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Abstract. Machine vision analysis of blood films imaged under a brightfield mi-
croscope could provide scalable malaria diagnosis solutions in resource con-
strained endemic urban settings. The major bottleneck in successfully analyzing 
blood films with deep learning vision techniques is a lack of object-level annota-
tions of disease markers such as parasites or abnormal red blood cells. To over-
come this challenge, this work proposes a novel deep learning supervised ap-
proach that leverages weak labels readily available from routine clinical micros-
copy to diagnose malaria in thick blood film microscopy. This approach is based 
on aggregating the convolutional features of multiple objects present in one hun-
dred high resolution image fields. We show that this method not only achieves 
expert-level malaria diagnostic accuracy without any hard object-level labels but 
can also identify individual malaria parasites in digitized thick blood films, which 
is useful in assessing disease severity and response to treatment. We demonstrate 
another application scenario where our approach is able to detect sickle cells in 
thin blood films. We discuss the wider applicability of the approach in automated 
analysis of thick blood films for the diagnosis of other blood disorders.  
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1 Introduction 

Assessment of the ubiquitous Giemsa-stained Thick Blood Film (TBF) by a trained 
microscopist remains the gold-standard diagnostic tool in regions of the world where 
malaria is endemic [1]. The TBF is often accompanied by a Blood Film Smear (BFS), 
also called Thin Blood Film, which is not always fully examined. Assessment of both 
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TBF and BFS provides valuable information that facilitate malaria and hematology care 
pathways in resource constrained settings. Despite being treatable, malaria remains a 
major global health challenge with over 219 million cases worldwide leading to almost 
half-million deaths annually [1], mostly among children. Fast and reliable diagnostic 
testing scalable to large urban endemic regions is urgently needed. However, human 
visual inspection of the TBF by a malaria pathologist is time-consuming (particularly 
in low-parasitemia or negative cases), subject to errors associated with human-fatigue 
and cognitive load in busy clinical microscopy services and relies on the availability of 
trained personnel. Advances in digital pathology could provide automated or assisted 
solutions to facilitate malaria and hematology clinical pathways in large urban malaria 
regions as well as supporting peri-urban and rural regions lacking pathologists. 

In recent years, computer vision techniques have been developed in an attempt 
to automatically detect malaria parasites in digitized microscopic images of TBFs based 
on image processing and supervised machine learning [2], [3]. Convolutional Neural 
Networks (ConvNets) have shown promise in identifying malaria parasites in TBF [4], 
[5], [6]. Nevertheless, the challenges in using these techniques are two-fold: Firstly, 
they rely on thousands, if not millions, of object-level manual annotations to train deep 
learning models to differentiate objects of interest (parasites) from distractors (staining 
artefacts, platelets, etc.). These annotations are difficult to obtain since they require the 
expertise of teams of trained microscopists to assess thousands of digitized Fields of 
View (FoVs). Secondly, automated diagnosis, which requires inspection of up to a hun-
dred FoVs, is unreliable in cases with a low parasite count due to the inherent false 
positive rate of supervised deep learning detection models. Recently, weakly supervised 
approaches have been successfully applied to identify cancerous regions in digital his-
topathology images [7], [8], [9], [10] More specifically, they classify and segment mi-
croscopy images using only whole image level annotations [11]. However, in the con-
text of high-magnification blood film analysis, image level annotations are not easily 
available. Nevertheless, sample-level annotations, which translate into a set of images 
(FoVs) associated with a single label (e.g. clinical diagnosis of malaria confirmed by 
microscopy) are far easier to obtain. 

Here we propose a weakly-supervised deep learning approach entitled Multiple 
Objects Features Fusion (MOFF) to diagnose malaria in one hundred high resolution 
TBF FoVs. Our method does not necessitate any hard object-level annotations for train-
ing (full supervision) but relies only the clinical-microscopy diagnosis of the sample 
(weak supervision with labels provided by routine clinical-microscopy). The method is 
also able to detect individual parasites in images, which is useful for estimating the 
severity of the disease and the response to treatment. To show the versatility of our 
approach, we also present an extension of the MOFF method for detection of sickle Red 
Blood Cells (RBCs) in the BFS, illustrating its broader value for extraction of clinically 
important data from the ubiquitous blood film. Since MOFF does not rely on a complex 
annotation system or availability of human-expert pathologists to annotate at the object-
level, our approach has significant potential for deployment in resource constrained 
settings for a variety of diagnostic applications. 
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2 Multiple Objects Feature Fusion (MOFF) learning  

Potential objects of interest (Oi) (e.g. parasites, distractors) are identified and extracted 
from all captured FoVs (Figure 1). For this region proposal phase, we chose a segmen-
tation approach based on binary thresholding and morphological operations to extract 
regions of interest (ROIs) around objects of 2-4 µm in diameter (parasite-like objects) 
in TBF FoV [2]. Depending on the task, other modalities such as selective search [12] 
or cell segmentation techniques [13] (Supplementary material) can be employed during 
this phase. These Oi are next passed as the input of a ConvNet classification model 
whose output is the diagnosis of the sample provided by the clinical microscopist (e.g. 
malaria positive). The flattened feature vectors (Fvi) output by the convolutional layers 
(conv) of the model are fused into one single feature vector which is next passed through 
the fully connected (FC) layers to predict the clinical diagnosis (Cd):  

 Cd (O1, O2, … ,ON) =  σL(…(σ1(ffusion(Fv1, Fv2,…, FvN) ·W1+b1) ·…·)WL+bL)  (1) 

where N is the number of input images, L is the number of FC layers, Wk,bk,σk are the 
corresponding weights, biases and activations of each FC layer, Fvi = conv(Oi) and ffusion 
is the feature fusion rule. More specifically: 

 𝑓"#$%&'%()…+(Fvi ) = agg
).%.+

(𝜁1()…'2
% ) (2) 

With nf , the number of individual features (𝜁1%) in each Fvi , and agg, the aggregation 
modality (for example average or max). 

 
Fig. 1. Multiple Objects Features Fusion (MOFF) learning approach applied to malaria diagno-

sis and parasite detection. *For details, see supplementary material. 
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2.1 Sample-level prediction 

Given the large number of images which must to be analyzed per sample, the object 
proposal phase outputs a large number (thousands) of proposed object images. Due to 
GPU memory constraints, during the training phase, for each iteration No a randomly 
selected subset of object images from each sample are passed through the network. This 
works as an augmentation technique since a different subset of object images are se-
lected from each sample during each epoch. The architecture allows a variable number 
of input object images because the ConvNet feature vectors are fused. During the test 
(prediction) phase, all the extracted object images for each sample are passed through 
the network in subsets of NT (NT >> No) and a final predicted Cd is reached following 
a majority voting rule. The feature vector fusion before the FC layers has the additional 
benefit of reducing the GPU memory requirements and computational effort. This al-
lows a large enough number of object images to be passed through the network during 
both training (No>100) and testing (NT>500) which is essential in cases where parasites 
(or any other object of interest) are sparsely distributed in the samples. 

2.2 Object-level detection 

The MOFF model is trained to distinguish between those ROIs which contain parasites, 
when assessing TBF or sickle red blood cells when analyzing BFS, and those ROIs 
which do not, without specifically relying on object-level annotations. Once a sample 
has been classified as positive, the individual objects extracted by the segmentation 
algorithms are passed one-by-one through the trained model. The feature fusion step 
does not affect the inference since the number of Fv is equal to one (Figure 1 B). Con-
sequently, an object image gets classified as malaria positive (or sickle RBC positive) 
if it contains a malaria parasite (or morphologically abnormal RBCs).  

3 Experiments 

3.1 Data sets 

Clinical malaria microscopy. Malaria parasites (MPs) were detected and counted by 
human-expert microscopists in thick blood films stained with Giemsa at our clinics at 
the University College Hospital (UCH) in the city of Ibadan, Nigeria. A patient was 
declared malaria negative if no parasites were detected in 100 high magnification 
(100x) TBF FoVs. The corresponding films were next digitized (Section 3.2) and used 
to train and evaluate our MOFF model (Table 1).  

Sickle cell disease diagnosis. Hemoglobin electrophoresis [14] is routinely used to ob-
tain the haemoglobin phenotype (Cd labels) and test patients for Sickle Cell Disease 
(SCD) in our clinics. Giemsa-stained thin blood smears were prepared and digitized for 
a group of patients (Table 1).  
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Ethical Statement. The internationally recognized ethics committee at the Institute for 
Advanced Medical Research and Training (IAMRAT) of the College of Medicine, Uni-
versity of Ibadan (COMUI) approved this research with permit numbers: 
UI/EC/10/0130, UI/EC/19/0110. Parents and/or guardians of study participants gave 
informed written consent in accordance with the World Medical Association ethical 
principles for research involving human subjects. 

3.2 Image acquisition and pre-processing  

Images were captured with custom built brightfield microscope fitted with a 
100X/1.4NA objective lens, a motorized x-y sample positioning stage and a color cam-
era. For each thick blood film sample, we used random sampling to automatically select 
and capture 100 non-overlapping FoVs, each covering an area of 166 µm x 142 µm. 
For blood film smears, between 10 and 20 FoVs containing 1500 - 4000 RBCs were 
manually captured. Given the limited depth of field of the high numerical aperture ob-
jective lens, a focal series (z-stack) of 14 planes with a separation of 0.5 µm was ac-
quired to capture the entire thickness of the blood film (typically ~ 3 to 6 µm) for each 
FoV. Each z-stacks was then projected onto a single (xy) plane using a wavelet-based 
Extended Depth of Field (EDoF) algorithm [15]. 

Table 1. Number of patient samples used to train and evaluate our approach.  

Malaria, Thick Blood Film (TBF)1 Sickle Cell, Blood Film Smear (BFS)2 
 Negative Positive Negative Positive 
Train 85 84 34 37 
Test 70 60 35 35 
Total 155 144 69 72 

 

3.3 Model training  

The weights of the convolutional layers of the MOFF model were initialized with 
weights from a VGG-19 model [16] pre-trained on the ImageNet dataset [17]. A win-
dow of 64x64 pixels (4.2 µm x 4.2 µm) around the centroid of each segmented object 
was chosen for generating the object images for the malaria problem. Images of indi-
vidual RBCs corresponding to their bounding boxes as output by the segmentation 
step were scaled to 128x128 pixels and used as input object images for the sickle cell 
anemia diagnosis. Geometrical transformation such as random rotations and random 
flips were applied to the object images from each sample in the training set. No was set 
to 200 whereas NT to 1000. Stochastic gradient descent with a learning rate of 0.0003 
and a cross entropy loss function were applied to optimize the model weights during 

 
1  TBF dataset available at  https://doi.org/10.5522/04/12173568 
2  BFS dataset available at https://doi.org/10.5522/04/12407567 
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100 epochs. No object-level labels were used. We compared two feature fusion strate-
gies: max and average3.  

4 Results 

We evaluated our diagnostic prediction for malaria and SCD against the clinical diag-
nostic on the test samples in Table 1. The object-level detection of the MOFF models, 
for both parasites and sickle cells, was evaluated on a subset of images manually anno-
tated by expert clinical microscopists. 

 
4.1 Malaria diagnosis and parasite detection 

We compared the accuracy of our weakly supervised malaria diagnostic approach with 
an existing supervised approach [4]. This latter approach relies on an object detector to 
detect individual parasites in high power FoVs as suggested in [18] and diagnoses a 
sample as positive if the number of detected parasites exceeds a certain threshold de-
termined using the negative samples in the training set as described in [4]. The object 
detector was trained on a separate annotated set of similar FoVs [19]. 

Table 2. Evaluation of automated malaria diagnosis in thick blood films. Parasitemia levels in 
(MP/100 FoVs) stratified as Low: up to 10; Medium: >10 to 100; High: >100  

Method Type Specificity 
 

Sensitivity 
  Low Medium High Overall 
Mehanian et al [4] 
(Reported) 

Full  
Supervision 

>.90 - - - .87 

Torres et al [5] 
(Reported) 

Full  
Supervision 

.85 - - - .72 

Mehanian et al [4] 
(Our test set)1 

Full  
Supervision 

.95 0 .23 .81 .66 

MOFF-avg 
(Our test set) 

Weak  
Supervision 

.95 .50 .62 .80 .75 

MOFF-max 
(Our test set) 

Weak  
Supervision 

.93 .75 .92 .94 .93 

 

Our MOFF learning approach outperforms the Mehanian et al. diagnosis 
method4 [4] (which is based on supervised parasite detection) on our test dataset in 
terms sensitivity for a specificity higher than .90 (Table 2), especially in samples with 
a low parasite count (as reported by the pathologists on the field). Both, Mehanian et 
al. [4] or Torres et al. [5] have not provided publicly accessible images for us to be able 
to test our MOFF method on their datasets. However, both the specificity and sensitivity 
of our weakly supervised method are equal or higher than those reported by these works 

 
3  Code available at https://github.com/UCL/FASt-MAL-MOFF 
4  Implemented slightly different than in the original paper as original code was not available 
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(Table 2). The max feature fusion strategy outputs a better sensitivity (.93) compared 
to the average one (.75) at the expense of a slightly lower specificity (.93 to .95).  

Table 3. Malaria parasite (object-level) detection accuracy  

Method Type Precision Recall F1-Score 
R-FCN Full Supervision .92 .57 .70 
MOFF-avg Weak Supervision .89 .52 .66 
Faster R-CNN Full Supervision .70 .58 .64 
MOFF-max Weak Supervision .64 .65 .64 

The trained MOFF model’s ability to detect individual objects was evaluated 
on a test dataset of 33 FoV containing 300 manually annotated parasites by an expert 
clinical microscopist. We compared the outcome with that of two state-of-the art fully 
supervised  object detectors [20], [21] trained to identify parasites on a separate dataset 
(159 FoV with 2287 manually annotated parasites1). Surprisingly, without being trained 
on any object-level annotations, the performance of our MOFF model in terms of par-
asite detection is close to that of the fully supervised object detectors (Table 3). Figure 
2 shows an example of parasites (red) and distractors (blue) identified by the weakly 
supervised MOFF in a test FoV from a malaria positive sample.  

 

 
Fig. 2. MOFF parasite detection on a test high magnification FoV (100x 1.4NA). Red boxes in-

dicate objects classified as parasites. Blue boxes indicate objects classified as distractors. 
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4.2 Sickle cell detection in blood film smears 

Recent approaches for automatic analysis of BFS [22], [23] including sickle cell dis-
ease (SCD) detection [24] still rely on fully supervised machine learning approaches 
which require large amounts of cell-level manual annotations. In contrast, our weakly 
supervised MOFF approach was able to provide a diagnosis (Table 4) together with 
an abnormal RBC count (Figure 3) without having to rely on any individual cell la-
bels. As for malaria diagnosis, the max fusion strategy outputs a higher accuracy than 
the average one in detecting SCD (Table 4). The max fusion strategy was also signif-
icantly more precise in detecting abnormal RBCs associated with sickle cell anemia 
than the average fusion strategy at the expense of a slight decrease in recall (Table 
5, test set of 5 FoVs containing 233 manually labelled sickle RBCs). 

Table 4. MOFF Sickle Cell Disease detection accuracy  

Method Specificity Sensitivity Accuracy 
MOFF-max .86 .97 .91 
MOFF-avg .89 .74 .80 

 

Table 5. Abnormal RBC detection accuracy using MOFF 

Method Precision Recall F1-Score 
MOFF-max .86 .69 .77 
MOFF-avg .56 .74 .64 

 

 
Fig. 3. Abnormal RBC detection using MOFF. Red boxes indicate RBCs identified as sickle 

cells. Blue boxes indicate RBCs identified as non-sickle  
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Figure 3 shows that the MOFF model trained with weak labels is able to differ-
entiate between sickle RBCs (red boxes) and normal RBCs (blue boxes) in BFS.  

 

5 Discussion 

We have demonstrated a weakly supervised deep learning method that is able to diag-
nose malaria in TBF and detect sickle cells in BFS by analyzing multiple FoVs. The 
method, which is based on the fusion of the convolutional features of multiple objects, 
was successful in identifying individual objects associated with the two disorders (ma-
laria parasites and sickle cells). The MOFF approach has successfully overcome the 
challenge that the markers of the conditions (malaria parasites or abnormal RBCs) are 
often sparse (not present in every image). Results indicate that the maximum fusion 
strategy performs better which can be explained by the fact that, in most of the samples, 
the number of malaria parasites (or sickle RBCs) is much lower than the number of 
artefacts (or normal RBCs) and therefore a max-fusion would better signal the presence 
of a small number of markers in a large pool of candidate objects. Whereas most weakly 
supervised approaches use image-level labels to detect specific objects inside the image 
our approach uses sample-level labels associated with multiple image fields knowing 
that the malaria parasites, or sickle RBCs might not be present in every image of the 
sample. Although we have restricted our analysis to binary classification (‘diseased’ or 
‘healthy’), our method could readily be adapted to multiple classes and extended to 
identify other types of blood disorders. 
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