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Abstract

In this thesis, several challenges in both ground-motion modelling and the

surrogate modelling, are addressed by developing methods based on Gaus-

sian processes (GP). The first chapter contains an overview of the GP and

summarises the key findings of the rest of the thesis.

In the second chapter, an estimation algorithm, called the Scoring estimation

approach, is developed to train GP-based ground-motion models with spatial

correlation. The Scoring estimation approach is introduced theoretically and

numerically, and it is proven to have desirable properties on convergence

and computation. It is a statistically robust method, producing consistent

and statistically efficient estimators of spatial correlation parameters. The

predictive performance of the estimated ground-motion model is assessed by a

simulation-based application, which gives important implications on the seismic

risk assessment.

In the third chapter, a GP-based surrogate model, called the integrated emulator,

is introduced to emulate a system of multiple computer models. It generalises

the state-of-the-art linked emulator for a system of two computer models

and considers a variety of kernels (exponential, squared exponential, and two

key Matérn kernels) that are essential in advanced applications. By learning

the system structure, the integrated emulator outperforms the composite

emulator, which emulates the entire system using only global inputs and outputs.

Furthermore, its analytic expressions allow a fast and efficient design algorithm

that could yield significant computational and predictive gains by allocating
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different runs to individual computer models based on their heterogeneous

functional complexity. The benefits of the integrated emulator are demonstrated

in a series of synthetic experiments and a feed-back coupled fire-detection

satellite model.

Finally, the developed method underlying the integrated emulator is used to

construct a non-stationary Gaussian process model based on deep Gaussian

hierarchy.



Impact Statement

The method presented in Chapter 2 of this thesis provides a statistically robust

way to construct ground-motion models with spatial correlation, which have

the potential to generate shake intensity maps with higher accuracy and better

uncertainty measurements. The method would provide researchers with better

understanding about the uncertainties of ground-motion intensities. In addition,

it would also benefit the government and (re)insurance companies on assessing

their exposures to seismic risks accurately as high-quality ground-motion models

play key roles in catastrophe models.

The integrated emulator introduced in Chapter 3 of this thesis opens the door

for the uncertainty quantification of many complex systems of computer models,

which are computationally expensive to run and thus prohibitive to implement

further analysis. The fast formulae and adaptive design of the integrated

emulator allow natural scientists, biologists, meteorologists to build efficient

surrogate models for their sophisticated systems of simulators, and therefore

any subsequent inferences such as sensitivity analysis, uncertainty propagation

and model calibration become feasible.

The non-stationary Gaussian process (GP) model proposed in Chapter 4 of

this thesis addresses the non-stationarity and heteroscedasticity inherent in the

datasets that cannot be handled by the conventional stationary GP model. The

flexibility of the non-stationary GP model is powered by the state-of-the-art

deep learning technique. In addition, our non-stationary model could greatly

expand the capacity of the integrated emulator because many real-world data

and scientific simulators are by nature non-stationary.
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offering me opportunities to present my research work at ETH Zurich. Many

thanks to Ayao Ehara, Devaraj Gopinathan and Dimitra Salmanidou for their

help when I struggled on my research.

Finally, I would like to thank my wife Qiaolu, my parents, my grandparents

and my families for their undying support when I am aboard. Without them, I

would have never been able to come this far.



Contents

1 Introduction 12

1.1 The Basics of Gaussian Process . . . . . . . . . . . . . . . . . . 12

1.2 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Ground-Motion Modelling with Spatial Correlation 18

2.1 Background to Earthquakes . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Intensity measures . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Faulting geometry . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Source-to-site distance . . . . . . . . . . . . . . . . . . . 23

2.1.5 Soil property . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 The Ground-Motion Model . . . . . . . . . . . . . . . . . . . . . 28

2.4 Jayaram and Baker’s Multi-Stage Algorithm . . . . . . . . . . . 30

2.4.1 The preliminary stage . . . . . . . . . . . . . . . . . . . 31

2.4.2 The spatial correlation stage . . . . . . . . . . . . . . . . 32

2.4.3 The re-estimation stage . . . . . . . . . . . . . . . . . . . 34

2.4.4 Problems of the multi-stage algorithm . . . . . . . . . . 34



Contents 9

2.5 A One-Stage Algorithm: the Scoring Estimation Approach . . . 38

2.5.1 Asymptotic properties of the maximum likelihood estimator 41

2.5.2 Implementing the Scoring estimation approach . . . . . . 42

2.5.3 Numerical considerations . . . . . . . . . . . . . . . . . . 43

2.6 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.1 Generator settings . . . . . . . . . . . . . . . . . . . . . 47

2.6.2 Choice for covariates . . . . . . . . . . . . . . . . . . . . 48

2.6.3 PGA data generation . . . . . . . . . . . . . . . . . . . . 51

2.6.4 Evaluation of the estimation performance . . . . . . . . . 51

2.6.5 Evaluation of the predictive performance . . . . . . . . . 54

2.7 Impacts of Ignoring the Spatial Correlation . . . . . . . . . . . . 61

2.7.1 Impact on parameter estimation . . . . . . . . . . . . . . 61

2.7.2 Impact on predictive performance . . . . . . . . . . . . . 66

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.8.1 Practicalities . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Integrated Emulators for Systems of Computer Models 76

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2 Model and Method . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2.1 GP emulators for individual computer models . . . . . . 79

3.2.2 Integration of GP emulators . . . . . . . . . . . . . . . . 83

3.3 Synthetic Experiments . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.1 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3.2 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . 91

3.4 Integrated Emulator for a Feed-Back Coupled Satellite Model . 93



Contents 10

3.5 Towards a Smart Design for Integrated Emulation . . . . . . . . 96

3.5.1 Latin hypercube design . . . . . . . . . . . . . . . . . . . 98

3.5.2 An adaptive design for integrated emulation . . . . . . . 98

3.5.3 Design comparison . . . . . . . . . . . . . . . . . . . . . 101

3.5.4 Generalisation of the adaptive design . . . . . . . . . . . 103

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4 Non-Stationary Gaussian Processes using Deep Gaussian Hi-

erarchy 115

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2 Model Specification . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.3 Model Inferences and Examples . . . . . . . . . . . . . . . . . . 119

4.3.1 Implementation notes . . . . . . . . . . . . . . . . . . . . 123

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5 Conclusions and Future Directions 126

Appendices 131

A Proofs in Chapter 2 131

A.1 Proof of Equation (2.6) . . . . . . . . . . . . . . . . . . . . . . . 131

A.2 Alternative Construction of the Re-Estimation Procedure . . . . 132

A.3 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . 134

A.4 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . 137

B Expressions for Proposition 3.3 142



Contents 11

B.1 Exponential Case . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.2 Squared Exponential Case . . . . . . . . . . . . . . . . . . . . . 143

B.3 Matérn-1.5 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.4 Matérn-2.5 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C Proofs in Chapter 3 148

C.1 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . 148

C.1.1 Derivation of µI . . . . . . . . . . . . . . . . . . . . . . . 148

C.1.2 Derivation of σ2
I . . . . . . . . . . . . . . . . . . . . . . . 149

C.2 Proof of Proposition 3.2 . . . . . . . . . . . . . . . . . . . . . . 155

C.3 Proof of Proposition 3.3 . . . . . . . . . . . . . . . . . . . . . . 158

C.3.1 Derivation for exponential case . . . . . . . . . . . . . . 160

C.3.2 Derivation for squared exponential case . . . . . . . . . . 163

C.3.3 Derivation for Matérn-1.5 case . . . . . . . . . . . . . . . 165

C.3.4 Derivation for Matérn-2.5 case . . . . . . . . . . . . . . . 172

C.4 Proof of Proposition 3.4 . . . . . . . . . . . . . . . . . . . . . . 181

C.4.1 Derivation of ξ̃i . . . . . . . . . . . . . . . . . . . . . . . 181

C.4.2 Derivation of ζ̃ij . . . . . . . . . . . . . . . . . . . . . . . 182

C.4.3 Derivation of ψ̃jl . . . . . . . . . . . . . . . . . . . . . . 183

Bibliography 185



Chapter 1

Introduction

1.1 The Basics of Gaussian Process

Gaussian process (GP) has gained its popularity in recent decades due to

its successful applications in the machine learning community, e.g., Williams

and Rasmussen (2006); Damianou and Lawrence (2013); Cutajar et al. (2019).

However, Gaussian process is itself not a new concept and has a long history

in statistics. At its early phase, Gaussian process is actively used for spatial

analysis, e.g., Mardia and Marshall (1984). It is then utilised for computer

experiments, e.g., Santner et al. (2003) and more recently in the area of

uncertainty quantification, e.g., Bilionis and Zabaras (2016).

Definition 1.1 (Gaussian process) A real-valued stochastic process (Yi)i∈N

is called a Gaussian process if the random vector Y = (Y1, . . . , Yn)> for n ∈ N

follows the multivariate Gaussian distribution with mean µ ∈ Rn and covariance

matrix Σ ∈ Rn×n, denoted by

Y ∼ N (µ, Σ), (1.1)

where the i-th element of µ is given by µi = E(Yi) and the ij-th element of Σ

is given by Σij = cov(Yi, Yj).

In this thesis, the Gaussian process is mainly used for regression (i.e., supervised

learning) where for each Yi there is a corresponding input vector xi that
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represents its covariates (or features). In such an case, the elements of mean

and covariance matrix of the Gaussian process can be specified as follow:

µi =m(xi)

Σij =σ2k(xi, xj),

where m(·) is the mean function, and k(·, ·) is the kernel function that is

symmetric and positive semi-definite. When k(xi, xj) = k(‖xi − xj‖2), it is

called stationary and isotropic. Examples of this class of kernel function include

• Exponential:

k(·, ·) = exp

(
−‖xi − xj‖2

h

)
,

with a positive range parameter (or length-scale) h, which indicates the

value of ‖xi − xj‖2 at which the correlation is around 0.37, i.e., when

‖xi − xj‖2 = h the correlation ρij is given by

k(xi, xj) = exp

(
−h
h

)
= exp(−1) ≈ 0.37.

• Squared Exponential:

k(·, ·) = exp

(
−‖xi − xj‖22

2h2

)
.

This type of correlation function is sometime called Gaussian ;

• Periodic:

k(·, ·) = exp

(
−2 sin2(π‖xi − xj‖2/p)

h2

)
,

where p determines the distance between repetitions of the function;

• Matérn:

k(·, ·) =
21−ν

Γ(ν)

(√
2ν‖xi − xj‖2

h

)ν

Kν

(√
2ν‖xi − xj‖2

h

)
with positive parameters ν and d , where Γ(·) is the gamma function and

Kν(·) is the modified Bessel function of the second kind. The Matérn

kernel can be simplified to exponential and square exponential kernels by

setting ν = 1/2 and ν →∞ respectively.
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Anisotropic kernels can be constructed from stationary and isotropic ones by

replacing the Euclidean distance ‖xi − xj‖2 by the Mahalanobis distance:√
(xi − xj)>Γ−1(xi − xj) ,

where Γ is an arbitrary positive definite matrix and when Γ = I the Mahalanobis

distance becomes the Euclidean distance. Examples of other types of kernel

functions are illustrated in Williams and Rasmussen (2006). The Gaussian

process for regression tries to represent the relations between Yi and xi via the

chosen kernel function. For example, Figure 1.1 presents some random paths

generated from a zero-mean Gaussian process with one dimensional feature

(i.e., xi ∈ R) and covariance matrix specified by the exponential and squared

exponential kernel functions.

(a) Exponential (b) Squared Exponential

Figure 1.1: Random sample paths between Y and x ∈ [−4, 4] generated from a
zero-mean Gaussian process with one dimensional input feature and
covariance matrix specified by the exponential and squared exponential
kernel functions where h = 1 and σ2 = 1.

Given a set of N observations {xD, yD} with xD = (xD1 , . . . ,x
D
N)> and

yD = (yD1 , . . . , y
D
N)>, the Gaussian process predictive distribution of Y ∗ at

an unobserved input position x∗ is then given by

Y ∗ ∼ N
(
m(x∗) + K>Σ−1(yD − µ), σ2 −K>Σ−1K

)
, (1.2)

where K = σ2
(
k(x∗,xD1 ), . . . , k(x∗,xDN)

)>
; µ =

(
m(xD1 ), . . . ,m(xDN)

)>
; and

the ij-th element of Σ is given by Σij = σ2k(xDi , xDj ). Note that the predictive

distribution (1.2) interpolates the observations {xD, yD} because when x∗ = xDi
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we have K>Σ−1 being an unit vector with the i-th element equal to one.

The real-world data often have noise and such feature can be incorporated into

the Gaussian process model (1.1) by adding a nugget term τ > 0 to the diagonal

elements of Σ. In this case, the Gaussian process predictive distribution (1.2)

becomes to

Y ∗ ∼ N
(
m(x∗) + K>(Σ + τI)−1(yD − µ), σ2 + τ −K>(Σ + τI)−1K

)
.

(1.3)

However, by introducing the nugget term τ the predictive distribution (1.3)

no longer interpolates the observations. Instead, as τ increases the mean and

variance of the Gaussian process predictive distribution (1.3) tend to m(x∗) and

σ2 + τ (Mohammadi et al., 2016). If the nugget τ is set to a sufficiently small

value, then it can be treated as a regularisation term that enhances the condition

number of Σ to prevent from the ill-conditioning problems (Andrianakis and

Challenor, 2012). In fact, Gramacy and Lee (2012) suggest to always include

the nugget in the Gaussian process models, even the underlying process is

deterministic, to retain statistical robustness in cases such as the data are

sparse and non-stationary.

We note that this section only gives a general overview of the most basic form

of the Gaussian process model for regression. In each chapter of the thesis,

we will present and detail different modifications of this base form to address

challenges in different contexts.

1.2 Scope of the Thesis

This thesis explores methodological developments in three research fields,

namely the ground-motion modelling, the surrogate modelling and non-

stationary modelling, on the basis of Gaussian processes.

Ground-motion models, also known as ground-motion prediction equations

(GMPEs) and attenuation relationships, are empirical models widely used in

probabilistic seismic hazard analysis (PSHA), to predict ground-motion inten-



1.2. Scope of the Thesis 16

sity measures (IMs) occurring at sites due to a nearby earthquake of a certain

magnitude. Ground-motion models require robust estimation techniques. The

accuracy of the estimated ground-motion models is important for assessing

earthquake risk and resilience of engineered systems. In the last decade, the

increasing interest in assessing earthquake risk and resilience of spatially dis-

tributed portfolios of buildings and infrastructures has motivated the modelling

of ground-motion spatial correlation. This introduces further challenges for

researchers to incorporate spatial correlation into the ground-motion models

and develop statistically rigorous and computationally efficient algorithms to

perform the estimation of the models. To this aim, in Chapter 2, repeated

Gaussian processes are used to represent ground-motion models with spatial

correlation and a one-stage estimation algorithm, called the Scoring estimation

approach, is introduced to fit the constructed models. By comparing, both theo-

retically and numerically, to the state-of-the-art estimation algorithm proposed

by Jayaram and Baker (2010), we find that the proposed Scoring estimation

approach presents comparable or higher accuracy in estimating ground-motion

model parameters, especially when the spatial correlation becomes smoother.

The approach is also capable of quantifying the uncertainties in spatial correla-

tion. The statistical robustness of the estimation approach further allows us to

investigate the impact of spatial correlation on ground-motion predictions.

Gaussian process-based surrogate models (also known as Gaussian process

emulators) have been used to emulate systems of computer models in many

fields including environmental science, biology and geophysics because of their

attractive statistical properties. However, their construction often neglects

system structures and thus requires additional computational costs (which

may become unaffordable for some expensive systems) to achieve a satisfactory

accuracy. To address this issue, in Chapter 3, we generalise the linked emulator

(proposed by Kyzyurova et al. (2018)) for a system of two computer models

to an integrated emulator for any feed-forward system of multiple computer

models. The integrated emulator combines Gaussian process emulators of



1.2. Scope of the Thesis 17

individual computer models, and implicitly takes the system structure into

account. Comparing to the composite emulator, which is a GP emulator of

the entire system built with only global inputs and outputs, the integrated

emulator can achieve orders of magnitude prediction improvement for moderate-

size designs. Thanks to the analytic expressions, the predictive performance

of the integrated emulator can be further enhanced by an adaptive designing

strategy that only refines the GP emulators with insufficient accuracy. The

skills of the integrated emulator are shown in several synthetic experiments

and a multi-disciplinary satellite model.

Conventional Gaussian process models assume stationarity, which is often

insufficient in real-world data. In Chapter 4, we introduce a new type of

non-stationary Gaussian process model which utilises the state-of-the-art deep

learning technique and thus is demonstrated to be flexible to learn the non-

stationarity and heteroscedasticity embed in the data in an automatic manner.

In Chapter 5, key findings of the thesis are summarised. Some future research

directions and associated challenges are discussed. We note that the work

presented in Chapter 2, 3 and 4 are self-contained and the results in Chapter 2

have been published in Ming et al. (2019).



Chapter 2

Ground-Motion Modelling with

Spatial Correlation

2.1 Background to Earthquakes

In this chapter a few key concepts in seismology are frequently referred and

thus are briefly described in this section.

2.1.1 Intensity measures

Intensity measures (IM) are engineering characteristics of earthquake ground-

motion records that are used to estimate structural damages and loss. The

IM are simplified representations of ground-motion time histories and are key

component in ground-motion models. Some examples of IM are given below:

• Peak ground acceleration (PGA): PGA (in g or cm/s2) is the max-

imum absolute value of ground-motion acceleration time history. The

ground-motion acceleration time history is the processed ground-motion

records obtained from accelerographs;

• Peak ground velocity (PGV): PGV (in cm/s) is the maximum absolute

value of ground-motion velocity time history. The ground-motion velocity

time history is the integration of the acceleration time history;
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• Peak ground displacement (PGD): PGD (in cm) is the maximum

absolute value of ground-motion displacement time history. The ground-

motion displacement time history is the double integration of acceleration

time history;

• Elastic response spectral acceleration (Sa(T)): Sa(T) (in g or cm/s2)

is the maximum absolute value of structural response acceleration time

history with 5% critical damping at structural period T (in s).

Among the different IM , PGA and Sa(T) are the most popular measures that

are widely used in published ground-motion models (Douglas and Edwards,

2016) and the seismic design in worldwide building codes.

2.1.2 Magnitude

Magnitude represents the size (i.e. the energy released) of an earthquake. The

following list outlines four magnitude scales (unitless) that are commonly used

by international seismic networks:

• Local magnitude (ML): ML, also known as “Richter magni-

tude” (Richter, 1935), is determined as the logarithm of maximum

amplitude of the ground shaking:

ML = log10A− log10 σ(R) ,

where A is the maximum amplitude of ground shaking (in micrometres)

and σ(R) is an empirical function of epicentre distance (in kilometres),

R ;

• Surface-wave magnitude (MS): MS is derived from measuring the

magnitude of Rayleigh surface waves, a type of seismic waves that travel

primarily along the Earth’s surface, and was the standard magnitude

scale in China from 1999 till 2017:

MS = log10

(
A

T

)
+ 1.66 log10R + 3.3 ,
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where A is the maximum amplitude (in micrometres) of the Rayleigh

waves, T is the corresponding period (in seconds) and R is the epicentre

distance (in degrees);

• Body-wave magnitude (mb): mb is computed according to the am-

plitude of the P-wave, a type of seismic waves that travels through

the interior of the Earth and reaches seismograph stations first. The

body-wave magnitude formula is defined by

mb = log10

(
A

T

)
+ σ(R, h) ,

where A is the maximum amplitude (in micrometres) of the P-waves,

T is the corresponding period (in seconds) and σ(R, h) is a function of

epicentre distance (in degrees), R and focal depth (in kilometres), h ;

• Moment magnitude (MW ): MW is a measure of the seismic moment

introduced by Hanks and Kanamori (1979) and is given by

MW =
3

2
log10M0 − 6.06 ,

where M0 is the seismic moment (in Newton metres) defined by

M0 = µAD

where µ is the shear strength of the rocks involved in the earthquake (in

N/m2), A is the area of the fault rupture plane (in m2), and D is the

average displacement on the fault rupture plane (in m).

Unlike other scales that measure the sizes of earthquakes via amplitude of waves

produced at a certain distance and frequency band, the moment magnitude

relates the magnitude to the physical properties of earthquakes. Besides, the

moment magnitude scale has no saturation point for magnitude, meaning that

there are no upper limits to the possible measurable magnitudes. However,

moment magnitude scale requires more seismology knowledge than other scales

and thus is more difficult to compute.

The advantages of the moment magnitude scale have accelerated its popularity
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Figure 2.1: The geometry of a faulting: The grey area is the fault surface; α is the
dip; θ is the strike; β is the rake.

in the seismic hazard community (Di Giacomo et al., 2015) and it has been

the scale used by the United States Geological Survey (USGS) to report the

magnitudes of all modern large earthquakes since January, 2002 (The USGS

earthquake magnitude working group, 2002). However, many older earthquakes

are still measured by other magnitude scales. Thus, there are many research

(e.g., Das et al. (2011, 2012); Di Giacomo et al. (2015)) being carried out to

find empirical relations between the moment magnitude and other magnitude

scales.

2.1.3 Faulting geometry

The geometry of an earthquake faulting (Figure 2.1) can be described by three

angular measurements (strike, dip and rake) and the magnitude of the slip.
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Dip and dip direction

Dip (α in Figure 2.1) is the angle used to describe the steepness of a fault

surface. The angle is between 0◦ and 90◦ and is measured from the Earth’s

surface, or a tangent plane parallel to the Earth’s surface, to the fault surface.

The dip direction is the direction towards which the fault surface is inclined.

A fault with a dip of 0◦ is called a horizontal fault while a fault with a dip of

90◦ is called a vertical fault.

Foot wall and hanging wall

For non-vertical faults, the foot wall is the lower fault block beneath the

Earth’s surface and the fault surface (grey area in Figure 2.1), while the

hanging wall is the upper fault block that is beneath the Earth’s surface and

above the fault surface. For vertical fault, the foot wall is assumed to be on

the left of an observer looking in the strike direction.

Strike and strike direction

The strike (θ in Figure 2.1) is the angle between 0◦ and 360◦ used to specify

the orientation of a fault. To determine the strike, strike direction needs to be

decided first. The strike direction is the direction in which an observer looks

along the fault line (i.e., the intersection of the Earth’s surface and the fault

surface) when they stand on the Earth’s surface with the foot wall on their left

and the hanging wall on the right. The strike is then measured clockwise from

North direction to the strike direction.

Slip and rake

The slip is a parameter used to describe the motion of a fault. The slip is

a vector, meaning that it has a magnitude and direction. The magnitude

of a slip is simply the distance that a hanging wall moves relative to the

foot wall. The direction of slip is the direction that the hanging wall moves

relative to the foot wall. The rake (β in Figure 2.1) is the angle between 0◦
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and 360◦ measured anticlockwise from the strike direction to the slip direction.

According to the slip direction, the faulting can be classified into two types

termed strike-slip and dip-slip. The faulting is strike-slip if the slip direction is

parallel to the strike direction (i.e., the rake β = 0◦ or β = 180◦); the fault is

dip-slip if the slip direction is perpendicular to the strike direction (i.e., the

rake β = 90◦ or β = 270◦). The strike-slip and dip-slip faulting can be further

categorised:

• Strike-slip: If an observer, standing on one side of a fault, finds that the

adjunct side moves to the left, then the faulting is left-lateral strike-slip

(i.e., slip has the same direction with the strike direction or the rake

β = 0◦). If the adjunct side moves to the right, then the faulting is

right-lateral strike-slip (i.e., slip has the opposite direction with the strike

direction or the rake β = 180◦).

• Dip-slip: If the hanging wall moves upward relative to the foot wall (i.e.,

β = 90◦), the faulting is termed reverse, whereas when the hanging wall

moves downward relative to the foot wall (i.e., β = 270◦), the faulting is

called normal.

Figure 2.2 illustrates the faulting types explained. There are some unusual

faulting types such as tensile faulting that not only include strike- and dip-slips

but also have expansion and compression of faults.

2.1.4 Source-to-site distance

The metrics of the source-to-site distance varies with different definitions. The

following list summarises four types of source-to-site distance (illustrated in

Figure 2.3):

• Epicentre distance (Repi): the Euclidean distance between a site and

epicentre;
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Figure 2.2: (Top-left) The left-lateral strike-slip faulting. (Top-right) The right-
lateral strike-slip faulting. (Bottom-left) The reverse dip-slip faulting.
(Bottom-right) The normal dip-slip faulting.

• Hypocentre distance (Rhyp): the Euclidean distance between a site

and hypo-centre;

• Rupture distance (Rrup): the shortest Euclidean distance from a site

to the rupture surface;

• Joyner-Boore distance (RJB): the shortest Euclidean distance from a

site to the surface projection of the rupture surface.

The choice of distance metrics depends on the magnitude of the earthquake

and the availability of information about the rupture fault. For example, if

an earthquake with a small-to-moderate magnitude occurs, a point source

is typically assumed because the geometry of the fault plane is negligible

compared to epicentre distances. Thus, the epicentre or hypo-centre distances

are preferred. When an earthquake with a large magnitude (e.g., moment

magnitude higher than 7) happens, the geometry of the fault plane is often

assumed to be non-ignorable compared to the epicentre distances. Therefore,

RJB or Rrup are used accordingly.
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Figure 2.3: An illustrative example of different source-to-site distances. Repi (brown
line) is the epicentre distance; Rhyp (red line) is the hypo-centre distance,
Rrup (green line) is the rupture distance; RJB (orange line) is the Joyner-
Boore distance. The yellow plane denotes the rupture surface. The
grey plane is the surface projection of the rupture surface.

2.1.5 Soil property

The properties of near-surface soil at the sites of interest play an important

role in filtering the ground-motion signals. The soil may amplify or de-amplify

the ground-motion amplitude, change the frequency content and influence the

earthquake duration, ultimately resulting in different degrees of damage to

structures at the sites. The soil property at a site is often characterised by either

a discrete or continuous fashion. In the discrete fashion, the soil profile at a site

is classified into several catalogues such as soft soil, stiff soil and rock based on

soil description and opinions of experts (Trifunac and Brady, 1975, 1976). The

ground shaking tends to be stronger at sites with softer soil types because the

seismic waves travel more slowly. Therefore, the wave amplification increases

as the soil type shifts from rock to soft soil. The discrete characterisation is

often used when detailed survey at sites is unavailable. However, when such a

survey is available, the continuous characterisation is preferred and the average
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shear-wave velocity (in m/s) in the upper 30 meters of the ground, known as

VS30 , is often used as the prime indicator of the site soil property (CEN, 2005).

2.2 Introduction

Initial ground-motion models were formulated as fixed-effects models with-

out considering variations across different events. To further characterise

the aleatory variability in ground shaking intensities, the uncertainties are

separated into the inter-event and the intra-event components, where the inter-

event components were introduced as random effects to the ground-motion

model (Brillinger and Preisler, 1984). The modern ground-motion model is

thus constructed as a mixed-effects model in the following form,

Yij = f(Xij, b) + ηi + εij , i = 1, . . . , N, j = 1, . . . , ni , (2.1)

where Yij = log IMij is the logarithm of the IM of interest (e.g., peak ground

acceleration (PGA), peak ground velocity (PGV), etc.) at site j during earth-

quake i ; f(Xij, b) is the ground-motion prediction function of b , a vector of

unknown parameters, and Xij , a vector of predictors (e.g., magnitude, source-

to-site distance, soil type at site, etc.) for site j during event i ; ηi and εij

are the inter-event error and the intra-event error respectively; N is the total

number of earthquakes and ni is the number of recording sites during the i-th

earthquake.

Traditionally, the ground-motion model in equation (2.1) is treated without

spatial correlation by assuming the intra-event errors are spatially independent

of each other, and is primarily estimated by algorithms proposed by Abrahamson

and Youngs (1992) and Joyner and Boore (1993). However, it is well known

that the intra-event errors are spatially correlated due to the common source

and wave travelling paths and to similar site conditions (Goda and Hong, 2008;

Jayaram and Baker, 2009). Hong et al. (2009) investigated the effects of spatial

correlation on ground-motion model estimation and observed that the estimates

of variances for inter-event and intra-event errors change significantly when
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spatial correlation is considered. Jayaram and Baker (2010) confirmed the

results and also demonstrated that the changes in variances of inter-event and

intra-event errors have important implications for the seismic risk assessment

of spatially distributed systems. Hence, we argue that it is crucial to develop

an efficient and accurate estimation method for ground-motion models with

spatial correlation.

Indeed, the consideration of spatial correlation complicates the estimation of

ground-motion models. In particular, Hong et al. (2009) illustrated how to

incorporate the spatial correlation into a ground-motion model and performed

estimation using the method under the framework proposed by Joyner and Boore

(1993). However, the estimation method proposed by Hong et al. (2009) uses the

linearisation of the ground-motion prediction function, an inefficient technique

that can add bias due to model misspecifications and was subsequently criticised

by Draper and Smith (2014) for its slow convergence, wide oscillation and

possibility of divergence. Based on the framework of Abrahamson and Youngs

(1992), Jayaram and Baker (2010) introduced a multi-stage algorithm to account

for the spatial correlation by adopting the idea of the classical geostatistical

analysis (Zimmerman and Stein, 2010). However, this algorithm may not be

statistically optimal and can result in inefficient parameter estimation, poor

conclusions on model structure and variable selection, which in turn affects

predictions of spatially distributed ground-motion intensities and, eventually,

reliability of the seismic risk assessment and loss estimation for portfolios of

spatially distributed buildings and lifelines.

In addition to the bespoke algorithms mentioned above, there is also a more

generic existing computer package, namely nlme in R, available to fit ground-

motion models with or without spatial correlation. However, this package

is based on the method proposed by Lindstrom and Bates (1990) for mixed-

effects models with nonlinear random effects and thus introduces excessive

computational expenses during its implementation. Besides, the package may

experience numerical instabilities when spatial correlation is considered even
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though the estimation is performed on a small number of events. Jayaram

and Baker (2010) also reported the numerical instability of the package. We

argue that the failure of the package is due to the numerical issues that can

arise when working with the Hessian matrices during its implementation of the

Newton-Raphson algorithm. Furthermore, the package only considers limited

types of spatial correlation structures (Pinheiro and Bates, 2000).

In this chapter, we first specify a ground-motion model as repeated Gaussian

processes to incorporate spatial correlation. The multi-stage algorithm intro-

duced by Jayaram and Baker (2010) is then reviewed and its limitations are

highlighted. The new training method, referred to as the Scoring estimation

approach, will then be formally introduced. The method is based on the

method of Scoring (Fisher, 1925) as a specialised alternative procedure for

fitting ground-motion models with spatial correlation. Numerical considerations

for the Scoring estimation approach are also discussed. A simulation study

is followed to measure the performances of the Scoring estimation approach

by comparing against those of the multi-stage algorithm. Finally, we discuss

the performance of the Scoring estimation approach when spatial correlation

structure is neglected in the ground-motion model.

2.3 The Ground-Motion Model

The ground-motion model is expressed as the vector form of equation (2.1):

Yi = f(Xi, b) + ηi + εi , i = 1, . . . , N , (2.2)

where

• Yi = log IMi = (log IMi1, . . . , log IMij, . . . , log IMini)
> is an ni× 1 vector

of logarithmic IMs of interest at all sites j ∈ {1, . . . , ni} during earthquake

i;

• f(Xi, b) = (f(Xi1, b), . . . , f(Xini , b))> is an ni × 1 vector of ground-

motion prediction functions f(Xij, b) at all sites j ∈ {1, . . . , ni} during
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earthquake i;

• Xij represents a vector of covariates (e.g., magnitude, source-to-site

distance, soil type at site, etc.) for site j during earthquake i ;

• b ∈ Rp1 is a vector of unknown model parameters;

• ηi = ηi1ni for all i ∈ {1, . . . , N}, where 1ni is an ni × 1 vector of ones

and (ηi)i=1,...,N are independent and identically distributed inter-event

errors with the Gaussian distribution, N (0, τ 2);

• (εi)i=1,...,N are independent intra-event error vectors of size ni × 1 with

the multivariate Gaussian distribution, N (0, σ2Ωi(ω)), where Ωi(ω) is

the correlation matrix corresponding to earthquake i with ω , a vector of

unknown parameters;

• (ηi)i=1,...,N and (εi)i=1,...,N are mutually independent.

It can be seen that the ground-motion model (2.2) specifies N repeated Gaussian

processes as it can be written as N independent random vectors following the

multivariate Gaussian distribution:

Yi|(Xi, Si, ni)
ind∼ N

(
f(Xi, b), τ 21ni×ni + σ2Ωi(ω)

)
, (2.3)

where Si = {sij}j=1,...,ni is a set of spatial locations (e.g., longitude and latitude)

of the sites in earthquake i. To take the spatial correlation into account, the

jj′-th entry, Ωi,jj′(ω), of Ωi(ω) is specified as

Ωi,jj′(ω) = k(sij, sij′)

for all i ∈ {1, . . . , N} and j, j′ ∈ {1, . . . , ni}, where k(sij, sij′) is the kernel that

gives the correlation ρ(εij, εij′) between εij and εij′ at locations sij and sij′ of

sites j and j′ during earthquake i :

k(sij, sij′) = ρ(εij, εij′) .

In this chapter, we mainly consider stationary and isotropic kernels, meaning

that ρ(εij, εij′) only depends on di,jj′ = ‖sij − sij′‖2, the Euclidean distance
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between sites j and j′ during earthquake i. Thus,

k(sij, sij′) = k(di,jj′).

Note that if no spatial correlation is incorporated, we have

k(sij, sij′) = 0 (2.4)

for all sites j and j′ during earthquake i. It is also worth noting that the

covariance matrix of the Gaussian process model specified in (2.3) is in fact

determined by the kernel function

k∗(di,jj′) =
τ 2

σ2
+ k(di,jj′),

which is still a valid kernel function.

In the rest of this chapter, we denote α = (b>, θ>)> ∈ Rp as the complete

vector of model parameters, in which θ = (τ 2, σ2, ω>)> ∈ Rp2 with ω being a

vector of the parameters contained in the kernel function k(sij, sij′) .

2.4 Jayaram and Baker’s Multi-Stage Algo-

rithm

In this section, we review the multi-stage algorithm proposed by Jayaram and

Baker (2010) to estimate ground-motion models with spatial correlation. This

algorithm will serve as the current best benchmark procedure for our new

proposed method, so it is important to discuss its properties and compare its

approach to our proposed Scoring estimation approach. The algorithm consists

of three stages (see Figure 2.4) and follows the framework of the classical

geostatistical method (Zimmerman and Stein, 2010). In the preliminary stage,

the algorithm provisionally estimates the model parameters ignoring the spatial

correlation. In the second stage, the residuals from the estimated provisional

ground-motion prediction function are used to estimate the parameters in the

kernel function by fitting a parametric semivariogram model to the empirical

semivariogram. In the final stage, the preliminary estimates of model parameters
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from the first stage are updated given the spatial correlation structure fitted in

the second stage. We proceed to outline each stage in detail below.

Preliminary Stage:
• Obtain preliminary estimates of model parame-

ters by fitting the ground-motion model without
spatial correlation;

Spatial Correlation Stage:
• Compute the empirical semivariogram;
• Fit a parametric semivariogram model to the em-

pirical semivariogram;

Re-estimation Stage:
• Given the estimated spatial correlation structure,

update the preliminary estimates of model param-
eters.

Figure 2.4: Flowchart of the multi-stage algorithm proposed by Jayaram and Baker
(2010).

2.4.1 The preliminary stage

The preliminary stage of the algorithm aims at estimating ground-motion

models requiring no knowledge about the spatial correlation. Because the

spatial correlation is being ignored at this stage, authors such as Goda and

Hong (2008); Goda and Atkinson (2009, 2010); Sokolov et al. (2010) adopted

estimation methods introduced by Abrahamson and Youngs (1992) or Joyner

and Boore (1993) to obtain the estimates of unknown model parameters b, τ 2,

and σ2. Other authors such as Wang and Takada (2005); Jayaram and Baker

(2009); Esposito and Iervolino (2011, 2012) obtained the estimates of b, τ 2,

and σ2 by simply adopting existing ground-motion models developed without
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consideration of spatial correlation.

2.4.2 The spatial correlation stage

The spatial correlation stage is designed to estimate ω , a vector of unknown

parameters in the kernel function, from the total residuals

e
(t)
ij = Yij − f(Xij, b̂) ,

in which b̂ is the estimate of b given by the preliminary stage. Because the

total error term

ε
(t)
ij = εij + ηi

consists of intra-event errors εij and inter-event errors ηi , the total residuals

can be represented by intra-event residuals ε̂ij and inter-event residuals η̂i :

e
(t)
ij = ε̂ij + η̂i .

Then one defines a random process of the standardised intra-event errors

ε̃ =
ε

σ

with ε = (ε>1 , . . . , ε
>
N)> and ε̃ = (ε̃>1 , . . . , ε̃

>
N)> . Assuming that the process of

intra-event errors is second-order stationary and isotropic, Jayaram and Baker

(2009) constructed for each earthquake i the empirical semivariogram γ̂i(d) ,

a moment-based estimator defined by Cressie (1993), of ε̃i from the scaled

intra-event residuals: ̂̃εij =
ε̂ij
σ̂
.

The empirical semivariogram γ̂i(d) is calculated by

γ̂i(d) =
1

2|Ni,δ(d)|
∑
Ni,δ(d)

(̂̃εij − ̂̃εij′)2

=
1

2|Ni,δ(d)|
∑
Ni,δ(d)

(
e
(t)
ij − η̂i
σ̂

−
e
(t)
ij′ − η̂i
σ̂

)2

=
1

2|Ni,δ(d)|
∑
Ni,δ(d)

(
e
(t)
ij − e

(t)
ij′

σ̂

)2

, (2.5)
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in which Ni,δ(d) is a δ-neighbourhood set consisting of all site pairs (j, j′) such

that

d− δ < ‖sij − sij′‖2 < d+ δ

during earthquake i and |Ni,δ(d)| is the number of distinct pairs in Ni,δ(d) .

Each empirical seimivariogram γ̂i(d) is then fitted by a common parametric

semivariogram model γ(d) constructed from a stationary and isotropic kernel

function k(d) according to the relationship given by

γ(d) = 1− k(d), (2.6)

whose proof is available in Section A.1 of Appendix A. One can then obtain the

estimate ω̂i of ω for each earthquake i by fitting γ(d) to the sample estimator

given by γ̂i(d) via estimation methods such as least-squares and trial-and-

error methods (i.e., a manual fitting method focusing on fitting the empirical

semivariogram at short separation distances d). Jayaram and Baker (2009)

then computed the estimates ω̂i=1,...,N for spectral accelerations at different

structural periods and built linear regression models to obtain the estimate of

ω for a given structural period.

Unlike Jayaram and Baker (2009) who estimated ω by constructing empirical

semivariogram for each earthquake i, Esposito and Iervolino (2011, 2012) built

a pooled empirical semivariogram γ̂(d) given by

γ̂(d) =
1

2|Nδ(d)|
∑
Nδ(d)

(
e
(t)
ij − e

(t)
ij′

σ̂

)2

,

in which Nδ(d) is a δ-neighbourhood set consisting of all site pairs (j, j′) such

that

d− δ < ‖sij − sij′‖2 < d+ δ

across all earthquakes i ∈ {1, . . . , N} . The estimate of ω is then obtained by

fitting a parametric semivariogram model γ(d) to γ̂(d) via least-squares and

trial-and-error methods.

Jayaram and Baker (2009) discussed the method of least squares and the trial-
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and-error method and suggested that the trial-and-error method is a better

choice because of its simplicity and better fit at separation “distances that are

of practical interest” (Jayaram and Baker, 2009).

2.4.3 The re-estimation stage

The objective of the re-estimation stage is to update the estimates b̂ , σ̂2 and

τ̂ 2 obtained in the preliminary stage by considering the spatial correlation

structure established in the spatial correlation stage. Algorithm 1 illustrates

the re-estimation procedure proposed by Jayaram and Baker (2010). How-

ever, Jayaram and Baker (2010) did not report any convergence properties of

the procedure. In Section A.2 of Appendix A, we demonstrate that the re-

estimation procedure can be alternatively constructed based on the idea of the

Expectation-Maximisation (EM) algorithm (Laird and Ware, 1982; Brillinger

and Preisler, 1985; Laird et al., 1987). Therefore, the re-estimation procedure

is a non-decreasing algorithm (i.e., l(σ2, τ 2,b|ω = ω̂) is increased at each itera-

tion) as long as the fixed-effects regression algorithm (step 4 of the Algorithm 1)

solves the following generalised least squares problem with respect to b :

b̂(k+1) = arg min
N∑
i=1

[Yi − f(Xi, b)− η̂i1ni ]>Ω−1i (ω̂)[Yi − f(Xi, b)− η̂i1ni ] .

(2.7)

2.4.4 Problems of the multi-stage algorithm

Although the multi-stage algorithm is feasible in practice and may be numeri-

cally stable by estimating the spatial kernel function in separate steps (i.e., the

preliminary and spatial correlation stages), it is not optimal in various aspects

from a statistical estimation perspective.

First, the least squares estimator of ω produced by the first two stages of the

algorithm is inconsistent (i.e., ω̂ does not converge in probability to the true

value of ω). Lahiri et al. (2002) and Kerby (2016) discussed the conditions

for the consistency of the least squares estimator of ω . To have a consistent
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Algorithm 1 The re-estimation procedure (Jayaram and Baker, 2010)

Require: 1) Yi , Xij and sij for i ∈ {1, . . . , N} and j ∈ {1, . . . , ni};
2) Estimate ω̂ of ω obtained in the spatial correlation stage.

Ensure: Updated estimates of b, σ2 and τ 2.
1: Initialisation:

1) obtain the initial estimate b̂(1) of b by a fixed-effects regression
algorithm setting ηi=1,...,N = 0 ;

2) obtain the initial estimates σ̂2
(1)

and τ̂ 2
(1)

by maximising the log-
likelihood function:

l
(
σ2, τ 2

∣∣∣b = b̂(1), ω = ω̂
)

= −
∑N

i=1 ni
2

ln(2π)− 1

2

N∑
i=1

ln
∣∣τ 21ni×ni + σ2Ωi(ω̂)

∣∣
−1

2

N∑
i=1

[Yi − f(Xi, b̂(1))]>
(
τ 21ni×ni + σ2Ωi(ω̂)

)−1
[Yi − f(Xi, b̂(1))] ;

2: repeat

3: Given b̂(k) , σ̂2
(k)

, τ̂ 2
(k)

and ω̂ , obtain η̂i=1,...,N from

η̂i =

1

σ̂2
(k) 1>ni Ω

−1
i (ω̂) [Yi − f(Xi, b̂(k))]

1

τ̂2
(k) + 1

σ̂2
(k) 1>ni Ω

−1
i (ω̂) 1ni

; (2.8)

4: Given η̂i=1,...,N , obtain b̂(k+1) , the estimate of b at iteration k+1 , using a
fixed-effects regression algorithm by setting ηi = η̂i for all i ∈ {1, . . . , N} ;

5: Given b̂(k+1) and ω̂ , obtain σ̂2
(k+1)

and τ̂ 2
(k+1)

by maximising the log-
likelihood function l(σ2, τ 2|b = b̂(k+1), ω = ω̂) ;

6: until l(σ2, τ 2,b|ω = ω̂) is maximised and parameter estimates converge.

least squares estimator of ω , we need the empirical semivariogram γ̂(d) to be a

consistent estimator of γ(d) . However, this consistency typically requires very

restrictive asymptotic conditions in which “not only the number of locations

increases but the distance between them decreases” (Kerby, 2016). Further-

more, Kerby (2016) showed that observation locations must not be heavily

clustered (which is the case in reality where the recording sites are indeed

clustered, especially at near-fault locations) and the bandwidth δ need to be

carefully chosen so that the consistency of the empirical semivariogram γ̂(d)

is ensured. In addition, the consistency of the empirical semivariogram γ̂(d)
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requires the estimators of b and σ2 obtained from the preliminary stage to be

consistent. However, although the estimator of b obtained in the preliminary

stage is consistent (due to asymptotic independence between b̂ and ω̂), the es-

timator of σ2 is not (as σ̂2 and ω̂ are asymptotically dependent). Consequently,

the least squares estimator of ω obtained at the spatial correlation stage is

not consistent. Finally, the least squares estimator of ω can be statistically

inefficient (Lahiri et al., 2002), and naively using the formula of asymptotic

standard error estimate produced by software packages based on ordinary least

squares can cause incorrect confidence interval on ω .

With regard to the trial-and-error method, although it fits the parametric semi-

variogram model to the empirical semivariograms better than the least squares

at short separation distances, Stein (1999) illustrated in a simulation study

that this eyeball procedure leads to substantial prediction errors, especially

when the spatial correlation structure is misspecified. Besides, this manual

fitting procedure makes it impossible to evaluate the asymptotic properties of

the estimator of ω . Therefore, such a heuristic procedure should not become

the standard.

Moreover, the first two stages are only capable of estimations of isotropic and

stationary correlation structures and inflexible in considering more advanced

(e.g., non-stationary) spatial kernel functions.

In addition, the re-estimation procedure maximises the conditional log-

likelihood function l(σ2, τ 2,b|ω = ω̂) given the pre-computed estimate ω̂ .

Because the least squares estimator of ω is inconsistent, the resulting estima-

tors of b (although consistent) are statistically inefficient, and estimators of τ 2

and σ2 are both inconsistent and statistically inefficient.

Additionally, because the re-estimation procedure can be interpreted via the

idea of the EM algorithm, it suffers from the “hopelessly slow linear con-

vergence” (Couvreur, 1997) and is very sensitive to the initial parameter

values (Gao and Wang, 2013).
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Furthermore, unlike the Scoring estimation approach introduce in Section 2.5,

the multi-stage algorithm does not produce asymptotic standard error esti-

mates of model parameters as by-products. As a consequence, the multi-stage

algorithm requires extra computations and complexities in its implementation

when asymptotic standard error estimates are desired. Finally, it is worth

noting that the equations provided by Jayaram and Baker (2010) for asymptotic

standard error estimates of τ 2 and σ2 are only valid when estimators of τ 2 and

σ2 are asymptotically independent. However, τ̂ 2 and σ̂2 are not asymptotically

independent, thus, their asymptotic variance estimates should be obtained by

taking the first and the second diagonal entry of

2

 tr

{(
C(θ)−1 ∂C(θ)

∂(τ2)

)2}
tr
{

C(θ)−1 ∂C(θ)
∂(τ2)

C(θ)−1 ∂C(θ)
∂(σ2)

}
tr
{

C(θ)−1 ∂C(θ)
∂(σ2)

C(θ)−1 ∂C(θ)
∂(τ2)

}
tr

{(
C(θ)−1 ∂C(θ)

∂(σ2)

)2}

−1

θ=(τ̂2, σ̂2, ω̂>)>

,

(2.9)

in which

C(θ) =


τ 21n1×n1 + σ2Ω1(ω) 0 · · · 0

0 τ 21n2×n2 + σ2Ω2(ω) · · · 0
...

...
. . .

...

0 0 · · · τ 21nN×nN + σ2ΩN(ω)

 .

However, even matrix (2.9) may not give the correct asymptotic standard error

estimates of τ̂ 2 and σ̂2 because the least squares estimator of ω is inconsistent

and asymptotic variances of τ̂ 2 and σ̂2 depend on that of ω̂ .

To avoid the above complications and statistical deficiencies inherent in the Ja-

yaram and Baker (2010) multi-stage estimation procedure, we introduce the

Scoring estimation approach, a method based on maximum likelihood estima-

tion framework. The proposed Scoring estimation approach produces model

parameter estimators consistently in a single stage algorithm, which admits

any parametric class of kernel functions and associated spatial correlation

properties, including anisotropic or non-stationary choices.
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2.5 A One-Stage Algorithm: the Scoring Esti-

mation Approach

The one-stage estimation approach we propose here aims at obtaining the

maximum likelihood estimate of α by maximising the following log-likelihood

function:

l(α) = lnL(α)

= −
∑N

i=1 ni
2

ln(2π)−
ln
∣∣C(θ)

∣∣
2

− 1

2
[Y − f(X, b)]>C−1(θ)[Y − f(X, b)] ,

(2.10)

where L(α|Y) is the likelihood function, f(X, b) =
(
f(X1, b)>, . . . , f(XN , b)>

)>
and Y = (Y>1 , . . . ,Y

>
N)>.

The classic statistical method to maximise the log-likelihood function (2.10)

is via the Newton-Raphson algorithm. The Newton-Raphson algorithm finds

the estimate of α that maximises the log-likelihood function (2.10) via the

updating equation:

α̂(k+1) = α̂(k) −H−1(α̂(k))S(α̂(k)) , (2.11)

in which α̂(k) denotes the estimate of α at iteration step k, and

S(α) =
∂l(α)

∂α
and H(α) =

∂2l(α)

∂α∂α>

represent the gradient and Hessian matrix of l(α), respectively. In general,

however, the Newton-Raphson algorithm may not be a robust maximisation

algorithm when applied directly to applications such as the one in this study.

There are numerous reasons for this. First, even though the Hessian matrix

is negative definite at the local maximum, the Hessian matrix may not be

negative definite at every iteration. Thus, the algorithm does not guarantee

an ascent direction of the log-likelihood function and may converge to a local

minimum if positive definite Hessian matrices are encountered during the

updates. Second, the Hessian matrix can sometimes have poor sparsity and

thus can be computationally expensive to evaluate at each iteration. Finally,
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the Hessian matrix can be indefinite or even singular (Seber and Wild, 2003),

causing numerical instabilities in the Newton-Raphson algorithm.

To overcome these issues, the Scoring estimation approach is proposed to obtain

the maximum likelihood estimate of α. The Scoring estimation approach is

based on the method of Scoring introduced by Fisher (1925), which is a

modified version of the Newton-Raphson algorithm. The updating equation for

the Scoring estimation approach is obtained by replacing the negative Hessian

matrix, −H(α) , by the expected (or Fisher) information matrix, I(α):

α̂(k+1) = α̂(k) + I−1(α̂(k))S(α̂(k)) (2.12)

with

I(α) = −E [H(α)] = −E
[
∂2l(α)

∂α∂α>

]
.

Let α0 be the true parameter value of α and assume that L(α) and its first

derivatives with respect to α are continuous in the domains of α and Y . Then

it can be shown (Wooldridge, 2010) that

I(α0) = A(α0) (2.13)

with

A(α) = E
[
∂l(α)

∂α

∂l(α)

∂α>

]
,

which is positive-definite. This result states that the expected information

matrix I(α0) is always positive-definite, meaning that if we replace α0 in I(α0)

by α̂(k) , then each iteration of the approach will lead the log-likelihood function

in an uphill direction. Therefore, the Scoring estimation approach is more

numerically stable than the Newton-Raphson algorithm. Furthermore, equa-

tion (2.13) states that only the gradient of l(α) is required for the calculation

of the expected information matrix I(α) , implying that computation in each

iteration of the approach is usually quicker than that of Newton-Raphson.

Denote the gradient S(α) and expected information matrix I(α) of l(α) by
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the partitions

S(α) =

Sb(α)

Sθ(α)

 and I(α) =

Ibb(α) Ibθ(α)

Iθb(α) Iθθ(α)

 .

Then, the Scoring estimation approach obtains the maximum likelihood estimate

of α by the updating equations in Theorem 2.1.

Theorem 2.1 The updating equations for the Scoring estimation approach are

given by

b̂(k+1) = b̂(k) + I−1bb(α̂(k)) Sb(α̂(k)) , (2.14)

θ̂(k+1) = θ̂(k) + I−1θθ (α̂(k)) Sθ(α̂
(k)) , (2.15)

in which

• the i-th element of Sb(α) is given by

[Sb(α)]i =

[
∂f(X, b)

∂bi

]>
C−1(θ)[Y − f(X, b)] ;

• the i-th element of Sθ(α) is given by

[Sθ(α)]i =− 1

2
tr

{
C−1(θ)

∂C(θ)

∂θi

}
+

1

2
[Y − f(X, b)]>C−1(θ)

∂C(θ)

∂θi
C−1(θ)[Y − f(X, b)] ;

• the ij-th element of Ibb(α) is given by

[Ibb(α)]ij =

[
∂f(X, b)

∂bi

]>
C−1(θ)

∂f(X, b)

∂bj
;

• the ij-th element of Iθθ(α) is given by

[Iθθ(α)]ij =
1

2
tr

{
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

}
.

Proof The proof is given in Section A.3 of Appendix A. �

It can be seen from the updating equations (2.14) and (2.15) that the Scoring

estimation approach is able to update the estimates of b and θ by separate

equations. This separation has two advantages. For the Newton-Raphson
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update equation (2.11), it requires at each iteration the complexity (i.e., a

concept in computer sciences describing the amount of time required for running

an algorithm) of O(p3) dominated by the inversion of the Hessian matrix

H(α̂(k)) . However, thanks to the separation, the Scoring estimation approach

only requires at each iteration the complexity of O(p31 + p32) dominated by

inversions of

Ibb(α̂(k)) ∈ Rp1×p1 and Iθθ(α̂
(k)) ∈ Rp2×p2 ,

in which p1 + p2 = p and p1 and p2 are dimensions of b and θ, respectively.

Therefore, the separate updating equations in the Scoring estimation approach

reduce computational expenses. In addition, equations (2.14) and (2.15) indi-

cate that the Scoring estimation approach only requires inversions of Ibb(α̂(k))

and Iθθ(α̂
(k)), each of which has a smaller size than the Hessian matrix H(α̂(k))

in the Newton-Raphson algorithm. Pyzara et al. (2011) showed that the size

of a matrix is positively connected to its condition number, and the condition

number of an ill-conditioned matrix (e.g., a Hilbert matrix) can grow at a re-

markably higher rate than that of a well-conditioned matrix as its size increases.

Thus, inversions of matrices of smaller sizes in the Scoring estimation approach

mitigate the risk of developing large condition numbers, which reduces the

effects of round-off error and thus improves the computational stability.

2.5.1 Asymptotic properties of the maximum likelihood

estimator

Applying the asymptotic results of M-estimator (Wooldridge, 2010; Demidenko,

2013), we have that the maximum likelihood estimator α̂ is consistent, asymp-

totically normal, and statistically efficient when N → ∞ . The asymptotic

standard error estimate ŝe(α̂) of α̂ = (b̂>, θ̂>)> can be obtained by

ŝe(b̂) =
√

diag
[
I−1bb (α̂(K))

]
(2.16)

and

ŝe(θ̂) =
√

diag
[
I−1θθ (α̂(K))

]
, (2.17)
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in which α̂(K) is the final estimate of α (i.e., the estimate of α given by the

Scoring estimation approach at iteration K where the convergence is reached).

Because I−1bb(α̂(k)) and I−1θθ (α̂(k)) are involved in the updating equations of

the Scoring estimation approach, the asymptotic standard error estimates are

by-products of the approach and can be obtained easily after the final iteration

K .

2.5.2 Implementing the Scoring estimation approach

Algorithm 2 illustrates the implementation procedure of the Scoring estimation

approach. The convergence criterion can be defined either as absolute distance

or relative distance between estimate α̂(k+1) and α̂(k). According to Golub and

Van Loan (2012), the absolute convergence criterion in q-norm can be defined

as

κabs = ‖α̂(k+1) − α̂(k)‖q .

However, when magnitudes of model parameters in α differ widely, a sufficient

low tolerance level is required to achieve a satisfactory accuracy at the cost

of speed. In such a case and if α̂(k) 6= 0 , the relative convergence criterion in

q-norm defined by

κrel =
‖α̂(k+1) − α̂(k)‖q
‖α̂(k)‖q

is preferred. The choice of tolerance levels for κabs and κrel depends on problems

under consideration and trade-offs between accuracy and speed.

Algorithm 2 Scoring estimation approach

Require: Yi , Xij and sij for i ∈ {1, . . . , N} and j ∈ {1, . . . , ni}.
Ensure: Estimates of b and θ with corresponding asymptotic standard error

estimates.
1: Initialisation: choose values for b̂(1) and θ̂(1) ;
2: repeat
3: Update the estimate of α = (b>, θ>)> by equations (2.14) and (2.15);
4: until the convergence criterion is met;
5: Obtain estimates of asymptotic standard errors of b̂ and θ̂ by equa-

tions (2.16) and (2.17).
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2.5.3 Numerical considerations

Many ground-motion prediction functions contain both linear and nonlinear

parameters in b . When the dimension of b is large, it can be more compu-

tationally effective to separate linear and nonlinear parameters and update

their estimates separately to make the Scoring estimation approach better-

conditioned and faster to maximise the log-likelihood function. This can be

achieved in many families of ground-motion prediction functions, which contain

combinations of linear and nonlinear components in the parameters.

To carry out updates for the linear and nonlinear parameter estimates sepa-

rately in the Scoring estimation approach (named separable Scoring estimation

approach thereafter), the ground-motion prediction function f(Xi, b) is decom-

posed as

f(Xi, b) = g(Xi, γ)β , (2.18)

in which β ∈ Rp11 represents a vector of linear parameters in b with its design

matrix g(Xi, γ) and γ ∈ Rp12 is a vector of the nonlinear parameters in b .

Let α = (γ>, β>, θ>)> and denote the gradient S(α) and expected information

matrix I(α) of l(α) by the partitions

S(α) =


Sγ(α)

Sβ(α)

Sθ(α)

 and I(α) =


Iγγ(α) Iγβ(α) Iγθ(α)

Iβγ(α) Iββ(α) Iβθ(α)

Iθγ(α) Iθβ(α) Iθθ(α)

 .
Then, the updating equations are given by Theorem 2.2.

Theorem 2.2 The updating equations for the separable Scoring estimation

approach are given by

γ̂(k+1) = γ̂(k) +
(
Iγγ(α̂(k))− Iγβ(α̂(k)) I−1ββ(α̂(k)) Iβγ(α̂(k))

)−1
Sγ(α̂(k)) ,

(2.19)

θ̂(k+1) = θ̂(k) + I−1θθ (α̂(k)) Sθ(α̂
(k)) , (2.20)

β̂(k+1) = I−1ββ(γ̂(k+1), θ̂(k+1))
[
g>(X, γ̂(k+1))C−1

(
θ̂(k+1)

)
Y
]
, (2.21)
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in which g(X, γ) =
(
g(X1, γ)>, . . . ,g(XN , γ)>

)>
and

• the i-th element of Sγ(α) is given by

[Sγ(α)]i =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)[Y − g(X, γ)β] ;

• The i-th element of Sθ(α) is given by

[Sθ(α)]i =− 1

2
tr

{
C−1(θ)

∂C(θ)

∂θi

}
+

1

2
[Y − g(X, γ)β]>C−1(θ)

∂C(θ)

∂θi
C−1(θ)[Y − g(X, γ)β] ;

• Iββ(α) is given by

Iββ(α) = g(X, γ)>C−1(θ)g(X, γ) ;

• the ij-th element of Iγγ(α) is given by

[Iγγ(α)]ij =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)

∂g(X, γ)

∂γj
β ;

• the ij-th element of Iθθ(α) is given by

[Iθθ(α)]ij =
1

2
tr

{
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

}
;

• the i-th row of Iγβ(α)
(
or the i-th column of Iβγ(α)

)
is given by

[Iγβ(α)]i∗ = [Iβγ(α)]>∗i =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)g(X, γ) .

Proof The proof is given in Section A.4 of Appendix A. �

It can be seen from equation (2.19)-(2.21), that after separating the linear and

nonlinear parameters in ground-motion prediction functions via decomposition

in equation (2.18), the Scoring estimation approach amounts to three updating

equations in each iteration. The updating equation (2.21) for β has an analytical

form given the estimates of γ and θ obtained from updating equations (2.19)

and (2.20). The further separation of the update scheme caused by the isolation

between linear and nonlinear parameters reduces the complexity of each iteration

from O(p31 + p32) (in the ordinary Scoring estimation approach) to O(p311 + p312 +
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p32 + p211p12 + p212p11) , in which p11 + p12 = p1 and p11 and p12 are dimensions of

β and γ, respectively. Another advantage of the separable Scoring estimation

approach is that the conditioning of the algorithm is improved because of the

further separation. Finally, the separable Scoring estimation approach only

requires initial values of γ and θ to be set because the initial value β̂(1) of β

can be obtained by (2.21) using γ̂(1) and θ̂(1). Consequently, the convergence

criterion is only required for γ and θ , implying that the convergence may be

achieved with fewer iterations.

Define

I−ββ(α) = Iγγ (α)− Iγβ (α) I−1ββ (α) Iβγ (α)

and apply block matrix inversion on equation (2.16), the asymptotic standard

error estimates of γ̂ , β̂ and θ̂ are then given by

ŝe(γ̂) =
√

diag
[
I−1−ββ (α̂(K))

]
, (2.22)

ŝe(β̂) =
√

diag
[
I−1ββ (α̂(K)) + I−1ββ (α̂(K)) Iβγ (α̂(K))I−1−ββ (α̂(K)) Iγβ (α̂(K)) I−1ββ (α̂(K))

]
,

(2.23)

ŝe(θ̂) =
√

diag
[
I−1θθ (α̂(K))

]
. (2.24)

The Algorithm 3 outlines the implementation procedure for the separable

Scoring estimation approach.

Algorithm 3 Separable Scoring estimation approach

Require: Yi , Xij and sij for i ∈ {1, . . . , N} and j ∈ {1, . . . , ni}.
Ensure: Estimates of β , γ and θ with corresponding asymptotic standard

error estimates.
1: Initialisation:

1) choose values for γ̂(1) and θ̂(1) ;

2) compute the value of β̂(1) by equation (2.21);
2: repeat
3: Update the estimates of α = (γ>, β>, θ>)> by equation (2.19) to (2.21);
4: until the convergence criterion is met;
5: Obtain the asymptotic standard error estimate of α̂ by equation (2.22)

to (2.24).

Although the separable Scoring estimation approach is generally fast to converge
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and numerically stable, it can be improved to further speed up the computation

and reduce the chances of numerical errors. For example, we can perform

inexact line search to promote the convergence by adding a step length ϕ(k) to

the updating equation (2.12) of the Scoring estimation approach:

α̂(k+1) = α̂(k) + ϕ(k)I−1(α̂(k))S(α̂(k))

and identify an appropriate value of ϕ(k) at each iteration k such that the log-

likelihood function value is increased adequately at minimum cost. Desirable

values for step lengths can be searched by algorithms that terminate upon

certain conditions, such as the Wolfe conditions (Wolfe, 1969, 1971). For

details of the inexact line search, its implementation algorithms as well as

other optimisation techniques that may be applied to improve the numerical

performances of the Scoring estimation approach, readers can refer to Gill et al.

(1981) and Nocedal and Wright (2006).

2.6 Simulation Study

The purpose of this section is to quantify and compare the performances of the

multi-stage algorithm and the Scoring estimation approach. The performance

of an estimation method can be measured by the accuracy of the obtained

model parameter estimates and the resulting predictions. However, this requires

knowledge about the true underlying model that is unknown in reality, causing

the evaluation of an estimation method difficult in terms of its true performance.

To resolve this issue, simulation studies can be implemented. Simulation studies

are synthetic experiments conducted on computers under planned conditions,

meaning that the generator of the ground-motion data (i.e., the true underlying

ground-motion model and its parameter values) is chosen by experimenters and

thus fully informative. As a result, the performance of an estimation method

can be tested. Simulation studies have been used previously in earthquake

modelling in work such as Chen and Tsai (2002); Arroyo and Ordaz (2010);

Worden et al. (2018).
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2.6.1 Generator settings

The first step of the simulation study is to specify the underlying generator

(i.e., the true ground-motion model) of the considered IM. Specifically, in this

simulation study, PGA is used as the considered ground-motion IM. To eliminate

the effects of model misspecification, the true ground-motion model is chosen to

have the same model representation as the hypothetical ground-motion model

specified in Section 2.3 with the ground-motion prediction function (proposed

by Akkar and Bommer (2010)):

f(Xij, b) = b1 + b2Mi + b3M
2
i + (b4 + b5Mi) log10

√
R2
ij + b26

+ b7 SS,ij + b8 SA,ij + b9 FN,i + b10 FR,i , (2.25)

in which

• Mi is the moment magnitude (MW ) of earthquake i ;

• Rij is the Joyner-Boore distance (RJB) (i.e., the closest distance to

the surface projection of the rupture plane) in kilometres of site j in

earthquake i ;

• SS,ij and SA,ij are dummy variables determining the soil type at site j

during earthquake i according to

(SS,ij, SA,ij) =


(1, 0) , soft soil,

(0, 1) , stiff soil,

(0, 0) , rock;

• FN,i and FR,i are dummy variables indicating the faulting type of earth-

quake i according to

(FN,i, FR,i) =


(1, 0) , normal fault,

(0, 1) , reverse fault,

(0, 0) , strike-slip fault.
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Two kernel functions are selected for illustrative purposes:

k1(d) = exp

(
−d
h

)
(2.26)

and

k2(d) =

(
1 +

√
3d

h

)
exp

(
−
√

3d

h

)
, (2.27)

which are special cases of Matérn kernel with ν = 0.5 and ν = 1.5, respectively.

The first kernel function (2.26) (i.e., exponential kernel function) represents

a type of spatial correlation structure that is commonly used in works such

as Jayaram and Baker (2009, 2010); Esposito and Iervolino (2011, 2012) and

allows for an instructive comparison between the two estimation methods.

The second kernel function (2.27) is smoother than the kernel function (2.26)

and admits the comparison between the two estimation approaches when the

logarithmic PGA field is smooth.

The parameter values in the true ground-motion model are outlined in Table 2.1.

The values for b1, . . . , b10 , τ 2 and σ2 are chosen based on the regression results

given by Akkar and Bommer (2010) for the ground-motion model of PGA. The

value of the range parameter h in the kernel function (2.26) is set arbitrarily to

11.5 km. This value of h corresponds to d = 34.45 km when ρ = 0.05 with the

kernel function (2.26). To get the same ρ value at the same distance d = 34.45

km, it is found that h = 12.58 km for the kernel function (2.27).

2.6.2 Choice for covariates

Before synthetic PGA datasets can be generated, the information of covariates

needs to be known. The information of covariates includes the number of earth-

quakes N , the number of recording sites ni during each event (i.e., earthquake)

as well as their locations sij, and the values of predictors

Xij = (Mi, Rij, SS,ij, SA,ij, FN,i, FR,i).

In this simulation study, the information of covariates is extracted from a his-

torical ground-motion database, the European Strong-Motion (ESM) database,
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Table 2.1: Parameter values chosen for the assumed true
ground-motion model

Parameter Value Parameter Value

b1 1.0416 b8 0.0153

b2 0.9133 b9 -0.0419

b3 -0.0814 b10 0.0802

b4 -2.9273 τ 2 0.0099

b5 0.2812 σ2 0.0681

b6 7.8664 h (ν = 0.5)∗ 11.50 km

b7 0.0875 h (ν = 1.5)† 12.58 km

∗ The range parameter h in the kernel function (2.26)
(i.e., Matérn with ν = 0.5).
† The range parameter h in the kernel function (2.27)
(i.e., Matérn with ν = 1.5).

which ensures the generation of realistic scenarios for comparison of the two

estimation methods. In using this database, we apply to the database the

selection criteria detailed below so that the proposed simulation study can be

independently verified and reproduced:

• retain events occurred within Italy;

• retain events with moment magnitude MW ≥ 5 , removing events without

MW information;

• remove events without information of fault types;

• retain recording sites with epicentral distance Repi ≤ 250 km;

• remove recording sites without information of VS30 , the average shear-

wave velocity (in m/s) in the upper 30 meters of the soil;

• remove recording sites that are not free-field;

• remove recording sites with redundant site information (e.g., co-located

recording sites) in a single event; and

• retain events with at least two recording sites.
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After the implementation of the above selection criteria, the resulting catalogue

used in this simulation study consists of 2150 entries of recording sites (in

which the same recording site may appear in different earthquakes) from 62

earthquakes of 5 ≤ MW ≤ 6.9 in Italy from 1976 to 2016. The geographical

distribution of the 62 earthquakes with their moment magnitudes, and the

distribution of inter-site distance in each earthquake are shown in Figure 2.5.

(b)

Figure 2.5: (a) The geographical distribution of 62 earthquakes of 5 ≤MW ≤ 6.9
in Italy from 1976 to 2016. The epicentre of each event is labelled by a
filled circle (◦), whose size is scaled by the moment magnitude (MW ) of
the event. (b) The distribution of inter-site distance in each earthquake
(represented by its corresponding moment magnitude) on a log scale.

The RJB of each recording site in each earthquake is calculated based on the

corresponding fault geometry (e.g., strike angle, dip angle, rake angle, length,

and width), if information of the finite-fault model is available. Otherwise, RJB

is estimated by the empirical relationship between Repi and RJB (Stucchi et al.,

2011) if the corresponding earthquake is with MW > 5.5 and is set to be Repi

if the corresponding earthquake is with MW ≤ 5.5. The obtained RJB for each

recording site of each earthquake in the resulting catalogue for this simulation

study is less than 250 km. The site classification of each recording site in

each earthquake is obtained based on the information of VS30 from the ESM

database. In ESM database, VS30 is either obtained from in-situ experiments or

inferred from the topographic slope according to Wald and Allen (2007). It is

preferable to use VS30 from the experimental measurements, and if that is not
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available, the inferred VS30 is used instead. The soil type of each recording site

of each earthquake in the catalogue for this simulation study is then classified

(according to Akkar and Bommer (2010)) as soft soil if VS30 < 360 m/s, stiff

soil if 360 m/s ≤ VS30 ≤ 750 m/s, and rock if VS30 > 750 m/s.

2.6.3 PGA data generation

Given the true ground-motion model and information of covariates, we can

simulate synthetic datasets of logarithmic PGAs through Algorithm 4.

Algorithm 4 Synthetic logarithmic PGA dataset generation

Require: Specified true ground-motion model and information of covariates.
Ensure: A synthetic dataset of logarithmic PGAs (denoted by y).

1: Compute the covariance matrix C(θ) where θ = (τ 2, σ2, h)> ;
2: Compute the Cholesky factor L such that LL> = C(θ) ;
3: Compute the value of f(X, b) ;
4: Generate independently G =

∑N
i=1 ni standard normal random numbers

v = (v1, . . . , vG)> ;
5: Return a synthetic dataset of logarithmic PGAs by y = f(X, b) + Lv .

2.6.4 Evaluation of the estimation performance

In this section, estimation performances of the multi-stage algorithm and the

Scoring estimation approach are evaluated and compared. We first generate

T = 1000 synthetic datasets of logarithmic PGAs via Algorithm 4. Then

for each of the synthetic dataset, the multi-stage algorithm and the Scoring

estimation approach are implemented. Let α̂t and ŝe(α̂t) represent, respectively,

the estimate and the asymptotic standard error estimate of a model parameter

α ∈ {b, τ 2, σ2, h} produced by one of the two estimation methods on some

synthetic dataset t ∈ {1, . . . , T } . The estimation performance of either method

then can be evaluated by computing the following criteria:

• root mean squared error (RMSE), computed by

RMSE =

√√√√ 1

T

T∑
t=1

(α̂t − α0)
2 ,
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in which α0 is the true parameter value (given in Table 2.1) of α ;

• coverage rate (CR), defined by the percentage of T synthetic datasets

in which the true parameter value α0 falls into the 95% confidence interval

constructed from α̂t and ŝe(α̂t) .

Table 2.2 illustrates the estimation criteria of the parameter estimators produced

by the multi-stage algorithm and the Scoring estimation approach under the

kernel functions (2.26) and (2.27). It can be observed that the RMSEs of all

parameter estimators from the Scoring estimation approach are less than those

from the multi-stage algorithm under both types of kernel functions. Although

the RMSEs of estimators of b1, . . . , b10 produced by the multi-stage algorithm

are not significantly higher than those produced by the Scoring estimation

approach, the RMSEs of τ̂ 2, σ̂2 and ĥ are noticeably different between the

two methods. For τ̂ 2 , the multi-stage algorithm produces 50% higher RMSE

than the Scoring estimation approach under the kernel function (2.26) and two

times larger RMSE than the Scoring estimation approach under the kernel

function (2.27). With regard to σ̂2 , the RMSE from the multi-stage algorithm

is around eight times larger than that from the Scoring estimation approach

under the kernel function (2.26) and more than 30 times larger than that from

the Scoring estimation approach under the kernel function (2.27). Similar

observations can be seen regarding the estimator of h , whose RMSE from the

multi-stage algorithm is 12 times higher than that from the Scoring estimation

approach under the kernel function (2.26) and about 26 times larger than that

from the Scoring estimation approach under the kernel function (2.27). These

findings imply that the estimators, particularly the estimators of τ 2, σ2, and h ,

given by the Scoring estimation approach are more robust.

Finally, it can be found that the CRs under the Scoring estimation approach

are relatively stable across different model parameters, the CRs for τ 2, σ2, and

h under the multi-stage algorithm are remarkably lower than the expected

95% confidence level, indicating that the constructed confidence interval from
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Table 2.2: Comparison of the estimation performance between the multi-stage algorithm and
the Scoring estimation approach

Multi-Stage Algorithm∗ Scoring Estimation Approach

ν = 0.5† ν = 1.5‡ ν = 0.5 ν = 1.5

RMSE§ CR‖ RMSE CR RMSE CR RMSE CR

b1 2.5540 94.8 2.8160 95.7 2.5156 94.4 2.6551 92.8
b2 0.8875 94.0 0.9795 94.8 0.8749 94.0 0.9234 92.8
b3 0.0780 93.6 0.0862 94.0 0.0769 93.6 0.0811 92.3
b4 0.3184 98.3 0.3529 99.9 0.3013 94.4 0.3071 95.0
b5 0.0573 98.4 0.0634 99.8 0.0541 93.9 0.0551 94.7
b6 0.8631 96.6 0.9250 89.7 0.8438 95.9 0.8092 94.3
b7 0.0158 93.3 0.0055 80.3 0.0154 95.3 0.0054 94.5
b8 0.0087 91.6 0.0017 83.3 0.0085 94.3 0.0016 96.2
b9 0.0661 92.4 0.0723 92.9 0.0649 92.4 0.0651 92.8
b10 0.0712 91.2 0.0740 92.9 0.0701 91.0 0.0683 92.7
τ 2 0.0052 51.3 0.0076 26.5 0.0034 88.9 0.0035 89.2
σ2 0.0197 1.6 0.0790 0.0 0.0025 94.2 0.0026 94.9
h 8.6122 0.2 9.8763 0.0 0.7582 93.7 0.3773 94.3

∗ Jayaram and Baker (2010).
† Corresponding to the kernel function (2.26) (i.e., Matérn type with ν = 0.5) with
h = 11.50 km.
‡ Corresponding to the kernel function (2.27) (i.e., Matérn type with ν = 1.5) with
h = 12.58 km.
§ Root mean squared error of the corresponding parameter estimator.
‖ Coverage rate (in percentage and rounded to one decimal place) of the corresponding
parameter.

the multi-stage algorithm is biased in a non-conservative manner, that is, too

narrow on average, and there exist risks of wrong decisions on hypothesis tests

relating to model structure for the resulting GMPE under such an estimation

procedure. The low CRs of τ 2 and σ2 are partly due to the non-optimal

formulas of asymptotic standard error estimates given by Jayaram and Baker

(2010) and partly due to the separate estimation of h and the inconsistency of

ĥ . The low CR of h is because of the naive use of the asymptotic standard

error formula for ordinary least squares and the inconsistency of σ̂2 produced

from the preliminary stage.

To examine how the estimation performances of the multi-stage algorithm
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and the Scoring estimation approach change, when the sample (i.e., event)

size N varies, we extract two sub-catalogues from the full catalogue described

in Section 2.6.2. One sub-catalogue has the size of N = 46, which includes

the events occurred by the end of the year 2010. Another sub-catalogue has

the size of N = 29, which includes the events occurred by the end of the

year 2000. We then generate 1000 synthetic datasets of logarithmic PGAs

for both sub-catalogues and implement the multi-stage algorithm and the

Scoring estimation approach, which provides 1000 sets of estimates for each

sub-catalogue under each estimation method. Figure 2.6 and 2.7 present the

sampling distributions of b̂1, . . . , b̂10 under kernel function (2.26) and (2.27),

respectively. As we expected in Section 2.4.4, both the multi-stage algorithm

and the Scoring estimation approach produce consistent estimators of b1, . . . , b10

(i.e., the sampling distributions of b̂1, . . . , b̂10 converge to the true parameter

values as N increases).

We emphasise in Section 2.4.4 that τ̂ 2, σ̂2, and ĥ produced by the multi-stage

algorithm are inconsistent, meaning that the sampling distribution of τ̂ 2, σ̂2,

and ĥ from the multi-stage algorithm will not converge to the true parameter

values as N grows. This statement is illustrated in Figure 2.8. Under both the

kernel function (2.26) and (2.27), the sampling distributions of τ̂ 2, σ̂2, and ĥ

produced by the Scoring estimation approach converge to the true parameter

values as N increases. In contrast, the sampling distributions of τ̂ 2, σ̂2, and

ĥ produced by the multi-stage algorithm are biased. Moreover, the sampling

distributions of τ̂ 2 and σ̂2 produced by the multi-stage algorithm under the

kernel function (2.27) behave worse than those under the kernel function (2.26)

because increasing sampling variances and a larger number of outliers are

observed.

2.6.5 Evaluation of the predictive performance

The estimated ground-motion models allow one to perform ground-motion

predictions at locations where recording sites are unavailable (e.g., generate
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Figure 2.6: Sampling distributions for estimators b̂1, . . . , b̂10 under the kernel func-
tion (2.26) with h = 11.50 km. The left three boxplots (reading from
left to right) in each panel correspond to event sizes of N = 29 , 46,
and 62 under the multi-stage algorithm, respectively; the right three
boxplots (reading from left to right) in each panel correspond to event
sizes of N = 29 , 46, and 62 under the Scoring estimation approach,
respectively; the three event sizes correspond to events by the end of
the year 2000, 2010, and 2016, respectively. The dashed line in each
panel represents the true parameter value.
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Figure 2.7: Sampling distributions for estimators b̂1, . . . , b̂10 under the kernel func-
tion (2.27) with h = 12.58 km. The left three boxplots (reading from
left to right) in each panel correspond to event sizes of N = 29 , 46,
and 62 under the multi-stage algorithm, respectively; the right three
boxplots (reading from left to right) in each panel correspond to event
sizes of N = 29 , 46, and 62 under the Scoring estimation approach,
respectively; the three event sizes correspond to events by the end of
the year 2000, 2010, and 2016, respectively. The dashed line in each
panel represents the true parameter value.
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Figure 2.8: Sampling distributions for estimators τ̂2 , σ̂2, and ĥ : (a), (c) and (e)
correspond to the kernel function (2.26) with h = 11.50 km; (b), (d) and
(f) correspond to the kernel function (2.27) with h = 12.58 km. The
left three boxplots (reading from left to right) in each panel correspond
to event sizes of N = 29 , 46, and 62 under the multi-stage algorithm,
respectively; the right three boxplots (reading from left to right) in each
panel correspond to event sizes of N = 29 , 46, and 62 under the Scoring
estimation approach, respectively; the three event sizes correspond to
events by the end of the year 2000, 2010, and 2016, respectively. The
dashed line in each panel represents the true parameter value.

a ground-motion shaking intensity map). Therefore, it is vital to assess the

predictive performances of the ground-motion models estimated by the multi-

stage algorithm and the Scoring estimation approach. To this goal, we examine

the prediction accuracy for a selected event with ID ‘IT-1997-0137’, which

corresponds to the earthquake with MW = 5.6 occurred in the regions of

Umbria and Marche in 1997 and has ne = 15 recording sites. This particular

event is selected because it is included in both the full catalogue (events by

the end of the year 2016) and the two sub-catalogues (events by the end of the
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year 2000 and 2010) described in Section 2.6.4. This allows us to examine how

the predictive performance of an estimation method changes as the number

of events used for estimation varies. The prediction region of the event is set

to be within a distance of 250 km from the epicentre (see Figure 2.9). The

ground-motion models used for predictions are those estimated from the full

catalogue and the two sub-catalogues in Section 2.6.4.

Figure 2.9: The region (within a distance of 250 km from the epicentre) of the
selected event with ID ‘IT-1997-0137’. The epicentre of the event is
labelled by a filled star (9); triangles (4) represent the recording sites
whose logarithmic peak ground acceleration (PGA) records (generated
in Section 2.6.4) are observed and used for predictions.

We first discretise the prediction region of the event by fine square grids with

mesh size ∆ = 5 km and treat the resulting K = 5228 grid points as prediction

locations. Then, for each estimation method and each catalogue (i.e., the full

catalogue and the two sub-catalogues) we proceed with the following steps:

1. For each synthetic dataset t, compute the predictions ẑt = (ẑ1,t, . . . , ẑK,t)

on all grid points k ∈ {1, . . . , K} by the plug-in predictor (Stein, 1999)

ẑt = f(W, b̂t) + Σ(θ̂t)c
−1(θ̂t)

(
yt − f(Xe, b̂t)

)
, (2.28)

in which
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• b̂t and θ̂t = (τ̂ 2t, σ̂2
t, ĥt) are parameter estimates obtained from

synthetic dataset t ;

• f(W, b̂t) = (f(W1, b̂t), . . . , f(WK , b̂t))
> is a K × 1 vector of mean

logarithmic PGAs with Wk being a vector of predictors at grid

point k . The soil types at grid points are obtained from the U.S.

Geological Survey global VS30 database;

• Σ(θ) = cov(Z, Y) and c(θ) = var(Y) with Z and Y representing

vectors of logarithmic PGAs at grid points and recording sites,

respectively;

• yt is an ne × 1 vector of logarithmic PGAs at recording sites and is

obtained from the the t-th synthetic dataset of logarithmic PGAs

simulated in Section 2.6.4;

• f(Xe, b̂t) = (f(Xe,1, b̂t), . . . , f(Xe,ne , b̂t))
> is an ne × 1 vector of

mean PGAs with Xe,j being a vector of predictors at the recording

site j ∈ {1, . . . , ne} of the event.

In this step, a ground-motion shaking intensity map can be generated from

the obtained ẑt , which represent the logarithmic PGAs on grid points

predicted by the estimated ground-motion model given the synthetic

observations yt ;

2. For each yt , generate a synthetic logarithmic PGA dataset zt =

(z1,t, . . . , zK,t) on all grid points k ∈ {1, . . . , K} from the multivariate

Gaussian distribution with mean

f(W, b0) + Σ(θ0)c
−1(θ0) (yt − f(Xe, b0)) ,

and covariance matrix

Ψ(θ0)−Σ(θ0)c
−1(θ0)Σ

>(θ0)

in which Ψ(θ) = var(Z) , and b0 and θ0 are true parameter values

chosen for b and θ in Section 2.6.1. To assess the quality of the ground-

motion shaking intensity map (i.e., the accuracy of the predictions ẑt)
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produced by the estimated ground-motion model in the last step, this step

generates the benchmark logarithmic PGAs (i.e., zt) on grid points using

the underlying true ground-motion model given the synthetic observations

yt ;

3. At each grind point k , compute the root mean squared error of predictions

(RMSEP) by

RMSEPk =

√√√√ 1

T

T∑
t=1

(ẑk,t − zk,t)2 ,

which measures the predictive accuracy of the estimated ground-motion

model at each grid point k .

In Figure 2.10, we plot at each grid point the percentage increase in RMSEP

from the multi-stage algorithm relative to that from the Scoring estimation

approach under three sample sizes of N = 29, 46 and 62 (corresponding to

events by the end of the year 2000, 2010 and 2016) with kernel function (2.26)

and (2.27). It can be seen that for both kernel function (2.26) and (2.27), as

N increases, the region where the RMSEP from the multi-stage algorithm is

greater than that from the Scoring estimation approach expands. When the

kernel function (2.26) is considered, we find that the RMSEP from the Scoring

estimation approach are smaller than those from the multi-stage algorithm,

especially around the recording sites (triangles in Figure 2.10). This is because

the spatial correlation structure in the ground-motion model is estimated with

higher accuracy by the Scoring estimation approach. Because recording sites

are often concentrated in the near-fault regions, the difference between the

RMSEP from the Scoring estimation approach and that from the multi-stage

algorithm becomes more distinct within the near-field (the region bounded

by the dashed circle in Figure 2.10). This observation becomes remarkable

when the kernel function (2.27) is considered, in which the RMSEP from the

multi-stage algorithm can exceed that from the Scoring estimation approach

by more than 10% near the recording sites. Furthermore, Figure 2.10 also



2.7. Impacts of Ignoring the Spatial Correlation 61

indicates that the Scoring estimation approach is less sensitive to the overfitting

problem than the multi-stage algorithm. As we can observe from (a) and (b)

in Figure 2.10, even the number of events is scare (i.e., N = 29), the predictive

performance of the Scoring estimation approach is still comparable or better

than that of the multi-stage algorithm over the region, especially when the

underlying spatial correlation follows the kernel function (2.27).

2.7 Impacts of Ignoring the Spatial Correla-

tion

We have demonstrated that the Scoring estimation approach outperforms

the multi-stage algorithm in terms of estimation and prediction. However, if

the spatial correlation structure is neglected from the ground-motion model

while the spatial correlation is significant in the ground-motion data, we

could obtained very biased estimates of model parameters, give misleading

interpretation on the contributions of covariates. In addition, the predictive

performance of the estimated ground-motion model may be degraded. Because

most of the existing ground-motion models (e.g., Akkar and Bommer (2010);

Abrahamson et al. (2014); Bindi et al. (2014); Boore et al. (2014); Campbell and

Bozorgnia (2014); Chiou and Youngs (2014); Idriss (2014)) are proposed without

any form of spatial correlation structure, we investigate in this section how the

ignorance of spatial correlation influences the model parameter estimates and

the predictive performance of the estimated ground-motion model.

2.7.1 Impact on parameter estimation

To assess how the parameter estimates could be influenced by the ignorance

of spatial correlation in the ground-motion model, 1000 synthetic datasets of

logarithmic PGAs, which form a training set, are generated using the kernel

function (2.26) with h = 11.50 km. The Scoring estimation approach is then

applied to estimate, respectively, the ground-motion model with well-specified
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Figure 2.10: Maps of percentage increases in root mean squared error of predictions
(RMSEP) from the multi-stage algorithm relative to those from the
Scoring estimation approach at grid points: (a), (c) and (e) correspond
to the kernel function (2.26) with h = 11.50 km when N = 29, 46,
and 62, reading from top to bottom; (b), (d) and (f) correspond to
the kernel function (2.27) with h = 12.58 km when N = 29, 46, and
62, reading from top to bottom. Triangles (4) are recording sites and
the dashed circle defines the border of the near-field (within 50 km
from the epicenter).
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spatial correlation structure (i.e., with the kernel function (2.26)) and the

ground-motion model without spatial correlation structure (i.e., with the kernel

function (2.4)). The sampling distributions for b̂1, . . . , b̂10 obtained under the

two ground-motion models are shown in Figure 2.11. It can be seen that

although the estimators of b1, . . . , b10 produced by the Scoring estimation

approach are generally unbiased for both models, estimators such as b̂5, . . . , b̂8

exhibit larger variances when the spatial correlation structure is ignored in the

ground-motion model. Comparisons between the sampling distributions for τ̂ 2

and σ̂2 under the two models are presented in Figure 2.12. We observe that

when the training set is generated by the kernel function (2.26) with h = 11.50

km, the estimates of the inter-event variance τ 2 from the ground-motion model

without spatial correlation structure are overestimated, but the estimates of

the intra-event variance σ2 are underestimated. For the ground-motion model

with well-specified spatial correlation structure, however, the estimates of τ 2

and σ2 produced essentially match their true values. To further investigate

such overestimation on τ 2 and underestimation on σ2 when spatial correlation

is ignored from the ground-motion model, we refit the two ground-motion

models to two additional training sets, each of which consists of 1000 synthetic

datasets of logarithmic PGAs, generated using the kernel function (2.26) with

h = 30.00 and 60.00 km, respectively. From Figure 2.12, it can be seen that

as the value of h increases (i.e., the spatial correlation implied by the training

data becomes stronger), the overestimation on τ 2 and underestimation on σ2

due to the ignorance of spatial correlation are amplified. On the contrary,

the estimates of τ 2 and σ2 from the ground-motion model with well-specified

spatial correlation structure are still concentrated around the true parameter

values.

We repeated the above procedure using the training sets generated by the

kernel function (2.27). The sampling distributions for b̂1, . . . , b̂10 , τ̂ 2, and σ̂2

under the two completing ground-motion models are visualised in Figure 2.13

and 2.14. Figure 2.13 indicates that the loss of statistical efficiency on the
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Figure 2.11: Sampling distributions for b̂1, . . . , b̂10 of ground-motion models with
(S) and without (NS) spatial correlation structure. The estimates
are obtained from 1000 synthetic datasets generated under the kernel
function (2.26) with h = 11.50 km. The left boxplot in each panel
corresponds to the ground-motion model with spatial correlation
structure; the right boxplot in each panel corresponds to the ground-
motion model without spatial correlation structure. The dashed line
in each panel represents the true parameter value.
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Figure 2.12: Sampling distributions for τ̂2 and σ̂2 of ground-motion models with
(S) and without (NS) spatial correlation structure (specified by
the kernel function (2.26)). The estimates are obtained from 1000
synthetic datasets generated under the kernel function (2.26) with
h = 11.50, 30.00, and 60.00 km, respectively. (a), (c) and (e) cor-
respond to the estimates of τ2 ; (b), (d) and (f) correspond to the
estimates of σ2 .
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estimator of b becomes more apparent when the ground-motion model without

spatial correlation structure is fitted to the training data with smoother spatial

correlation. From Figure 2.14, we find that fitting the ground-motion model

without spatial correlation structure to the training data with smoother spatial

correlations will cause severer overestimation on τ 2 and underestimation on

σ2 . In contrast, the changed smoothness of the spatial correlation in the

training data does not influence the accuracy of estimating τ 2 and σ2 in the

ground-motion model with well-specified spatial correlation structure.

2.7.2 Impact on predictive performance

In this section, we consider the predictive performance of the estimated (via the

Scoring estimation approach) ground-motion model without spatial correlation

structure for the event selected in Section 2.6.5. To investigate the predic-

tive performance when observations are available in the far-field, 15 artificial

recording sites are added to the event (see Figure 2.15). The addition of the 15

artificial recording sites increases the entries of recording sites in the catalogue,

which is described in Section 2.6.2, from 2150 to 2165.

On the basis of the updated catalogue, we then generate six training sets,

each of which includes 1000 synthetic datasets of logarithmic PGAs, using

the generator specified in Section 2.6.1 with h = 11.50, 30.00 and 60.00 km

for the kernel function (2.26) and with h = 12.58, 32.81 and 65.63 km for the

kernel function (2.27). For each training set, we estimate the ground-motion

model with well-specified spatial correlation structure (i.e., with the same kernel

function as the underlying generator) and the ground-motion model with no

spatial correlation structure by the Scoring estimation approach. The predictive

performances of the estimated ground-motion models are subsequently assessed

by the RMSEP obtained via the procedure detailed in Section 2.6.5. The

RMSEPs produced by the estimated ground-motion models with and without

spatial correlation are plotted in Figure 2.16 and 2.17. These figures show

that when the spatial correlation structure is ignored from the ground-motion
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Figure 2.13: Sampling distributions for b̂1, . . . , b̂10 of ground-motion models with
(S) and without (NS) spatial correlation structure. The estimates
are obtained from 1000 synthetic datasets generated under the kernel
function (2.27) with h = 12.58 km. The left boxplot in each panel
corresponds to the ground-motion model with spatial correlation
structure; the right boxplot in each panel corresponds to the ground-
motion model without spatial correlation structure. The dashed line
in each panel represents the true parameter value.
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Figure 2.14: Sampling distributions for τ̂2 and σ̂2 of ground-motion models with
(S) and without (NS) spatial correlation structure (specified by
the kernel function (2.27)). The estimates are obtained from 1000
synthetic datasets generated under the kernel function (2.27) with
h = 12.58, 32.81, and 65.63 km, respectively. (a), (c) and (e) cor-
respond to the estimates of τ2 ; (b), (d) and (f) correspond to the
estimates of σ2 .
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Figure 2.15: The region (within a distance of 250 km from the epicentre) of the
selected event with ID ‘IT-1997-0137’, to which artificial recording
sites are added. The epicentre of the event is labelled by a filled
star (9); triangles (4) represent the historical recording sites of
the selected event described in Section 2.6.5. Inverted triangles (5)
represent the artificial recording sites that are added to the selected
event. The observations at both historical and artificial recording
sites are used for prediction.

model, the resulting predictions are poor across the study region regardless

of the strength (i.e., the magnitude of h) and the smoothness (i.e., the choice

between the kernel function (2.26) and (2.27)) of the spatial correlation implied

by the training data. In addition, we find that whereas the RMSEP around

the recording sites are only weakly improved when the spatial correlation is

ignored from the ground-motion model, the RMSEP near the recording sites

are significantly reduced when the spatial correlation is well-specified in the

ground-motion model. For example, when the spatial correlation implied by the

training data are characterised by the kernel function (2.26) with h = 60 km,

little reductions in RMSEP can be observed around the recording sites if the

data are fitted by the ground-motion model without spatial correlation structure

(see (f) in Figure 2.16). However, the improvement of predictions near the

recording sites is obvious when the spatial correlation structure is well-specified
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in the ground-motion model (see (e) in Figure 2.16). Furthermore, it is found

that the reductions of RMSEP caused by the availability of recording sites

are consistent in near-field and far-field, when the ground-motion model with

well-specified spatial correlation structure is considered. However, under the

ground-motion model without spatial correlation structure, the improvement

of predictions caused by the proximity to the recording sites is clearer in the

near-field than in the far-field, which suffers high RMSEP in all considered

scenarios.

2.8 Conclusion

In this chapter, we construct ground-motion models with repeated Gaussian

processes and introduce a one-stage training algorithm, namely the Scoring

estimation approach. The estimators produced by the approach have good

statistical properties such as consistency, statistical efficiency and asymptotic

normality. In addition, to yield consistent, statistically efficient and asymptoti-

cally normal estimators, the approach requires only a large number of events

(that can be assumed to be independent) even with a small number of records

per event, something that is historically relevant to earthquake records. The

simulation study demonstrates that the Scoring estimation approach generally

outperforms the multi-stage algorithm proposed by Jayaram and Baker (2010)

in terms of estimation and prediction. With regard to estimation, the Scoring

estimation approach produces parameter estimators in an accurate and stable

manner under both smooth (e.g., kernel function (2.27)) and less smooth (e.g.,

kernel function (2.26)) kernel functions. Regarding the predictive performance,

the simulation study indicates that the ground-motion model with spatial

correlation estimated via the Scoring estimation approach produces smaller

prediction errors than the multi-stage algorithm does, especially at locations

around the recording sites and when the spatial correlation is smooth. Because

the estimation of ground-motion models with spatial correlation is a key ingre-

dient in developing GMPEs for use in PHSA, the Scoring estimation approach
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Figure 2.16: Maps of RMSEP from ground-motion models with and without spatial
correlation structure (specified by the kernel function (2.26)). Ground-
motion models are fitted to synthetic datasets generated under the
kernel function (2.26) with h = 11.50, 30.00, and 60.00 km. (a),
(c) and (e) correspond to the ground-motion model with spatial
correlation structure; (b), (d) and (f) correspond to the ground-
motion model without spatial correlation structure. Triangles (4)
and inverted triangles (5) are historical and artificial recording sites,
respectively. The dashed circle defines the border of the near-field
(within 50 km from the epicentre).
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Figure 2.17: Maps of RMSEP from ground-motion models with and without spatial
correlation structure (specified by the kernel function (2.27)). Ground-
motion models are fitted to synthetic datasets generated under the
kernel function (2.27) with h = 12.58, 32.81, and 65.63 km. (a),
(c) and (e) correspond to the ground-motion model with spatial
correlation structure; (b), (d) and (f) correspond to the ground-
motion model without spatial correlation structure. Triangles (4)
and inverted triangles (5) are historical and artificial recording sites,
respectively. The dashed circle defines the border of the near-field
(within 50 km from the epicentre).
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provides a statistically robust way that increases the estimation accuracy in

ground-motion model construction and has the potential to reduce prediction

errors in ground-motion shaking intensity maps, which in turn can improve the

earthquake-induced loss assessment process.

The Scoring estimation approach is then used to assess the accuracy of model

parameter estimates and subsequent prediction under the condition that spatial

correlation structure is ignored in ground-motion models. It is demonstrated

that neglecting spatial correlation structure in ground-motion models can cause

inconsistent and statistically inefficient estimators, and inaccurate predictions.

Finally, because the Scoring estimation approach provides a relatively accurate

estimation of the spatial correlation parameters (e.g., h in the exponential

kernel function), as a by-product of the ground-motion model estimation, this

approach could be applied to areas that do not have well-recorded events, giving

the opportunity to provide a first estimate of a spatial correlation model.

2.8.1 Practicalities

In this last section we discuss several aspects of the practicalities of the Scoring

estimation approach, aiming to address two key numerical issues of the approach

and the importance of the asymptotic information produced by the approach

when it is applied to real ground-motion datasets.

Local and global maxima

The maximum likelihood estimation framework used in the Scoring estimation

approach requires the global maximum to be found so that the asymptotic

properties can be established. However, it is generally not guaranteed that

the global maximum of the likelihood function can be located by the Scoring

estimation approach. If the likelihood surface is multimodal, the Scoring esti-

mation approach may be trapped at local maxima, where the corresponding

optimised parameter estimates can be unrealistic, e.g., the estimate of range

parameter is very large indicating that the IMs at all sites are perfectly corre-
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lated. Nevertheless, the issue of local maxima can be checked and mitigated

to some extent by using some practical methods. The simplest way would

be initiating the Scoring estimation algorithm with different initial values of

the model parameters and checking whether the optimised model parameters

give higher likelihood. Since the multimodality (i.e., the nonconcavity of the

likelihood function) is often in respect of kernel parameter ω and intra-event

variance σ2, another approach is to plot the likelihood surface between ω and

σ2 given the optimised values of other model parameters and check visually

if the global maximum is indeed reached. This approach is generally feasible

and not very computationally expensive since ω is one-dimensional in kernel

functions such as (2.26) and (2.27).

It is worth noting that even we have the global maximum, the optimised model

parameter estimates may not give sensible interpretations. For example, the

range parameter can be very small or large at the global maximum. In such

situations, one may need to increase the data size in the hope that the likelihood

function becomes well-behaved. Otherwise, one may have to retreat to Jayaram

and Baker’s multi-stage algorithm assuming that the estimate of h given by

the spatial correlation stage is the true value of the range parameter, and thus

lose the capacity to measure the uncertainty of spatial correlation.

Ill-conditioned covariance matrix

An ill-conditioned covariance matrix is associated with a large condition number,

which can cause numerical instabilities (e.g., accumulation of rounding errors) of

the Scoring estimation approach and thus deteriorate the subsequent predictions.

There are two main sources of an ill-conditioned covariance matrix. One source

is the dataset. The locations of some recording sites included in the dataset may

overlap or are very close to each other, causing singularity (condition number

being infinite) or near-singularity (condition number being very large) of the

constructed covariance matrix. The ill-conditioning issue due to this reason

can often be alleviated by only including one recording site at every location
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or by adding a very small jitter (e.g., 10−5) to the diagonal elements of the

covariance matrix. The latter approach effectively adds a small noise term to

the ground-motion models. Changing kernel functions is another way to reduce

the condition number of a covariance matrix. Exponential kernel function (2.26)

is usually less prone to the ill-conditioned problem than the Matérn kernel (2.27)

with ν = 1.5, which decays faster to zero as the distance between two sites

increases. Therefore, using the exponential kernel function for the ground-

motion model is often robust in terms of the numerical stability. Another

source of an ill-conditioned covariance matrix is the poor estimate of the range

parameter. When the Scoring estimation approach traps at local maxima or

the global maximum of the likelihood function is not well-behaved, the estimate

of the range parameter can be very large, causing a large condition number

of the covariance matrix. In such situations, one need resort to techniques

discussed in the last section to reduce the condition number.

Why asymptotic properties are useful?

Given that the global maximum is found and the model parameter estimates

are sensible, the asymptotic properties established under the Scoring estimation

approach allow one to conduct various analysis of the ground-motion model.

For example, one can construct hypothesis tests to conduct variable selection

and model comparison. One can also build confidence intervals to check

the uncertainties of the estimated spatial correlation, intra- and inter-event

variances. Therefore, the asymptotic information produced by the Scoring

estimation approach provides a useful toolbox for the practitioners to design

new ground-motion models that appreciate the underlying data and to test the

goodness-of-fit of the designed models.



Chapter 3

Integrated Emulators for

Systems of Computer Models

3.1 Introduction

Systems of computer models constitute the new frontier of many scientific

and engineering simulations. These can be multi-physics systems of computer

simulators such as coupled tsunami simulators with earthquake and landslide

sources (Salmanidou et al., 2017; Ulrich et al., 2019), coupled multi-physics

model of the human heart (Santiago et al., 2018), and multi-disciplinary systems

such as automotive and aerospace systems (Kodiyalam et al., 2004; Fazeley et al.,

2016; Zhao et al., 2018). Other examples include climate models where climate

variability arises from atmospheric, oceanic, land, and cryospheric processes

and their coupled interactions (Kay et al., 2015; Hawkins et al., 2016), or

highly multi-disciplinary future biodiversity models (Thuiller et al., 2019) using

combinations of species distribution models, dispersal strategies, climate models,

and representative concentration pathways. The number and complexity of

computer models involved can hinder the analysis of such systems. For instance,

the engineering design optimisation of an aerospace system typically requires

hundreds of thousands of system evaluations. When the system has feed-backs

across computer models, the number of simulations becomes computationally
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prohibitive (Chaudhuri et al., 2018). Therefore, building and using a surrogate

model is crucial: the system outputs can be predicted at little computational

cost, and subsequent sensitivity analysis, uncertainty propagation or inverse

modelling can be conducted in a computationally efficient manner.

Gaussian process emulators have gained popularity as surrogate models of

systems of computer models. However, many studies (Jandarov et al., 2014;

Johnstone et al., 2016; Salmanidou et al., 2017; Simpson et al., 2001; Tagade

et al., 2013) construct global GP emulators (named as composite emulators

hereinafter) of such systems based on a single GP model trained by global

inputs and outputs without consideration of system structures. One major

drawback of such a structural ignorance is that designing experiments can be

expensive because system structures may induce high non-linearity between

global inputs and outputs (Sanson et al., 2019). Furthermore, runs of the whole

system are required to produce new training points, even though the overall

functional complexity between global inputs and outputs originates from a

few computer models. This pitfall is particularly undesirable because modern

engineering and physical systems can include multiple computer models.

To overcome the disadvantages of the composite emulator, we propose a

structure-informed emulator, called integrated emulator, as the surrogate for a

system of computer models by integrating GP emulators of individual computer

models. The idea of integrating GP emulators has been explored by Sanson et al.

(2019) in a feed-forward system, but only using the Monte Carlo simulation to

approximate the predictive mean and variance of the system output. The Monte

Carlo method suffers from a low convergence rate and heavy computational

cost, especially when the number of layers in a system is high (Rainforth et al.,

2018) and the number of new input positions to be evaluated is large, making

it prohibitive for complex systems. Recently, two studies by Kyzyurova et al.

(2018) and Marque-Pucheu et al. (2019) have derived an emulator, called linked

emulator (Kyzyurova et al., 2018), for a feed-forward system of two computer

models in analytical form under the assumption that every computer model in
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the system is represented by the GP with a product of squared exponential

kernels over different input dimensions.

Inspired by the linked emulator, our integrated emulator provides analytical

expressions for mean and variance of the predicted output of any feed-forward

system at an unexplored input position. Furthermore, our analytical formulas

for the integrated emulator are derived under a general and flexible framework

that allows different computer models to be modelled by different GPs with

a wide range of kernel choices, such as the Matérn kernel with smoothness

parameter of 2.5. Indeed, the squared exponential kernel has been criticised for

its over-smoothness (Stein, 1999) and associated ill-conditioned problem (Dal-

bey, 2013; Gu et al., 2018). Particularly, the integrated emulator is more prone

to the latter issue than the composite emulator because the design (e.g., the

Latin hypercube design) of the global input can produce poor designs for GP

emulators of internal computer models. Thus, the generalisation of the kernel

assumption is necessary and several of our examples below require it. Our

framework can also be readily extended to systems with feed-back-coupled

computer models as such systems can be converted to feed-forward ones by

applying decoupling procedures such as the optimal approximations of cou-

pling (Baptista et al., 2018) or the surrogate-based approximation of coupling

variables (Chaudhuri et al., 2018).

The remainder of the chapter is organised as follows. In Section 3.2, we detail

the procedure and the theoretical method to construct the integrated emulator.

Synthetic experiments are provided in Section 3.3 to compare the training cost

and predictive performances of the integrated and composite emulators. A

feed-back coupled fire-detection satellite example is demonstrated in Section 3.4.

An adaptive designing strategy allowed by the integrated emulation is discussed

in Section 3.5. We conclude in Section 3.7. Key closed form expressions for the

integrated emulator and proofs of results are contained in the Appendix B and

Appendix C, respectively.
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3.2 Model and Method

We consider a system of computer models with a feed-forward hierarchy. In such

a hierarchy, the outputs of lower-layer computer models act as the inputs of

higher-layer computer models. An illustrative example of this type of hierarchy

is shown in Figure 3.1.

f1Global Input 1

Global Input 2

f2

f3

f4

f5

f6 Global Output

Global Input 3

Layer 2Layer 1 Layer 3 Layer 4

Figure 3.1: An example of a four-layered feed-forward system of six computer
models.

3.2.1 GP emulators for individual computer models

The first step to construct the integrated emulator of a feed-forward system

of computer models is to build GP emulators for individual computer models.

The GP emulator of a computer model is itself a collection of GP emulators,

approximating the functional dependence between the inputs of the computer

model and its one-dimensional outputs. Each 1-D output emulator is con-

structed independently without the consideration of cross-output dependence,

as in Gu and Berger (2016) and Kyzyurova et al. (2018).

Let X ∈ Rp be a p-dimensional vector of inputs of a computer model and

Y (X) be the corresponding scalar-valued output. Then, given m sets of inputs

{X1, . . . ,Xm} , the GP model is defined by

Y (Xi) = t(Xi, b) + εi, i = 1, . . . ,m

where t(Xi, b) = h(Xi)
>b is the trend with q basis functions h(Xi) =

[h1(Xi), . . . , hq(Xi)]
> and coefficients b = [b1, . . . , bq]

> ; (ε1, . . . , εm)> ∼

N (0, σ2R) with ij-th element of the correlation matrix R given by Rij =

c(Xi, Xj) + η1{Xi=Xj}, where c(·, ·) is a given kernel function; η is the nugget



3.2. Model and Method 80

term; and 1{·} is the indicator function.

The specification of the kernel function c(·, ·) plays an important role in GP

emulation as it characterises the sample paths of a GP model (Stein, 1999).

In this study we consider the kernel function with the following multiplicative

form:

c(Xi, Xj) =

p∏
k=1

ck(Xik, Xjk),

where ck(·, ·) is a one-dimensional kernel function for the k-th input dimension.

Popular candidates for ck(·, ·) are summarised in Table 3.1. In Section 3.2.2, we

will show that the integrated emulator is applicable to all these aforementioned

choices. In Appendix C, we also derive the integrated emulator under the

additive form of c(·, ·).

Table 3.1: Choices of ck(·, ·). γk > 0 is the range parameter for the k-th input
dimension.

Exponential ck(·, ·) = exp
{
− |Xik−Xjk|

γk

}
Squared
Exponential

ck(·, ·) = exp
{
− (Xik−Xjk)

2

γ2
k

}
Matérn-1.5 ck(·, ·) =

(
1 +

√
3|Xik−Xjk|

γk

)
exp

{
−
√
3|Xik−Xjk|

γk

}
Matérn-2.5 ck(·, ·) =

(
1 +

√
5|Xik−Xjk|

γk
+

5(Xik−Xjk)
2

3γ2
k

)
exp

{
−
√
5|Xik−Xjk|

γk

}

Assume that the GP model parameters σ2, η and γ = (γ1, . . . , γp)
> are known

but b is a random vector that has a Gaussian distribution with mean b0 and

variance τ 2V0. Then, given m inputs xT = (xT1 , . . . ,x
T
m)> and the correspond-

ing outputs yT = (yT1 , . . . , y
T
m)>, the GP emulator of the computer model is

defined by the predictive distribution of Y (x0) (i.e., conditional distribution of

Y (x0) given yT ) at a new input position x0 (Santner et al., 2003), which is

Y (x0)|yT ∼ N (µ0(x0), σ
2
0(x0)) (3.1)
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with

µ0(x0) = h(x0)
>b̂ + r(x0)

>R−1
(
yT −H(xT )b̂

)
(3.2)

σ2
0(x0) = σ2

[
1 + η − r(x0)

>R−1r(x0) +
(
h(x0)−H(xT )>R−1r(x0)

)>
×
(

H(xT )>R−1H(xT ) +
σ2

τ 2
V−10

)−1 (
h(x0)−H(xT )>R−1r(x0)

) ]
,

(3.3)

where r(x0) = [c(x0,x
T
1 ), . . . , c(x0,x

T
m)]>, H(xT ) = [h(xT1 ), . . . ,h(xTm)]> and

b̂
def
==

(
H(xT )>R−1H(xT ) +

σ2

τ 2
V−10

)−1(
H(xT )>R−1yT +

σ2

τ 2
V−10 b0

)
.

Let τ 2 → ∞ (i.e., the Gaussian distribution of b gets more and more non-

informative), then all terms associated with b0 and V0 in equation (3.2)

and (3.3) become increasingly insignificant and thus we obtain the GP emulator

defined by the predictive distribution of Y (x0) with its mean and variance

given by

µ0(x0) =h(x0)
>b̂ + r(x0)

>R−1
(
yT −H(xT )b̂

)
(3.4)

σ2
0(x0) =σ2

[
1 + η − r(x0)

>R−1r(x0) +
(
h(x0)−H(xT )>R−1r(x0)

)>
×
(
H(xT )>R−1H(xT )

)−1 (
h(x0)−H(xT )>R−1r(x0)

) ]
(3.5)

with b̂
def
==

[
H(xT )>R−1H(xT )

]−1
H(xT )>R−1yT , where µ0(x0) and σ2

0(x0)

match the best linear unbiased predictor (BLUP) of Y (x0) and its mean

squared error (Stein, 1999). In the remainder of the study we use the predictive

distribution with mean and variance given in equation (3.4) and (3.5) as the

GP emulator of a computer model. Note that the GP model parameters σ2,

η and γ = (γ1, . . . , γp)
> in equation (3.4) and (3.5) are typically unknown

and need to be estimated. One may estimate these parameters by solving the

objective function

(η̂, γ̂) = argmax
η,γ

L(σ̂2, η, γ),
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where

L(σ̂2, η, γ) =
|R|− 1

2 |H(xT )>R−1H(xT )|− 1
2

(2πσ̂2)
m−q

2

× exp

{
− 1

2σ̂2

(
yT −H(xT )b̂

)>
R−1

(
yT −H(xT )b̂

)}
,

is the marginal likelihood obtained by integrating out b from the full likeli-

hood function L(b, σ2, η, γ) and have σ2 replaced by its maximum likelihood

estimator

σ̂2 =
1

m− q

(
yT −H(xT )b̂

)>
R−1

(
yT −H(xT )b̂

)
(3.6)

with b̂
def
==

[
H(xT )>R−1H(xT )

]−1
H(xT )>R−1yT . Alternatively, the maxi-

mum a posterior (MAP) method is a more robust estimation technique (Gu

et al., 2018). It maximises the marginal posterior mode with respect to the

objective function

(η̂, γ̂) = argmax
η,γ

L(σ̂2, η, γ)π(η, γ), (3.7)

where π(η, γ) is the reference prior, see Gu et al. (2018) for different choices

and parameterisations.

After the estimates of σ2, η and γ are obtained, they are plugged into the

predictive distribution mean (3.4) and variance (3.5), forming the empirical

GP emulator of a computer model. In the remainder of the study, all GP

models of individual computer models are estimated using the MAP method

via the R package RobustGaSP. Note that RobustGaSP in fact estimates η and

γ with the marginal likelihood obtained by integrating out both b and σ2.

However, as demonstrated in Andrianakis and Challenor (2009) the estimates

of η and γ are not influenced by the integration of σ2. As a result, we can

implement RobustGaSP to obtain the estimates of η and γ produced by the

discussed MAP method and then have them plugged in equation (3.6) to obtain

the estimate of σ2.
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3.2.2 Integration of GP emulators

Integrating GP emulators of individual computer models in a complex feed-

forward system is a challenging analytical work because it requires the integra-

tion of predictive distributions across a large number of layers. To reduce the

analytical efforts, we propose an iterative approach that collapses a complex

system into a sequence of two-layered computer systems so that at each iteration

we only need to integrate emulators across two layers.

Consider a general feed-forward system of computer models, denoted by e1→L,

with L layers. The iterative method constructs its emulator by successively

building integrated emulators of e1→(i+1) for i = 1, . . . , L− 1. For example, the

system in Figure 3.1 can be decomposed into three recursive systems shown in

Figure 3.2. The iterative approach then takes three iterations to produce the

integrated emulator of e1→4.

f1

f2

f3

f4

f5

f6

e1→2
e1→3

e1→4

Global
Input 1

Global
Input 2

Global
Input 3

Global
Output

Layer 2Layer 1 Layer 3 Layer 4

Figure 3.2: The recursive systems e1→2, e1→3 and e1→4 of the computer system in
Figure 3.1.

Without loss of generality, we consider the i-th iteration of the iterative approach

to emulate e1→(i+1) with respect to its one scalar-valued output y. At this

iteration, we effectively have a two-layered computer system with e1→i in the

first layer and a computer model g (belonging to the system ei+1 in layer i+ 1)

that produces y in the second layer. Assume that e1→i have a d-dimensional

output and is approximated by a collection of d one-dimensional emulators
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f̂1, . . . , f̂d, which are GP emulators when i = 1. Otherwise, they are integrated

emulators. Let ĝ be the GP emulator of g with respect to y. Then, the

connections between these emulators are visualised in Figure 3.3.

f̂1x1

f̂2x2

f̂dxd

ĝ Y

z

W1

W2

Wd

...

...

...

Figure 3.3: The connections of emulators to be integrated at the i-th iteration of
the iterative approach for emulating a general feed-forward computer
system e1→L with L layers. f̂1, f̂2 . . . , f̂d are one-dimensional emulators
approximating the computer system e1→i; ĝ is a one-dimensional GP
emulator of the computer model g (belonging to the system ei+1 in
layer i+ 1) with respect to the scalar-valued output y.

The integrated emulator of e1→(i+1) with respect to the one-dimensional output

y is defined as the predictive distribution of Y (x1, . . . ,xd, z), given the global

inputs x1, . . . ,xd and z. This predictive distribution is naturally given by the

probability density function

p(y|x1, . . . ,xd, z) =

∫
w

p(y|w, z) p(w|x1, . . . ,xd) dw, (3.8)

where w = (w1, . . . , wd)
>. However, p(y|x1, . . . ,xd, z) often has no closed form

expression and the resulting predictive distribution is not Gaussian in general.

One might employ methods such as Monte Carlo simulation to compute the

integral in equation (3.8) numerically at each given input position and use

the resulting sampled density as the predictive distribution. However, such an

approach is computationally expensive and the resulting integrated emulator is

analytically intractable. To obtain the integrated emulator analytically, in the

following, we demonstrate that under Assumption 1 and 2 below, the mean and

variance of the predictive distribution of Y (x1, . . . ,xd, z) can be calculated in

closed form, subject to the choice of the 1-D kernel functions in GP emulator ĝ.

Let Y (W, z) be the output of the GP emulator ĝ at inputs

W = [W1(x1), . . . ,Wd(xd)]
> and z = (z1, . . . , zp)

>,
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where W1(x1), . . . ,Wd(xd) are outputs of (GP or integrated) emulators

f̂1, . . . , f̂d at the input positions x1, . . . ,xd. Assume that the GP emulator

ĝ is built with m training points wT = (wT1 , . . . ,w
T
m)>, zT = (zT1 , . . . , z

T
m)>

and yT = (yT1 , . . . , y
T
m)>, where wTi = (wTi1, . . . , w

T
id)
> and zTi = (zTi1, . . . , z

T
ip)
>

for all i = 1, . . . ,m. We make the following assumptions:

Assumption 1 The trend function t(W, z, θ, β) in the GP model for the

computer model g is specified by t(W, z, θ, β) = W>θ + h(z)>β, where

• θ = (θ1, . . . , θd)
> and β = (β1, . . . , βq)

>;

• h(z) = [h1(z), . . . , hq(z)]> are basis functions of z;

Assumption 2 Wk(xk)
ind∼ N (µk(xk), σ

2
k(xk)) for k = 1, . . . , d.

Theorem 3.1 Under Assumption 1 and 2, the output Y (x1, . . . ,xd, z) of the

computer system e1→(i+1) predicted at the input positions x1, . . . ,xd and z has

analytical mean µI and variance σ2
I given by

µI =µ>θ̂ + h(z)>β̂ + I>A, (3.9)

σ2
I = A>

(
J− II>

)
A + 2θ̂>

(
B− µI>

)
A + tr

{
θ̂θ̂>Ω

}
︸ ︷︷ ︸

V1

+ σ2
(

1 + η + tr {QJ}+ G>CG + tr
{

CP− 2CH̃>R−1K
})

︸ ︷︷ ︸
V2

, (3.10)

where

• µ = [µ1(x1), . . . , µd(xd)]
> and

[
θ̂>, β̂>

]> def
==

(
H̃>R−1H̃

)−1
H̃>R−1yT ;

• Ω = diag(σ2
1(x1), . . . , σ

2
d(xd)) and P = blkdiag(Ω, 0);

• A = R−1
(
yT −wT θ̂ −H(zT )β̂

)
with H(zT ) = [h(zT1 ), . . . ,h(zTm)]>;

• Q = R−1H̃
(
H̃>R−1H̃

)−1
H̃>R−1 −R−1 with H̃ =

[
wT ,H(zT )

]
;

• G = [µ>, h(z)>]>, C =
(
H̃>R−1H̃

)−1
and K =

[
B>, Ih(z)>

]
;
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• I is a m× 1 column vector with the i-th element given by

Ii =

p∏
k=1

ck(zk, z
T
ik)

d∏
k=1

ξik,

where ξik
def
== E

[
ck(Wk(xk), w

T
ik)
]
;

• J is a m×m matrix with the ij-th element given by

Jij =

p∏
k=1

ck(zk, z
T
ik) ck(zk, z

T
jk)

d∏
k=1

ζijk,

where ζijk
def
== E

[
ck(Wk(xk), w

T
ik) ck(Wk(xk), w

T
jk)
]
;

• B is a d×m matrix with the lj-th element given by

Blj = ψjl

d∏
k=1
k 6=l

ξjk

p∏
k=1

ck(zk, z
T
jk),

where ψjl
def
== E

[
Wl(xl) cl(Wl(xl), w

T
jl)
]
.

Proof The proof is in Section C.1 of Appendix C. �

Note that V1 and V2 in formula (3.10) give a closed form expression for

Var (µg(W, z)) and E
[
σ2
g(W, z)

]
respectively with µg(W, z) and σ2

g(W, z) be-

ing the mean and variance of ĝ (see Section C.1 of Appendix C). If we define

V2 as the contribution of ĝ to the variance σ2
I , V1 then represents the overall

contribution of emulators f̂1, . . . , f̂d to the variance σ2
I . One can also define

V1(S)
def
== VarWk∈S

(
EWk∈Sc [µg(W, z)]

)
(3.11)

where S ⊆ {1, . . . , d} and Sc is the complement of S, as the contribution of

emulators f̂k∈S to the variance σ2
I .

Proposition 3.2 V1(S) defined in equation (3.11) has the closed form expres-

sion given by

V1(S) = A>
(
J̃− II>

)
A + 2θ̂>

(
B̃− µI>

)
A + tr

{
θ̂θ̂>Ω̃

}
,

where
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• Ω̃ is a d × d diagonal matrix with its k-th diagonal element given by

σ2
k(xk)1{k∈S};

• J̃ is a m×m matrix with the ij-th element given by

J̃ij =
∏
k∈S

ζijk
∏
k∈Sc

ξikξjk

p∏
k=1

ck(zk, z
T
ik) ck(zk, z

T
jk);

• B̃ is a d×m matrix with the lj-th element given by

B̃lj =


ψjl

d∏
k=1
k 6=l

ξjk

p∏
k=1

ck(zk, z
T
jk), l ∈ S,

µl

d∏
k=1

ξjk

p∏
k=1

ck(zk, z
T
jk), l ∈ Sc.

Proof The proof is in Section C.2 of Appendix C. �

Equation (3.10) together with Proposition 3.2 thus provides a fast way to

evaluate the uncertainty contributions of emulators from different layers, and

will be utilised to improve designs of GP emulators across layers in Section 3.5.

Proposition 3.3 The three expectations ξik, ζijk and ψjl defined in Theo-

rem 3.1 have closed form expressions for all 1-D kernel functions in Table 3.1.

Proof The derivations under exponential case, squared exponential case and

more challenging cases of Matérn-1.5 and Matérn-2.5 are given in Section C.3

of Appendix C. The final closed form expressions for the three expectations

are summarised in Appendix B. �

Note that the closed form expressions of µI and σ2
I in Theorem 3.1 are estab-

lished under Assumption 2 where the emulators f̂1, . . . , f̂d (i.e., the predictive

distributions of W1(x1), . . . ,Wd(xd)) need to be Gaussian. However, f̂1, . . . , f̂d

may not be Gaussian when the iterative approach reaches the second step (i = 2)

because the integrated emulators built in the first iteration (i = 1) are not

Gaussian in general. Therefore, to ensure that the integrated emulator of the

computer system e1→L can be constructed by the iterative approach analytically,



3.2. Model and Method 88

we employ the Gaussian distribution N (µI , σ
2
I ) with its mean µI and variance

σ2
I matching those given by Theorem 3.1 at each given iteration i. Although

the Gaussian distribution with matching mean and variance may not be a good

approximation of the actual predictive distribution of Y (x1, . . . ,xd, z) when

i ≥ 2, it minimises the Kullback–Leibler (KL) divergence between the actual

predictive density p(y|x1, . . . ,xd, z) and a Gaussian density N (µ, σ2) (Minka,

2013):

(µI , σ
2
I ) = argmin

µ, σ2

KL
(
p(y|x1, . . . ,xd, z)||N (µ, σ2)

)
.

Thus, the utilisation of Gaussian approximation with matching moments (i.e.,

mean and variance) at each iteration is justified in the sense of minimised

information loss. Once the integrated emulator is constructed by the iterative

approach, its empirical version is obtained by plugging the estimates of param-

eters of individual GP models into the mean and variance of the integrated

emulator.

In the remainder of the chapter, the Matérn-2.5 kernel will be used as the

default 1-D kernel function for integrated emulation, unless otherwise stated.

We choose Matérn-2.5 because we found that it can often prevent from the ill-

conditioned correlation matrices (with condition number close to the machine

precision) created by the large training size or the poor design (i.e., very

closed training points) under the squared exponential kernel. In addition, the

Matérn-2.5 kernel still retains most of the smoothness induced by the squared

exponential kernel (Gu et al., 2018). As we will demonstrate in Section 3.3,

we sometimes need to switch to a Matérn-1.5 kernel when the design becomes

extremely poor due to a higher density of training points under large training

sizes, a situation where the Matérn-1.5 kernel provides both satisfactory mean

predictions and predictive uncertainties. Meanwhile, it provides sufficient

smoothness, compared to a very rough exponential kernel. Nevertheless, our

integrated emulator can function with all kernels presented in Table 3.1, and

different kernels can be used in the GP emulators of different computer models.
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3.3 Synthetic Experiments

In this section, we compare the training cost and predictive performance of

the integrated emulator with those of the composite emulator in two synthetic

computer systems with a different feed-forward structure.

3.3.1 Experiment 1

The first experiment is a system with three computer models composed se-

quentially (see Figure 3.4). The individual computer models f1, f2 and f3 with

scalar-valued output w1, w2 and y respectively are defined by the following

analytical expressions:

f1 = sin(πx), f2 = cos(5w1) and f3 = sin(w2
2),

where the range of interest for the global input x is between −1 and 1.

f1x f2 f3 yw1 w2

Layer 2 Layer 3Layer 1

Figure 3.4: Computer system in experiment 1 where f1, f2 and f3 have 1-D input
and output.

The constructed composite and integrated emulators with the same ten equally

spaced training points are shown in Figure 3.5(a) and 3.5(b) respectively.

The comparison demonstrates that the integrated emulator drastically outper-

forms the composite one, with excellent mean predictions and small predictive

variances under identical information.

To compare the training cost between the composite and integrated emulators,

we compute at seven different training set sizes (i.e., 5, 10, 15, 20, 30, 40 and

50) the normalised root mean squared error of prediction (NRMSEP) that is

defined by

NRMSEP =

√
1
nT

∑T
t=1

∑n
i=1(y(xi)− µtY (xi))2

max{y(xi)i=1,...,n} −min{y(xi)i=1,...,n}
, (3.12)

where y(xi) denotes the true global output of the system evaluated at the
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(a) Composite Emulator (b) Integrated Emulator

Figure 3.5: Composite and integrated emulators of the computer system in experi-
ment 1. The solid line is the true functional form between the global
input and output of the system; the dashed line is the mean prediction;
the shaded area represents 95% prediction interval; the filled circles are
training points used to construct the emulators.

testing input position xi for i = 1, . . . , n; µtY (xi) is the mean prediction of the

respective (integrated or composite) emulator built with the t-th training set

of total T training sets, each of which has the same size of training points.

At each training set size, the corresponding NRMSEP is evaluated at n = 100

testing positions equally spaced over [−1, 1] and T = 100 randomly generated

training sets from the maximin Latin hypercube sampling. For the training set

size of 40 and 50, we use Matérn-1.5 instead the default Matérn-2.5 kernel for the

GP emulator of f2. This is because when training size is large Latin hypercube

designs on x can produce poor designs on w1 (i.e., very closed training positions),

causing ill-conditioned correlation matrix (i.e., large condition number exceeding

1012) for the GP model of f2 with Matérn-2.5 kernel and thus inaccurate mean

predictions from the resulting integrated emulator. The comparison in Figure 3.6

provides two implications. Firstly, the integrated emulator effectively reduces to

almost zero NRMSEP with a small number of training points (i.e., around 15).

In contrast, the composite emulator slowly reaches to a negligible NRMSEP

with 50 training points. Secondly, at a given training set size (e.g., 15), the

integrated emulator can achieve significantly more reductions in predictive error
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than the composite emulator.

Figure 3.6: NRMSEP of composite and integrated emulators in experiment 1.

3.3.2 Experiment 2

In this experiment, we explore the predictive performance of the integrated

emulator in the computer system shown in Figure 3.7. The three computer

models in the system have the following analytical functional forms:

f1 = 30 + 5x1 sin(5x1), f2 = 4 + exp(−5x2) and f3 = (w1w2 − 100)/6

with x1 ∈ [0, 2] and x2 ∈ [0, 2].

f1x1

f2x2

f3 y
w1

w2

Layer 1 Layer 2

Figure 3.7: The computer system in experiment 2 where f1 and f2 are two computer
models with one-dimensional input and output, and f3 is a computer
model with two-dimensional input and one-dimensional output.

The composite (Figure 3.8(a)) and integrated (Figure 3.8(b)) emulators of the

system are constructed with ten training points generated by the maximin

Latin hypercube sampling. For the integrated emulator, a Matérn-1.5 kernel

with a nugget term is chosen for the GP emulator of f3. This is because under a

Matérn-2.5 kernel (even with a nugget term), the estimated correlation matrix

is ill-conditioned (with condition number around 1015) due to the relatively
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large estimates of range parameters. Such an ill-conditioned matrix causes

significant round-off errors in double precision arithmetic, and thus severely

degrades the predictive accuracy of the integrated emulator. Figure 3.8 shows

that the integrated emulator outperforms the composite emulator in terms of

both mean predictions and prediction bounds. While the composite emulator

fails to mimic the true system function in areas where the training points are

scarce, the integrated emulator matches the true function well even over regions

(e.g, the peak and ridge) far away from the training points.

(a) Composite Emulator (b) Integrated Emulator

Figure 3.8: The composite and integrated emulators of the system in experiment 2.
The filled circles are training points used to construct the emulators.

The predictive performances of the composite and integrated emulators are

further compared by computing the NRMSEP at 12 training set sizes (i.e., 5,

10, 15, 20, 30, . . . , 100). At each selected training set size, NRMSEP of both

composite and integrated emulators are calculated based on n = 10000 testing

position equally spaced over the global input domain [0, 2]× [0, 2] and T = 100

Latin hypercube samples. Figure 3.9 shows that the NRMSEP of the integrated

emulator quickly drops to values close to zero with only 20 training points. In

contrast, the NRMSEP of the composite emulator slowly decays to a negligible

level at a training set size around 60. This corroborates the superiority of the

integrated emulator for a computer system with multiple computer models in

a layer.
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Figure 3.9: NRMSEP of composite and integrated emulators in Experiment 2.

From both this experiment and the experiment 1, we note that Matérn-2.5 and

Matérn-1.5 kernels are essential to build integrated emulators of feed-forward

computer systems because they offer reasonable choices on smoothness while

at the same time efficiently alleviate the issue of ill-conditioned correlation

matrices caused by sources such large range parameter estimates and poor

designs (especially when sample size is large). Furthermore, in Section 3.5 we

will discuss a smart designing strategy that can further mitigate such numerical

issues caused by the poor designs of individual computer models.

3.4 Integrated Emulator for a Feed-Back Cou-

pled Satellite Model

In this section, we construct the integrated emulator of the fire-detection

satellite model studied in Sankararaman and Mahadevan (2012). This satellite

is designed to conduct near-real-time detection, identification and monitoring

of forest fires. The satellite system consists of three sub-models, namely

the orbit analysis, the attitude control and power analysis. The satellite

system is shown in Figure 3.10. It can be seen from Figure 3.10 that there

are nine global input variables H, Fs, θ, Lsp, q, RD, La, Cd, Pother and three

global output variables of interest τtot, Ptot, Asa. The coupling variables are

∆torbit, ∆teclipse, ν, θslew, PACS, Imax and Imin. Since ∆torbit is the input to both

power analysis and attitude control, there are total eight coupling variables.
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Note that the system has feed-back coupling because the coupling variables

PACS, Imax and Imin form an internal loop between power analysis and attitude

control. Therefore, to implement the integrated emulation framework on the

global output variables, the system is converted to a feed-forward one by

applying the decoupling algorithm proposed in Baptista et al. (2018). The

decoupling algorithm identifies four weakly coupled variables ∆torbit (between

orbit analysis and attitude control), θslew, Imax and Imin. Since the weakly

coupled variables have insignificant impact on the accuracy of global outputs,

they are neglected from the interaction terms between sub-models, producing

a feed-forward system (see Figure 3.10 without the dashed arrows). Table 3.2

gives the domains of global inputs considered for the emulation.

Orbit
Analysis

H

Power
Analysis

Ptot, Asa

Attitude
Control

τtot

Fs, θ, Lsp, q, RD, La, Cd

Pother, Fs

∆tor
bit
, ∆tecl

ipse

∆torbit , θslew

ν

Imax, IminPACS

Figure 3.10: Fire-detection satellite model from Sankararaman and Mahadevan
(2012), where H is altitude; ∆torbit is orbit period; ∆teclipse is eclipse
period; ν is satellite velocity; θslew is maximum slewing angel; Pother
represents other sources of power; PACS is power of attitude control
system; Imax, Imin are maximum and minimum moment of inertia
respectively; Fs, θ, Lsp, q, RD, La, Cd represent average solar flux,
deviation of moment axis from vertical, moment arm for the solar
radiation torque, reflectance factor, residual dipole, moment arm for
aerodynamic torque, and drag coefficient respectively; Ptot is total
power; Asa is area of solar array; and τtot is total torque. The dashed
arrows indicate the connections that can be decoupled between sub-
models, according to the decoupling algorithm from Baptista et al.
(2018).
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Table 3.2: Domains of the nine global input variables to be considered for the
emulation.

Global input variable (unit) Symbol Domain

Altitude (m) H
[
1.50× 1017, 2.10× 1017

]
Other sources of power (W ) Pother

[
8.50× 102, 1.15× 103

]
Average solar flux (W/m2) Fs

[
1.34× 103, 1.46× 103

]
Deviation of moment axis from vertical (◦) θ [12.00, 18.00]

Moment arm for the solar radiation torque (m) Lsp [0.80, 3.20]

Reflectance factor q [0, 1]

Residual dipole (A ·m2) RD [2.00, 8.00]

Moment arm for aerodynamic torque (m) La [0.80, 3.20]

Drag coefficient Cd [0.10, 1, 90]

Maximin Latin hypercube sampling is then used to generate inputs positions

for seven training sets, with sizes of 10, 15, 20, 25, 30, 35 and 40 respectively.

The corresponding output positions are consequently obtained by running the

satellite model. For each of the seven training set and each of the three global

output variables, we build the composite and integrated emulators. Leave-

one-out cross-validation is utilised for assessing the predictive performance of

the emulators. For example, in case of the composite emulation of the output

variable Ptot with training set size of 10, we build ten composite emulators,

each based on nine training points by dropping one training point out of the

set. The dropped training point is then serves as the testing point to assess the

associated composite emulator. The performance of the emulator (composite or

integrated) of a global output variable given a certain training set is ultimately

summarised by

NRMSEP =

√
1
n

∑n
i=1(f(xi)− µ−i(xi))2

max{f(xi)i=1,...,n} −min{f(xi)i=1,...,n}
,

where xi is the i-th input position of a training set with size n; f(xi) is the value

of the output variable of interest produced by the satellite model at the input

xi; the mean prediction µ−i(xi) at input xi is provided by the corresponding

(composite or integrated) emulator constructed using all n training points
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except for xi.

The NRMSEP of the composite and integrated emulators of the three global

output variables τtot, Ptot and Asa against seven different training sizes are

presented in Figure 3.11. It can be seen that for the output variable τtot, the

integrated emulator is only marginally better than the composite one. This is

because the functional complexity between the global inputs and the output

τtot is dominated by the sub-model attitude control, and thus the integrated

emulator shows no obvious superiority over the composite emulator. This

explanation can be inferred from Figure 3.12(a) and 3.12(b), where the GP

emulator of the attitude control with respect to τtot requires more training

points than that of the orbit analysis with respect to ν to reach a low NRMSEP.

For the output variables Ptot and Asa, the integrated emulators present better

predictive performance than the composite ones at training set size ranging from

10 to 20, while show little superiority after the training set size increases over 20.

The better predictive performance of the integrated emulators at small training

sizes can be explained by noting that Ptot and Asa are produced not only by the

orbit analysis and attitude control, but also by the power analysis. Although

the attitude control still dominates the functional complexity between the

global inputs and Ptot and Asa (see Figure 3.12), the power analysis has higher

input dimensions than the orbit analysis, causing the composite emulators slow

to learn the functional dependence of Ptot and Asa to the global inputs with a

small number of training points.

3.5 Towards a Smart Design for Integrated

Emulation

We have so far demonstrated that the integrated emulator outperforms the

composite emulator in general, while in cases where the functional complexity

of the whole system is dominated by a single computer model, the integrated

emulator naturally provides comparable predictive performance to the composite
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(a) τtot (b) Ptot (c) Asa

Figure 3.11: The NRMSEP of the composite and integrated emulators of the three
global output variables τtot, Ptot and Asa against different training set
sizes.

(a) Orbit Analysis (b) Attitude Control (c) Power Analysis

Figure 3.12: The NRMSEP of the GP emulators of outputs produced by the three
subsystems: orbit analysis, attitude control and power analysis.

one. Nevertheless, even in this situation, the design for the integrated emulation

can be improved, with potentially large gains. In this section, we discuss an

adaptive designing strategy for the integrated emulator. Before exploring the

strategy under a general system structure, we first present the design in a simple

feed-forward system of two computer models f1 and f2 (producing scalar-valued

output w and y respectively) with the following analytical functional forms:

f1 =
2

1 + exp(−2x)
and f2 = cos(2πw), x ∈ [−4, 4].
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3.5.1 Latin hypercube design

The space-filling Latin hypercube design (LHD) (Santner et al., 2003) has been

used to construct the integrated emulators of all examples illustrated so far.

For the computer system under the consideration, the LHD first samples the

training positions of global input x via the maximin Latin hypercube method

to determine the GP emulator f̂1. The design for the GP emulator f̂2 (i.e.,

the training positions of w) is then specified by evaluating f1 at the training

positions of x. However, such design may not be optimal for the integrated

emulation.

In Figure 3.13(a), 3.13(b) and 3.13(c), showcasing our example, GP emulators

f̂1 and f̂2, and the corresponding integrated emulator f̂2 ◦ f̂1 constructed by the

LHD are presented respectively. Although the ten training points drawn from

the LHD produce a well-behaved GP emulator of computer model f1, the GP

emulator of computer model f2 presents unsatisfactory predictive performance

between 0.5 and 1.5. Such predictive deficiency in GP emulator of f2 propagates

to the integrated emulator, which fails to capture the peak shape of f2 ◦ f1
around 0. The reason for the unsatisfactory predictive performance of the

resulting integrated emulator is that f1 exhibits a steep rise as x increases

from −1 to 1, causing few training points to be sampled by the LHD over this

range. Consequently, the design for the GP emulator of f2 is poorly spaced with

insufficient information over [0.5, 1.5]. Another issue with the LHD is that the

design for f̂2 consists of excessive training points at its boundary. These dense

points are created by the flat wings of f1 and may cause numerical challenges

for GP model fitting and prediction, especially when the size of the training set

is large. Therefore, a better designing strategy is needed to improve the LHD

by smartly choosing designs for individual computer models, especially for f2.

3.5.2 An adaptive design for integrated emulation

Note that the variance of the integrated emulator can be decomposed into

contributions V1 and V2 from GP emulator f̂1 and f̂2 respectively (see the
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discussion following Theorem 3.1). By utilising this fact, an adaptive strategy

is developed in Algorithm 5 to smartly enrich the existing designs for f1 and

f2 and update their corresponding GP emulators.

Algorithm 5 Adaptive design for emulating a system of two computer models

1: Choose K number of enrichment to the existing design.
2: for k = 1, . . . , K do
3: Find x0 and l0 such that

(x0, l0) = argmax
x, l∈{1, 2}

Vl(x),

where Vl(x) is the contribution of f̂l to the variance of the integrated
emulator;

4: if l0 = 1 then
5: Enrich the training points for f̂1 by evaluating f1 at the input position

x0;
6: else
7: Enrich the training points for f̂2 by evaluating f2 at the input position

µ1(x0), obtained by evaluating the predictive mean µ1 of f̂1 at the
input position x0;

8: end if
9: Update the GP emulator f̂l with the added training point.

10: end for

A similar training strategy to Algorithm 5 is discussed by Sanson et al. (2019).

However, they compute V1 and V2 numerically, resulting inaccurate and slow

evaluation of the maximisation problem on line 3 of Algorithm 5. Thanks

to the analytical framework of the integrated emulation, V1 and V2 can be

expressed in closed form using the formula (3.10), and therefore Algorithm 5

can be implemented faster and more accurately.

To demonstrate the performance of this design, we construct the initial designs

for f1 and f2 with five training points generated by the maximin Latin hypercube

sampling. The adaptive design is then applied to enrich the designs of f1 and f2

with K = 10. The resulting GP emulators for f1 and f2 and the corresponding

integrated emulator are shown in Figure 3.13(d), 3.13(e) and 3.13(f) respectively.

It can be observed that the adaptive designing strategy smartly enriches the

initial design for f2 by choosing positions of w that correspond to the steep
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segment of f1. As a result, the final integrated emulator provides a better

predictive performance than that constructed by the LHD.

Furthermore, at each iteration the adaptive design only requires the evaluation

of a single computer model without running the whole system. In this case,

the adaptive design asks for three evaluations of f1 while seven evaluations of

f2. This property of the adaptive design can be particularly useful when the

system contains computer models with heterogeneous functional complexity

(i.e., non-linearity) because it allows different computer models with different

functional complexities to be trained with different training costs.

(a) f̂1 (b) f̂2 (c) f̂2 ◦ f̂1

(d) f̂1 (e) f̂2 (f) f̂2 ◦ f̂1

Figure 3.13: The GP emulators f̂1, f̂2 and the integrated emulator f̂2 ◦ f̂1 trained
with the LHD (first row) and adaptive design (second row). The
filled circles are training points for LHD or the initial design for the
adaptive design; the filled triangles are training points created by the
adaptive design; the solid line is the underlying true function; the
dashed line is the mean prediction; the shaded area represents 95%
prediction interval.



3.5. Towards a Smart Design for Integrated Emulation 101

3.5.3 Design comparison

In this section, we compare the LHD and the adaptive design in terms of

the predictive performance of the resulting integrated emulator and the as-

sociated training cost. For the LHD, ten integrated emulators, each based

on a different sample from the maximin Latin hypercube method, are con-

structed at nine training set sizes (i.e., 5, 6, 8, 10, . . . , 18, 20). These training

set sizes correspond to the total number of computer model evaluations that

are 10, 12, 16, 20, . . . , 36, 40 respectively (double due to two computer models).

For the adaptive design, ten random samples with five training points (i.e., ten

computer model runs) are generated by the maximin Latin hypercube method

as the initial designs and each initial design is enriched by 30 training points

(i.e., 30 computer model runs). The NRMSEP defined by equation (3.12) is used

for both designs. From the left plot in Figure 3.14 we see that the integrated

emulator under the adaptive design provides better predictive performance

than the one under the LHD with the same number of computer model runs.

Given the same overall number of computer model evaluations, the adaptive

design allocates more runs to the computer model f2 than to f1, which is less

functionally complex. Whereas, the LHD allocates runs equally to f1 and f2

without appreciating the difference of functional complexity between the two

computer models (see the right plot in Figure 3.14).

The left plot in Figure 3.14 also indicates that to achieve a similar accuracy (in

terms of NRMSEP) the integrated emulator trained with the adaptive design

requires significantly smaller amount of evaluations of computer models. To see

how this saving of evaluations on computer models translates to the reduction

of system run time for the integrated emulation, we consider three scenarios

where the computational time for running computer model f2 is 100, 1 and

0.01 times that for running computer model f1, respectively.

The first scenario represents the cases where the computer models with more

complex functional forms are also more expensive to run, while the third
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Figure 3.14: (Left) The NRMSEP of the integrated emulators constructed under
the LHD and the adaptive design at various number of computer
model runs. (Right) The number of evaluations of computer models
f1 and f2 under the LHD and the adaptive design.

scenario represents the situations where the computational cost is expensive for

computer models with simple functional forms. The reductions on the system

run time due to the use of the adaptive design for the integrated emulation at

different levels of NRMSEP are illustrated in Figure 3.15.

For all three scenarios, the adaptive design reduces the run time used by the

LHD for integrated emulation, and such reduction becomes more remarkable

when a higher accuracy of the integrated emulator is targeted. In scenario

2 the adaptive design saves more than 40% of the time spent by the LHD

to construct the integrated emulator with a moderate-to-low NRMSEP. This

reduction goes around 50% and above in scenario 3. Even for scenario 1, the

adaptive design can save more than 30% of total run time for a relatively well

performed integrated emulator.

In addition to the run time reduction, the adaptive design also reduces the

risk of numerical issues related to the integrated emulation. Since the adaptive

design only updates the GP emulators that contribute most to the variance

of the final integrated emulator (i.e., GP emulators who contribute less are

not retrained at each enrichment), numerical issues, such as the increased

computational time for inverting the correlation matrices with larger training
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Figure 3.15: The run time reduction for the integrated emulation by the adaptive
design under three different hypothetical scenarios. In scenario 1, the
computer model f2 is 100 times more expensive than the computer
model f1 to run; in scenario 2, computer model f1 and f2 are equally
expensive to run; in scenario 3, the computer model f1 is 100 times
more expensive than the computer model f2 to run.

sizes and the ill-conditioned correlation matrices due to the poorly spaced

training points, can be mitigated to some extent.

3.5.4 Generalisation of the adaptive design

By utilising Theorem 3.1 with Proposition 3.2, one can generalise the adaptive

design to the integrated emulation of any feed-forward computer system. In this

section, we demonstrate such generalisation by considering the two synthetic

experiments discussed in Section 3.3. Algorithm 6 and 7 present the adaptive

design strategies for the two experiments, respectively.

The training of the integrated emulators of the two systems by the adaptive de-

signs in Algorithm 6 and 7 are shown in Figure 3.16(a) and 3.16(b), respectively.

It can be seen from Figure 3.16(a) that for the computer system in experiment

1, the integrated emulator trained by the adaptive design can achieve a low

NRMSEP with smaller number of computer model runs than that built by the

gridded design (i.e., equally spaced design points). Similar observation can be

seen for the integrated emulator of the computer system in experiment 2 from

Figure 3.16(b). However, unlike experiment 1, in experiment 2 the integrated

emulator by the adaptive design can achieve lower NRMSEP than that by
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Algorithm 6 Adaptive design for emulating the computer system in experiment
1 of Section 3.3

1: Choose K number of enrichment to the existing design.
2: for k = 1, . . . , K do
3: Find x0 and l0 such that

(x0, l0) = argmax
x, l∈{1, 2}

V 1→3
l (x),

where V 1→3
1 (x) and V 1→3

2 (x) respectively are contributions of ê1→2 (i.e.,

the integrated emulator of system e1→2 consisting of f1 and f2) and f̂3
(i.e., the GP emulator of f3) to the variance of integrated emulator ê1→3;

4: if l0 = 1 then
5: Compute V 1→2

k (x0) for k ∈ {1, 2} according to Theorem 3.1, where

V 1→2
k (x0) is the contribution of f̂k to the variance of integrated emulator
ê1→2;

6: if V 1→2
1 (x0) > V 1→2

2 (x0) then

7: Enrich the training points for f̂1 by evaluating f1 at the input
position x0;

8: else
9: Enrich the training points for f̂2 by evaluating f2 at the input

position µ1(x0), obtained by evaluating the predictive mean µ1 of

f̂1 at the input position x0;
10: end if
11: else
12: Enrich the training points for f̂3 by evaluating f3 at the input position

µI(x0), obtained by evaluating the predictive mean µI of ê1→2 at the
input position x0;

13: end if
14: Update the GP emulator f̂1, f̂2 or f̂3 with the added training point.
15: end for

the space-filling design. This is because in experiment 1 the gridded design

points for the global input x create designs for w1 and w2 that are relatively

well-spaced, producing the integrated emulator with comparable performance

to that trained by the adaptive design. On the contrary, in experiment 2 the

LHD of the global inputs x1 and x2 produce poor designs for f3 (i.e., designing

points are concentrated along one boundary of the input space), causing the

resulting integrated emulator with higher NRMSEP.
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(a) Experiment 1: 30 computer runs with the first 18 runs for the initial design

(b) Experiment 2: 30 computer runs with the first 21 runs for the initial design

Figure 3.16: The adaptive designs for the two synthetic experiments in Section 3.3.
In each sub-panel ((a) or (b)): (Top) the GP emulators of f1, f2 and
f3 trained after each enrichment (i.e., computer model run); (Bottom-
left) integrated emulator trained after each enrichment; (Bottom-right)
NRMSEP of the integrated emulator after each enrichment: the dashed
and dash-dot lines represent the NRMSEP of the composite and
integrated emulators trained with 10 equally spaced (for experiment
1) and maximin Latin hypercube (for experiment 2) designing points.
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Algorithm 7 Adaptive design for emulating the computer system in experiment
2 of Section 3.3

1: Choose K number of enrichment to the existing design.
2: for k = 1, . . . , K do
3: Find x0 and l0 such that

(x0, l0) = argmax
x, l∈{1, 2}

Vl(x),

where x = (x1, x2), x0 = (x01, x02), and V1(x) and V2(x) respectively

are contributions of ê1 (i.e., GP emulators f̂1 and f̂2 in the first layer)

and f̂3 to the variance of integrated emulator;
4: if l0 = 1 then
5: Compute V1k(x0) for k ∈ {1, 2} according to Proposition 3.2, where

V1k(x0) is the contribution of f̂k to the variance of integrated emulator;

6: if V11(x0) > V12(x0) then

7: Enrich the training points for f̂1 by evaluating f1 at the input
position x01;

8: else
9: Enrich the training points for f̂2 by evaluating f2 at the input

position x02;
10: end if
11: else
12: Enrich the training points for f̂3 by evaluating f3 at the input position

(µ1(x01), µ2(x02)), obtained by evaluating the predictive mean µ1 and

µ2 of f̂1 and f̂2 at the input position x01 and x02, respectively;
13: end if
14: Update the GP emulator f̂1, f̂2 or f̂3 with the added training point.
15: end for

3.6 Discussion

The development of integrated emulators depends on Assumption 1 and 2

presented in Section 3.2.2. The first assumption requires the trend function of

individual Gaussian process emulators in layer 2 and above have linear forms of

their respective inputs. This assumption generally is not an issue because one

can set constant trends for Gaussian process emulators and have the underlying

function forms to be explained by the chosen kernel functions (i.e., covariance

matrices). This constant trend specification is used in all examples illustrated

in this study to construct Gaussian process emulators. However, it is worth
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noting that well-specified trend functions can help reduce design points needed

to build Gaussian process emulators (e.g., a function with sine components can

be much easier to learnt by the Gaussian process with a sine trend), while it is a

challenging work to specify the trend function that is a good description of the

underlying black-box computer model. Therefore, there is a trade-off between

the modelling flexibility of Gaussian process emulators and the required cost of

designs (i.e., the number of computer model evaluations).

The second assumption asks for both independence and normality of input vari-

ables of individual Gaussian process emulators. The independence assumption

helps reduce analytical efforts in deriving the closed form mean and variance of

the integrated emulator. In addition, the consideration of dependence between

input variables requires specification of their dependence structures, which is a

difficult task as this requires careful dependence modelling and extra computa-

tional cost for Gaussian process model estimation and prediction. Nevertheless,

ignoring the dependence structure between input variables can cause biased

mean and variance of integrated emulators constructed by Theorem 3.1. To

show how such biases can be quantified, in Proposition 3.4 we present the mean

and variance of integrated emulators under the squared exponential kernel

when the dependence between inputs are considered.

Proposition 3.4 Assume that W ∼ MN (µ,Σ), where Σ is the covariance

matrix of W with diagonal elements being σ2
1(x1), . . . , σ

2
d(xd). The mean and

variance of the integrated emulator under the squared exponential kernel is given

by those from Theorem 3.1 with Ω = Σ and

• the i-th element of I:

Ii = ξ̃i

p∏
k=1

ck(zk, z
T
ik),

where

ξ̃i =
1√

|(Λ + Σ)Λ−1|
exp

{
−1

2
(ωTi − µ)>(Λ + Σ)−1(ωTi − µ)

}
with Λ = diag(

γ21
2
, . . . ,

γ2d
2

);
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• the ij-th element of J:

Jij = ζ̃ij

p∏
k=1

ck(zk, z
T
ik) ck(zk, z

T
jk),

where

ζ̃ij =
1√

|(Γ + Σ)Γ−1|
exp

{
−1

8
(ωTi − ωTj )>Γ−1(ωTi − ωTj )

}

× exp

−1

2

(
ωTi + ωTj

2
− µ

)>
(Γ + Σ)−1

(
ωTi + ωTj

2
− µ

)
with Γ = diag(

γ21
4
, . . . ,

γ2d
4

);

• the lj-th elemen of B:

Blj = ψ̃jl

p∏
k=1

ck(zk, z
T
jk),

where

ψ̃jl = el[Λ(Λ + Σ)−1µ+ Σ(Λ + Σ)−1ωTj ] ξ̃j.

Proof The proof is in Section C.4 of Appendix C. �

It can be seen from Proposition 3.4 that the covariance matrix Σ appears in

the forms of inversions and determinants of Λ+Σ and Γ+Σ in most cases and

appears only in these two forms (i.e., inversion and determinant) when the trend

function is set to a constant (i.e., B has no effects on the mean and variance

of integrated emulators). Thus, how much influence the correlations (i.e., the

off-diagonal elements of Σ) between input variables W have on integrated

emulators depends on the magnitudes of γ21 , . . . , γ
2
d . When the magnitudes of

γ21 , . . . , γ
2
d are sufficiently large such that Λ + Σ and Γ + Σ become diagonally

dominant, the inversions and determinants of Λ + Σ and Γ + Σ can be well

approximated by those of Λ + diag(Σ) and Γ + diag(Σ) (Demmel, 1992; Ipsen

and Lee, 2011). Thus, in practice one may first construct integrated emulators

by assuming independence and check the ratio of γ2i to σ2
i for all i = 1, . . . , d to

determine whether the dependence between input variables are non-negligible.

If the dependence is determined to be significant to the integrated emula-
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tion, one shall consider to build multivariate Gaussian process emulators to

incorporate the correlation structures between emulator outputs, which con-

sequently serve as the inputs to the linked Gaussian process emulators in the

context of integrated emulation. However, all these existing literature, such

as Rougier et al. (2009); Fricker et al. (2013); Zhang et al. (2015), only consider

dependence between outputs from a single emulator, while in the framework of

integrated emulation a Gaussian process emulator can have its inputs fed by

the outputs from different linked emulators. As a result, further studies need

to done to explore how dependence between outputs from different Gaussian

process emulators can be addressed during the integration of Gaussian process

emulators.

In Section 3.2.2, we have discussed some intuitions on why the Gaussian

assumption is important to have analytical expressions for integrated emulators

and justified the Gaussian approximation in terms of the KL divergence. It is

noted that one can use other distributions other than the Gaussian distribution

to approximate the true predictive distribution (named as exact integrated

emulator hereinafter) by minimising the KL divergence. However, whether these

distributions can be determined analytically and allow closed form expressions

for integrated emulators are not clear. In particular, the accuracy of Gaussian

approximation is not essential because the full probabilistic description is

considered as non-critical in the integrated emulation of deterministic computer

models. Instead, mean predictions and associated variances are treated as

the primitive quantities, which carries the information of individual computer

models and their structural relations by combining the mean predictions and

variances of individual GP emulators. For example, the smart designs and

some calibration methods such as the history matching (Vernon et al., 2014)

only require information of mean and variance of an emulator. Since the mean

and variance are key quantities for integrated emulation, it could be useful in

practice to conduct diagnosis on how well the analytical mean and variance

of the integrated emulator using the Gaussian approximation represent those
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of the exact integrated emulator. Figure 3.17 compares means and standard

deviations of the integrated emulator (for experiment 1 described in Section 3.3)

using the Gaussian approximation and those of the exact integrated emulator.

It can be observed that the mean and standard deviation of the exact integrated

emulator is well approximated by those of the integrated emulator using the

Gaussian approximation, even through there are slight underestimations of

large standard deviations with the approximation. For simple computer models

with low input dimensions such as the one in experiment 1, the diagnosis of

the mean-variance approximation can be implemented by generating samples

from the exact integrated emulator at a large amount of testing input locations

with a moderate computational cost. However, for computer models with a

high-dimensional input space, it becomes impractical to check the goodness of

the mean-variance approximation with a high number of testing input positions.

Therefore, one may only use a small number of testing positions, that are

space-filling conditional on the training positions, for the diagnosis.

(a) Mean (b) Standard Deviation

Figure 3.17: Comparison of means and standard deviations between the integrated
emulator using the Gaussian approximation and the exact integrated
emulator in experiment 1. The solid lines in (a) and (b) are the mean
and standard deviation of the exact integrated emulator, respectively;
the dashed lines in (a) and (b) are the mean and standard devia-
tion of the integrated emulator using the Gaussian approximation,
respectively; the filled circles are training points used to construct the
integrated emulators; the dashed vertical lines indicate the locations
of the training inputs.
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Even though we argue that it is not essential if the probability density of the

exact integrated emulator is not well captured by the Gaussian distribution

(as long as the mean and variance are sufficiently approximated) when the

underlying computer models are deterministic, such distributional discrepancy

can be problematic if the underlying computer models are stochastic and

one assumes that the outputs of individual computer models are Gaussian

distributed. For example, Figure 3.18(a) compares the probability densities of

the exact integrated emulator and the integrated emulator using the Gaussian

approximation. Both integrated emulators are constructed on the basis of eight

training points, which are assumed here as random realisations of the underlying

stochastic computer model given their input locations. It can be clearly observed

that the exact integrated emulator is not Gaussian distributed. The exact

integrated emulator has almost all of its probability density above zero. This is

because the Gaussian process emulator f̂3 of computer model f3 has a very low

predictive uncertainty over its input space (see top-right plot in Figure 3.16(a)

for an instance where the Gaussian process emulator of f3 is very accurate

even with six training points), and thus nearly all the probability densities

generated by the Gaussian process emulators of f1 and f2 are mapped above

zero by f̂3. Because of the Gaussian assumption, the integrated emulator using

the Gaussian approximation still puts some probability masses below zero even

though its variances capture those of the exact integrated emulator adequately

(see Figure 3.18(b)). Therefore, if the probability distribution is of concern to

the emulation (e.g., the computer model outputs are stochastic) the integrated

emulator using the Gaussian approximation could make wrong predictions.

For example, the integrated emulator using the Gaussian approximation in

Figure 3.18(a) can predict negative values with a high probability in some input

spaces of the underlying computer model.

Nevertheless, if the target system of computer models is deterministic, we

could safely ignore the distributional inaccuracy caused by the Gaussian ap-

proximation since the mean of the integrated emulator (using the Gaussian
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approximation) serves as the surrogate of the underlying deterministic computer

model while the corresponding variance serves as a predictive uncertainty mea-

surement from the emulator at unrealised input positions. If the eight training

points in Figure 3.18(a) are from a deterministic system, it can be observed

that the integrated emulator using the Gaussian approximation emulates the

underlying model well with its mean close to the true functional form, which

also fall within the prediction bounds (i.e., 5-th and 95-th percentiles). It

is noted that there are some discrepancies of the prediction bounds between

the approximated and exact integrated emulators. These discrepancies exist

because the Gaussian approximation in the approximated integrated emulator

distributes the probability masses differently from the exact integrated emu-

lator. However, as the distributional assumption is not critical for emulating

deterministic models, such discrepancies would not degrade subsequent analysis

based on the integrated emulator using the Gaussian approximation.

3.7 Conclusion

In this chapter, we generalise the linked emulator to the integrated emulator

for any feed-forward system of computer models. It explicitly exploits the

internal system structures to produce better predictive performance than the

composite emulator, which only learns the systems from the global inputs

and outputs. The integrated emulator is defined by employing a Gaussian

approximation with explicit mean and variance derived analytically under a

variety of kernel functions, offering a flexible and computationally efficient way

to emulate computer systems. The ability to use two key Matérn kernels is

essential to the success of the framework. It mitigates the numerical issues

while maintaining sufficient smoothness. The integrated emulation can also be

applied to systems with internal loops by utilising decoupling techniques. In

our experiment 1 and 2 above, significant reductions in predictive errors can

be gained by the integrated emulator with moderate-size designs. Compared

to the composite emulator, the integrated emulator can alternatively achieve
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(a) Probability Density Comparison (b) Standard Deviation Comparison

Figure 3.18: (a): Comparison of probability densities of the exact integrated emu-
lator and the integrated emulator using the Gaussian approximation.
The grey scattered particles are random samples generated from the
exact integrated emulator; the blue solid line is the true functional
form between the global input and output of the system; the dashed
green line is the mean prediction of the integrated emulator using
the Gaussian approximation; the dashed purple lines represents 5-th
and 95-th percentiles of the integrated emulator using the Gaussian
approximation; the filled circles are training points used to construct
the integrated emulators. (b): Comparison of standard deviations
between the exact integrated emulator and the integrated emulator
using the Gaussian approximation. The blue solid line is the standard
deviation of the exact integrated emulator and the dashed line is the
standard deviation of the integrated emulator using the Gaussian
approximation; the dashed vertical lines indicate the locations of the
training inputs.

similar error levels with reduced computational costs.

The integrated emulator also allows a smart adaptive designing strategy that

can further reduce the predictive errors (or computational cost) remarkably

by recognising the heterogeneous functional complexity of different computer

models. Although the adaptive design is only illustrated via a few synthetic

examples, we anticipate that the integrated emulator enhanced by this design

can achieve multiple orders of magnitude reductions in predictive errors with

moderate training cost in real systems, compared to the composite emulator.

Furthermore, since the integrated emulator may not show significant predictive

improvement with respective to the composite emulator when a single computer
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model dominates the functional complexity of the whole system, decomposition

of a sophisticated system into a number of small computer models with similar

functional complexity could take the advantages of the skills of the integrated

emulator. This opens the door to potentially very fruitful new multi-physics

approaches that split processes to facilitate surrogate modelling.

Finally, the integrated emulator offers a framework to unify and couple (simple

with sophisticated, statistical-based with physics-based) models and simulators

from distinct fields, creating opportunities to tackle challenges on integrating

different expertise involved in cross-disciplinary studies.



Chapter 4

Non-Stationary Gaussian

Processes using Deep Gaussian

Hierarchy

4.1 Introduction

The Gaussian process (GP) models often assume stationarity, which in practice

may not be adequate to capture non-stationary behaviours, i.e., changing

smoothness over input space, of underlying function. Many work have been

done on non-stationary GP models. For example, the Bayesian treed GP model

(TGP) proposed by Gramacy and Lee (2008) splits the input space into several

partitions and uses independent stationary GPs to each sub-region. Ba et al.

(2012) apply the composition of two stationary GPs to model both global and

local details of a non-stationary function. Other studies such as Montagna and

Tokdar (2016) use augmented kernel function and Volodina and Williamson

(2020) utilise mixtures of stationary GP processes to capture the non-stationarity.

However, most of the current work may not be extended easily to more general

non-stationary behaviours and require tailored kernel functions. In this chapter,

we present some preliminary work on a new type of non-stationary GP model

that is inspired by the deep Gaussian architectures (Duvenaud et al., 2014) and
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aims to automatically learn the non-stationarity exhibited by the target dataset.

Rather than adopting the conventional deep Gaussian process (DGP) models

used in studies such as Damianou and Lawrence (2013); Bui et al. (2016);

Salimbeni and Deisenroth (2017); Havasi et al. (2018), our model embeds the

deep Gaussian architecture into the mean function and variance components

of a Gaussian distribution analytically and we show that the resulting GP

is able to reproduce non-stationary features, such as jump discontinuity, and

heteroscedasticity, even only with a shallow hierarchy.

The remainder of the chapter is organised as follow. In Section 4.2, we describe

the construction of our non-stationary GP model and visualise the functional

behaviours it can produce. Then we show how to train the model via two

synthetic examples in Section 4.3. Section 4.4 concludes the chapter.

4.2 Model Specification

The work of Duvenaud et al. (2014) reveals that the paths of deep Gaussian ar-

chitecture exhibit non-stationary behaviours, thus our non-stationary GP model

is built by integrating L Gaussian process models GP1, . . . ,GPL connected in

a feed-forward hierarchy, as shown in Figure 4.1.

GP1x GP2 GP3 GPL yw1 w2 . . .

Layer 2 Layer 3 Layer LLayer 1

Figure 4.1: The hierarchy used to construct the non-stationary GP model.

Assume that we have N data points {xi, yi}i=1,...,N , the l-th GP model is

specified as

wl|wl−1 ∼ GP l(wl−1) = N
(
µl(wl−1), σ

2
l [Σl(wl−1) + ηlI]

)
, l = 1, . . . , L

where µl is a column vector of size N and Σl is a N × N diagonal matrix;

wl−1 = (wl−1,1, . . . , wl−1,N)> with w0 = x and wL = y; σ2
l and ηl are variance

and nugget at layer l.

To introduce non-stationarity into our model, we adopt the formulation of the
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sparse GP model proposed in Snelson and Ghahramani (2006) and specify the

i-th element of µl(wl−1) by

µl,i(wl−1) = ml(wl−1,i) = rl(wl−1,i)
>(Rl(w

p
l−1) + ηlI)−1wp

l (4.1)

and the i-th diagonal element of Σl(wl−1) by

Σl,i(wl−1) = vl(wl−1,i) = 1 + rl(wl−1,i)
>(Rl(w

p
l−1) + ηlI)−1rl(wl−1,i), (4.2)

where

wp
l |w

p
l−1 ∼ N

(
0, σ2

l

[
R(wp

l−1) + ηlI
])
. (4.3)

The above specification follows the GP predictive distribution but is conditional

on a set of unknown pseudo input wp
l−1 =

(
wpl−1,1, . . . , w

p
l−1,M

)>
and output

wp
l =

(
wpl,1, . . . , w

p
l,M

)>
for each layer l. As emphasised in Snelson and Ghahra-

mani (2006), the pseudo points induce extra flexibility to the model so that

the non-stationarity (i.e., heteroscedasticity in particular) could be achieved.

In equation (4.1) and (4.2), rl(wl−1,i) ∈ RM is the kernel vector with its j-th

element given by cl(wl−1,i, w
p
l−1,j), and Rl(w

p
l−1) ∈ RM×M is the kernel matrix

with its ij-th element given by cl(w
p
l−1,i, w

p
l−1,j). We employ in this study the

squared exponential kernel

cl(w,w
′) = exp

{
−(w − w′)2

γ2l

}
with γl being the length-scale for all layers l = 1, . . . , L.

Note that in our non-stationary model the pseudo points wp
l−1 and wp

l are

hidden values that need to be estimated. Therefore, for each layer l (i.e., each

GP l), we have a collection Φl of unknown model parameters,

Φl = {wp
l−1, wp

l , σ
2
l , ηl, γl} .

Assume that Φl are known for each layer, then the mean and variance of the

Gaussian approximation GP1→L(x) to the distribution associated with the

probability density
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p(y|x) =

∫ L∏
l=1

p(wl|wl−1) dwl,

where p(·) denotes the probability density function (PDF), can be achieved

using the moment matching approach presented in Chapter 3. Particularly,

because Σl are diagonal, the Theorem 3.1 and Proposition 3.3 can be applied

data point-wisely, i.e., GP1→L(x) can be obtained by constructing GP1→L(xi)

for each i independently. Figure 4.2 shows the mean and variance of the

Gaussian approximation GP1→L(x) with different number of layers, each of

which is generated with a realisation of a sequence of pseudo points sampled

from (4.3) over x ∈ (−4, 4). It can be seen that with a single layer we effectively

have the sparse GP model introduced in Snelson and Ghahramani (2006) that

is demonstrated to be able to capture heteroscedasticity. As the number of

layers increases, we observe that the Gaussian approximation exhibits more

non-stationary behaviours in its mean and heteroscedasticity in its variance.

This indicates that with the deep Gaussian hierarchy, GP1→L(x), which formally

defines our ultimate form of non-stationary GP model, could capture more

complex behaviours of a target dataset.

(a) 1 Layer (b) 2 Layers (c) 3 Layers (d) 4 Layers

Figure 4.2: Non-stationary Gaussian process GP1→L(x) for four different number
of layers (i.e., L = 1, 2, 3, 4). The number of pseudo points at each
layer is chosen to 10. Length scale γl, variance σ2l and nugget ηl are
set to 2√

π
, 1 and 10−8 uniformly for all layers. The solid line is the

mean and the shaded area represents uncertainty bound that equals to
2 standard deviations away from the mean.

Note that the flexibility of our model is induced by both the deep hierarchy and

the locations of pseudo points. One may choose a large number of layers for the
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model, while in our study we fix the total number of layers to be three for several

reasons. Firstly, with three layers we already observe sufficient non-stationary

features as implied in Figure 4.2. In addition, both Duvenaud et al. (2014)

and Dunlop et al. (2018) argue that a moderate number of layers would be

sufficient for inference and significant depth may even cause pathological issues.

Finally, incorporating deeper Gaussian architecture will lead greater number

of pseudo points and other model parameters, and thus may risk over-fitting

during the inference especially when the dataset is small, e.g., in the context

of surrogate modelling where only limited number of training data points are

available. In Section 4.3, we show how to adjust the locations of pseudo points

by means of optimisation, which provides a way to achieve automatic learning

of the non-stationarity inherent in the underlying process.

Since GP1→L(x) has diagonal covariance matrix (due to the diagonal covariance

matrix of GP l(·) for all l), after we obtain the estimates of model parameters

Φi=1,...,L the predictive distribution of our non-stationary GP model realised at

a new input position x∗ is given by GP1→L(x∗).

Although we introduce our non-stationary GP model under one-dimensional

setting (i.e., wl,i being scalar-valued), the extension to higher dimensions is

straightforward because the formulae provided by Theorem 3.1 can assemble

stationary GP models with any number of dimensions in different layers.

4.3 Model Inferences and Examples

Assume that we have a set of data {yD, xD} from an unknown process, then

the automatic learning of the pattern of the process (i.e., the inference of model

parameters) can be accomplished by the following maximum a posterior (MAP)

problem:

Φ̂l=1,...,L = argmax
Φl=1,...,L

log qL(yD|xD) + λ
L∑
l=1

log p(wp
l |w

p
l−1) , (4.4)
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where qL(y|x) denotes the PDF of y ∼ GP1→L(x); the second term serves as a

regulariser on the pseudo points to guard against the over-fitting; and λ ≥ 0 is

the regularisation parameter that controls the weight of the regularisation.

To examine the performance of our non-stationary GP model and the inference

method given by (4.4), we conduct a synthetic experiment on a step function,

f(x) =

−1, x ≤ 0

1, x > 0

for x ∈ [−1, 1], which has been extensively used by many studies (Vafa, 2016;

Montagna and Tokdar, 2016; Dunlop et al., 2018) to test non-stationary models.

We train our non-stationary GP model with 10 equally spaced data points

sampled from the step function. Figure 4.3 compares the performance of our

non-stationary GP model to the stationary GP model (with squared exponential

kernel) trained by the MAP method via the R package RobustGaSP (Gu et al.,

2018) with and without the nugget. It can be seen that our non-stationary GP

models outperform the conventional GPs both in terms of the mean prediction

and the uncertainty bound. It is also demonstrated that by adjusting the

value of regularisation parameter λ we are able to improve the fitting of our

non-stationary GP model to the data.

(a) GP without nugget (b) GP with nugget (c) NstGP (λ = 0.3) (d) NstGP (λ = 1.0)

Figure 4.3: Comparison of our non-stationary (Nst) GP models (trained by opti-
misation problem (4.4)) to the stationary GP model with and without
the nugget. For our non-stationary GP models, we choose L = 3 and
M = 8. The solid line is the true data generating process; the dashed
line is the mean prediction; the shaded area represents 95% prediction
interval; the filled circles are sampled training points used to construct
the models.
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To further investigate the inference method (4.4), we train our non-stationary

GP model to the motorcycle accident dataset (see the filled circles in Figure 4.4)

used by Silverman (1985) and recent studies (Rasmussen and Ghahramani,

2002; Gramacy and Lee, 2008) to demonstrate the successful non-stationary

modelling. The dataset gives the measurements of the motorcycle helmet

acceleration over time after an accident. It can be observed that the dataset

roughly has three regimes: a flat low-noise phase over (0ms, 15ms), a curved

noisy section between (15ms, 35ms), and a smooth region after 35ms with

moderate noises. From Figure 4.4(a), we see that the stationary GP is unable

to capture the first linear section with low noises and the final smooth region

with moderate noises. All the non-stationary GP models in Figure 4.4 learn

the first region of data well, while it seems that the model in Figure 4.4(b)

experiences over-fitting when λ = 0.3. The over-fitting emerges because the

pseudo points are located close to the training data that are also near the

predictive mean, causing the variance of the model realised at positions around

the pseudo points shrinking to zero. The issue could be partially mitigated by

increasing the value of λ, as shown in Figure 4.4(c) when λ = 1.0. However, we

found that some pseudo points are placed on top of others. This clumping effect,

as discussed by Bauer et al. (2016) in the context of sparse GP inference, can

be explained by the mechanism of the inference method (4.4) that tries to learn

better the heteroscedastic noise in data by avoiding to spread out the pseudo

points. We argue that this is not a pleasant feature of the inference method

because there is a waste of the resources (e.g., the model flexibility offered by

additional pseudo points and computational efforts required to accommodate

extra pseudo points) and increasing the number of pseudo points may not

improve the modelling performance. The latter argument is showcased by the

scenario in Figure 4.4(d), where the added pseudo points are clustered and do

not help the model better represent the up-and-down behaviours of acceleration

over (30ms, 35ms).

To address the issue encountered to the inference method describe above, we
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(a) Stationary GP (b) NstGP (λ = 0.3, M = 15)

(c) NstGP (λ = 1.0, M = 15) (d) NstGP (λ = 1.0, M = 30)

Figure 4.4: Comparison of the stationary GP model to our non-stationary (Nst) GP
models (trained by the optimisation problem (4.4)) using two different
values of the regularisation parameter λ and number of pseudo points
M . For our non-stationary GP models, we choose L = 3. The dashed
line is the mean prediction; the shaded area represents 95% prediction
interval; the filled circles are training points used to construct the
models; the cross markers are pseudo points represented by {wp

0,w
p
3}.

reformulate the optimisation problem (4.4) to the following:

Φ̂l=1,...,L = argmax
Φl=1,...,L

log gL(yD|xD)

−
L∑
l=1

1

2ηl
tr
(
Eql−1(wl−1|xD) [Σl(wl−1)]

)
+ λ

L∑
l=1

log p(wp
l |w

p
l−1) , (4.5)

where gL(y|x) denotes the PDF of y ∼ GP1→L(x) that approximates the PDF

p(y|x) =

∫ L∏
l=1

p(wl|wl−1) dwl

with wl|wl−1 ∼ GP l(wl−1) = N (µl(wl−1), σ
2
l ηlI). The formulation of objective

function in (4.5) stems from the work of Titsias (2009); Bauer et al. (2016)

and the first two terms can be seen as an optimisation problem in the sense
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of minimising the mean squared error between our non-stationary model and

the underlying data. Since gL(y|x) no longer propagates Σl over layers and

the maximisation of the second term in (4.5) means minimising the conditional

variances of data on the pseudo points at each layer, the inference method

given by (4.5) will spread out the pseudo points for such objective.

To test the performance of the inference method (4.5), we re-train our non-

stationary GP model to the motorcycle accident dataset. Figure 4.5 illustrates

the trained non-stationary models with two different choices of the number of

pseudo points. As it is expected, with the inference method (4.5) the pseudo

points are scattered evenly across the input space of the training data. In

addition, the predictive performance of the model is improved when the number

of pseudo points is increased. From Figure 4.5(b), we can clearly observe

from our model the three different regions indicated by the dataset. Since the

treed GP (Gramacy and Lee, 2008) is one of the most popular tools to model

non-stationarity, the treed GP model (see Figure 4.5(c)) is trained using the R

package tgp to the same motorcycle accident dataset. From Figure 4.5, we

observe that our model offers comparable modelling performance to that of the

treed GP model. Besides, our model provides tighter prediction interval than

the treed GP over the second (e.g., notice the spike of the predictive bound at

the beginning of the second region by the treed GP model) and third regions

because our model has built-in power to appreciate the heteroscedasticity.

Furthermore, due to the partition used in the treed GP, the predictive bound

of the treed GP model shows obvious tracks of the segmentation, while our

model provides smooth transitions across different regimes.

4.3.1 Implementation notes

We build our non-stationary GP model and the inference algorithms using

TensorFlow (Abadi et al., 2015) in Python and the optimisation for inference

problems (4.4) and (4.5) is implemented by the gradient descent-based method

Adam (Kingma and Ba, 2015). All the examples in the chapter are produced
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(a) NstGP (M = 15) (b) NstGP (M = 30) (c) Treed GP

Figure 4.5: Comparison of the treed GP to our non-stationary (Nst) GP models
(trained by the optimisation problem (4.5)) using two different number
of pseudo points M . We choose L = 3 and λ = 1.0. The dashed line is
the mean prediction; the shaded area represents 95% prediction interval;
the filled circles are training points used to construct the models; the
cross markers are pseudo points represented by {wp

0,w
p
3}. Some pseudo

points are out of the range of training data and thus not plotted.

after 1, 000 iterations of Adam by first (for the first 300 iterations) using learning

rate of 0.01 for quicker increase of the objective function and then (for the rest

700 iterations) 0.001 for fine-tuning. We initialise the nugget ηl and variance σ2
l

to 0.01 and 1 for all layers. As suggested in Vafa (2016), the initial length-scale

γl for each layer is set to the mode of the pair-wise distances between the

elements of xD. The number of pseudo points M is often chosen much smaller

than the total number of data points if the size of dataset is large, which

achieves sparse approximation and thus reduction of computational expenses.

Otherwise, its value can be set equal to the size of dataset. Once M is chosen,

we initialise the pseudo points {wp
0,w

p
3} by selecting an evenly-spaced subset

of {yD, xD} and set wp
2 = wp

1 = wp
0.

4.4 Conclusion

In this chapter, we introduce a non-stationary GP model based on deep Gaussian

hierarchy. Due to its hierarchical construction and introduction of pseudo points,

the non-stationary GP model has the flexibility to learn the underlying data

features automatically with its mean function representing non-stationarity

and its variance components characterising heteroscedasticity. Since the model
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has its roots to the sparse GP (Snelson and Ghahramani, 2006), it can be

naturally scaled to big data size by reducing the complexity of conventional

GP-based models from O(N3) to O(LNM2) when the number of pseudo points

M � N . In addition, the independence of data points specified in the model

would allow the inference to be handled by many state-of-the-art optimisers,

such as stochastic gradient descent (SGD), mini-batch gradient descent and

Adam, that could further reduce the complexity to O(LM3). This sparse

approximation incorporated in our model makes it more competitive than other

non-stationary models when the data size is huge. Our non-stationary GP

model is examined in a jump discontinuity function and a real dataset. The

resulting good modelling performance indicates that the proposed model could

be a promising candidate to model even high-dimensional datasets of large

sizes.



Chapter 5

Conclusions and Future

Directions

In this thesis, we explore the methodological development when Gaussian

processes are used in ground-motion prediction, emulation and non-stationary

modelling. In the first case, Gaussian processes are utilised to model the

ground-motion intensities with spatial correlation taken into account. A sta-

tistically robust estimation algorithm, called Scoring estimation approach, is

then proposed to train the model in comparison to the state-of-the-art tech-

nique that has bunch of statistical and numerical deficiencies. The approach

is demonstrated to be accurate on the estimation of model parameters and

able to capture the corresponding uncertainties, especially those of the spatial

correlation parameters, in terms of asymptotic standard deviations. Such un-

certainty measurement is not available for existing methods for ground-motion

modelling. Since the proposed Scoring estimation approach is consistent and

statistically efficient when model is well-specified, it allows us to examine the

impacts of the ignorance of spatial correlation on model parameter estimates

and the resulting ground-motion predictions.

The investigation in Chapter 2 provides two important implications for seismic

risk assessment. Firstly, as any estimation technique, the Scoring estimation

approach is only as good as the proposed ground-motion model. Therefore, a
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rigorous assessment of spatial correlation in the ground-motion data should be

addressed during the GMPE construction such that the resulting ground-motion

model is a good representation of the underlying data. In return, the Scoring

estimation approach can serve as a competitive method for accurate ground-

motion model estimation and shaking intensity map generation. Secondly, we

show that ignoring spatial correlation in ground-motion models can result in

overestimation of the inter-event variance and underestimation of the intra-

event variance, and such biases increase when the spatial correlation implied by

the underlying data becomes stronger and smoother. These results generalise

the findings of Jayaram and Baker (2010) and further emphasise the importance

to accurately estimate the inter-event and intra-event variances as their changes

“have implications for risk assessments of spatially-distributed systems” (Jayaram

and Baker, 2010).

There are several aspects of the work in Chapter 2 that can be further addressed

in future work. Firstly, we could consider non-stationary and anisotropic kernels

in modelling spatial structure as the correlation of the intensity measures

between two sites are also related to their soil conditions and distances to the

epicentre. This is particularly sensible because the ground-motion intensities

of two sites, even though they are far away, may strongly correlated if their

distances to the fault are similar. Another aspect that is worth exploring

is the assumption of independence between earthquakes. This assumption

is crucial to the validation of consistency and statistical efficiency offered by

the Scoring estimation approach. However, if the earthquake events in the

dataset are correlated, e.g., there are main-shocks and after-shocks, one needs

to shown theoretically under what extra conditions such statistical properties

would still hold. Finally, since only mean predictions are considered in the

work, the predictive uncertainties should be incorporated in the future as they

can enhance the predictive capacity of shaking intensity maps, which in turn

provide additional information for decision-makers.

In Chapter 3, we generalise the linked emulator to the integrated emulator
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for any feed-forward systems of computer models. This integrated emulator

combines individual Gaussian process emulators analytically, providing a flexible

and fast way for its construction. Furthermore, the integrated emulation and its

bespoke designing strategies could reduce orders of magnitude computational

costs and predictive errors. This methodological development enables a more

cost-efficient construction of surrogate models for systems of computer models,

such as climate models, in many research areas, and opens several potential

future research directions.

The first research direction is how to incorporate dimension reduction into the

framework. Many computer systems have high-dimensional data (e.g., maps

or time series) transferred from one computer model to another. For example,

in the earthquake-induced tsunami model the outputs from the earthquake

simulator, e.g., SPECFEM3D (Komatitsch and Tromp, 2002a,b) is a time

series of high-dimensional displacement fields, which consequently serve as

the input to the tsunami simulator, e.g., VOLNA (Reguly et al., 2018). This

high-dimensional output from the earthquake simulator poses a challenging

issue for training the integrated emulator. One option to resolve this issue

could be reducing the dimensions of the output from the earthquake model by

dimension reduction techniques and then building the integrated emulator on

GP emulators of earthquake and tsunami simulators with the low-dimensional

manifold. However, this solution treats dimension reduction as a pre-step and

how such procedure would affect the accuracy of the final emulation is worth a

further investigation. In addition, one may try to come up with a method to

integrate the dimension reduction naturally into the integrated emulation.

Another research direction is how to apply the integrated emulation to systems

with feed-back coupled computer models in a natural way. In Chapter 3 we

address the issue by fixing values of weakly coupled variables in a feed-back

coupled system so that it is transformed into a feed-forward system. However,

the detection of weakly coupled variables can be computationally expensive

and in some complex systems such procedure may soon become infeasible.
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Therefore, complex feed-back coupled systems should be investigated more

thoroughly. One possible solution would be using GP emulators to represent

the functional relations of computer model inputs and the stabilised values of

feed-back coupled variables. In this way, any feed-back coupled system can be

emulated naturally by our framework.

Note that Algorithm 6 and 7 may not be the only applicable adaptive design

strategies for the integrated emulation of the two synthetic systems in Chapter 3.

Thus, one may investigate further on other variants of the proposed adaptive

design depending on the system structures at hand by using the key results

from Theorem 3.1 and Proposition 3.2. For example, in a computer system with

large number of layers one may apply adaptive designs at each iteration of the

iterative procedure for the integrated emulation. It is also worth investigating

further on how to efficiently and effectively conduct the optimisation of the

maximisation problems involved in these algorithms when the global input

space is high dimensional.

It would be also interesting to extend the integrated emulator to accommodate

sparse Gaussian processes (Quiñonero-Candela and Rasmussen, 2005; Liu et al.,

2020). It may seem that it is not necessary to utilise sparse GP in the context

of emulation as we often have small number of computer runs (i.e., training

data points). However, many modern computer models have high-dimensional

outputs (e.g., time series and maps). These high-dimensional outputs are

often tackled by dimension reduction such as principle component analysis

(PCA) (Salter et al., 2019) or by construction of emulators for individual output

dimensions. Nevertheless, the former approach may not always work if the

output is highly nonlinear or the lower-dimensional manifold does not exist.

The latter approach may soon become computationally infeasible if the output

dimension is too high and cannot provide emulators at output locations that

are not generated by the computer model. Alternatively, the sparse Gaussian

processes could be used to address the issues by including the coordinates (for

maps) or time stamps (for times series) into the model inputs, and the resulting
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GP model could naturally give uncertainty predictions at positions that are

not produced by the simulator under different model settings.

The non-stationary GP model proposed in Chapter 4 has many potentials to be

explored in the future. For example, its performance needs to be investigated

in datasets with more than one dimensional inputs. One possible candidate

would be the synthetic earthquake surface deformation field (Okada, 1985),

which has discontinuity along the fault trace (i.e., the intersection of the fault

plane with the ground surface). Besides, since the non-stationary GP model is

built from the moment matching technique, it is straightforward to incorporate

the model into the framework of integrated emulation. Therefore, how the

predictive performance of integrated emulator improves with the incorporation

of non-stationary GP model would be an interesting future research direction.

The nature of the non-stationary GP model indicates that it may not interpolate

the training data points, and thus challenges, such as how to implement efficient

sequential design strategies when it is used for the emulation of deterministic

functions, need to be tackled. The current inference method for the model is

based on the MAP, while it would be worth exploring fully Bayesian approach

so that the over-fitting issue could be further addressed and the uncertainties

of pseudo points are taken into account.



Appendix A

Proofs in Chapter 2

A.1 Proof of Equation (2.6)

The semivariogram of ε̃ is defined by

γ(ε̃ij, ε̃ij′) =
1

2
var(ε̃ij − ε̃ij′).

Then, we have

γ(ε̃ij, ε̃ij′) =
1

2
E
[(εij

σ
− εij′

σ

)2]
=

1

2σ2
E
[
(εij − εij′)2

]
=

1

2σ2

(
E[ε2ij] + E[ε2ij′ ]− 2E[εijεij′ ]

)
=

1

2σ2
var(εij) +

1

2σ2
var(εij′)−

1

σ2
cov(εij, εij′)

=1− k(sij, sij′).

Since the kernel function is stationary and isotropic, we have

k(sij, sij′) = k(di,jj′)

with di,jj′ = ‖sij − sij′‖2. Thus, the semivariogram of ε̃ is a function of di,jj′ :

γ(ε̃ij, ε̃ij′) = γ(di,jj′) = 1− k(di,jj′).

Then, for all site pairs (j, j′) such that di,jj′ = d we have

γ(d) = 1− k(d).
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A.2 Alternative Construction of the Re-

Estimation Procedure

In this section, we show how to reconstruct the re-estimation procedure based

on the idea of the EM algorithm.

Treating the random effects ηi=1,...,N as unobservable, at iteration k + 1 we

first increase l(σ̂2
(k)
, τ̂ 2

(k)
, b|ω = ω̂) with respect to b via one Expectation-

Maximisation (EM) step, which consists of an E-step and a M-step:

• E-step: find the expected log-likelihood function

Q(σ̂2
(k)
, τ̂ 2

(k)
, b|ω = ω̂) =

N∑
i=1

E
[
lFi (σ̂2

(k)
, τ̂ 2

(k)
, b|ω = ω̂)

]
,

where the expectation is taken with respect to ηi=1,...,N conditional on

Yi=1,...,N and estimates σ̂2
(k)

, τ̂ 2
(k)

and b̂(k) ; and

lFi (σ̂2
(k)
, τ̂ 2

(k)
, b|ω = ω̂)

= ln f(Yi|ηi)f(ηi)|
σ2=σ̂2

(k)
, τ2=τ̂2

(k)
,ω=ω̂

∝− 1

2
ln τ̂ 2

(k)
− 1

2
ln |σ̂2

(k)
Ωi(ω̂)| − 1

2τ̂ 2
(k)
η2i

− 1

2σ̂2
(k)

[Yi − f(Xi, b)− ηi1ni ]>Ω−1i (ω̂)[Yi − f(Xi, b)− ηi1ni ];

• M-step: obtain the estimate b̂(k+1) such that

Q(σ̂2
(k)
, τ̂ 2

(k)
, b̂(k+1)|ω = ω̂) ≥ Q(σ̂2

(k)
, τ̂ 2

(k)
, b̂(k)|ω = ω̂).

Up to a constant, the expected log-likelihood function can be written as

Q(σ̂2
(k)
, τ̂ 2

(k)
, b|ω = ω̂)

∝− N

2
ln τ̂ 2

(k)
− 1

2

N∑
i=1

ln |σ̂2
(k)

Ωi(ω̂)|

− 1

2τ̂ 2
(k)

N∑
i=1

η̂2i −
1

2σ̂2
(k)

N∑
i=1

tr
{
Ω−1i (ω̂)Vi

}
− 1

2σ̂2
(k)

N∑
i=1

[Yi − f(Xi, b)− η̂i1ni ]>Ω−1i (ω̂)[Yi − f(Xi, b)− η̂i1ni ],
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where

Vi = var(ηi|Yi, σ̂2
(k)
, τ̂ 2

(k)
, b̂(k), ω = ω̂)1ni×ni ,

η̂2i = E[η2i |Yi, σ̂2
(k)
, τ̂ 2

(k)
, b̂(k), ω = ω̂]

and

η̂i = E[ηi|Yi, σ̂2
(k)
, τ̂ 2

(k)
, b̂(k), ω = ω̂].

Note that

η̂i =E[ηi|Yi, σ̂2
(k)
, τ̂ 2

(k)
, b̂(k), ω = ω̂]

=τ̂ 2
(k)

1>ni

(
τ̂ 2

(k)
1ni×ni + σ̂2

(k)
Ωi(ω̂)

)−1
[Yi − f(Xi, b̂(k))], (A.1)

where the second equality is given by the formula for the expectation of the

conditional multivariate normal distribution (Flury, 2013). Also note that(
τ̂ 2

(k)
1ni×ni + σ̂2

(k)
Ωi(ω̂)

)−1
=
(
σ̂2

(k)
Ωi(ω̂)

)−1
−
(
σ̂2

(k)
Ωi(ω̂)

)−1
1ni

(
1

τ̂ 2
(k)

+ 1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1
1ni

)−1
1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1

=
(
σ̂2

(k)
Ωi(ω̂)

)−1
−

(
σ̂2

(k)
Ωi(ω̂)

)−1
1ni1

>
ni

(
σ̂2

(k)
Ωi(ω̂)

)−1
1

τ̂2
(k) + 1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1
1ni

, (A.2)

where the first step uses the Woodbury identity (Petersen and Pedersen, 2012).

Plugging equation (A.2) into (A.1), we have

η̂i =
1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1
1

τ̂2
(k) + 1>ni

(
σ̂2

(k)
Ωi(ω̂)

)−1
1ni

[Yi − f(Xi, b̂(k))]

=

1

σ̂2
(k) 1>ni Ω

−1
i (ω̂) [Yi − f(Xi, b̂(k))]

1

τ̂2
(k) + 1

σ̂2
(k) 1>ni Ω

−1
i (ω̂) 1ni

,

which equals to equation (2.8) in step 3 of Algorithm 1 (re-estimation proce-

dure).

In M-step (corresponding to step 4 in the Algorithm 1) we obtain the estimate
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b(k+1) by solving the generalised least squares problem:

b̂(k+1) = arg min
N∑
i=1

[Yi− f(Xi, b)− η̂i1ni ]>Ω−1i (ω̂)[Yi− f(Xi, b)− η̂i1ni ].

Then we have

Q(σ̂2
(k)
, τ̂ 2

(k)
, b̂(k+1)|ω = ω̂) ≥ Q(σ̂2

(k)
, τ̂ 2

(k)
, b̂(k)|ω = ω̂)

and subsequently, by monotonicity one obtains that

l(σ̂2
(k)
, τ̂ 2

(k)
, b̂(k+1)|ω = ω̂) ≥ l(σ̂2

(k)
, τ̂ 2

(k)
, b̂(k)|ω = ω̂). (A.3)

Finally, we obtain estimates σ̂2
(k+1)

and τ̂ 2
(k+1)

by solving

(σ̂2
(k+1)

, τ̂ 2
(k+1)

) = arg max l
(
σ2, τ 2

∣∣∣b = b̂(k+1), ω = ω̂
)
,

which is the step 5 in the Algorithm 1 and implies that

l(σ̂2
(k+1)

, τ̂ 2
(k+1)

, b̂(k+1)|ω = ω̂) ≥ l(σ̂2
(k)
, τ̂ 2

(k)
, b̂(k+1)|ω = ω̂),

and by inequality (A.3)

l(σ̂2
(k+1)

, τ̂ 2
(k+1)

, b̂(k+1)|ω = ω̂) ≥ l(σ̂2
(k)
, τ̂ 2

(k)
, b̂(k)|ω = ω̂).

A.3 Proof of Theorem 2.1

The elements of gradient S(α) and expected information matrix I(α) can be

calculated as follow:

• the i-th element of Sb(α):

[Sb(α)]i =
∂l(α)

∂bi

=
1

2

{[
∂f(X, b)

∂bi

]>
C−1(θ)[Y − f(X, b)]

+ [Y − f(X, b)]>C−1(θ)

[
∂f(X, b)

∂bi

]}

=

[
∂f(X, b)

∂bi

]>
C−1(θ)[Y − f(X, b)],

where the last equality uses the fact that the transpose of a scalar is the
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same scalar;

• the i-th element of Sθ(α):

[Sθ(α)]i =
∂l(α)

∂θi

=− 1

2

1∣∣C(θ)
∣∣ ∂
∣∣C(θ)

∣∣
∂θi

− 1

2
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=− 1

2
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}
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=− 1
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∂θi

}
+

1

2
[Y − f(X, b)]>C−1(θ)

∂C(θ)

∂θi
C−1(θ)[Y − f(X, b)],

where the third and last steps use the following two matrix derivative

identities:
∂
∣∣C(θ)

∣∣
∂θi

=
∣∣C(θ)

∣∣tr{C−1(θ)
∂C(θ)

∂θi

}
(A.4)

and
∂C−1(θ)

∂θi
= −C−1(θ)

∂C(θ)

∂θi
C−1(θ) (A.5)

respectively from Petersen and Pedersen (2012);

• the ij-th element of Ibb(α):

[Ibb(α)]ij

=E
[
∂l(α)

∂bi

∂l(α)

∂bj

]
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• the ij-th element of Iθθ(α) :

[Iθθ(α)]ij

=E
[
∂l(α)

∂θi

∂l(α)

∂θj

]
=− E

[
∂2l(α)

∂θi∂θj

]
=

1

2
E
[
tr

{
∂C−1(θ)

∂θj

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}]
− 1

2
E
[
[Y − f(X, b)]>

∂

∂θj

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

)
[Y − f(X, b)]

]
=

1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}
− 1

2
E
[
tr

{
[Y − f(X, b)]>

∂

∂θj

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

)
[Y − f(X, b)]

}]
=

1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}
− 1

2
E
[
tr

{
∂

∂θj

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

)
[Y − f(X, b)][Y − f(X, b)]>

}]
=

1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}
− 1

2
tr

{
∂

∂θj

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

)
E
{

[Y − f(X, b)][Y − f(X, b)]>
}}

=
1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}
− 1

2
tr

{
∂

∂θj

(
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

)
C(θ)

}
=

1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

}
− 1

2
tr

{
−C−1(θ)

∂C(θ)

∂θj
C−1(θ)

∂C(θ)

∂θi
+ C−1(θ)

∂2C(θ)

∂θi∂θj

−C−1(θ)
∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

}
=

1

2
tr

{
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

}
;
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• the ij-th element of Ibθ(α):

[Ibθ(α)]ij =E
[
∂l(α)

∂bi

∂l(α)

∂θj

]
=− E

[
∂2l(α)

∂bi∂θj

]
=− E

{[
∂f(X, b)

∂bi

]>
∂C−1(θ)

∂θj
[Y − f(X, b)]

}

=−
[
∂f(X, b)

∂bi

]>
∂C−1(θ)

∂θj
E [Y − f(X, b)]

=0;

• Since Iθb(α) and Ibθ(α) are symmetric, we have

Iθb(α) = I>bθ(α) = 0.

Replacing Iθb(α̂(k)) and Ibθ(α̂
(k)) by 0 in equation (2.12) proves the theorem.

A.4 Proof of Theorem 2.2

Denote by the following vector the model parameters γ and θ, according to

a =

γ
θ

 .
Then, we have l(α) = l(a, β), and given fixed a the log-likelihood function

l(a, β) is maximised when

β =
[
g>(X, γ)C−1(θ)g(X, γ)

]−1 [
g>(X, γ)C−1(θ)Y

]
. (A.6)

This allows the profile log-likelihood function

M(a) = l(a, h(a)), (A.7)

where

h(a)
def
=
[
g>(X, γ)C−1(θ)g(X, γ)

]−1 [
g>(X, γ)C−1(θ)Y

]
.
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Taking first order derivative with respect to a on both sides of (A.7), we have

∂M(a)

∂a
=
∂l(a, β)

∂a

∣∣∣∣
β=h(a)

+

(
∂h(a)

∂a>

)> [
∂l(a, β)

∂β

]
β=h(a)

=
∂l(a, β)

∂a

∣∣∣∣
β=h(a)

, (A.8)

where the last equality uses the fact that β = h(a) is the solution of

∂l(a, β)

∂β
= 0.

Now if we evaluate a at its estimate â(k) at iteration k, we have

β̂(k) = h
(
â(k)
)
.

Then from equality (A.8), we obtain that

∂M(a)

∂a

∣∣∣∣
a=â(k)

=
∂l(a, β)

∂a

∣∣∣∣
a=â(k),β=β̂(k)

. (A.9)

Denote the Score function of M(a) by

SM(a) =
∂M(a)

∂a
.

Then, we have from equality (A.9) that

SM(â(k)) = Sa(α̂(k)).

Since
∂l(a, β)

∂β

∣∣∣∣
β=h(a)

= 0,

taking derivative with respect to a gives

∂2l(a, β)

∂a∂β>

∣∣∣∣
β=h(a)

+

(
∂h(a)

∂a>

)> [
∂2l(a, β)

∂β ∂β>

]
β=h(a)

= 0. (A.10)

Taking expectation on both sides of (A.10), we have

E

[
∂2l(a, β)

∂a∂β>

∣∣∣∣
β=h(a)

]
+

(
∂h(a)

∂a>

)>
E

[
∂2l(a, β)

∂β ∂β>

∣∣∣∣
β=h(a)

]
= 0.

Evaluating a at â(k) with

β̂(k) = h
(
â(k)
)
,
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we obtain

E
[
∂2l(a, β)

∂a∂β>

]
a=â(k),β=β̂(k)

+

(
∂h(a)

∂a>

)> ∣∣∣∣
a=â(k)

E
[
∂2l(a, β)

∂β ∂β>

]
a=â(k),β=β̂(k)

= 0.

Thus,

Iaβ

(
α̂(k)

)
+

(
∂h(a)

∂a>

)> ∣∣∣∣
a=â(k)

Iββ
(
α̂(k)

)
= 0,

which gives (
∂h(a)

∂a>

)> ∣∣∣∣
a=â(k)

= −Iaβ

(
α̂(k)

) [
Iββ

(
α̂(k)

)]−1
(A.11)

Taking derivative with respect to a on both sides of (A.8), we have

∂2M(a)

∂a∂a>
=
∂2l(a, β)

∂a∂a>

∣∣∣∣
β=h(a)

+

(
∂h(a)

∂a>

)> [
∂2l(a, β)

∂β ∂a>

]
β=h(a)

(A.12)

Taking expectation on both sides of (A.12) and evaluating a at â(k) with

β̂(k) = h
(
â(k)
)
,

we obtain

E
[
∂2M(a)

∂a∂a>

]
a=â(k)

=E
[
∂2l(a, β)

∂a∂a>

]
a=â(k),β=β̂(k)

+

(
∂h(a)

∂a>

)> ∣∣∣∣
a=â(k)

E
[
∂2l(a, β)

∂β ∂a>

]
a=â(k),β=β̂(k)

. (A.13)

Denote the expected information matrix of M(a) by

IM(a) = −E
[
∂2M(a)

∂a∂a>

]
.

Then, equation (A.13) gives

IM
(
â(k)
)

= Iaa

(
α̂(k)

)
+

(
∂h(a)

∂a>

)> ∣∣∣∣
a=â(k)

Iβa

(
α̂(k)

)
. (A.14)

Plugging (A.11) into (A.14), we have

IM
(
â(k)
)

= Iaa

(
α̂(k)

)
− Iaβ

(
α̂(k)

)
I−1ββ

(
α̂(k)

)
Iβa

(
α̂(k)

)
.
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The Scoring update scheme to find the estimate of a that maximises M(a) is

then given by

â(k+1) = â(k) + I−1M
(
â(k)
)
SM

(
â(k)
)

= â(k) +
[
Iaa

(
α̂(k)

)
− Iaβ

(
α̂(k)

)
I−1ββ

(
α̂(k)

)
Iβa

(
α̂(k)

)]−1
Sa(α̂(k)),

(A.15)

where

Iaa

(
α̂(k)

)
=

Iγγ
(
α̂(k)

)
Iγθ
(
α̂(k)

)
Iθγ
(
α̂(k)

)
Iθθ
(
α̂(k)

)
 ,

Iaβ

(
α̂(k)

)
=

Iγβ
(
α̂(k)

)
Iθβ
(
α̂(k)

)
 ,

Iβa

(
α̂(k)

)
= I>aβ

(
α̂(k)

)
and

Sa(α̂(k)) =

Sγ(α̂(k))

Sθ(α̂
(k))

 .
By elementary calculations analogous to those used in Section A.3 of this

appendix, we have that

• the i-th element of Sγ(α) is given by

[Sγ(α)]i =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)[Y − g(X, γ)β] ;

• The i-th element of Sθ(α) is given by

[Sθ(α)]i =− 1

2
tr

{
C−1(θ)

∂C(θ)

∂θi

}
+

1

2
[Y − g(X, γ)β]>C−1(θ)

∂C(θ)

∂θi
C−1(θ)[Y − g(X, γ)β];

• Sβ(α) is given by

Sβ(α) = g(X, γ)>C−1(θ)[Y − g(X, γ)β];
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• the ij-th element of Iγγ(α) is given by

[Iγγ(α)]ij =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)

∂g(X, γ)

∂γj
β;

• the ij-th element of Iθθ(α) is given by

[Iθθ(α)]ij =
1

2
tr

{
C−1(θ)

∂C(θ)

∂θi
C−1(θ)

∂C(θ)

∂θj

}
;

• Iββ(α) is given by

Iββ(α) = g(X, γ)>C−1(θ)g(X, γ);

• the i-th row of Iγβ(α)
(
or the i-th column of Iβγ(α)

)
is given by

[Iγβ(α)]i∗ = [Iβγ(α)]>∗i =

[
∂g(X, γ)

∂γi
β

]>
C−1(θ)g(X, γ) ;

• Iγθ(α) = I>θγ(α) = 0;

• Iθβ(α) = I>βθ(α) = 0.

Replacing Iγθ(α), Iθγ(α), Iθβ(α) and Iβθ(α) by 0 in (A.15), we obtainγ̂(k+1)

θ̂(k+1)

 =

γ̂(k)

θ̂(k)


+

[Iγγ (α̂(k)
)
− Iγβ

(
α̂(k)

)
I−1ββ

(
α̂(k)

)
Iβγ
(
α̂(k)

)]−1
0

0 I−1θθ
(
α̂(k)

)
Sγ

(
α̂(k)

)
Sθ
(
α̂(k)

)
 ,

which yields

γ̂(k+1) = γ̂(k) +
[
Iγγ
(
α̂(k)

)
− Iγβ

(
α̂(k)

)
I−1ββ

(
α̂(k)

)
Iβγ
(
α̂(k)

)]−1
Sγ
(
α̂(k)

)
(A.16)

θ̂(k+1) = θ̂(k) + I−1θθ
(
α̂(k)

)
Sθ
(
α̂(k)

)
. (A.17)

Plugging estimates γ̂(k+1) and θ̂(k+1) in (A.16) and (A.17) into (A.6), we obtain

the updating equations for the estimate of β, which concludes the proof.



Appendix B

Expressions for Proposition 3.3

B.1 Exponential Case

ξik = exp

{
σ2
k + 2γk

(
wTik − µk

)
2γ2k

}
Φ

(
µA − wTik

σk

)

+ exp

{
σ2
k − 2γk

(
wTik − µk

)
2γ2k

}
Φ

(
wTik − µB

σk

)
,

ζijk =

hζ
(
wTik, w

T
jk

)
, wTjk ≥ wTik ,

hζ
(
wTjk, w

T
ik

)
, wTjk < wTik ,

ψjk = exp

{
σ2
k + 2γk

(
wTjk − µk

)
2γ2k

}[
µAΦ

(
µA − wTjk

σk

)
+

σk√
2π

exp

{
−
(
wTjk − µA

)2
2σ2

k

}]

− exp

{
σ2
k − 2γk

(
wTjk − µk

)
2γ2k

}[
µBΦ

(
wTjk − µB

σk

)
− σk√

2π
exp

{
−
(
wTjk − µB

)2
2σ2

k

}]
,

where Φ(·) denotes the cumulative density function of the standard normal;

hζ (x1, x2) = exp

{
2σ2

k + γk (x1 + x2 − 2µk)

γ2k

}
Φ

(
µC − x2
σk

)
+ exp

{
−x2 − x1

γk

}[
Φ

(
x2 − µk
σk

)
− Φ

(
x1 − µk
σk

)]
+ exp

{
2σ2

k − γk (x1 + x2 − 2µk)

γ2k

}
Φ

(
x1 − µD
σk

)
;

and

µA = µk −
σ2
k

γk
, µB = µk +

σ2
k

γk
, µC = µk −

2σ2
k

γk
and µD = µk +

2σ2
k

γk
.
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For notational convenience, in the above result we replace the index variable l

in the subscript of ψjl by k, and µk(xk) and σk(xk) by µk and σk. This change

of notation is also applied in the remainder of the appendix.

B.2 Squared Exponential Case

ξik =
1√

1 + 2σ2
k/γ

2
k

exp

{
−
(
µk − wTik

)2
2σ2

k + γ2k

}
,

ζijk =
1√

1 + 4σ2
k/γ

2
k

exp

−
(
wTik+w

T
jk

2
− µk

)2
γ2k/2 + 2σ2

k

−
(
wTik − wTjk

)2
2γ2k

 ,

ψjk =
1√

1 + 2σ2
k/γ

2
k

exp

{
−
(
µk − wTjk

)2
2σ2

k + γ2k

}
2σ2

kw
T
jk + γ2kµk

2σ2
k + γ2k

.

B.3 Matérn-1.5 Case

ξik = exp

{
3σ2

k + 2
√

3γk
(
wTik − µk

)
2γ2k

}

×
[
E>1 Λ11Φ

(
µA − wTik

σk

)
+ E>1 Λ12

σk√
2π

exp

{
−(wTik − µA)2

2σ2
k

}]
+ exp

{
3σ2

k − 2
√

3γk
(
wTik − µk

)
2γ2k

}

×
[
E>2 Λ21Φ

(
wTik − µB

σk

)
+ E>2 Λ22

σk√
2π

exp

{
−(wTik − µB)2

2σ2
k

}]
,

ζijk =

hζ
(
wTik, w

T
jk

)
, wTjk ≥ wTik ,

hζ
(
wTjk, w

T
ik

)
, wTjk < wTik ,

ψjk = exp

{
3σ2

k + 2
√

3γk
(
wTjk − µk

)
2γ2k

}

×

[
E>1 Λ61Φ

(
µA − wTjk

σk

)
+ E>1 Λ62

σk√
2π

exp

{
−

(wTjk − µA)2

2σ2
k

}]

− exp

{
3σ2

k − 2
√

3γk
(
wTjk − µk

)
2γ2k

}

×

[
E>2 Λ71Φ

(
wTjk − µB

σk

)
+ E>2 Λ72

σk√
2π

exp

{
−

(wTjk − µB)2

2σ2
k

}]
,
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where

hζ (x1, x2) = exp

{
6σ2

k +
√

3γk (x1 + x2 − 2µk)

γ2k

}

×
[
E>3 Λ31Φ

(
µC − x2
σk

)
+ E>3 Λ32

σk√
2π

exp

{
−(x2 − µC)2

2σ2
k

}]
+ exp

{
−
√

3 (x2 − x1)
γk

}[
E>4 Λ41

(
Φ

(
x2 − µk
σk

)
− Φ

(
x1 − µk
σk

))

+ E>4 Λ42
σk√
2π

exp

{
−(x1 − µk)2

2σ2
k

}
− E>4 Λ43

σk√
2π

exp

{
−(x2 − µk)2

2σ2
k

}]

+ exp

{
6σ2

k −
√

3γk (x1 + x2 − 2µk)

γ2k

}

×
[
E>5 Λ51Φ

(
x1 − µD
σk

)
+ E>5 Λ52

σk√
2π

exp

{
−(x1 − µD)2

2σ2
k

}]
and

• Λ11 = [1, µA]>, Λ12 = [0, 1]>, Λ21 = [1, −µB]> and Λ22 = [0, 1]>;

• Λ31 = [1, µC , µ
2
C + σ2

k]
> and Λ32 = [0, 1, µC + x2]

>;

• Λ41 = [1, µk, µ
2
k + σ2

k]
>, Λ42 = [0, 1, µk + x1]

> and Λ43 = [0, 1, µk + x2]
>;

• Λ51 = [1, −µD, µ2
D + σ2

k]
> and Λ52 = [0, 1, −µD − x1]> ;

• Λ61 = [µA, µ
2
A + σ2

k]
>, Λ62 = [1, µA + wTjk]

>, Λ71 = [−µB, µ2
B + σ2

k]
> and

Λ72 = [1, −µB − wTjk]>;

• E1 =

[
1−
√

3wTik
γk

,

√
3

γk

]>
and E2 =

[
1 +

√
3wTik
γk

,

√
3

γk

]>
;

• E3 =

[
1 +

3x1x2 −
√

3γk (x1 + x2)

γ2k
,

2
√

3γk − 3 (x1 + x2)

γ2k
,

3

γ2k

]>
;

• E4 =

[
1 +

√
3γk (x2 − x1)− 3x1x2

γ2k
,

3 (x1 + x2)

γ2k
, − 3

γ2k

]>
;

• E5 =

[
1 +

3x1x2 +
√

3γk (x1 + x2)

γ2k
,

2
√

3γk + 3 (x1 + x2)

γ2k
,

3

γ2k

]>
;

• µA = µk −
√

3σ2
k

γk
, µB = µk +

√
3σ2

k

γk
, µC = µk −

2
√

3σ2
k

γk
, µD = µk +

2
√

3σ2
k

γk
.
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B.4 Matérn-2.5 Case

ξik = exp

{
5σ2

k + 2
√

5γk
(
wTik − µk

)
2γ2k

}

×
[
E>1 Λ11Φ

(
µA − wTik

σk

)
+ E>1 Λ12

σk√
2π

exp

{
−(wTik − µA)2

2σ2
k

}]
+ exp

{
5σ2

k − 2
√

5γk
(
wTik − µk

)
2γ2k

}

×
[
E>2 Λ21Φ

(
wTik − µB

σk

)
+ E>2 Λ22

σk√
2π

exp

{
−(wTik − µB)2

2σ2
k

}]
,

ζijk =

hζ
(
wTik, w

T
jk

)
, wTjk ≥ wTik ,

hζ
(
wTjk, w

T
ik

)
, wTjk < wTik ,

ψjk = exp

{
5σ2

k + 2
√

5γk
(
wTjk − µk

)
2γ2k

}

×

[
E>1 Λ61Φ

(
µA − wTjk

σk

)
+ E>1 Λ62

σk√
2π

exp

{
−

(wTjk − µA)2

2σ2
k

}]

− exp

{
5σ2

k − 2
√

5γk
(
wTjk − µk

)
2γ2k

}

×

[
E>2 Λ71Φ

(
wTjk − µB

σk

)
+ E>2 Λ72

σk√
2π

exp

{
−

(wTjk − µB)2

2σ2
k

}]
,

where

hζ (x1, x2) = exp

{
10σ2

k +
√

5γk (x1 + x2 − 2µk)

γ2k

}

×
[
E>3 Λ31Φ

(
µC − x2
σk

)
+ E>3 Λ32

σk√
2π

exp

{
−(x2 − µC)2

2σ2
k

}]
+ exp

{
−
√

5 (x2 − x1)
γk

}[
E>4 Λ41

(
Φ

(
x2 − µk
σk

)
− Φ

(
x1 − µk
σk

))

+ E>4 Λ42
σk√
2π

exp

{
−(x1 − µk)2

2σ2
k

}
− E>4 Λ43

σk√
2π

exp

{
−(x2 − µk)2

2σ2
k

}]

+ exp

{
10σ2

k −
√

5γk (x1 + x2 − 2µk)

γ2k

}

×
[
E>5 Λ51Φ

(
x1 − µD
σk

)
+ E>5 Λ52

σk√
2π

exp

{
−(x1 − µD)2

2σ2
k

}]
and
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• Λ11 = [1, µA, µ
2
A + σ2

k]
> and Λ12 = [0, 1, µA + wTik]

>;

• Λ21 = [1, −µB, µ2
B + σ2

k]
> and Λ22 = [0, 1, −µB − wTik]>;

• Λ31 = [1, µC , µ
2
C + σ2

k, µ
3
C + 3σ2

kµC , µ
4
C + 6σ2

kµ
2
C + 3σ4

k]
> ;

• Λ32 = [0, 1, µC +x2, µ
2
C +2σ2

k+x22+µCx2, µ
3
C +x32+x2µ

2
C +µCx

2
2+3σ2

kx2+

5σ2
kµC ]> ;

• Λ41 = [1, µk, µ
2
k + σ2

k, µ
3
k + 3σ2

kµk, µ
4
k + 6σ2

kµ
2
k + 3σ4

k]
> ;

• Λ42 = [0, 1, µk +x1, µ
2
k + 2σ2

k +x21 +µkx1, µ
3
k +x31 +x1µ

2
k +µkx

2
1 + 3σ2

kx1 +

5σ2
kµk]

> ;

• Λ43 = [0, 1, µk +x2, µ
2
k + 2σ2

k +x22 +µkx2, µ
3
k +x32 +x2µ

2
k +µkx

2
2 + 3σ2

kx2 +

5σ2
kµk]

> ;

• Λ51 = [1, −µD, µ2
D + σ2

k, −µ3
D − 3σ2

kµD, µ
4
D + 6σ2

kµ
2
D + 3σ4

k]
> ;

• Λ52 = [0, 1, −µD − x1, µ2
D + 2σ2

k + x21 + µDx1, −µ3
D − x31− x1µ2

D − µDx21−

3σ2
kx1 − 5σ2

kµD]> ;

• Λ61 = [µA, µ
2
A + σ2

k, µ
3
A + 3σ2

kµA]> ;

• Λ62 = [1, µA + wTjk, µ
2
A + 2σ2

k +
(
wTjk
)2

+ µAw
T
jk]
> ;

• Λ71 = [−µB, µ2
B + σ2

k, −µ3
B − 3σ2

kµB]> ;

• Λ72 = [1, −µB − wTjk, µ2
B + 2σ2

k +
(
wTjk
)2

+ µBw
T
jk]
> ;

• E1 =

[
1−
√

5wTik
γk

+
5
(
wTik
)2

3γ2k
,

√
5

γk
− 10wTik

3γ2k
,

5

3γ2k

]>
;

• E2 =

[
1 +

√
5wTik
γk

+
5
(
wTik
)2

3γ2k
,

√
5

γk
+

10wTik
3γ2k

,
5

3γ2k

]>
;

• E3 = [E30, E31, E32, E33, E34]
> ;

• E4 = [E40, E41, E42, E43, E44]
> ;

• E5 = [E50, E51, E52, E53, E54]
> ;
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• E30 =1 +
25x21x

2
2 − 3

√
5 (3γ3k + 5γkx1x2) (x1 + x2) + 15γ2k (x21 + x22 + 3x1x2)

9γ4k

E31 =
18
√

5γ3k + 15
√

5γk (x21 + x22)− (75γ2k + 50x1x2) (x1 + x2) + 60
√

5γkx1x2
9γ4k

E32 =
5
[
5x21 + 5x22 + 15γ2k − 9

√
5γk (x1 + x2) + 20x1x2

]
9γ4k

E33 =
10
(
3
√

5γk − 5x1 − 5x2
)

9γ4k
and E34 =

25

9γ4k
;

• E40 =1 +
25x21x

2
2 + 3

√
5 (3γ3k − 5γkx1x2) (x2 − x1) + 15γ2k (x21 + x22 − 3x1x2)

9γ4k

E41 =
5
[
3
√

5γk (x22 − x21) + 3γ2k (x1 + x2)− 10x1x2 (x1 + x2)
]

9γ4k

E42 =
5
[
5x21 + 5x22 − 3γ2k − 3

√
5γk (x2 − x1) + 20x1x2

]
9γ4k

E43 =− 50 (x1 + x2)

9γ4k
and E44 =

25

9γ4k
;

• E50 =1 +
25x21x

2
2 + 3

√
5 (3γ3k + 5γkx1x2) (x1 + x2) + 15γ2k (x21 + x22 + 3x1x2)

9γ4k

E51 =
18
√

5γ3k + 15
√

5γk (x21 + x22) + (75γ2k + 50x1x2) (x1 + x2) + 60
√

5γkx1x2
9γ4k

E52 =
5
[
5x21 + 5x22 + 15γ2k + 9

√
5γk (x1 + x2) + 20x1x2

]
9γ4k

E53 =
10
(
3
√

5γk + 5x1 + 5x2
)

9γ4k
and E54 =

25

9γ4k
;

• µA = µk −
√

5σ2
k

γk
, µB = µk +

√
5σ2

k

γk
, µC = µk −

2
√

5σ2
k

γk
, µD = µk +

2
√

5σ2
k

γk
.



Appendix C

Proofs in Chapter 3

C.1 Proof of Theorem 3.1

In this section, we prove Theorem 3.1 by considering not only the multiplicative

form of the kernel function but also the additive form given by

c(Xi, Xj) =

p∑
k=1

ck(Xik, Xjk).

C.1.1 Derivation of µI

We first derive the expression for µI . Let µg(W, z) and σ2
g(W, z) be the mean

and variance of the GP emulator ĝ. Then, by the tower rule, we have

µI = E[µg(W, z)],

where the expectation is taken respect to W. Replace µg(W, z) by equa-

tion (3.4) with Assumption 1, we have

µI =E
[
W>θ̂ + h(z)>β̂ + r>(W, z)R−1

(
yT −wT θ̂ −H(zT )β̂

)]
=E

[
W>] θ̂ + h(z)>β̂ + E

[
r>(W, z)

]
R−1

(
yT −wT θ̂ −H(zT )β̂

)
=µ>θ̂ + h(z)>β̂ + I>A, (C.1)

where

• µ = [µ1(x1), . . . , µd(xd)]
> ∈ Rd×1;
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• A = R−1
(
yT −wT θ̂ −H(zT )β̂

)
∈ Rm×1;

•
[
θ̂>, β̂>

]> def
==

(
H̃>R−1H̃

)−1
H̃>R−1yT with H̃ =

[
wT ,H(zT )

]
∈

Rm×(d+q);

• I = E [r(W, z)] ∈ Rm×1 with its i-th element:

Ii =E
[
c(W, wTi )c(z, zTi )

]
=E

[
c(W, wTi )

]
c(z, zTi )

=
d∏

k=1

E
[
ck(Wk, w

T
ik)
] p∏
k=1

ck(zk, z
T
ik)

=
d∏

k=1

ξik

p∏
k=1

ck(zk, z
T
ik)

in case of multiplicative form, and

Ii =E
[
c(W, wTi ) + c(z, zTi )

]
=E

[
c(W, wTi )

]
+ c(z, zTi )

=
d∑

k=1

E
[
ck(Wk, w

T
ik)
]

+

p∑
k=1

ck(zk, z
T
ik)

=
d∑

k=1

ξik +

p∑
k=1

ck(zk, z
T
ik)

in case of additive form, where

ξik
def
== E

[
ck(Wk, w

T
ik)
]

and in the derivation above we use the independence of Wi=1,...,d.

C.1.2 Derivation of σ2
I

We now derive the expression for the variance σ2
I . Using the law of total

variance, we have

σ2
I =E

[
σ2
g(W, z)

]
+ Var (µg(W, z))

=E
[
σ2
g(W, z)

]
+ E

[
µ2
g(W, z)

]
− E [µg(W, z)]2

=E
[
σ2
g(W, z)

]
+ E

[
µ2
g(W, z)

]
− µ2

I . (C.2)
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1 Derivation of E
[
µ2
g(W, z)

]
Replace µg(W, z) by equation (3.4), we have

µg(W, z) =
[
W>θ̂ + h(z)>β̂ + r>(W, z)R−1

(
yT −wT θ̂ −H(zT )β̂

)]2
=W>θ̂θ̂>W +

(
h(z)>β̂

)2
+ 2θ̂>Wh(z)>β̂

+ 2θ̂>Wr>(W, z)A + 2h(z)>β̂r>(W, z)A

+ r>(W, z)AA>r(W, z).

Then, we have

E
[
µg(W, z)2

]
=E

[
W>θ̂θ̂>W

]
+
(
h(z)>β̂

)2
+ 2θ̂>E [W] h(z)>β̂

+ 2θ̂>E
[
Wr>(W, z)

]
A + 2h(z)>β̂E

[
r>(W, z)

]
A

+ E
[
r>(W, z)AA>r(W, z)

]
=E

[
W>θ̂θ̂>W

]
+
(
h(z)>β̂

)2
+ 2θ̂>µh(z)>β̂

+ 2θ̂>BA + 2h(z)>β̂I>A + E
[
r>(W, z)AA>r(W, z)

]
The first expectation in the above equation can be solved as follow:

E
[
W>θ̂θ̂>W

]
=tr

{
θ̂θ̂>var(W)

}
+ EW [W]> θ̂θ̂>EW [W]

=tr
{
θ̂θ̂>Ω

}
+ µ>θ̂θ̂>µ

=tr
{
θ̂θ̂>Ω

}
+ tr

{
θ̂θ̂>µµ>

}
=tr

{
θ̂θ̂>

(
µµ> + Ω

)}
. (C.3)

The second expectation can be solved in a similar manner:

E
[
r>(W, z)AA>r(W, z)

]
=tr

{
E
[
r>(W, z)AA>r(W, z)

]}
=E

[
tr
{
r>(W, z)AA>r(W, z)

}]
=tr

{
AA>E

[
r(W, z)r>(W, z)

]}
=tr

{
AA>J

}
. (C.4)
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Thus, we obtain that

E
[
µg(W, z)2

]
=tr

{
θ̂θ̂>var(W)

}
+ E [W]> θ̂θ̂>E [W] +

(
h(z)>β̂

)2
+ 2θ̂>µh(z)>β̂

+ 2θ̂>BA + 2h(z)>β̂I>A + tr
{
AA>E

[
r(W, z)r>(W, z)

]}
=tr

{
θ̂θ̂>

(
µµ> + Ω

)}
+
(
h(z)>β̂

)2
+ 2θ̂>µh(z)>β̂

+ 2
[
θ̂>B + h(z)>β̂I>

]
A + tr

{
AA>J

}
,

where

• Ω = diag(σ2
1(x1), . . . , σ

2
d(xd)) ∈ Rd×d ;

• B = E
[
Wr>(W, z)

]
∈ Rd×m with its lj-th element:

Blj =E
[
Wlc(W, wTj )c(z, zTj )

]
=E

[
Wlc(W, wTj )

]
c(z, zTj )

=E

[
Wl

d∏
k=1

ck(Wk, w
T
jk)

]
p∏

k=1

ck(zk, z
T
jk)

=E
[
Wlcl(Wl, w

T
jl)
] d∏
k=1
k 6=l

E
[
ck(Wk, w

T
jk)
] p∏
k=1

ck(zk, z
T
jk)

=ψjl

d∏
k=1
k 6=l

ξjk

p∏
k=1

ck(zk, z
T
jk)

in case of multiplicative form, and

Blj =E
[
Wlc(W, wTj ) + c(z, zTj )

]
=E

[
Wlc(W, wTj )

]
+ E [Wl] c(z, zTj )

=E

[
Wl

d∑
k=1

ck(Wk, w
T
jk)

]
+ µl

p∑
k=1

ck(zk, z
T
jk)

=E
[
Wlcl(Wl, w

T
jl)
]

+ µl

d∑
k=1
k 6=l

E
[
ck(Wk, w

T
jk)
]

+ µl

p∑
k=1

ck(zk, z
T
jk)

=ψjl + µl

d∑
k=1
k 6=l

ξjk + µl

p∑
k=1

ck(zk, z
T
jk)
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in case of additive form, in which

ψjl
def
== E

[
Wlcl(Wl, w

T
jl)
]

;

• J = E
[
r(W, z)r>(W, z)

]
∈ Rm×m with its ij-th element:

Jij =E
[
c(W, wTi )c(z, zTi )c(W, wTj )c(z, zTj )

]
=E

[
c(W, wTi )c(W, wTj )

]
c(z, zTi )c(z, zTj )

=
d∏

k=1

E
[
ck(Wk, w

T
ik)ck(Wk, w

T
jk)
] p∏
k=1

ck(zk, z
T
ik)ck(zk, z

T
jk)

=
d∏

k=1

ζijk

p∏
k=1

ck(zk, z
T
ik)ck(zk, z

T
jk)

in case of multiplicative form, and

Jij =E
[ (
c(W, wTi ) + c(z, zTi )

) (
c(W, wTj ) + c(z, zTj )

) ]
=E

[
c(W, wTi )c(W, wTj )

]
+ E

[
c(W, wTi )

]
c(z, zTj )

+ E
[
c(W, wTj )

]
c(z, zTi ) + c(z, zTi )c(z, zTj )

=
d∑

k,l=1
k 6=l

E
[
ck(Wk, w

T
ik)
]
E
[
cl(Wl, w

T
jl)
]

+
d∑

k=1

E
[
ck(Wk, w

T
ik)ck(Wk, w

T
jk)
]

+
d∑

k=1

ξik

p∑
k=1

ck(zk, z
T
jk) +

d∑
k=1

ξjk

p∑
k=1

ck(zk, z
T
ik)

+

p∑
k=1

ck(zk, z
T
ik)

p∑
k=1

ck(zk, z
T
jk)

=
d∑

k,l=1
k 6=l

ξikξjl +
d∑

k=1

ζijk +
d∑

k=1

ξik

p∑
k=1

ck(zk, z
T
jk)

+
d∑

k=1

ξjk

p∑
k=1

ck(zk, z
T
ik) +

p∑
k=1

ck(zk, z
T
ik)

p∑
k=1

ck(zk, z
T
jk)

in case of additive form, in which

ζijk
def
== E

[
ck(Wk, w

T
ik)ck(Wk, w

T
jk)
]
.
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2 Derivation of E
[
σ2
g(W, z)

]
Replacing σ2

g(W, z) by equation (3.5):

E
[
σ2
g(·, ·)

]
=σ2 E

[
1 + η − r>(W, z)R−1r(W, z) +

(
h(W, z)− H̃>R−1r(W, z)

)>
×
(
H̃>R−1H̃

)−1 (
h(W, z)− H̃>R−1r(W, z)

) ]
=σ2 (1 + η) + σ2 E

[
h>(W, z)

(
H̃>R−1H̃

)−1
h(W, z)

+ r>(W, z)

{
R−1H̃

(
H̃>R−1H̃

)−1
H̃>R−1 −R−1

}
r(W, z)

− 2tr

{
h>(W, z)

(
H̃>R−1H̃

)−1
H̃>R−1r(W, z)

}]

=σ2 (1 + η) + σ2 E
[
h>(W, z)

(
H̃>R−1H̃

)−1
h(W, z)

]
+ σ2 E

[
r>(W, z)

{
R−1H̃

(
H̃>R−1H̃

)−1
H̃>R−1 −R−1

}
r(W, z)

]
− 2σ2 E

[
tr

{
h>(W, z)

(
H̃>R−1H̃

)−1
H̃>R−1r(W, z)

}]
=σ2

[
1 + η + tr {CP}+ G>CG + tr {QJ} − 2tr

{
CH̃>R−1K

}]
,

where

• C =
(
H̃>R−1H̃

)−1
∈ R(d+q)×(d+q) with H̃ =

[
wT ,H(zT )

]
∈ Rm×(d+q);

• P = Var [h(W, z)] = Var
[(

W>, h(z)>
)>]

= blkdiag(Ω, 0) ∈

R(d+q)×(d+q) ;

• G = E [h(W, z)] = E
[(

W>, h(z)>
)>]

= [µ>, h(z)>]> ∈ R(d+q)×1 ;

• Q = R−1H̃
(
H̃>R−1H̃

)−1
H̃>R−1 −R−1 ∈ Rm×m ;

• K = E
[
h(W, z)r>(W, z)

]>
=
[
B>, Ih(z)>

]
∈ Rm×(d+q).
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3 Derivation of µ2
I

Using equation (3.4), we have

µ2
I =

(
µ>θ̂ + h(z)>β̂ + I>A

)(
µ>θ̂ + h(z)>β̂ + I>A

)>
=
(
µ>θ̂ + h(z)>β̂ + I>A

)(
θ̂>µ+ β̂>h(z) + A>I

)
=µ>θ̂θ̂>µ+

(
h(z)>β̂

)2
+ I>AA>I

+ 2θ̂>µh(z)>β̂ + 2θ̂>µI>A + 2h(z)>β̂I>A

=tr
{
θ̂θ̂>µµ>

}
+
(
h(z)>β̂

)2
+ tr

{
AA>II>

}
+ 2θ̂>µh(z)>β̂ + 2

[
θ̂>µ+ h(z)>β̂

]
I>A

Finally, we obtain the expression for (C.2), which is given by

σ2
I =tr

{
AA>J

}
− tr

{
AA>II>

}
+ 2θ̂>BA− 2θ̂>µI>A + tr

{
θ̂θ̂>Ω

}
+ σ2

(
1 + η + tr {CP}+ G>CG + tr {QJ} − 2tr

{
CH̃>R−1K

})
=A>

(
J− II>

)
A + 2θ̂>

(
B− µI>

)
A + tr

{
θ̂θ̂>Ω

}
+ σ2

(
1 + η + tr {QJ}+ G>CG + tr

{
CP− 2CH̃>R−1K

})
. (C.5)

This together with equation (C.1) completes the proof. In case that the trend

is assumed constant, the expressions for µI and σ2
I can be simplified to the

following:

µI =
(
1>mR−11m

)−1
1>mR−1yT + I>A,

σ2
I =A>

(
J− II>

)
A + σ2

(
1 + η + tr {QJ}+ C− tr

{
2C1>mR−1I

})
,

where

• A = R−1
(
yT − 1m

(
1>mR−11m

)−1
1>mR−1yT

)
;

• Q = R−11mC1>mR−1 −R−1;

• C =
(
1>mR−11m

)−1
.
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C.2 Proof of Proposition 3.2

Replace µg(W, z) by equation (3.4) with Assumption 1, we have

EWk∈Sc [µg(W, z)] =EWk∈Sc

[
W>] θ̂ + h(z)>β̂

+ EWk∈Sc

[
r>(W, z)

]
R−1

(
yT −wT θ̂ −H(zT )β̂

)
=µ̃>θ̂ + h(z)>β̂ + Ĩ>A,

where

• µ̃ = EWk∈Sc

[
W>] ∈ Rd×1 is a column vector with its k-th element:

µ̃k =

Wk, k ∈ S,

µk, k ∈ Sc;

• Ĩ = EWk∈Sc

[
r>(W, z)

]
∈ Rm×1 with its i-th element:

Ĩi =EWk∈Sc

[
c(W, wTi )c(z, zTi )

]
=EWk∈Sc

[
c(W, wTi )

]
c(z, zTi )

=EWk∈Sc

[
d∏

k=1

ck(Wk, w
T
ik)

]
p∏

k=1

ck(zk, z
T
ik)

=
∏
k∈S

ck(Wk, w
T
ik)
∏
k∈Sc

EWk

[
ck(Wk, w

T
ik)
] p∏
k=1

ck(zk, z
T
ik)

=
∏
k∈S

ck(Wk, w
T
ik)
∏
k∈Sc

ξik

p∏
k=1

ck(zk, z
T
ik).

Then, we have

V1(S) =VarWk∈S

(
µ̃>θ̂ + h(z)>β̂ + Ĩ>A

)
=VarWk∈S

(
µ̃>θ̂ + Ĩ>A

)
=EWk∈S

[(
µ̃>θ̂ + Ĩ>A

)2]
︸ ︷︷ ︸

(C.6.1)

−
(
EWk∈S

[
µ̃>θ̂ + Ĩ>A

])2
︸ ︷︷ ︸

(C.6.2)

. (C.6)
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We first derive (C.6.1) as follow:

(C.6.1) =EWk∈S

[
µ̃>θ̂θ̂>µ̃+ Ĩ>AA>Ĩ + 2θ̂>µ̃Ĩ>A

]
=tr

{
θ̂θ̂>

(
µµ> + Ω̃

)}
+ tr

{
AA>EWk∈S

[
Ĩ̃I>
]}

+ 2θ̂>EWk∈S

[
µ̃Ĩ>

]
A

=tr
{
θ̂θ̂>

(
µµ> + Ω̃

)}
+ tr

{
AA>J̃

}
+ 2θ̂>B̃A, (C.7)

where the second step uses the derivations analogous to those used for equa-

tions (C.3) and (C.4); Ω̃ = VarWk∈S (µ̃) ∈ Rd×d is a diagonal matrix with its

k-th diagonal element given by Ω̃k = σ2
k(xk)1{k∈S}; and

• B̃ = EWk∈S

[
µ̃Ĩ>

]
∈ Rd×m with its lj-th element:

B̃lj =EWk∈S

[
µ̃l
∏
k∈S

ck(Wk, w
T
jk)
∏
k∈Sc

ξjk

p∏
k=1

ck(zk, z
T
jk)

]

=EWk∈S

[
µ̃l
∏
k∈S

ck(Wk, w
T
jk)

] ∏
k∈Sc

ξjk

p∏
k=1

ck(zk, z
T
jk)

=


EWk∈S

Wlcl(Wl, w
T
jl)
∏
k∈S
k 6=l

ck(Wk, w
T
jk)

∏
k∈Sc

ξjk

p∏
k=1

ck(zk, z
T
jk), l ∈ S

EWk∈S

[
µl
∏
k∈S

ck(Wk, w
T
jk)

] ∏
k∈Sc

ξjk

p∏
k=1

ck(zk, z
T
jk), l ∈ Sc

=


EWl

[
Wlcl(Wl, w

T
jl)
]∏
k∈S
k 6=l

EWk

[
ck(Wk, w

T
jk)
] ∏
k∈Sc

ξjk

p∏
k=1

ck(zk, z
T
jk), l ∈ S

µl
∏
k∈S

EWk

[
ck(Wk, w

T
jk)
] ∏
k∈Sc

ξjk

p∏
k=1

ck(zk, z
T
jk), l ∈ Sc

=


ψjl
∏
k∈S
k 6=l

ξjk
∏
k∈Sc

ξjk

p∏
k=1

ck(zk, z
T
jk), l ∈ S

µl
∏
k∈S

ξjk
∏
k∈Sc

ξjk

p∏
k=1

ck(zk, z
T
jk), l ∈ Sc

=


ψjl

d∏
k=1
k 6=l

ξjk

p∏
k=1

ck(zk, z
T
jk), l ∈ S

µl

d∏
k=1

ξjk

p∏
k=1

ck(zk, z
T
jk), l ∈ Sc;



C.2. Proof of Proposition 3.2 157

• J̃ = EWk∈S

[
Ĩ̃I>
]
∈ Rm×m with its ij-th element:

J̃ij =EWk∈S

[∏
k∈S

ck(Wk, w
T
ik)
∏
k∈Sc

ξik

p∏
k=1

ck(zk, z
T
ik)×

∏
k∈S

ck(Wk, w
T
jk)
∏
k∈Sc

ξjk

p∏
k=1

ck(zk, z
T
jk)

]

=EWk∈S

[∏
k∈S

ck(Wk, w
T
ik)ck(Wk, w

T
jk)
∏
k∈Sc

ξikξjk

p∏
k=1

ck(zk, z
T
ik)ck(zk, z

T
jk)

]

=EWk∈S

[∏
k∈S

ck(Wk, w
T
ik)ck(Wk, w

T
jk)

] ∏
k∈Sc

ξikξjk

p∏
k=1

ck(zk, z
T
ik)ck(zk, z

T
jk)

=
∏
k∈S

EWk

[
ck(Wk, w

T
ik)ck(Wk, w

T
jk)
] ∏
k∈Sc

ξikξjk

p∏
k=1

ck(zk, z
T
ik)ck(zk, z

T
jk)

=
∏
k∈S

ζijk
∏
k∈Sc

ξikξjk

p∏
k=1

ck(zk, z
T
ik)ck(zk, z

T
jk).

We now derive (C.6.2) as follow:

(C.6.2) =
(
EWk∈S

[
µ̃>
]
θ̂ + EWk∈S

[
Ĩ>
]

A
)2

=
(
µ>θ̂ + I>A

)2
=µ>θ̂θ̂>µ+ A>II>A + 2θ̂>µI>A. (C.8)

Plugging equations (C.7) and (C.8) back into equation (C.6), we obtain

V1(S) =tr
{
θ̂θ̂>

(
µµ> + Ω̃

)}
+ tr

{
AA>J̃

}
+ 2θ̂>B̃A−

(
µ>θ̂θ̂>µ+ A>II>A + 2θ̂>µI>A

)
=tr

{
θ̂θ̂>µµ

}
+ tr

{
θ̂θ̂>Ω̃

}
+ A>J̃A

+ 2θ̂>B̃A− µ>θ̂θ̂>µ−A>II>A− 2θ̂>µI>A

=tr
{
θ̂θ̂>µµ

}
+ tr

{
θ̂θ̂>Ω̃

}
+ A>J̃A

+ 2θ̂>B̃A− tr
{
θ̂θ̂>µµ

}
−A>II>A− 2θ̂>µI>A

=tr
{
θ̂θ̂>Ω̃

}
+ A>

(
J̃− II>

)
A + 2θ̂>

(
B̃− µI>

)
A.

In case that the trend is assumed constant, V1(S) can be simplified to the

following expression:

V1(S) = A>
(
J̃− II>

)
A.
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C.3 Proof of Proposition 3.3

Lemma C.1 Denote

Γ[m] =

∫ a

b

xm

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
dx

for m ∈ N0 , where a ∈ R , b ∈ R , µ ∈ R and σ ∈ R≥0 . Then, we have

Γ[0] =Φ

(
a− µ
σ

)
− Φ

(
b− µ
σ

)
,

Γ[1] =µ

[
Φ

(
a− µ
σ

)
− Φ

(
b− µ
σ

)]
+

σ√
2π

[
exp

{
−(b− µ)2

2σ2

}
− exp

{
−(a− µ)2

2σ2

}]
,

Γ[2] =
(
µ2 + σ2

) [
Φ

(
a− µ
σ

)
− Φ

(
b− µ
σ

)]
+

(µ+ b)σ√
2π

exp

{
−(b− µ)2

2σ2

}
− (µ+ a)σ√

2π
exp

{
−(a− µ)2

2σ2

}
,

Γ[3] =
(
µ3 + 3µσ2

) [
Φ

(
a− µ
σ

)
− Φ

(
b− µ
σ

)]
+

(b2 + µb+ µ2 + 2σ2)σ√
2π

exp

{
−(b− µ)2

2σ2

}
− (a2 + µa+ µ2 + 2σ2)σ√

2π
exp

{
−(a− µ)2

2σ2

}
,

Γ[4] =
(
µ4 + 3σ4 + 6µ2σ2

) [
Φ

(
a− µ
σ

)
− Φ

(
b− µ
σ

)]
+

(b3 + µ3 + µ2b+ µb2 + 3σ2b+ 5σ2µ)σ√
2π

exp

{
−(b− µ)2

2σ2

}
− (a3 + µ3 + µ2a+ µa2 + 3σ2a+ 5σ2µ)σ√

2π
exp

{
−(a− µ)2

2σ2

}
,

where Φ(·) denotes the cumulative density function of the standard normal.

Proof Denote

κ[m] =

∫ s

t

xm√
2π

exp

{
−x

2

2

}
dx

for m ∈ N0 , where s ∈ R and t ∈ R . Then via integration by parts, we have

κ[m] =
1√
2π

(
−xm−1e−

x2

2

∣∣∣∣s
t

+ (m− 1)

∫ s

t

xm−2e−
x2

2 dx

)
=

1√
2π

(
tm−1e−

t2

2 − sm−1e−
s2

2

)
+ (m− 1)

∫ s

t

xm−2e−
x2

2 dx

=
1√
2π

(
tm−1e−

t2

2 − sm−1e−
s2

2

)
+ (m− 1)κ[m− 2].
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Thus, we have

κ[0] =

∫ s

t

1√
2π

exp

{
−x

2

2

}
dx = Φ(s)− Φ(t), (C.9)

κ[1] =

∫ s

t

x√
2π

exp

{
−x

2

2

}
dx

=− 1√
2π
e−

x2

2

∣∣∣∣s
t

=
1√
2π

(
e−

t2

2 − e−
s2

2

)
, (C.10)

κ[2] =
1√
2π

(
te−

t2

2 − se−
s2

2

)
+ κ[0]

=
1√
2π

(
te−

t2

2 − se−
s2

2

)
+ Φ(s)− Φ(t), (C.11)

and

κ[3] =
1√
2π

(
t2e−

t2

2 − s2e−
s2

2

)
+ 2κ[1]

=
1√
2π

(
t2e−

t2

2 − s2e−
s2

2

)
+

2√
2π

(
e−

t2

2 − e−
s2

2

)
, (C.12)

κ[4] =
1√
2π

(
t3e−

t2

2 − s3e−
s2

2

)
+ 3κ[2]

=
1√
2π

(
t3e−

t2

2 − s3e−
s2

2

)
+

3√
2π

(
te−

t2

2 − se−
s2

2

)
+ 3 [Φ(s)− Φ(t)] ,

(C.13)

where Φ(·) denotes the cumulative density function of the standard normal.

Denote

Γ[m] =

∫ a

b

xm

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
dx

for m ∈ N0 , where a ∈ R , b ∈ R , µ ∈ R and σ ∈ R≥0 . Let

s =
x− µ
σ

,

then we have

Γ[m] =

∫ a−µ
σ

b−µ
σ

(σs+ µ)m√
2π

exp

{
−s

2

2

}
ds

for m ∈ N0 . The lemma is subsequently proved by using equa-

tions (C.9), (C.10), (C.11), (C.12) and (C.13) for all m ∈ {0, . . . , 4}. �
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C.3.1 Derivation for exponential case

1 Derivation of ξik

ξik =E
[
ck(Wk, w

T
ik)
]

=

∫
exp

{
−|w − w

T
ik|

γk

}
1

σk
√

2π
exp

{
−(w − µk)2

2σ2
k

}
dw

=

∫ +∞

wTik

1

σk
√

2π
exp

{
−w − w

T
ik

γk
− (w − µk)2

2σ2
k

}
dw

+

∫ wTik

−∞

1

σk
√

2π
exp

{
w − wTik
γk

− (w − µk)2

2σ2
k

}
dw

= exp

{
σ2
k + 2γk

(
wTik − µk

)
2γ2k

}∫ +∞

wTik

1

σk
√

2π
exp

{
−(w − µA)2

2σ2
k

}
dw

+ exp

{
σ2
k − 2γk

(
wTik − µk

)
2γ2k

}∫ wTik

−∞

1

σk
√

2π
exp

{
−(w − µB)2

2σ2
k

}
dw,

where the last step is obtained by completing the square. Using Lemma C.1,

ξik = exp

{
σ2
k + 2γk

(
wTik − µk

)
2γ2k

}
Φ

(
µA − wTik

σk

)

+ exp

{
σ2
k − 2γk

(
wTik − µk

)
2γ2k

}
Φ

(
wTik − µB

σk

)
,

where µA = µk − σ2
k/γk and µB = µk + σ2

k/γk.

2 Derivation of ζijk

ζijk =E
[
ck(Wk, w

T
ik)ck(Wk, w

T
jk)
]

=

∫
1

σk
√

2π
exp

{
−|w − w

T
ik|

γk
−
|w − wTjk|

γk
− (w − µk)2

2σ2
k

}
dw

=

∫ +∞

wTjk

1

σk
√

2π
exp

{
−w − w

T
ik

γk
−
w − wTjk
γk

− (w − µk)2

2σ2
k

}
dw (C.14)

+

∫ wTjk

wTik

1

σk
√

2π
exp

{
−w − w

T
ik

γk
−
wTjk − w
γk

− (w − µk)2

2σ2
k

}
dw (C.15)

+

∫ wTik

−∞

1

σk
√

2π
exp

{
−w

T
ik − w
γk

−
wTjk − w
γk

− (w − µk)2

2σ2
k

}
dw, (C.16)

where wTik ≤ wTjk is assumed.
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By completing the square, term (C.14) can be rewritten as follow:

(C.14) = exp

{
2σ2

k + γk
(
wTik + wTjk − 2µk

)
γ2k

}
∫ +∞

wTjk

1

σk
√

2π
exp

{
−(w − µC)2

2σ2
k

}
dw,

where

µC = µk −
2σ2

k

γk
.

Then by Lemma C.1, we obtain

(C.14) = exp

{
2σ2

k + γk
(
wTik + wTjk − 2µk

)
γ2k

}
Φ

(
µC − wTjk

σk

)
.

Since term (C.16) can be rewritten as

(C.16) =

∫ wTik

−∞

1

σk
√

2π
exp

{
−w

T
ik − w
γk

−
wTjk − w
γk

− (w − µk)2

2σ2
k

}
dw

=

∫ +∞

−wTik

1

σk
√

2π
exp

{
−w + wTik

γk
−
w + wTjk
γk

− (w + µk)
2

2σ2
k

}
dw,

the form of which allows us to obtain solution of term (C.16) by simply using

that of term (C.14). Thus, we have

(C.16) = exp

{
2σ2

k − γk
(
wTik + wTjk − 2µk

)
γ2k

}
Φ

(
wTik − µD

σk

)
,

where

µD = µk +
2σ2

k

γk
.

Term (C.15) is obtained as follow:

(C.15) =

∫ wTjk

wTik

1

σk
√

2π
exp

{
−
wTjk − wTik

γk
− (w − µk)2

2σ2
k

}
dw

= exp

{
−
wTjk − wTik

γk

}∫ wTjk

wTik

1

σk
√

2π
exp

{
−(w − µk)2

2σ2
k

}
dw

= exp

{
−
wTjk − wTik

γk

}[
Φ

(
wTjk − µk

σk

)
− Φ

(
wTik − µk

σk

)]
,
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where the last step uses Lemma C.1. Therefore, we obtain that

ζijk = exp

{
2σ2

k + γk
(
wTik + wTjk − 2µk

)
γ2k

}
Φ

(
µC − wTjk

σk

)

+ exp

{
−
wTjk − wTik

γk

}[
Φ

(
wTjk − µk

σk

)
− Φ

(
wTik − µk

σk

)]

+ exp

{
2σ2

k − γk
(
wTik + wTjk − 2µk

)
γ2k

}
Φ

(
wTik − µD

σk

)
(C.17)

for wTik ≤ wTjk. Observe that

E
[
ck(Wk, w

T
ik)ck(Wk, w

T
jk)
]

= E
[
ck(Wk, w

T
jk)ck(Wk, w

T
ik)
]
,

Thus, the expression for ζijk when wTik > wTjk is obtained by simply interchanging

the positions of wTik and wTjk in formula (C.17).

3 Derivation of ψjk

ψjk =E
[
Wkck(Wk, w

T
jk)
]

=

∫
exp

{
−
|w − wTjk|

γk

}
w

σk
√

2π
exp

{
−(w − µk)2

2σ2
k

}
dw

=

∫ +∞

wTjk

w

σk
√

2π
exp

{
−
w − wTjk
γk

− (w − µk)2

2σ2
k

}
dw

+

∫ wTjk

−∞

w

σk
√

2π
exp

{
w − wTjk
γk

− (w − µk)2

2σ2
k

}
dw

= exp

{
σ2
k + 2γk

(
wTjk − µk

)
2γ2k

}∫ +∞

wTjk

w

σk
√

2π
exp

{
−(w − µA)2

2σ2
k

}
dw

+ exp

{
σ2
k − 2γk

(
wTjk − µk

)
2γ2k

}∫ wTjk

−∞

w

σk
√

2π
exp

{
−(w − µB)2

2σ2
k

}
dw,

where the last step is obtained by completing the square. Thus, by Lemma C.1

we have

ψjk = exp

{
σ2
k + 2γk

(
wTjk − µk

)
2γ2k

}[
µAΦ

(
µA − wTjk

σk

)
+

σk√
2π

exp

{
−
(
wTjk − µA

)2
2σ2

k

}]

+ exp

{
σ2
k − 2γk

(
wTjk − µk

)
2γ2k

}[
−µBΦ

(
wTjk − µB

σk

)
+

σk√
2π

exp

{
−
(
wTjk − µB

)2
2σ2

k

}]
.
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C.3.2 Derivation for squared exponential case

1 Derivation of ξik

ξik =E
[
ck(Wk, w

T
ik)
]

=

∫
exp

{
−
(
w − wTik
γk

)2
}

1

σk
√

2π
exp

{
−(w − µk)2

2σ2
k

}
dw

=

∫
1

σk
√

2π
exp

{
−
(
w − wTik

)2
γ2k

− (w − µk)2

2σ2
k

}
dw

= exp

{
−
(
µk − wTik

)2
2σ2

k + γ2k

}

×
∫

1

σk
√

2π
exp

{
−2σ2

k + γ2k
2σ2

kγ
2
k

[
w − 2σ2

kw
T
ik + γ2kµk

2σ2
k + γ2k

]2}
dw,

where the last step is obtained by completing the square. Consequently,

ξik =
1√

1 + 2σ2
k/γ

2
k

exp

{
−
(
µk − wTik

)2
2σ2

k + γ2k

}

×
∫ √

2σ2
k + γ2k

σkγk
√

2π
exp

{
−2σ2

k + γ2k
2σ2

kγ
2
k

[
w − 2σ2

kw
T
ik + γ2kµk

2σ2
k + γ2k

]2}
dw

=
1√

1 + 2σ2
k/γ

2
k

exp

{
−
(
µk − wTik

)2
2σ2

k + γ2k

}
,

where the last step uses the fact that the integral in the first step equals to one

because it integrates the probability density function of a normal distribution

with mean and variance equal to

2σ2
kw
T
ik + γ2kµk

2σ2
k + γ2k

and
σ2
kγ

2
k

2σ2
k + γ2k

respectively.

2 Derivation of ζijk

ζijk =E
[
ck(Wk, w

T
ik)ck(Wk, w

T
jk)
]

=

∫
1

σk
√

2π
exp

{
−
(
w − wTik

)2
γ2k

−
(
w − wTjk

)2
γ2k

− (w − µk)2

2σ2
k

}
dw.
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By applying the completing in square, we can obtain the following:

ζijk =
1√

1 + 4σ2
k/γ

2
k

exp

−
(
wTik+w

T
jk

2
− µk

)2
γ2k/2 + 2σ2

k

−
(
wTik − wTjk

)2
2γ2k


×
∫

1

σ∗
√

2π
exp

{
−(w − µ∗)2

2σ2
∗

}
dw,

where

µ∗ =
2σ2

k

(
wTik + wTjk

)
+ γ2kµk

4σ2
k + γ2k

and

σ2
∗ =

σ2
kγ

2
k

4σ2
k + γ2k

.

Thus, we have

ζijk =
1√

1 + 4σ2
k/γ

2
k

exp

−
(
wTik+w

T
jk

2
− µk

)2
γ2k/2 + 2σ2

k

−
(
wTik − wTjk

)2
2γ2k

 .

3 Derivation of ψjk

ψjk = E
[
Wkck(Wk, w

T
jk)
]

=

∫
w

σk
√

2π
exp

{
−
(
w − wTjk

)2
γ2k

− (w − µk)2

2σ2
k

}
dw

=
1√

1 + 2σ2
k/γ

2
k

exp

{
−
(
µk − wTjk

)2
2σ2

k + γ2k

}∫
w

σ∗
√

2π
exp

{
−(w − µ∗)2

2σ2
∗

}
dw,

where the last step is obtained by completing in square; and

µ∗ =
2σ2

kw
T
jk + γ2kµk

2σ2
k + γ2k

and σ2
∗ =

σ2
kγ

2
k

2σ2
k + γ2k

.

Realising that the integral∫
w

σ∗
√

2π
exp

{
−(w − µ∗)2

2σ2
∗

}
dw

is in fact the expectation of a normal random variable with mean µ∗ and

variance σ2
∗ , we have

ψjk =
1√

1 + 2σ2
k/γ

2
k

exp

{
−
(
µk − wTjk

)2
2σ2

k + γ2k

}
2σ2

kw
T
jk + γ2kµk

2σ2
k + γ2k

.
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C.3.3 Derivation for Matérn-1.5 case

1 Derivation of ξik

ξik =E
[
ck(Wk, w

T
ik)
]

=

∫ (
1 +

√
3|w − wTik|

γk

)

× 1

σk
√

2π
exp

{
−
√

3|w − wTik|
γk

− (w − µk)2

2σ2
k

}
dw

=

∫ +∞

wTik

(
1 +

√
3
(
w − wTik

)
γk

)

× 1

σk
√

2π
exp

{
−
√

3
(
w − wTik

)
γk

− (w − µk)2

2σ2
k

}
dw (C.18)

+

∫ wTik

−∞

(
1 +

√
3
(
wTik − w

)
γk

)

× 1

σk
√

2π
exp

{√
3
(
w − wTik

)
γk

− (w − µk)2

2σ2
k

}
dw. (C.19)

We first calculate term (C.18) by completing in square:

(C.18) = exp

{
3σ2

k + 2
√

3γk
(
wTik − µk

)
2γ2k

}

×
∫ +∞

wTik

[E11w + E10]
1

σk
√

2π
exp

{
−(w − µA)2

2σ2
k

}
,

where

E10 = 1−
√

3wTik
γk

, E11 =

√
3

γk
and µA = µk −

√
3σ2

k

γk
.

By Lemma C.1, we then obtain

(C.18) = exp

{
3σ2

k + 2
√

3γk
(
wTik − µk

)
2γ2k

}

×
[
E>1 Λ11Φ

(
µA − wTik

σk

)
+ E>1 Λ12

σk√
2π

exp

{
−(wTik − µA)2

2σ2
k

}]
,

where

E1 = [E10, E11]
>, Λ11 = [1, µA]> and Λ12 = [0, 1]>.
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Term (C.19) can be rewritten as follow:

(C.19) =

∫ wTik

−∞

(
1 +

√
3
(
wTik − w

)
γk

)
1

σk
√

2π
exp

{√
3
(
w − wTik

)
γk

− (w − µk)2

2σ2
k

}
dw

=

∫ +∞

−wTik

(
1 +

√
3
(
w + wTik

)
γk

)
1

σk
√

2π
exp

{
−
√

3
(
w + wTik

)
γk

− (w + µk)
2

2σ2
k

}
dw,

the form of which allows us to obtain solution of term (C.19) by simply using

that of term (C.18). Thus, we have

(C.19) = exp

{
3σ2

k − 2
√

3γk
(
wTik − µk

)
2γ2k

}
[
E>2 Λ21Φ

(
wTik − µB

σk

)
+ E>2 Λ22

σk√
2π

exp

{
−(wTik − µB)2

2σ2
k

}]
,

where

E2 = [E20, E21]
>, Λ21 = [1, −µB]> and Λ22 = [0, 1]>

with

E20 = 1 +

√
3wTik
γk

, E21 =

√
3

γk
and µB = µk +

√
3σ2

k

γk
.

Finally, we have

ξik = exp

{
3σ2

k + 2
√

3γk
(
wTik − µk

)
2γ2k

}

×
[
E>1 Λ11Φ

(
µA − wTik

σk

)
+ E>1 Λ12

σk√
2π

exp

{
−(wTik − µA)2

2σ2
k

}]
+ exp

{
3σ2

k − 2
√

3γk
(
wTik − µk

)
2γ2k

}

×
[
E>2 Λ21Φ

(
wTik − µB

σk

)
+ E>2 Λ22

σk√
2π

exp

{
−(wTik − µB)2

2σ2
k

}]
.

2 Derivation of ζijk

ζijk =E
[
ck(Wk, w

T
ik)ck(Wk, w

T
jk)
]

=

∫ (
1 +

√
3|w − wTik|

γk

)(
1 +

√
3|w − wTjk|

γk

)

× 1

σk
√

2π
exp

{
−
√

3|w − wTik|+
√

3|w − wTjk|
γk

− (w − µk)2

2σ2
k

}
dw.
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Assume that wTik ≤ wTjk , we have

ζijk =

∫ +∞

wTjk

(
1 +

√
3(w − wTik)

γk

)(
1 +

√
3(w − wTjk)

γk

)

× 1

σk
√

2π
exp

{
−
√

3(w − wTik) +
√

3(w − wTjk)
γk

− (w − µk)2

2σ2
k

}
dw

(C.20)

+

∫ wTjk

wTik

(
1 +

√
3(w − wTik)

γk

)(
1 +

√
3(wTjk − w)

γk

)

× 1

σk
√

2π
exp

{
−
√

3(w − wTik) +
√

3(wTjk − w)

γk
− (w − µk)2

2σ2
k

}
dw

(C.21)

+

∫ wTik

−∞

(
1 +

√
3(wTik − w)

γk

)(
1 +

√
3(wTjk − w)

γk

)

× 1

σk
√

2π
exp

{
−
√

3(wTik − w) +
√

3(wTjk − w)

γk
− (w − µk)2

2σ2
k

}
dw.

(C.22)

We first calculate term (C.20) by expanding the product of two brackets after

the integral sign:

(C.20) =

∫ +∞

wTjk

(E32w
2 + E31w + E30)

× 1

σk
√

2π
exp

{
−
√

3(w − wTik) +
√

3(w − wTjk)
γk

− (w − µk)2

2σ2
k

}
dw,

where

E30 = 1 +
3wTikw

T
jk −
√

3γk
(
wTik + wTjk

)
γ2k

, E31 =
2
√

3γk − 3
(
wTik + wTjk

)
γ2k

and E32 = 3/γ2k. Then by completing in square, we have

(C.20) = exp

{
6σ2

k +
√

3γk
(
wTik + wTjk − 2µk

)
γ2k

}

×
∫ +∞

wTjk

(E32w
2 + E31w + E30)

1

σk
√

2π
exp

{
−(w − µC)2

2σ2
k

}
dw,
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where

µC = µk − 2
√

3
σ2
k

γk
.

Using Lemma C.1 and arranging terms, we obtain

(C.20) = exp

{
6σ2

k +
√

3γk
(
wTik + wTjk − 2µk

)
γ2k

}

×

[
E>3 Λ31Φ

(
µC − wTjk

σk

)
+ E>3 Λ32

σk√
2π

exp

{
−

(wTjk − µC)2

2σ2
k

}]
,

where

E3 = [E30, E31, E32]
>, Λ31 = [1, µC , µ

2
C+σ2

k]
> and Λ32 = [0, 1, µC+wTjk]

>.

The derivation of term (C.21) is analogue to that of term (C.20). By expanding

the product of two brackets after the integral sign, we have

(C.21) =

∫ wTjk

wTik

(E42w
2 + E41w + E40)

1

σk
√

2π
exp

{
−
√

3(w − wTik) +
√

3(wTjk − w)

γk
− (w − µk)2

2σ2
k

}
dw,

where

E40 = 1+

√
3γk

(
wTjk − wTik

)
− 3wTikw

T
jk

γ2k
, E41 =

3
(
wTik + wTjk

)
γ2k

and E42 = − 3

γ2k
.

Then by completing in square, we have

(C.21) = exp

{
−
√

3
(
wTjk − wTik

)
γk

}
∫ wTjk

wTik

(E42w
2 + E41w + E40)

1

σk
√

2π
exp

{
−(w − µk)2

2σ2
k

}
dw.

Using Lemma C.1 and arranging terms, we obtain

(C.21) = exp

{
−
√

3
(
wTjk − wTik

)
γk

}[
E>4 Λ41

(
Φ

(
wTjk − µk

σk

)
− Φ

(
wTik − µk

σk

))

+ E>4 Λ42
σk√
2π

exp

{
−(wTik − µk)2

2σ2
k

}
− E>4 Λ43

σk√
2π

exp

{
−

(wTjk − µk)2

2σ2
k

}]
,
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where

E4 = [E40, E41, E42]
>, Λ41 = [1, µk, µ

2
k + σ2

k]
>, Λ42 = [0, 1, µk + wTik]

>

and

Λ43 = [0, 1, µk + wTjk]
>.

Term (C.22) can then be computed in the following way:

(C.22) =

∫ wTik

−∞

(
1 +

√
3(wTik − w)

γk

)(
1 +

√
3(wTjk − w)

γk

)

× 1

σk
√

2π
exp

{
−
√

3(wTik − w) +
√

3(wTjk − w)

γk
− (w − µk)2

2σ2
k

}
dw

=

∫ +∞

−wTik

(
1 +

√
3(w + wTik)

γk

)(
1 +

√
3(w + wTjk)

γk

)

× 1

σk
√

2π
exp

{
−
√

3(w + wTik) +
√

3(w + wTjk)

γk
− (w + µk)

2

2σ2
k

}
dw,

the form of which allows us to obtain solution of term (C.22) by simply using

that of term (C.20). Thus, we have

(C.22) = exp

{
6σ2

k −
√

3γk
(
wTik + wTjk − 2µk

)
γ2k

}

×
[
E>5 Λ51Φ

(
wTik − µD

σk

)
+ E>5 Λ52

σk√
2π

exp

{
−(wTik − µD)2

2σ2
k

}]
,

where

E5 = [E50, E51, E52]
>, Λ51 = [1, −µD, µ2

D + σ2
k]
>

and

Λ52 = [0, 1, −µD − wTik]>

with

• E50 = 1 +
3wTikw

T
jk +
√

3γk
(
wTik + wTjk

)
γ2k

;

• E51 =
2
√

3γk + 3
(
wTik + wTjk

)
γ2k

;

• E52 =
3

γ2k
and µD = µk + 2

√
3
σ2
k

γk
.
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Therefore, the expression for ζijk when wTik ≤ wTjk is given by

ζijk = exp

{
6σ2

k +
√

3γk
(
wTik + wTjk − 2µk

)
γ2k

}

×

[
E>3 Λ31Φ

(
µC − wTjk

σk

)
+ E>3 Λ32

σk√
2π

exp

{
−

(wTjk − µC)2

2σ2
k

}]

+ exp

{
−
√

3
(
wTjk − wTik

)
γk

}[
E>4 Λ41

(
Φ

(
wTjk − µk

σk

)
− Φ

(
wTik − µk

σk

))

+ E>4 Λ42
σk√
2π

exp

{
−(wTik − µk)2

2σ2
k

}
− E>4 Λ43

σk√
2π

exp

{
−

(wTjk − µk)2

2σ2
k

}]

+ exp

{
6σ2

k −
√

3γk
(
wTik + wTjk − 2µk

)
γ2k

}

×
[
E>5 Λ51Φ

(
wTik − µD

σk

)
+ E>5 Λ52

σk√
2π

exp

{
−(wTik − µD)2

2σ2
k

}]
.

Observe that

E
[
ck(Wk, w

T
ik)ck(Wk, w

T
jk)
]

= E
[
ck(Wk, w

T
jk)ck(Wk, w

T
ik)
]
.

Thus, the expression for ζijk when wTik > wTjk is obtained by simply interchanging

the positions of wTik and wTjk in the above formula of ζijk when wTik ≤ wTjk.

3 Derivation of ψjk

ψjk =E
[
Wkck(Wk, w

T
jk)
]

=

∫
w

(
1 +

√
3|w − wTjk|

γk

)
1

σk
√

2π
exp

{
−
√

3|w − wTjk|
γk

− (w − µk)2

2σ2
k

}
dw

=

∫ +∞

wTjk

(
w +

√
3w
(
w − wTjk

)
γk

)

× 1

σk
√

2π
exp

{
−
√

3
(
w − wTjk

)
γk

− (w − µk)2

2σ2
k

}
dw (C.23)

+

∫ wTjk

−∞

(
w +

√
3w
(
wTjk − w

)
γk

)

× 1

σk
√

2π
exp

{√
3
(
w − wTjk

)
γk

− (w − µk)2

2σ2
k

}
dw. (C.24)

We first calculate term (C.23) by arranging the terms in the bracket after the
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integral sign and completing in square:

(C.23) = exp

{
3σ2

k + 2
√

3γk
(
wTjk − µk

)
2γ2k

}

×
∫ +∞

wTjk

[
E11w

2 + E10w
] 1

σk
√

2π
exp

{
−(w − µA)2

2σ2
k

}
.

By Lemma C.1, we then obtain

(C.23) = exp

{
3σ2

k + 2
√

3γk
(
wTjk − µk

)
2γ2k

}

×

[
E>1 Λ61Φ

(
µA − wTjk

σk

)
+ E>1 Λ62

σk√
2π

exp

{
−

(wTjk − µA)2

2σ2
k

}]
,

where

Λ61 = [µA, µ
2
A + σ2

k]
> and Λ62 = [1, µA + wTjk]

>.

Term (C.24) can be rewritten as follow:

(C.24) =

∫ wTjk

−∞

(
1 +

√
3
(
wTjk − w

)
γk

)

× w

σk
√

2π
exp

{√
3
(
w − wTjk

)
γk

− (w − µk)2

2σ2
k

}
dw

=−
∫ +∞

−wTjk

(
1 +

√
3
(
w + wTjk

)
γk

)

× w

σk
√

2π
exp

{
−
√

3
(
w + wTjk

)
γk

− (w + µk)
2

2σ2
k

}
dw,

the form of which allows us to obtain the solution of term (C.24) by simply

using that of term (C.23). Thus, we have

(C.24) = − exp

{
3σ2

k − 2
√

3γk
(
wTjk − µk

)
2γ2k

}

×

[
E>2 Λ71Φ

(
wTjk − µB

σk

)
+ E>2 Λ72

σk√
2π

exp

{
−

(wTjk − µB)2

2σ2
k

}]
,

where

Λ71 = [−µB, µ2
B + σ2

k]
> and Λ72 = [1, −µB − wTjk]>.
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Finally, we have

ψjk = exp

{
3σ2

k + 2
√

3γk
(
wTjk − µk

)
2γ2k

}

×

[
E>1 Λ61Φ

(
µA − wTjk

σk

)
+ E>1 Λ62

σk√
2π

exp

{
−

(wTjk − µA)2

2σ2
k

}]

− exp

{
3σ2

k − 2
√

3γk
(
wTjk − µk

)
2γ2k

}

×

[
E>2 Λ71Φ

(
wTjk − µB

σk

)
+ E>2 Λ72

σk√
2π

exp

{
−

(wTjk − µB)2

2σ2
k

}]
.

C.3.4 Derivation for Matérn-2.5 case

1 Derivation of ξik

ξik =E
[
ck(Wk, w

T
ik)
]

=

∫ (
1 +

√
5|w − wTik|

γk
+

5(w − wTik)2

3γ2k

)

× 1

σk
√

2π
exp

{
−
√

5|w − wTik|
γk

− (w − µk)2

2σ2
k

}
dw

=

∫ +∞

wTik

(
1 +

√
5
(
w − wTik

)
γk

+
5

3

(
w − wTik
γk

)2
)

× 1

σk
√

2π
exp

{
−
√

5
(
w − wTik

)
γk

− (w − µk)2

2σ2
k

}
dw (C.25)

+

∫ wTik

−∞

(
1 +

√
5
(
wTik − w

)
γk

+
5

3

(
w − wTik
γk

)2
)

× 1

σk
√

2π
exp

{√
5
(
w − wTik

)
γk

− (w − µk)2

2σ2
k

}
dw. (C.26)

We first calculate term (C.25) by arranging the terms in the bracket after the

integral sign and completing the square:

(C.25) = exp

{
5σ2

k + 2
√

5γk
(
wTik − µk

)
2γ2k

}
∫ +∞

wTik

[
E12w

2 + E11w + E10

] 1

σk
√

2π
exp

{
−(w − µA)2

2σ2
k

}
,
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where

E10 = 1−
√

5wTik
γk

+
5
(
wTik
)2

3γ2k
, E11 =

√
5

γk
− 10wTik

3γ2k
, E12 =

5

3γ2k
.

and

µA = µk −
√

5σ2
k

γk
.

By Lemma C.1, we then obtain

(C.25) = exp

{
5σ2

k + 2
√

5γk
(
wTik − µk

)
2γ2k

}

×
[
E>1 Λ11Φ

(
µA − wTik

σk

)
+ E>1 Λ12

σk√
2π

exp

{
−(wTik − µA)2

2σ2
k

}]
,

where

E1 = [E10, E11, E12]
>, Λ11 = [1, µA, µ

2
A +σ2

k]
>, Λ12 = [0, 1, µA +wTik]

>.

Term (C.26) can be rewritten as follow:

(C.26) =

∫ wTik

−∞

(
1 +

√
5
(
wTik − w

)
γk

+
5

3

(
w − wTik
γk

)2
)

× 1

σk
√

2π
exp

{√
5
(
w − wTik

)
γk

− (w − µk)2

2σ2
k

}
dw

=

∫ +∞

−wTik

(
1 +

√
5
(
w + wTik

)
γk

+
5

3

(
w + wTik
γk

)2
)

× 1

σk
√

2π
exp

{
−
√

5
(
w + wTik

)
γk

− (w + µk)
2

2σ2
k

}
dw,

the form of which allows us to obtain solution of term (C.26) by simply using

that of term (C.25). Thus, we have

(C.26) = exp

{
5σ2

k − 2
√

5γk
(
wTik − µk

)
2γ2k

}

×
[
E>2 Λ21Φ

(
wTik − µB

σk

)
+ E>2 Λ22

σk√
2π

exp

{
−(wTik − µB)2

2σ2
k

}]
,

where

E2 = [E20, E21, E22]
>, Λ21 = [1, −µB, µ2

B+σ2
k]
> and Λ22 = [0, 1, −µB−wTik]>
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with

E20 = 1+

√
5wTik
γk

+
5
(
wTik
)2

3γ2k
, E21 =

√
5

γk
+

10wTik
3γ2k

, E22 =
5

3γ2k
, µB = µk+

√
5σ2

k

γk
.

Thus, we have

ξik = exp

{
5σ2

k + 2
√

5γk
(
wTik − µk

)
2γ2k

}

×
[
E>1 Λ11Φ

(
µA − wTik

σk

)
+ E>1 Λ12

σk√
2π

exp

{
−(wTik − µA)2

2σ2
k

}]
+ exp

{
5σ2

k − 2
√

5γk
(
wTik − µk

)
2γ2k

}

×
[
E>2 Λ21Φ

(
wTik − µB

σk

)
+ E>2 Λ22

σk√
2π

exp

{
−(wTik − µB)2

2σ2
k

}]
.

2 Derivation of ζijk

Assume that wTik ≤ wTjk , we have

ζijk =

∫ +∞

wTjk

(
1 +

√
5(w − wTik)

γk
+

5

3

(
w − wTik
γk

)2
)1 +

√
5(w − wTjk)

γk
+

5

3

(
w − wTjk
γk

)2


× 1

σk
√

2π
exp

{
−
√

5(w − wTik) +
√

5(w − wTjk)
γk

− (w − µk)2

2σ2
k

}
dw

(C.27)

+

∫ wTjk

wTik

(
1 +

√
5(w − wTik)

γk
+

5

3

(
w − wTik
γk

)2
)1 +

√
5(wTjk − w)

γk
+

5

3

(
w − wTjk
γk

)2


× 1

σk
√

2π
exp

{
−
√

5(w − wTik) +
√

5(wTjk − w)

γk
− (w − µk)2

2σ2
k

}
dw

(C.28)

+

∫ wTik

−∞

(
1 +

√
5(wTik − w)

γk
+

5

3

(
w − wTik
γk

)2
)1 +

√
5(wTjk − w)

γk
+

5

3

(
w − wTjk
γk

)2


× 1

σk
√

2π
exp

{
−
√

5(wTik − w) +
√

5(wTjk − w)

γk
− (w − µk)2

2σ2
k

}
dw.

(C.29)
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We first calculate term (C.27) by expanding the product of two brackets after

the integral sign:

(C.27) =

∫ +∞

wTjk

(E34w
4 + E33w

3 + E32w
2 + E31w + E30)

× 1

σk
√

2π
exp

{
−
√

5(w − wTik) +
√

5(w − wTjk)
γk

− (w − µk)2

2σ2
k

}
dw,

where

E30 =1 +

[
25
(
wTik
)2 (

wTjk
)2 − 3

√
5
(
3γ3k + 5γkw

T
ikw
T
jk

) (
wTik + wTjk

)
+ 15γ2k

((
wTik
)2

+
(
wTjk
)2

+ 3wTikw
T
jk

)]/
9γ4k

E31 =

[
18
√

5γ3k + 15
√

5γk

((
wTik
)2

+
(
wTjk
)2)− 75γ2k

(
wTik + wTjk

)
− 50wTikw

T
jk

(
wTik + wTjk

)
+ 60
√

5γkw
T
ikw
T
jk

]/
9γ4k

E32 =5

[
5
(
wTik
)2

+ 5
(
wTjk
)2

+ 15γ2k − 9
√

5γk
(
wTik + wTjk

)
+ 20wTikw

T
jk

]/
9γ4k

E33 =
10
(
3
√

5γk − 5wTik − 5wTjk
)

9γ4k
and E34 =

25

9γ4k
.

Then by completing the square, we have

(C.27) = exp

{
10σ2

k +
√

5γk
(
wTik + wTjk − 2µk

)
γ2k

}

×
∫ +∞

wTjk

(E34w
4+E33w

3+E32w
2+E31w+E30)

1

σk
√

2π
exp

{
−(w − µC)2

2σ2
k

}
dw,

where

µC = µk − 2
√

5
σ2
k

γk
.

Using Lemma C.1 and arranging terms, we obtain

(C.27) = exp

{
10σ2

k +
√

5γk
(
wTik + wTjk − 2µk

)
γ2k

}

×

[
E>3 Λ31Φ

(
µC − wTjk

σk

)
+ E>3 Λ32

σk√
2π

exp

{
−

(wTjk − µC)2

2σ2
k

}]
,

where
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• E3 = [E30, E31, E32, E33, E34]
> ;

• Λ31 = [1, µC , µ
2
C + σ2

k, µ
3
C + 3σ2

kµC , µ
4
C + 6σ2

kµ
2
C + 3σ4

k]
> ;

• Λ32 = [0, 1, µC +wTjk, µ
2
C + 2σ2

k +
(
wTjk
)2

+µCw
T
jk, µ

3
C +

(
wTjk
)3

+wTjkµ
2
C +

µC
(
wTjk
)2

+ 3σ2
kw
T
jk + 5σ2

kµC ]> .

The derivation of term (C.28) is analogue to that of term (C.27). By expanding

the product of two brackets after the integral sign, we have

(C.28) =

∫ wTjk

wTik

(E44w
4 + E43w

3 + E42w
2 + E41w + E40)

× 1

σk
√

2π
exp

{
−
√

5(w − wTik) +
√

5(wTjk − w)

γk
− (w − µk)2

2σ2
k

}
dw,

where

E40 =1 +

[
25
(
wTik
)2 (

wTjk
)2

+ 3
√

5
(
3γ3k − 5γkw

T
ikw
T
jk

) (
wTjk − wTik

)
+ 15γ2k

((
wTik
)2

+
(
wTjk
)2 − 3wTikw

T
jk

)]/
9γ4k

E41 =5

[
3
√

5γk

((
wTjk
)2 − (wTik)2)+ 3γ2k

(
wTik + wTjk

)
− 10wTikw

T
jk

(
wTik + wTjk

) ]/
9γ4k

E42 =5

[
5
(
wTik
)2

+ 5
(
wTjk
)2 − 3γ2k − 3

√
5γk

(
wTjk − wTik

)
+ 20wTikw

T
jk

]/
9γ4k

E43 =−
50
(
wTik + wTjk

)
9γ4k

and E44 =
25

9γ4k
.

Then by completing the square, we have

(C.28) = exp

{
−
√

5
(
wTjk − wTik

)
γk

}

×
∫ wTjk

wTik

(E44w
4+E43w

3+E42w
2+E41w+E40)

1

σk
√

2π
exp

{
−(w − µk)2

2σ2
k

}
dw.

Using Lemma C.1 and arranging terms, we obtain

(C.28) = exp

{
−
√

5
(
wTjk − wTik

)
γk

}[
E>4 Λ41

[
Φ

(
wTjk − µk

σk

)
− Φ

(
wTik − µk

σk

)]

+ E>4 Λ42
σk√
2π

exp

{
−(wTik − µk)2

2σ2
k

}
− E>4 Λ43

σk√
2π

exp

{
−

(wTjk − µk)2

2σ2
k

}]
,
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where

• E4 = [E40, E41, E42, E43, E44]
> ;

• Λ41 = [1, µk, µ
2
k + σ2

k, µ
3
k + 3σ2

kµk, µ
4
k + 6σ2

kµ
2
k + 3σ4

k]
> ;

• Λ42 = [0, 1, µk + wTik, µ
2
k + 2σ2

k +
(
wTik
)2

+ µkw
T
ik, µ

3
k +

(
wTik
)3

+ wTikµ
2
k +

µk
(
wTik
)2

+ 3σ2
kw
T
ik + 5σ2

kµk]
> ;

• Λ43 = [0, 1, µk + wTjk, µ
2
k + 2σ2

k +
(
wTjk
)2

+ µkw
T
jk, µ

3
k +

(
wTjk
)3

+ wTjkµ
2
k +

µk
(
wTjk
)2

+ 3σ2
kw
T
jk + 5σ2

kµk]
> .

Term (C.29) can be computed in the following way:

(C.29) =

∫ wTik

−∞

(
1 +

√
5(wTik − w)

γk
+

5

3

(
w − wTik
γk

)2
)

×

1 +

√
5(wTjk − w)

γk
+

5

3

(
w − wTjk
γk

)2


× 1

σk
√

2π
exp

{
−
√

5(wTik − w) +
√

5(wTjk − w)

γk
− (w − µk)2

2σ2
k

}
dw

=

∫ +∞

−wTik

(
1 +

√
5(w + wTik)

γk
+

5

3

(
w + wTik
γk

)2
)

×

1 +

√
5(w + wTjk)

γk
+

5

3

(
w + wTjk
γk

)2


× 1

σk
√

2π
exp

{
−
√

5(w + wTik) +
√

5(w + wTjk)

γk
− (w + µk)

2

2σ2
k

}
dw,

the form of which allows us to obtain solution of term (C.29) by simply using

that of term (C.27). Thus, we have

(C.29) = exp

{
10σ2

k −
√

5γk
(
wTik + wTjk − 2µk

)
γ2k

}

×
[
E>5 Λ51Φ

(
wTik − µD

σk

)
+ E>5 Λ52

σk√
2π

exp

{
−(wTik − µD)2

2σ2
k

}]
,

where

• E5 = [E50, E51, E52, E53, E54]
> ;
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• Λ51 = [1, −µD, µ2
D + σ2

k, −µ3
D − 3σ2

kµD, µ
4
D + 6σ2

kµ
2
D + 3σ4

k]
> ;

• Λ52 = [0, 1, −µD − wTik, µ
2
D + 2σ2

k +
(
wTik
)2

+ µDw
T
ik, −µ3

D −
(
wTik
)3 −

wTikµ
2
D − µD

(
wTik
)2 − 3σ2

kw
T
ik − 5σ2

kµD]>

with

E50 =1 +

[
25
(
wTik
)2 (

wTjk
)2

+ 3
√

5
(
3γ3k + 5γkw

T
ikw
T
jk

) (
wTik + wTjk

)
+ 15γ2k

((
wTik
)2

+
(
wTjk
)2

+ 3wTikw
T
jk

)]/
9γ4k

E51 =

[
18
√

5γ3k + 15
√

5γk

((
wTik
)2

+
(
wTjk
)2)

+ 75γ2k
(
wTik + wTjk

)
+ 50wTikw

T
jk

(
wTik + wTjk

)
+ 60
√

5γkw
T
ikw
T
jk

]/
9γ4k

E52 =5

[
5
(
wTik
)2

+ 5
(
wTjk
)2

+ 15γ2k + 9
√

5γk
(
wTik + wTjk

)
+ 20wTikw

T
jk

]/
9γ4k

E53 =
10
(
3
√

5γk + 5wTik + 5wTjk
)

9γ4k
, E54 =

25

9γ4k
and µD = µk + 2

√
5
σ2
k

γk
.

Therefore, the expression for ζijk when wTik ≤ wTjk is given by

ζijk = exp

{
10σ2

k +
√

5γk
(
wTik + wTjk − 2µk

)
γ2k

}

×

[
E>3 Λ31Φ

(
µC − wTjk

σk

)
+ E>3 Λ32

σk√
2π

exp

{
−

(wTjk − µC)2

2σ2
k

}]

+ exp

{
−
√

5
(
wTjk − wTik

)
γk

}

×

[
E>4 Λ41

(
Φ

(
wTjk − µk

σk

)
− Φ

(
wTik − µk

σk

))

+ E>4 Λ42
σk√
2π

exp

{
−(wTik − µk)2

2σ2
k

}
− E>4 Λ43

σk√
2π

exp

{
−

(wTjk − µk)2

2σ2
k

}]

+ exp

{
10σ2

k −
√

5γk
(
wTik + wTjk − 2µk

)
γ2k

}

×
[
E>5 Λ51Φ

(
wTik − µD

σk

)
+ E>5 Λ52

σk√
2π

exp

{
−(wTik − µD)2

2σ2
k

}]
,

and interchanging positions of wTik and wTjk gives the expression for ζijk when

wTik > wTjk .
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3 Derivation of ψjk

ψjk =

∫
w

1 +

√
5|w − wTjk|

γk
+

5

3

(
w − wTjk
γk

)2


× 1

σk
√

2π
exp

{
−
√

5|w − wTjk|
γk

− (w − µk)2

2σ2
k

}
dw

=

∫ +∞

wTjk

w +

√
5w
(
w − wTjk

)
γk

+
5w

3

(
w − wTjk
γk

)2


× 1

σk
√

2π
exp

{
−
√

5
(
w − wTjk

)
γk

− (w − µk)2

2σ2
k

}
dw (C.30)

+

∫ wTjk

−∞

w +

√
5w
(
wTjk − w

)
γk

+
5w

3

(
w − wTjk
γk

)2


× 1

σk
√

2π
exp

{√
5
(
w − wTjk

)
γk

− (w − µk)2

2σ2
k

}
dw. (C.31)

We first calculate term (C.30) by arranging the terms in the bracket after the

integral sign and completing the square:

(C.30) = exp

{
5σ2

k + 2
√

5γk
(
wTjk − µk

)
2γ2k

}

×
∫ +∞

wTjk

[
E12w

3 + E11w
2 + E10w

] 1

σk
√

2π
exp

{
−(w − µA)2

2σ2
k

}
.

By Lemma C.1, we then obtain

(C.30) = exp

{
5σ2

k + 2
√

5γk
(
wTjk − µk

)
2γ2k

}

×

[
E>1 Λ61Φ

(
µA − wTjk

σk

)
+ E>1 Λ62

σk√
2π

exp

{
−

(wTjk − µA)2

2σ2
k

}]
,

where

• Λ61 = [µA, µ
2
A + σ2

k, µ
3
A + 3σ2

kµA]
>

;

• Λ62 =
[
1, µA + wTjk, µ

2
A + 2σ2

k +
(
wTjk
)2

+ µAw
T
jk

]>
.
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Term (C.31) can be rewritten as follow:

(C.31) =

∫ wTjk

−∞

1 +

√
5
(
wTjk − w

)
γk

+
5

3

(
w − wTjk
γk

)2


× w

σk
√

2π
exp

{√
5
(
w − wTjk

)
γk

− (w − µk)2

2σ2
k

}
dw

=−
∫ +∞

−wTjk

1 +

√
5
(
w + wTjk

)
γk

+
5

3

(
w + wTjk
γk

)2


× w

σk
√

2π
exp

{
−
√

5
(
w + wTjk

)
γk

− (w + µk)
2

2σ2
k

}
dw,

the form of which allows us to obtain solution of term (C.31) by using that of

term (C.30). Thus, we have

(C.31) = − exp

{
5σ2

k − 2
√

5γk
(
wTjk − µk

)
2γ2k

}

×

[
E>2 Λ71Φ

(
wTjk − µB

σk

)
+ E>2 Λ72

σk√
2π

exp

{
−

(wTjk − µB)2

2σ2
k

}]
,

where

• Λ71 = [−µB, µ2
B + σ2

k, −µ3
B − 3σ2

kµB]
>

;

• Λ72 =
[
1, −µB − wTjk, µ2

B + 2σ2
k +

(
wTjk
)2

+ µBw
T
jk

]>
.

Thus, we have

ψjk = exp

{
5σ2

k + 2
√

5γk
(
wTjk − µk

)
2γ2k

}

×

[
E>1 Λ61Φ

(
µA − wTjk

σk

)
+ E>1 Λ62

σk√
2π

exp

{
−

(wTjk − µA)2

2σ2
k

}]

− exp

{
5σ2

k − 2
√

5γk
(
wTjk − µk

)
2γ2k

}

×

[
E>2 Λ71Φ

(
wTjk − µB

σk

)
+ E>2 Λ72

σk√
2π

exp

{
−

(wTjk − µB)2

2σ2
k

}]
.
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C.4 Proof of Proposition 3.4

C.4.1 Derivation of ξ̃i

ξ̃i = E
[
c(W, wTi )

]
=

∫
exp

{
−

d∑
k=1

(
wk − wTik

)2
γ2k

}

× 1√
(2π)d|Σ|

exp

{
−1

2
(w − µ)>Σ−1(w − µ)

}
dw

=

∫
exp

{
−1

2
(w − ωTi )>Λ−1(w − ωTi )

}
× 1√

(2π)d|Σ|
exp

{
−1

2
(w − µ)>Σ−1(w − µ)

}
dw,

where Λ = diag(
γ21
2
, . . . ,

γ2d
2

) ∈ Rd×d is a diagonal matrix.

By completing in squares, we then have

ξ̃i =
1√

(2π)d|M−1|
1√
|ΣM|

×
∫

exp

{
−1

2
(w −M−1V)>M(w −M−1V) +

1

2
(V>M−1V −R)

}
dw,

where M = Σ−1+Λ−1, V = Σ−1µ+Λ−1ωTi and R = µ>Σ−1µ+(ωTi )>Λ−1ωTi .

By integrating out the probability density function of a multivariate normal

distribution with mean M−1V and covariance matrix M−1, we have

ξ̃i =
1√
|ΣM|

exp

{
1

2
(V>M−1V −R)

}
Using the Woodbury identity (Petersen and Pedersen, 2012), we have

M−1 = Σ−Σ(Σ + Λ)−1Σ

M−1 = Λ−Λ(Σ + Λ)−1Λ.

Thus, we obtain

ξ̃i =
1√

|(Λ + Σ)Λ−1|
exp

{
−1

2
(ωTi − µ)>(Λ + Σ)−1(ωTi − µ)

}
,
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C.4.2 Derivation of ζ̃ij

ζ̃ij = E
[
c(W, wTi )c(W, wTj )

]
=

∫
exp

{
−

d∑
k=1

(
wk − wTik

)2
γ2k

−
d∑

k=1

(
wk − wTjk

)2
γ2k

}

× 1√
(2π)d|Σ|

exp

{
−1

2
(w − µ)>Σ−1(w − µ)

}
dw

=

∫
exp

{
−

d∑
k=1

2(wk − wTik)(wk − wTjk)
γ2k

−
d∑

k=1

(
wTik − wTjk

)2
γ2k

}

× 1√
(2π)d|Σ|

exp

{
−1

2
(w − µ)>Σ−1(w − µ)

}
dw

=

∫
exp

{
−1

2
(w − ωTi )>Γ−1(w − ωTj )− 1

4
(ωTi − ωTj )>Γ−1(ωTi − ωTj )

}
× 1√

(2π)d|Σ|
exp

{
−1

2
(w − µ)>Σ−1(w − µ)

}
dw

= exp

{
−1

4
(ωTi − ωTj )>Γ−1(ωTi − ωTj )

}
1√

(2π)d|Σ|

×
∫

exp

{
−1

2

[
(w − ωTi )>Γ−1(w − ωTj ) + (w − µ)>Σ−1(w − µ)

]}
dw,

where Γ = diag(
γ21
4
, . . . ,

γ2d
4

) ∈ Rd×d is a diagonal matrix. By completing in

squares, we then have

ζ̃ij = exp

{
−1

4
(ωTi − ωTj )>Γ−1(ωTi − ωTj )

}
1√

(2π)d|M−1|
1√
|ΣM|

×
∫

exp

{
−1

2
(w −M−1V)>M(w −M−1V) +

1

2
(V>M−1V −R)

}
dw,

where M = Σ−1 + Γ−1; V = Σ−1µ + Γ−1ω with ω = 1
2
(ωTi + ωTj ); and

R = µ>Σ−1µ+ (ωTi )>Γ−1ωTj .

By integrating out the probability density function of a multivariate normal

distribution with mean M−1V and covariance matrix M−1, we have

ζ̃ij = exp

{
−1

4
(ωTi − ωTj )>Γ−1(ωTi − ωTj )

}
× 1√

|ΣM|
exp

{
1

2
(V>M−1V −R)

}
.
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Using the Woodbury identity (Petersen and Pedersen, 2012), we have

M−1 = Σ−Σ(Σ + Γ)−1Σ

M−1 = Γ− Γ(Σ + Γ)−1Γ.

Thus, we obtain

ζ̃ij = exp

{
−1

8
(ωTi − ωTj )>Γ−1(ωTi − ωTj )

}
× 1√

|(Γ + Σ)Γ−1|
exp

{
−1

2
(ω − µ)>(Γ + Σ)−1(ω − µ)

}
.

C.4.3 Derivation of ψ̃jl

ψ̃jl = E
[
Wlc(W, wTj )

]
=

∫
wl exp

{
−

d∑
k=1

(
wk − wTjk

)2
γ2k

}

× 1√
(2π)d|Σ|

exp

{
−1

2
(w − µ)>Σ−1(w − µ)

}
dw

=

∫
wl exp

{
−1

2
(w − ωTi )>Λ−1(w − ωTi )

}
× 1√

(2π)d|Σ|
exp

{
−1

2
(w − µ)>Σ−1(w − µ)

}
dw,

where Λ = diag(
γ21
2
, . . . ,

γ2d
2

) ∈ Rd×d is a diagonal matrix.

By completing in squares, we then have

ψ̃jl =
1√

(2π)d|M−1|
1√
|ΣM|

×
∫
wl exp

{
−1

2
(w −M−1V)>M(w −M−1V) +

1

2
(V>M−1V −R)

}
dw,

where M = Σ−1+Λ−1, V = Σ−1µ+Λ−1ωTj and R = µ>Σ−1µ+(ωTj )>Λ−1ωTj .

By integrating out wl with respect to the probability density function of a

multivariate normal distribution with mean M−1V and covariance matrix M−1,

we have

ψ̃jl =
elM

−1V√
|ΣM|

exp

{
1

2
(V>M−1V −R)

}
.
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Using the Woodbury identity (Petersen and Pedersen, 2012), we have

M−1 = Σ−Σ(Σ + Λ)−1Σ

M−1 = Λ−Λ(Σ + Λ)−1Λ.

Thus, we obtain

ψ̃jl =
el[Λ(Λ + Σ)−1µ+ Σ(Λ + Σ)−1ωTj ]√

|(Λ + Σ)Λ−1|

× exp

{
−1

2
(ωTj − µ)>(Λ + Σ)−1(ωTj − µ)

}
,

which is

ψ̃jl = el[Λ(Λ + Σ)−1µ+ Σ(Λ + Σ)−1ωTj ] ξ̃j.
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