. Additionally, the contribution of the
variable to each component can be obtained by calcu-
lating the ratio between the squared factor score for
a variable and the eigenvalue associated with that com-
ponent. The value of a contribution is between 0 and 1.
Generally, the larger the value, the more a variable
contributes to the component (Abdi and Williams
2010; Pacheco 2015).

Stage 2 defines a threshold for the number of itera-
tions to test between a “harsh” and a more “liberal” cut-
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off point. The maximum, i.e. “harsh”, threshold value is
defined by a strict cut-off point that is generated from
the commonly used Kaiser’s rule, namely, the eigenva-
lue of a meaningful PC is greater than or equal to 1
(Jolliffe 2002; Kaiser 1960; Pacheco 2015). The mini-
mum, i.e. “liberal”, threshold value is determined by
adopting a cut-off point that is suggested by Jolliffe
(1972), namely, the eigenvalue of a meaningful PC is
greater than or equal to 0.7.

Stages 3–5 are iterative, with each run successively
removing a PC from the set identified at stage 2. In
every iteration at stage 3, the contribution of the
variables to the retained PCs is quantified by taking
the sum of their individual contributions multiplied
by their respective eigenvalues in each PC (Pacheco
2015). Abdi and Williams (2010, 437) suggest the use
of “larger than the average contribution” as
a heuristic cut-off when identifying variables with
high contributions. Similarly, in this stage, where
a variable contribution is greater than the average of
these summed scores, it is retained for stage 4.

Stage 4 explores the correlation between the
retained variables using a Minimum Spanning Tree
(MST), which re-examines the level of data redun-
dancy. Any highly correlated pairs are highlighted by
the tree, defined as having a correlation coefficient of
greater than or equal to ± 0.75, which is commonly

cited as the “rule of thumb” indicating a high correla-
tion (Santero, Nayan, and Ibrahim 2016; Udovičić
et al. 2007). In these instances, those highly correlated
variables (i.e. nodes in the MST) with the fewest
branches (i.e. less connected) were removed from
the candidate variable list since they are considered
of lower importance (Financial Network Analytics
2012). Although automated in this instance, it follows
similar methods implemented when building some
commercial geodemographics (Harris, Sleight, and
Webber 2005).

At stage 5, the filtered variables are then clustered
using the K-means algorithm with a user-specified
number of clusters. This was optimized by running
10,000 times which is necessary given that the start-
ing seeds used to initialize cluster partitioning are
stochastic, and as such, there can be slight differ-
ences in outcomes between each run of the algo-
rithm. Of the 10,000 runs that are generated for each
iteration of Stage 5, the result with the lowest Total
Within-cluster Sum of Squares (TWSS) statistics is
extracted; representing a solution with overall more
compact clusters. For this selected optimized run,
two statistics were calculated as a measure of overall
clustering quality: The between cluster sum of
square (BCSS) and within cluster sum of square
(WCSS) statistics.

Figure 1. Proposed automated variable selection method workflow.
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At the end of each Stage 5 run, the WCSS and
BCSS are then stored in association with the currently
tested PC cut-off defined at Stage 3. The ratio
between the WCSS and BCSS is used to monitor the
impact of the specific PC selection. Generally, the
larger the ratio, the better clustering results. The
iteration stops when the minimum/maximum
(depending on removing/adding) number of PC
defined by Stage 2 is met.

4. Case study application

The automated variable selection process presented in
the previous section was implemented in an example of
building a UK census geodemographics that would be
broadly comparable to 2011 OAC. As discussed earlier,
the open methodology and data used to create this
geodemographics make it a useful candidate for com-
parison; and in drawing parallels between the classifica-
tions we can illustrate broad comparability and the
utility of the presented technique. It should be noticed
that the objective of this application was, therefore, to
retain broad comparability with the 2011 OAC, and to
this end, the methods of standardization, normalization
and clustering were mirrored. Thus, input data were
normalized using an Inverse hyperbolic sine, and then
range standardized onto a 1–0 scale. For the K-means
implementation, only the most aggregate level of hier-
archy in 2011 OAC was considered in this comparison,
so k was defined as 8 for this model, although future
work might consider further levels of disaggregation or
a range of different k values might be tested. The ratio-
nale for the specific methodological choices in 2011
OAC can be found within Gale et al. (2016); however,

the key point of departure in the presented methodol-
ogy relates to how the final variables are selected for
input into the clustering process.

In this application of the generally applicable meth-
odology outlined in the previous section, we considered
nearly all variables contained within the Key Statistics
(KS) and Quick Statistics (QS) tables for the UK, which
included the 167 initial variables considered for inclu-
sion in 2011 OAC. Although, given that some tables
contained duplicated or near identical topics, only one
of these tables were included. For instance, both tables
KS104 and QS108 concerned living arrangements;
tables KS102 and QS102 detailed age structure.
Finally, like 2011 OAC, the initial inputs also included
computation of a Standardised Illness Ratio. The full
initial variable specification is listed in Table S1 of the
online Supplementary Materials.

After running a PCA on the input data, a total of
53 meaningful PCs were identified by examination of
the eigenvalue thresholds which are plotted against
the cumulative variance explained in Figure 2. If we
had applied the Kaiser rule (Eigenvalue ≥1), only 30
principal components would have been selected
which cumulatively accounted for about 72.4% of
the variance being retained. However, it can be seen
that by altering the cut-off value from 1 to 0.7, the
filtering process identified 52 principal components,
which cumulatively accounted for approximately
83.6% of the variance contained in the original data.

A summary of outcomes from the iteration tests is
shown in Figure 3. The highest quality clustering results
were identified (an objective function of maximizing
the ratio between BCSS and WCSS) when the first 51
PCs were used to identify input variables to the cluster

Figure 2. Scree plot: Eigenvalue vs. percentage of explained variances.
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analysis. Of the 86 variables firstly identified, 12 pairs
were highly correlated (Correlation Coefficient ≥ ±
0.75); and as such, utilizing the minimum spanning
tree (Figure 4), 12 variables were removed.

Details about the type and frequency of variables
retained for each iteration are presented in Table 1.

The variables have been divided into three different
domains: demographic, socioeconomic and housing
(also see Table S1 of the online Supplementary
Materials). Overall the iterations, variables in the
socioeconomic domain were retained less often, indi-
cating greater redundancy. In contrast, the housing

Figure 3. BCSS and WCSS result by iteration test by principal components (ratio = BCSS/WCSS).

Figure 4. Minimum spanning tree (presented in circle layout) of the census variables after the PCA-based filter.
The thickness of curve indicates the absolute value of the person correlation coefficient. The value that above ±0.75 is highlighted by red thicker line,
which therefore will be removed in the next phases.
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domain was reasonably stable, and for all iterations
comprised between 45 and 60% of the overall vari-
ables within this domain.

In the optimized result (51 PCs), 74 variables in total
were retained, distributed between 40 demographic, 24
socioeconomic, 10 housing (see Table S2 of the online
Supplementary Materials). Table 2 summarizes this dis-
tribution relative to those inputs used to build 2011OAC.
Most significantly, the proportion of retained variables
related to demographics wasmuch larger, while the other
domain proportions remained largely similar in size.

4.1. Describing the derived classification

In this penultimate section,wefirstly present descriptions
to accompany the optimized clustering result derived
through automated variable selection (Automated
Variable Selection OAC – AVS-OAC). The new classifi-
cation created through this process had an average cluster
size of approximately 29,037 Output areas (OAs), how-
ever, varied from 11,397 (E) and 41,399 (B) OAs, which,
respectively, correspond to about 4.9% and 17.8% of the
total number of OAs in the UK. By contrast, 2011 OAC
varies from 8,589 OAs (2: Ethnicity Central) to 35,285
OAs (6:Urbanities), so the range of our presented clusters
is larger.

Figure 5 maps the geographic distribution of the
AVS-OAC clusters across the UK, and also, respec-
tively, highlights the cluster distribution in the largest
cities, namely, London, Cardiff, Edinburgh, and Belfast.
The spatial distribution highlights a useful urban-rural
split, and within urban areas presents a range of differ-
entiating clusters. Additionally, and as onemight expect
given the methodological choices made, London is
fairly poorly segmented with the majority of inner
London dominated by two clusters (i.e. Cluster D and
E). This effect is similar in 2011 OAC, and indeed is
discussed at length elsewhere (see Singleton and
Longley 2015). One potentially negative observation of
the created classification was the emergence of two
clusters that represented mainly rural areas (Clusters 1
and 6). In order to explore these patterns and wider
interpretability of the cluster characteristics and later
comparison with 2011 OAC, index scores (i.e. x/x̄ *100)
were computed for the input variables and displayed in
Figure 6, with the scores ordered by domain. These
scores illustrate characteristics that are over or under-
represented for each of the eight clusters relative to the
national average (a score of 100). An index score of 50
is, therefore, half the national average, and 200 would be
double. Additionally, as is common when building
a geodemographic classification, such index scores
were then used to ascribe a label and brief description
of each of the clusters (see S3 Section of the online
Supplementary Materials).

4.2. Classification performance and comparison
to 2011 OAC

In this final section, we first evaluate AVS-OAC per-
formance internally to explore cluster robustness, and

Table 1. Testing results showing the number and percentage of overall retained variables and by domain.
Number
of PCs Number of retained variables Demographic Socioeconomic Housing Ratio

Demographic
% by total

Socioeconomic
% by total

Housing
% by total

30 90 50 28 12 0.4862 62.5 41.8 60.0
31 91 50 29 12 0.4854 62.5 43.3 60.0
32 90 49 29 12 0.4867 61.3 43.3 60.0
33 88 49 27 12 0.4813 61.3 40.3 60.0
34 87 49 26 12 0.4820 61.3 38.8 60.0
35 85 48 25 12 0.4842 60.0 37.3 60.0
36 84 47 25 12 0.4840 58.8 37.3 60.0
37 81 47 24 10 0.4866 58.8 35.8 50.0
38 79 45 24 10 0.4882 56.3 35.8 50.0
39 78 43 25 10 0.4894 53.8 37.3 50.0
40 75 43 23 9 0.4881 53.8 34.3 45.0
41 75 43 22 10 0.4852 53.8 32.8 50.0
42 74 43 21 10 0.4864 53.8 31.3 50.0
43 74 43 21 10 0.4864 53.8 31.3 50.0
44 74 43 21 10 0.4864 53.8 31.3 50.0
45 74 42 21 11 0.4901 52.5 31.3 55.0
46 75 42 23 10 0.4891 52.5 34.3 50.0
47 74 41 23 10 0.4891 51.3 34.3 50.0
48 75 41 24 10 0.4888 51.3 35.8 50.0
49 75 41 23 11 0.4898 51.3 34.3 55.0
50 74 41 23 10 0.4899 51.3 34.3 50.0
51 74 40 24 10 0.4903 50.0 35.8 50.0
52 74 40 24 10 0.4898 50.0 35.8 50.0
Total 167 80 67 20 55.4 36.0 53.3

Table 2. The number of final census variables retained by
domain versus 2011 OAC.
Domain AVS-OAC AVS-OAC (%) 2011 OAC 2011 OAC (%)

Demographic 40 54.1% 26 43.3%
Socioeconomic 24 32.4% 26 43.3%
Housing 10 13.5% 8 13.3%
Total 74 - 60 -
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then make some external comparisons with 2011
OAC; to establish those broad similarities or differ-
ences that emerge through the application of this
alternative methodology, and examine the impact
this has on the overall discriminatory power.

An objective when building this classification was to
provide an output that would make a suitable bench-
mark against 2011 OAC; achieved through maintaining
both a broadly similar potential attribute input pool and
output cluster frequency. However, a disadvantage of
constraining the number of clusters to match 2011
OAC was that two very similar rural clusters emerged:
Cluster A: Prosperous Rural and Cluster F: Rural
Retirement; which represented considerable redun-
dancy. When building a geodemographic classification
for operational rather than methodological evaluation
purposes, there is typically a stage that will test multiple
potential cluster frequencies with the objective of miti-
gating such issues. However, conversely, the post-
analysis merging or splitting of clusters is also prevalent
when building many geodemographic classifications
(Harris, Sleight, and Webber 2005). For the purposes
of this illustration we decided to keep this artifact,
although in an operational model such as 2011 OAC,
we would expect that such issues would be resolved pre

or post clustering through manual intervention after
stakeholder consultation.

Correspondence between 2011 OAC supergroups
and AVS-OAC clusters is highlighted in Figure 7
which presents the percentage by of OAs that overlap
between the two classifications for the UK extent. As
might be expected given the differing inputs, the corre-
spondence between the two classifications varies; and
highlights the importance of stakeholder engagement
when selecting appropriate cluster representations in
operational models. For example, we can see that the
AVS-OAC Cluster: “F: Rural Retirement” is composed
predominantly by OA identified by 2011OAC as within
Supergroups “1. Rural Residents” and “6.
Suburbanites”, thus representing a blend of both rural
and the connecting hinterland at the periphery of urban
areas. The AVS-OAC Cluster “D. Urban Central” com-
bines many OA that are identified by the 2011 OAC
Supergroups “2. Cosmopolitans”, “3. Ethnicity
Central”, but not some other predominantly urban
clusters such as “7. Constrained City Dwellers”, which
emerged with greater correspondence to AVS OAC
Cluster “C. Hard Pressed Living”. Or, the AVS-OAC
cluster “B: Ageing Outskirt” can be seen to correspond
to a diffuse number of 2011 OAC Supergroups located

Figure 5. Geographic distribution of AVS-OACs with highlighted major cities.
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in suburban areas. A similarly defuse pattern can also be
identified in “G: Transitional Terraced”, although just
over half of those areas identified by the 2011 OAC
Supergroup “5. Urbanites” also correspond with this
cluster.

As ameasure of comparative clustering quality, a Total
Within-cluster Sum of Squares (TWSS) statistic was cal-
culated for each classification (i.e. AVS-OAC and 2011

OAC) by taking the sum of the squared difference
between every classification input attribute within an
area and the mean of the assigned cluster centroid.
A higher score indicates an area where the attribute
values for the OA are further from their assigned cluster
mean (the centroid generated via k-means clustering), in
other words, the quality of cluster assignment is poorer.
Box plots in Figures 8 and 9, respectively delineate the

Figure 6. AVS-OAC results (Index scores) grouped by variable domains.

Figure 7. Cross-tabulation: OA percentage by AVS-OAC and 2011 OAC.
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TWSS by the AVS-OAC Clusters and the 2011 OAC
Supergroups.

Overall, the AVS-OAC clusters have lower TWSS
than 2011 OAC, statistically indicating a better fit,
which is manifested by the average value (i.e. 0.825
and 0.914). Within AVS-OAC, we can see that the
clusters “D: Urban Central”, “C: Hard Pressed Living”
and “E: Multicultural Urban Lifestyle” contain the
highest TWSS value (average value, which are 1.06,
0.98, and 0.96) and the greatest variability (standard
deviations, which are 0.286, 0.257, and 0.241, respec-
tively), which might be considered the three least
successful AVS-OAC clusters. These clusters are con-
centrated in both densely populated urban centers
and transitional areas on the periphery of urban

cores. In some sense, this is to be expected given
the heterogeneous nature of urban centers and is an
issue acute between Greater London and other parts
of the UK which leads to larger variability. In parti-
cular, residents of AVS-OAC cluster “E: Multicultural
Urban Lifestyle” are mainly concentrated within
Greater London, which is a region known to be not
well represented by 2011 OAC (Singleton and
Longley 2015).

Analysis of the geographic variability in classification
performance can be expanded by mapping how well the
input attributes of each OA fit their assigned cluster from
both AVS-OAC and 2011 OAC, again using the TWSS
statistics. The frequency of OAs that performed better by
AVS-OAC relative to 2011 OAC (attributes values that

Figure 8. Total within-cluster sum of squares (TWSS) by the AVS-OACs. Mean value for each of the cluster is calculated and
illustrated by the red point within the boxplot. The total mean value is presented by the dashed line.

Figure 9. Total within-cluster sum of squares (TWSS) by the 2011 OAC. Mean value for each of the cluster is calculated and
illustrated by the red point within the boxplot. The total mean value is presented by the dashed line.
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are closer to their assigned cluster mean) was counted
within each UK Local Authority District (LAD), and are
presented in the choropleth map in Figure 10. Overall,
390 out of 404 local authority districts in the UK have
greater than 50% of their constituent OAs statistically
better represented by AVS-OAC relative to 2011 OAC.
There are however some clear regional patterns that
emerge; with particularly strong performance in
Scotland andWaleswhere, respectively, all unitary autho-
rities had more than 70% and 65% of OAs with better fit
by AVS-OAC relative to 2011 OAC statistically. More
negatively, there are someLADs that experience relatively
poor performance, which are indicated by dark red in the
choropleth (Figure 10): and include a cluster of boroughs
alongside the River Thames within Greater London
alongside some other London Boroughs. Additionally,
some of the LADs located within Northern Ireland also
exhibit poorer clustering performance. These instances
support an argument for more consideration within an
automated variable selection process of those character-
istics specific to regional geographies. The need for

greater regional consideration when building geodemo-
graphics is a well-established argument (Alexiou 2016),
which also points to future work outside of the scope of
this paper when selecting variables automatically.

Despite these regional differences, the overall per-
formance of AVS-OAC relative to 2011 OAC is
strong, with 70.2% of OA having a better fit. This is
highlighted in Table 3 which presents the frequency
and percentage of OA within each 2011 OAC

Figure 10. Percentage of out-performed OAs by AVS-OAC by local authorities and London boroughs.

Table 3. Checklist: number of OAs that AVS-OAC outperforms
than 2011 OAC.
2011 OAC Frequency Percentage (%)

1. Rural Residents 20,279 74.3
2. Cosmopolitans 7520 57.3
3. Ethnicity Central 6010 50.7
4. Multicultural Metropolitans 16,633 70.8
5. Urbanites 28,241 73.0
6. Suburbanites 33,678 71.9
7. Constrained City Dweller 20,780 76.6
8. Hard-pressed Living 29,982 68.4
Total 163,123 70.2

Frequency: Number of OAs better performed by AVS-OAC.
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Supergroup that were outperformed by their AVS-
OAC cluster assignment.

5. Conclusions

The consideration of which variables are input into
a cluster analysis is a common preliminary stage when
building a geodemographic classification. The over-
arching objective is typically to achieve input parsi-
mony, but there are multiple views on how this is best
achieved, balancing theoretical considerations, practi-
calities of available data or attribute statistical properties
and those past experiences or embedded knowledge of
the classification builder(s). The primary objective of
this paper was to extend such considerations by devel-
oping and testing an automated method of variable
selection, and then benchmarking the presented tech-
nique within the context of building a UK national
geodemographic from 2011 Census data.

The objective was to illustrate how automated vari-
able selection could be implemented to identify inputs
that produce a plausible and comparable classification.
In doing so, we are not claiming that this be of equiva-
lence to an operational model, specifically as the meth-
odology presented here lacks user consultation; but
rather provides an innovative tool that might be useful
to inform variable choices. It is not difficult to envisage
a build process within an operation setting where differ-
ing variable selection sets might be specified and eval-
uated in consultation with stakeholders.

Our heuristic process was built around Principal
Component analysis that automated input variable selec-
tion, feeding these into a classification model that in our
example broadly followed the 2011 OAC methodology.
The application presented here was primarily data-
driven for the purposes of methodological illustration;
however, the technique itself is flexible and generic, and
lends itself to other applications with any set of variables,
thus also transferring well as a component of more
theoretical expositions of geodemographic structure.

The method as implemented here was within the
context of consistently available variables from the
2011 Census for the UK geographical extent.
Through a five-stage variable selection procedure, 74
census variables were retained from 171 initial candi-
dates. The clustering was constrained to mirror 2011
OAC cluster frequency, creating a final typology of
eight clusters. This output was subsequently evalu-
ated through comparison with 2011 OAC to examine
both cluster similarity and relative performance.
Overall, the quality of the cluster assignment is sta-
tistically better than 2011 OAC in more than 70.2% of
the OAs across the UK; with particularly strong per-
formance within Scotland and Wales.

The application of our method illustrated good
comparative performance relative to 2011 OAC; how-
ever, there are several limitations that could be

alleviated in future work. First, there may be potential
for integrating regional and subregional evaluation
when selecting variables, which might evolve into
a set of heuristics that would potentially identify
a more effective variable input mix. A counter view
would be that this would be at the expense of com-
putation time; and indeed, may be not resolve an
inherent constraint in regional variability when build-
ing geodemographics from data pertaining to
a national extent. Secondly, this automated process
decouples stakeholder user input from the classifica-
tion process; and as Openshaw, Blake, and Wymer
(1995) state that “there is no simple relationship
between optimizing a statistical measure of classifica-
tion performance such as the within-cluster sum of
squares and the end-users’ perception of classification
performance in a particular context”. Such considera-
tions could be integrated into a fuller process of
classification building, which may be particularly
important within the context of an operational clas-
sification, such as those built for a national statistical
agency. Finally, it is also worthy of recalling that the
presented method utilizes PCA and there is also
potential to integrate alternate and more explicitly
spatial techniques, which may also enhance regionally
variable performance, for example through
Geographically Weighted PCA (Harris, Brunsdon,
and Charlton 2011). Furthermore, there is also poten-
tial that additional steps could be implemented that
assess an appropriate cluster frequency for a given
problem, although there would be significant chal-
lenges when balancing such considerations with com-
putational efficiency when input variable
combinations were also being assessed in parallel.

This paper has presented a new methodology that
optimizes the selection of an initial list of candidate
variables that are input into a cluster analysis used to
build a geodemographic classification. The perfor-
mance of this methodology is implemented within the
context of the 2011 UK Census, and comparison is
made with 2011 OAC. Performance was comparable
to 2011 OAC over the evaluated metrics, although the
shape of the classification varied, and there were also
some regional differences in performance. The metho-
dology presented here provides a generally applicable
tool that integrates well with both theoretical and user
embedded classification building programs over multi-
ple international contexts, and, will likely have particu-
lar relevance for the creation of future geodemographics
for the UK 2021 Census and beyond.
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