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Abstract

Objectives. Uncertainty around clinical heterogeneity and outcomes for patients with JDM represents a major

burden of disease and a challenge for clinical management. We sought to identify novel classes of patients having

similar temporal patterns in disease activity and relate them to baseline clinical features.

Methods. Data were obtained for n¼ 519 patients, including baseline demographic and clinical features, baseline

and follow-up records of physician’s global assessment of disease (PGA), and skin disease activity (modified DAS).

Growth mixture models (GMMs) were fitted to identify classes of patients with similar trajectories of these variables.

Baseline predictors of class membership were identified using Lasso regression.

Results. GMM analysis of PGA identified two classes of patients. Patients in class 1 (89%) tended to improve,

while patients in class 2 (11%) had more persistent disease. Lasso regression identified abnormal respiration,

lipodystrophy and time since diagnosis as baseline predictors of class 2 membership, with estimated odds ratios,

controlling for the other two variables, of 1.91 for presence of abnormal respiration, 1.92 for lipodystrophy and 1.32

for time since diagnosis. GMM analysis of modified DAS identified three classes of patients. Patients in classes 1

(16%) and 2 (12%) had higher levels of modified DAS at diagnosis that improved or remained high, respectively.

Patients in class 3 (72%) began with lower DAS levels that improved more quickly. Higher proportions of patients

in PGA class 2 were in DAS class 2 (19%, compared with 16 and 10%).

Conclusion. GMM analysis identified novel JDM phenotypes based on longitudinal PGA and modified DAS.
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Rheumatology key messages

. Sub-phenotypes of JDM based on patient outcomes have not previously been well defined.

. Description of sub-phenotypes of JDM based on global and skin disease activities over time.

. Abnormal respiration, lipodystrophy and more time since diagnosis at baseline predict severe disease in JDM.
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Introduction

Uncertainty around medium- to long-term outcomes is a

major burden of disease for patients and families, as

highlighted by a recent qualitative study of children and

young people with JDM [1]. In addition to characteristic

features of proximal muscle weakness and pathogno-

monic skin rash, many patients develop a heteroge-

neous range of additional features, including calcinosis,

lipodystrophy, treatment-resistant rash and internal

organ involvement. Patients can have heterogeneous

responses to treatment, which also poses a challenge

for clinical management. At present there are few reli-

able predictive biomarkers for response to treatment.

Historically, disease courses in JDM have been

described as monocyclic, polycyclic or chronic typically

based on clinical assessment within the first 2 years

after diagnosis [2–6]. Longer-term cross-sectional

follow-up studies have indicated that some patients

have ongoing disease activity and damage [7–14],

underscoring the need to collect and understand data

on long-term outcomes in JDM beyond the first 2 years.

Longitudinal analyses enable insight into outcomes that

change over time, and can be used to characterize a

disease course in a data-driven manner. An example is

a recent study that applied longitudinal methods to

understand disease evolution using data from 95

patients at The Hospital for Sick Children, Toronto,

Canada [15].

Growth mixture models (GMMs) are a longitudinal

method for identifying latent or ‘hidden’ subgroups of

patients with similar mean trajectories of disease activity

over time when the number of groups and group mem-

bership are unknown [16]. In contrast to other methods

for latent class trajectory analysis, GMMs allow individu-

als within each class to have differences in their trajec-

tories. Although these alternative approaches are easier

to implement, GMMs have a more substantive interpret-

ation, as shown by the Canadian study results, which

identified three different GMM ‘typical’ trajectories in

total DAS, with baseline as DAS their predictor [15].

The aims of this study were to use GMM analysis to

identify classes of patients with JDM with different tra-

jectories of disease activity and to identify predictors of

class membership at baseline, using data from a large,

multicentre cohort study.

Methods

Patients and clinical data

All patients were recruited to the UK-wide JDM Cohort

and Biomarker Study (JDCBS) [17], with ethical approval

(UK Northern and Yorkshire Medical Research and

Ethics Committee MREC/1/3/22). All patients provided

written informed consent and age-appropriate assent.

Patients are recruited at 16 centres in the UK

(Supplementary Table S1, available at Rheumatology

online), with de-identified patient data held within the

JDCBS database. Centres are anonymized in this ana-

lysis to protect patient confidentiality. The JDCBS holds

focus groups with young people with JDM to involve

patients in study design and disseminates research at

JDM regular family days.

For all patients (n¼ 519 at time of study), demograph-

ic data and clinical features at first-recorded visit were

collected, including diagnosis, abnormal respiration,

arthritis, cutaneous ulceration, lipodystrophy and calci-

nosis. Abnormal respiration was defined as ‘shortness of

breath’, ‘accessory muscle use’, ‘tachypnea’, ‘requires

oxygen’ or ‘ventilated’ [18]. All other clinical features

were defined by the treating clinician at the first-

recorded visit. For patients in whom autoantibodies

were measured (n¼ 379), these data were generally

generated using immunoprecipitation and ELISA as pre-

viously described [19–21], and by line blot for a limited

number of cases. Median duration of follow-up was 5.1

(2.6–8.6) years. Clinic visits were recorded approximate-

ly twice per year (Supplementary Table S1, available at

Rheumatology online).

At all recorded visits (n¼ 5306), several measures

were collected including the physician’s global assess-

ment (PGA) of global disease activity on a visual ana-

logue scale and the cutaneous components of the

modified DAS for assessing skin disease (comprising

Gottron’s papules, heliotrope rash, vasculitis and ery-

thema) [22]. The PGA in our analysis is a more subject-

ive score that reflects cutaneous, musculoskeletal and

other manifestations of JDM that influence the physi-

cian’s overall assessment of global disease activity, and

may in some cases be influenced by features such as

calcinosis that can be attributed to ongoing activity by

some physicians, but disease damage by others. Higher

levels of disease activity are indicated by higher scores

in the PGA (range 0–10) and modified DAS (range 0–5)

and lower scores of the Childhood Myositis Assessment

Scale (CMAS) (range 0–52). For the modified DAS, when

any of Gottron’s papules, heliotrope rash, vasculitis or

erythema were missing they were treated as absent to

avoid the need to impute this variable, similar to a previ-

ous analysis [18], although we recognize this approach

may underestimate the true modified DAS. Since 11

patients never had a PGA recorded, the total number of

patients when PGA was modelled as an outcome was

508.

Data are described using median and first and third

quartiles for numeric variables (unless specified other-

wise), and counts and percentages for categorical

variables.

Data exploration and identification of missing data
patterns

The PGA and modified DAS longitudinal trajectories

were described using spaghetti and lasagne plots.

Follow-up ranged from 0.2 to 23.4 years, with very few
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observations being available after 10 years. For this rea-

son follow-up was truncated at 10 years since diagnosis,

in order to avoid including sparse observations that may

be highly influential. This led to the inclusion of complete

follow-up for 83.6% of patients (n¼4837 recorded

visits) and a similar median length of follow-up of 4.9

(2.1–8.1) years in the truncated dataset.

Since for 13% of the available visits, PGA values were

missing, patterns in missing data were explored. Data

visualization did not indicate there were any patterns in

the frequency of missing PGA over time or a relationship

with duration of follow-up. Formal analyses of the pat-

tern of missingness consisted of modelling the probabil-

ity of missing a PGA observation during follow-up,

accounting for clustering (as the same patient may have

missing values at different visits) using generalized esti-

mating equations (implemented with an exchangeable

correlation matrix and robust standard errors). Potential

predictors of missingness were: sex, age at diagnosis,

time since diagnosis, baseline PGA and Centre, coded

Centre A [n¼ 241 (46.4%)] vs the rest [n¼ 278 (53.6%),

coded as ‘Other’]. Baseline PGA and Centre were found

to be significantly associated with missingness. A ran-

dom audit of all clinic forms received in a single month

suggested clinical experience may influence whether

PGA was missing; however, since allocation of patients

to consultants or registrars is random, it was thought

not to introduce bias.

GMM analysis

GMMs are models for repeated observations of an out-

come that allow individual trajectories to cluster within

classes. These classes are unobserved (latent) but are

inferred from the data. GMMs can be fitted to continu-

ous outcomes like the PGA and modified DAS, assum-

ing Gaussian or non-Gaussian distributions, and to

categorical variables using ordered logistic regression

models. We fitted GMMs to either the PGA or modified

DAS as outcomes with time since diagnosis (years) hav-

ing both fixed and random effects, while also allowing

for class-specific effects of time (Supplementary

Methods, available at Rheumatology online). Since ex-

ploratory analysis identified Centre as a predictor of

missing PGA over time, a binary variable for Centre

(Centre A or Other; Supplementary Table S3, available

at Rheumatology online) was included in the GMM

analysis of PGA in order to deal with the missing data

patterns under the missing at random assumption.

Although baseline PGA was also a predictor of missing

PGA over time, it did not need to be included as it was

already part of the outcome model, and therefore its in-

completeness was dealt with by the maximum likelihood

estimation, again under the missing at random assump-

tion. Single class models were fitted initially to define

the optimal transformations of outcome variables and

best function of time, with models selected according to

the lowest Bayesian information criterion value

(Supplementary Table S4, available at Rheumatology on-

line). A cubic term for time and square-root

transformations of PGA and modified DAS gave the low-

est Bayesian information criterion values.

Models with two to six classes were subsequently fit-

ted. The optimal number of classes was determined by

selecting the model with the lowest Bayesian informa-

tion criterion and highest entropy (Supplementary Table

S4, available at Rheumatology online), as recommended

in [23]. Entropy is an indication of how well individuals

have been allocated to each class on a scale of 0–1,

with 1 meaning perfect classification, and is calculated

using the mean posterior probability for each class.

Posterior classification is also reported for each class

for each GMM with two to six classes (Supplementary

Table S4, available at Rheumatology online). The mean

of posterior probabilities for each class is reported for

each GMM with two to six classes (Supplementary

Table S5, available at Rheumatology online).

Sensitivity analyses

Sensitivity analyses were subsequently performed to

identify whether there were differences in the results for

males or females and to investigate whether results

were influenced by late-entry individuals or by both late-

entry individuals and individuals contributing fewer visits

or by non-incident individuals (Supplementary Table S6,

available at Rheumatology online). Two definitions of

non-incident individuals were used: individuals recruited

to the JDCBS later than a month since diagnosis

(n¼184 excluded; the remaining cohort becoming the

‘inception cohort’), and individuals recruited to the

JDCBS at least 5 years after diagnosis (n¼29).

Individuals contributing few visits were defined as those

contributing fewer than three visits (n¼79). These

thresholds were selected according to the distributions

of time from diagnosis to recruitment (years) and the

numbers of visits.

Lasso regression to predict class membership

Baseline predictors of membership of the classes pre-

dicted by GMM analysis were identified using Lasso re-

gression, a regression method that involves automatic

selection of predictors and regularization of estimated

coefficients for improved prediction accuracy [24]. Lasso

regression was performed using all clinical features

recorded at the first visit as predictors: diagnosis, PGA,

CMAS, modified DAS, age at diagnosis, time from diag-

nosis to first visit, and the presence of any of arthritis,

abnormal respiration, calcinosis, lipodystrophy and ul-

ceration. Myositis-specific autoantibodies (MSAs) were

not included as a predictor due to missing data. Since

0–34% of data were missing at first-recorded visit for

some clinical features, multiple imputation was first per-

formed using baseline clinical features and demographic

features to generate 10 imputed datasets.

For Lasso regression, the following steps were per-

formed separately for each of these 10 imputed datasets

(Supplementary Methods, available at Rheumatology on-

line). In an initial step, 10-fold cross-validation was run to
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select the optimal value for the tuning parameter lambda,

a parameter that contributes to the shrinkage penalty

applied to the regression coefficients. Within each cross-

validation, the area under the curve was used to select

the value of lambda that minimized the cross-validation

error. These lambda values were then used to fit the re-

gression models and estimate the coefficients for the pre-

dictors retained across each imputed dataset.

To account for uncertainty in class assignment during

the GMM stage of the analysis, observations were

weighted by the probability of class membership for

each individual patient, as predicted by the GMM.

Where significant predictors were identified by the

Lasso regression, the model was re-run with interaction

terms between those predictors. Finally, the estimates

for predictors with non-zero coefficients were pooled

from each imputed dataset. Standard errors are not

reported as these are unreliable for penalized regression

[25]. Lasso regression analysis was repeated using devi-

ance and misclassification error as the loss functions to

select the value of lambda that minimized cross-

validation error. The same predictors were identified

using these loss functions, and similar estimates of ef-

fect size were obtained.

Software

All analyses were performed using R version 3.4.4 [26].

GMM analyses were performed using the lcmm() func-

tion in the ‘lcmm’ package [27]. Lasso regression analy-

ses were performed using the ‘glmnet’ package [28].

Code for GMM and Lasso regression analyses are given

in Supplementary Methods, available at Rheumatology

online. Multiple imputation was performed using the

‘mice’ package [29]. Generalized estimating equations

were fitted using the geeglm() function in the ‘geepack’

package [30]. Lasagne plots were generated using the

‘longCatEDA’ package [31].

Results

Demographic, clinical and serological features of
whole JDCBS cohort

For the whole JDCBS cohort (n¼519), most patients

were female, white and had a diagnosis of definite JDM

(Table 1). Almost half of the cohort were recruited at

Centre A, with remaining patients recruited at 15 other

centres (Supplementary Table S2, available at

Rheumatology online). Median age at diagnosis was

7.7 years and median first-recorded PGA and modified

DAS were 3.0 and 3, respectively. The most prevalent

MSAs were anti-TIF1c (16.9%) and anti-NXP2 (15.6%).

Median (range) follow-up was 5.1 (0.2–23.4) years be-

fore follow-up time was truncated at 10 years, and 4.9

(2.6–8.1) years after truncation. Median time from diag-

nosis to first-recorded visit was 0.2 (0.1–1.1) years.

Visual representation of patients’ longitudinal trajectories

for up to the first 10 years post-diagnosis for both PGA

and modified DAS for skin disease indicated that

disease activity on average reduced to lower levels over

time, although patterns were heterogeneous between

patients (Fig. 1).

Two-class GMM for PGA

To separate this heterogeneity into groups with more

homogeneous patterns in disease trajectory, GMM ana-

lysis was applied. In the model fitted for PGA (n¼508),

the two-class solution was preferred (Fig. 2A,

Supplementary Fig. S1A and B, available at

Rheumatology online). Most patients were predicted to

belong in class 1 (n¼450, 89%). This group had slightly

lower levels of global disease activity at diagnosis,

which steadily decreased over time (Fig. 2A and B). By

contrast, a small proportion of patients were predicted

to belong in class 2 (n¼58, 11%), with their trajectories

starting with slightly higher PGA levels and displaying

more fluctuations over time (Fig. 2B and C).

Similar proportions of males and females and the

major ethnic groups were represented in the two classes

(Table 2). Higher proportions of patients in class 2 were

diagnosed at recruitment with JDM overlap with sclero-

derma or other idiopathic inflammatory myopathy. Ages

at diagnosis and symptom onset were similar across

classes. Although baseline PGA was higher in patients

in class 2, baseline modified DAS scores were similar.

Although in general MSA proportions were similar

across classes, a higher proportion of patients in class 2

had anti-NXP2 autoantibodies and a higher proportion

of patients in class 1 had no-detectable autoantibody.

Three-class GMM for skin modified DAS

A GMM was also fitted for skin modified DAS (n¼ 519),

with a three-class solution being preferred (Fig. 3A,

Supplementary Fig. S1C and D, available at

Rheumatology online). Patients who were predicted as

belonging to class 1 (n¼ 81 16%) had high levels of skin

disease activity at diagnosis, which on average reduced

slowly over time (Fig. 3B). Patients in class 2 (n¼63,

12%), on the other hand, also had high levels of skin

disease activity at diagnosis, which tended to remain

high over time (Fig. 3C). Most patients were predicted to

belong in class 3 (n¼375, 72%), with lower levels of

skin disease activity at diagnosis that reduced more

quickly over time (Fig. 3D).

Class 2 had slightly higher proportions of patients

who were female, white and who were diagnosed at re-

cruitment with JDM overlap with scleroderma (Table 2).

Ages at diagnosis and symptom onset, and baseline

scores for PGA, CMAS and modified DAS were similar

across all three classes. Similar to the GMM fitted for

PGA, proportions of MSA were similar across classes,

but class 1 had a higher proportion of patients with anti-

TIF1c autoantibodies.

Cross-tabulation of the two-class GMM for global dis-

ease activity with the three-class GMM for skin disease

activity indicated a higher proportion (19%) of patients

in class 2 of the GMM fitted to PGA were in class 2 of
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the GMM fitted to modified DAS than the in the other

classes (respectively 16% and 10%, bottom of Table 2).

Thus the closer association between these two classes

indicates a joint ongoing disease activity for both PGA

and modified DAS.

Sensitivity analyses

Sensitivity analyses for the results obtained on both

outcomes indicated that coefficients, the overall shape

of predicted trajectories and class proportions did not

change substantially in models fitted with females only,

males only, restriction to the inception cohort and exclu-

sion of late-entry individuals, and exclusion of both late-

entry individuals and individuals contributing few visits

(Supplementary Table S5, available at Rheumatology

online).

TABLE 1 Demographic, clinical and serological features of

the UK Juvenile Dermatomyositis Cohort and Biomarker

Study Cohort (n¼ 519)

Feature

Contributing centrea, n (%)

Centre A 241 (46.4)
Centre B 43 (8.3)

Centre C 42 (8.1)
Centre D 37 (7.1)
Centre E 29 (5.6)

Centre F 28 (5.4)
Centre G 27 (5.2)
Centre H 26 (5.0)

Centre I 12 (2.3)
Centre J 9 (1.7)

Centre K 8 (1.5)
Centre L 6 (1.2)
Centre M 5 (1.0)

Centre N 4 (0.8)
Centre O 1 (0.2)

Centre P 1 (0.2)
Sex, n (%)

Female 364 (70.1)

Male 155 (29.9)
Ethnicity, n (%)

White 402 (77.4)
Black 47 (9.1)
South Asian 33 (6.4)

Other 37 (7.1)
Diagnosis, n (%)

Definite JDM 383 (73.8)

Probable JDM 46 (8.9)
Definite juvenile polymyositis 8 (1.5)

Probable polymyositis 2 (0.4)
JDM overlap with scleroderma 28 (5.4)
JDM overlap with systemic lupus
erythematosus

5 (1.0)

JDM overlap with chronic
polyarthritis

6 (1.2)

JDM overlap with mixed connective
tissue disease

9 (1.7)

Polymyositis overlap with
scleroderma

3 (0.6)

Polymyositis overlap with systemic
lupus erythematosus

1 (0.2)

Mixed connective tissue disease 13 (2.5)

Focal myositis 6 (1.2)
Other idiopathic inflammatory
myopathy

9 (1.7)

Age at diagnosis, 1st and 3rd quartile,
years

7.7 (4.8–11.0)

Age at onset, median (IQR), years 6.9 (4.1–10.1)

Time since diagnosis, median (IQR),
years

0.2 (0.1–1.1)

Baseline PGAb, median (IQR) 3.0 (1.0–5.9)
Baseline CMASc, median (IQR) 42 (25.5–50)

Baseline modified DAS, median (IQR) 3 (1–4)
Baseline clinical featured, n (%)

Arthritis 114 (24.4)

Abnormal respiration 45 (9.2)
Calcinosis 40 (11.7)

(continued)

TABLE 1 Continued

Feature

Lipodystrophy 30 (6.3)

Ulceration 59 (12.5)
Autoantibodye, n (%)

No-detectable autoantibody 87 (23.0)
Unknown bands 68 (17.9)
Anti-TIF1c 64 (16.9)

Anti-NXP2 59 (15.6)
Anti-MDA5 23 (6.1)

Anti-PmScl 22 (5.8)
Anti-Mi2 14 (3.7)
Anti-U1RNP 12 (3.2)

Anti-SRP 9 (2.4)
Anti-HMGCR 4 (1.1)

Anti-SAE 3 (0.8)
Anti-Jo1 3 (0.8)
Anti-Ro 2 (0.5)

Anti-PL-12 and Anti-Ro52 2 (0.5)
Anti-Ku 2 (0.5)

Anti-U3RNP 1 (0.3)
Anti-U1RNP and Anti-TIF1c 1 (0.3)
Anti-Topo 1 (0.3)

Anti-PL-7 1 (0.3)
Anti-Mi2 and Anti-NXP2 1 (0.3)

aContributing centres have been allocated codes to protect
patient confidentiality.
bComplete data on PGA at baseline available for 87.2% of
cases.
cComplete data on CMAS at baseline available for 76.6%
of cases.
dComplete data available as follows: arthritis (90%), abnor-

mal respiration (94.2%), calcinosis (66.1%), lipodystrophy
(91.3%), ulceration (91.1%).
eOf the total n¼379 on whom autoantibody data were

available, n¼364 (96%) were analysed by immunoprecipi-
tation and confirmed by ELISA and n¼15 (4%) were ana-

lysed by lineblot. CMAS: Childhood Myositis Assessment
Scale; IQR: interquartile range; PGA: physician’s global
assessment.
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Predictors of PGA classes

Predictive analyses of class membership were per-

formed using the classification obtained from the GMM

for PGA, as a measure of disease activity that captures

multiple features of this multi-system disease. Indeed,

the GMM for global disease activity had a higher

entropy than the GMM for skin disease activity, and

hence better classification of patients. Baseline predic-

tors of membership in class 2 of the GMM for PGA were

identified using Lasso regression, a method that involves

automatic selection of predictors and regularization of

coefficients, as described above. Baseline modified

FIG. 1 Longitudinal trajectories of JDM patients up to 10 years post-diagnosis

(A, B) Lasagne plots for PGA (A) and modified DAS (B). Each horizontal line represents an individual patient, with red

colours representing high disease activity. (C, D) Spaghetti plots for PGA (C) and modified DAS (D). Each blue line

represents the disease trajectory of an individual patient and the red line represents the median trajectory. PGA:

physician’s global assessment.
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DAS, CMAS, abnormal respiration, lipodystrophy and

time from diagnosis to first-recorded visit were identified

as significant predictors of class 2 membership, with

mutually adjusted estimated odds ratios of 0.96, 0.99,

1.91, 1.92 and 1.32, respectively. The modification of

the association with abnormal respiration due to lipodys-

trophy corresponding to these interactions is visualized

in Fig. 4.

None of these baseline variables were retained by the

Lasso when this analysis was performed to identify pos-

sible predictors of class membership for the GMM for

modified DAS.

Discussion

This study represents the largest GMM analysis in JDM

(n¼519) with this length of follow-up, and the first of a

nationwide multicentre study. Our model of global dis-

ease activity identified two different trajectories of dis-

ease activity over time. While most patients (89%) had

lower levels of disease activity that improved over time,

a subset of patients (11%) had higher levels of baseline

disease activity and tended to have more ongoing se-

vere disease. Baseline variables that predicted whether

patients belonged to this latter class identified by GMM

were abnormal respiration, lipodystrophy and time since

diagnosis. As a secondary analysis, trajectories of skin

disease activity were modelled using GMM. While most

patients (72%) had lower levels of skin disease that

improved over time, smaller groups had high levels of

skin disease that improved over time (16%), and high

levels of skin disease that remained high over time

(12%). A higher proportion of patients in class 2 of the

GMM fitted to PGA, which had more ongoing severe

disease, were in class 2 of the GMM fitted to modified

DAS, which was similarly characterized by ongoing skin

disease activity. Sensitivity analyses performed on sub-

sets of the cohort participants did not indicate any sys-

tematic bias induced by the inclusions of possibly

heterogeneous individuals. Separate analyses by sex

also did not indicate any strong dissimilarities in the tra-

jectories or class probabilities.

GMM analysis may represent a useful approach for

defining sub-phenotypes of JDM, to complement current

approaches for defining sub-phenotypes by MSAs, by

focusing on disease outcomes. Interestingly, the major

MSAs were distributed similarly across the GMM-

defined classes, which could suggest the typologies

identified by these models are different from the clinical

features that characterized MSA-defined sub-pheno-

types. Sub-phenotypes defined by GMM are driven by

data on outcomes. Furthermore, the potential to weight

individuals by the probability of class membership in

subsequent analyses allows some accommodation of

uncertainty in class allocation. A strength of GMM and

other latent class methods, in contrast to alternative

clustering approaches, is that they are model-based,

with objective criteria for selecting models.

FIG. 2 Two-class growth mixture model for global dis-

ease activity

(A) Predicted median PGA (solid line) and 95% CI

(dashed lines) for both classes. (B, C) Individual trajecto-

ries classified into class 1 (B) or class 2 (C), overlaid

with the predicted median PGA (red solid line) and 95%

CI (red dashed lines). Individual trajectories are coloured

according to the posterior probability of class member-

ship. PGA: physician’s global assessment.
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Our findings complement the work reported by Lim

et al. [15] that identified three classes based on model-

ling the total DAS across over 40 months. In that

analysis (n¼ 95) there were two larger classes, one with

lower levels of disease activity at baseline that reduced

slightly (42%), one with higher levels of disease activity

TABLE 2 Characteristics of patients assigned to the classes identified by GMMs for global and skin disease activities

GMM for global disease activity GMM for skin disease activity

(n 5 508)a (n 5 519)b

Class 1 Class 2 Class 1 Class 2 Class 3

(n 5 450, 89%) (n 5 58, 11%) (n 5 81, 16%) (n 5 63, 12%) (n 5 375, 72%)

Sex, n (%)
Female 315 (70.0) 40 (69.0) 50 (67.6) 47 (82.4) 232 (68.0)

Male 135 (30.0) 18 (31.1) 24 (32.4) 10 (17.5) 109 (32.0)
Ethnicity, n (%)

White 349 (77.6) 43 (74.1) 53 (71.6) 51 (89.5) 265 (77.7)

Black 38 (8.4) 8 (13.8) 7 (9.5) 2 (3.5) 32 (9.4)
South Asian 28 (6.2) 5 (8.6) 9 (12.2) 3 (5.3) 19 (5.6)
Other 35 (7.8) 2 (3.4) 5 (6.8) 1 (1.8) 25 (7.3)

Diagnosis, n (%)
Definite JDM 337 (74.9) 38 (65.5) 57 (77.0) 44 (77.2) 253 (74.2)

Probable JDM 41 (9.1) 4 (6.9) 4 (5.4) 4 (7.0) 33 (9.7)
Definite or probable polymyositis 9 (2.0) 1 (1.7) 0 (0) 0 (0) 5 (1.5)
JDM overlap with scleroderma 20 (4.4) 7 (12.1) 2 (2.7) 5 (8.8) 15 (4.4)

JDM overlap with mixed connect-
ive tissue disease

8 (1.8) 1 (1.7) 2 (2.7) 0 (0) 7 (2.1)

JDM overlap with chronic
polyarthritis

6 (1.3) 0 (0) 2 (2.7) 1 (1.8) 3 (0.9)

JDM overlap with systemic lupus
erythematosus

5 (1.1) 0 (0) 0 (0) 0 (0) 4 (1.2)

Other idiopathic inflammatory
myopathy

24 (5.3) 7 (12.1) 7 (9.5) 3 (5.3) 21 (6.2)

Age at diagnosis, median (IQR),
years

7.7 (4.7–11.0) 8.2 (5.1–10.8) 8.9 (5.5–10.5) 8.1 (3.9–11.7) 7.5 (4.8–11.2)

Age at onset, median (IQR), years 7.1 (4.2–10.1) 6.0 (3.7–9.5) 7.8 (4.5–10.1) 6.9 (3.1–9.9) 6.8 (4.2–10.3)
Time since diagnosis, median (IQR),

years
0.2 (0.1–1.0) 1.1 (0.2–3.8) 0.2 (0.1–1.4) 0.6 (0.1–1.8) 0.2 (0.1–1.1)

Baseline PGA, median (IQR) 2.7 (1.0–5.4) 4.2 (2.8–6.7) 3.1 (2.0–6.7) 2.3 (1.0–4.4) 2.9 (1.0–5.9)
Baseline CMAS, median (IQR) 42 (26.5–51) 40 (19–47) 41 (26–51) 45 (39–52) 42 (24.3–50)

Baseline modified DAS, median (IQR) 3 (1–5) 3 (0.3–4) 4 (2–5) 3 (2–4) 3 (1–4)
Major myositis-specific autoantibody groupsc, n (%)

No-detectable autoantibody 82 (24.8) 5 (10.4) 11 (25.0) 10 (33.3) 63 (38.4)
Anti-TIF1c 55 (16.6) 9 (18.8) 17 (38.6) 6 (20.0) 39 (23.8)
Anti-NXP2 49 (14.8) 10 (20.8) 9 (20.4) 8 (26.7) 39 (23.8)

Anti-MDA5 22 (6.6) 1 (2.1) 5 (11.4) 4 (13.3) 14 (8.5)
Anti-Mi2 13 (3.9) 1 (2.1) 2 (4.5) 2 (6.7) 9 (5.5)

Cross-tabulation with GMM for global disease activity, n (%)
Class 1 — — 61 (83.6) 46 (80.7) 300 (89.6)
Class 2 — — 12 (16.4) 11 (19.3) 35 (10.4))

Cross-tabulation with GMM for skin disease activity, n (%)
Class 1 61 (15.0) 12 (20.7) — — —
Class 2 46 (11.3) 11 (19.0) — — —

Class 3 300 (73.7) 35 (60.3) — — —

Characteristics are calculated using the most likely class for each patient, as predicted by the relevant GMM.
an¼508 individuals with PGA recorded at �1 visit.
bn¼519 individuals with no missing data for modified DAS.
cPercentages represent the proportion of patients with each of the listed autoantibody within each class for the relevant
GMM on whom autoantibody data were available (autoantibody data available for n¼379 patients). GMM: growth mixture

model; IQR: interquartile range.
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FIG. 3 Three-class growth mixture model for skin disease activity

(A) Predicted median modified DAS (solid line) and 95% CI (dashed lines) for the three classes. (B–D) Individual tra-

jectories classified into class 1 (B), class 2 (C) or class 3 (D), overlaid with the predicted median modified DAS (red

solid line) and 95% CI (red dashed lines). Individual trajectories are coloured according to the posterior probability of

class membership.

FIG. 4 Predicted probabilities and ORs of belonging to global disease activity class 2 (‘ongoing disease activity’)

The figure shows the predicted probabilities for each combination of modified DAS, lipodystrophy and abnormal res-

piration. Median baseline values for CMAS and time since diagnosis were used to calculate predicted probabilities.

The table on the right reports the estimated ORs in the final model. Standard errors are not reported as these are un-

reliable for penalized regression [25]. The predicted probabilities for lipodystrophy only obscure those for abnormal

respiration only, due to similar estimated ORs for these two predictors. CMAS: Childhood Myositis Assessment

Scale; OR: odds ratio.
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that reduced to the lowest levels of disease activity

(55%), and a much smaller third class with the highest

levels of baseline disease activity that remain high over

time (3%). Interestingly, our work on an independent co-

hort is consistent with this previous study, with the

larger class resulting from the GMM analysis of PGA

(class 1) paralleling the two larger classes in the

Canadian analysis combined, as the classes that show

improvement over time. It may be that this difference in

number of classes between the studies reflects greater

numbers of patients included, a longer duration of

follow-up and use of a different (but related) outcome

measure. In their analysis, the total DAS is a standar-

dized score based on three specific cutaneous and

three specific musculoskeletal findings [32], whereas the

PGA in our analysis is a more subjective score that

reflects cutaneous, musculoskeletal and other manifes-

tations of JDM that influence the physician’s overall as-

sessment of global disease activity, and may in some

cases be influenced by features such as calcinosis that

can be attributed to ongoing activity by some physi-

cians, but disease damage by others.

This study has limitations. While n¼ 519 is a large

sample size for a rare disease, our findings need to be

validated independently before they can be generalized

to the general population of patients with JDM.

Nonetheless, in this regard the similarities with the inde-

pendent Canadian study are encouraging. A further limi-

tation arises from missing data. Although we sought to

account for missing data patterns, we may not have

achieved this perfectly. While it would have been useful

to identify groups with similar muscle disease activities

over time, there were too many missing CMAS values to

do so. Although 96% of our autoantibody data were

generated using the same method, inconsistent testing

methods are a challenge for combining data [33, 34].

Future work could investigate how medication exposure

both influences and is influenced by disease trajectories.

While underlying differences in patient-mix were

adjusted for in our GMM for PGA by including an indica-

tor for Centre A (which contributed to 46% of patients),

future work might investigate whether any of these dif-

ferences might affect disease trajectories.

In summary, we have shown that GMM analysis can

identify sub-phenotypes of JDM based on longitudinal

disease outcomes, including global disease activity.

Future work may identify biological differences in these

classes, which could form the basis for a stratified ap-

proach to treatment in JDM.
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