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1. Summary 
 

The return periods for extreme events are estimated from observational datasets. Often 

those datasets are relatively short in comparison to timescales of natural climate variability; 

potentially introducing a systematic bias into the extreme estimates. Here we combine 

observations with global climate models to show that this bias is statistically insignificant 

for the case of extreme UK-wide rainfall estimates. This is unlikely to hold for other 

locations and spatial scales, yet the methodology we have developed provides a simple 

approach to quantify the bias for other cases.  

 

2. Findings & Recommendations 

 
The most worrying features of climate change arise from its impacts on extreme events, 

such as floods, droughts and windstorms. This is true for natural changes in climate 

(termed natural climate variability) as well as for those caused by human activities. A lot of 

effort is currently going into understanding the consequences of anthropogenic climate 

change – both on catastrophe modelling and from a systemic economic perspective. The 

role of natural climate variability on extreme weather is well established. For example, an 

El Niño leads to decreased hurricane activity along the Gulf Coast. Estimating the 

recurrence of an extreme event involves sophisticated statistical extrapolation beyond a 

relatively short sequence of observations. But what happens when these observations do 

not sample the range natural climate variability – by missing any El Niños for example? 

 

Here we provide an illustration of the scale of this issue. We look at heavy rainfall across 

the U.K. as the Met. Office has collated some of the longest high-quality daily rainfall 

records. We also make use of over twenty state-of-the-art climate models to provide 

synthetic observations. The precise metric we use is the sum of rain falling each year on 

the 5% of wettest days. Most of these days occur in winter. Similar to industry practice, we 

presume a stationary climate for this analysis. This is akin to saying that the impacts of 

human-caused climate change are negligible over the historical period under investigation. 

 

Most of the damaging rain-related events in the U.K. are caused by winter storms. The 

storminess over the whole of Western Europe is related to a climate pattern called the 

North Atlantic Oscillation (NAO). This varies year by year, but also will favour one phase or 

the other for a decade or two. The Atlantic Multidecadal Oscillation (AMO) involves shifts in 

sea surface temperature on 30-40 year timescales, and its warmer temperatures deliver 

more moisture to the U.K. A typical length of weather observations of a quarter of a 

century might only catch one phase of these oscillations. 

 

We can interrogate climate model to find out how the return estimate of an extremely wet 

year relates to these two climate modes. There are over twenty different climate models 

that have provided historical simulations with the necessary daily outputs spanning 1850-

2005. Each simulation calculates its time series of natural climate variability. These 

simulations have been subdivided into shorter samples and the 200-year return level 

estimated from each sample. The resulting model-derived estimates can be compared to 

the return level from observations (Figure 1). It is clear that the 5-95% range from 

observations only encompasses roughly half of model-derived estimates. This may 

indicate that the volatility (uncertainty) calculated from observation is underestimated.    
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The indices categorising the NAO and AMO are also recorded. This results in sufficient 

synthetic data to calculate the correlations between return levels and phase of the climate 

mode. Little evidence of a statistically significant relationship is found. The fact there is not 

a statistically significant relationship does not preclude a subtle dependency of estimate 

return levels on climate variability. For example in Figure 1, the simulated return levels are 

coloured by whether the NAO is negative (blue), neutral (black) or positive (red).  

 

A somewhat similar analysis can be performed to track climate changes with time (Figure 

2). Again no statistically significant relationship is seen in total, yet an obvious trend is 

visible. In this instance, we have also applied a damage function to convert the rainfall 

totals into expected economic losses. One fundamental difference between the two factors 

is that we anticipate the increasing magnitude of climate change to cause an increasing 

systematic bias in estimates of return level. Any uncertainties from climate variability 

should be remain of a similar size throughout. Since a large synthetic dataset has been 

created, it could be used to model and correct for the climate variability and change. For 

the UK precipitation shown here, a correcting for the observed phase of the natural 

variability would result in a downward shift of 7% of the 200-yr damage level. This 

regressive model also suggests the warming seen in the UK in 2015 increases the 200-yr 

return level by £50m.  

 

This report only presents an analysis of extreme precipitation over England and Wales. We 

have shown that climate variability does not impact estimates of return levels over the 

country, despite influencing year-to-year rainfall values. This occurs because precipitation 

itself involves high levels of stochastic, weather noise combined with the fact that 20 years 

is sufficient to average over multiple periods of the North Atlantic Oscillation. It is doubtful 

this situation will always be the case. The availability of model simulations would allow a 

similar analysis to be performed for temperature and precipitation extremes anywhere 

around the globe. The existence of the simulations categorising the relationship also 

allows a scaling factor to be identified to correct observed records where this does occur.  

 

3. Technical Details 
 

3.1. Data Sources 

The longest quality-controlled record of daily rainfall goes back to 1931. It represents the 

average precipitation over England and Wales and is known as by the acronym, HadUKP 

(Alexander & Jones, 2000). It is available via free download from the Hadobs website (Met. 

Office, 2016)  

 

3.2. Extreme Metrics 

The results shown in this reports use a metric cryptically known as R95pTOT. This 

translates to the total amount of rainfall on very wet days during each year. It is created 

from a daily precipitation time series and uses a self-referential way of identifying 'very wet' 

days. This involves creating a climatology and calculating the 95th percentile of rain rate.  

 

The R95pTOT was identified by the Expert Team on Climate Change Detection and 

Indices (ETCCDI, 2009). Here it has been calculated using the climdex.pcic set of R 

libraries (Bronaugh et al., 2015). This metric is chosen as it seems to the most relevant for 

the insurance industry, as well as for pragmatic reasons. It accumulates over roughly 10 

days each year. Several other extreme rainfall metrics were also investigated.  
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To correct for biases in the climate model simulations, we perform the analysis using the 

proportional metric (i.e. the fraction of the climatological total annual rainfall falling on very 

wet days). All results are converted back into absolute rainfall amounts by multiplying by 

the observed cumulative annual precipitation (884.3 mm/year) during the climatology 

period (1971-2000).  

 

3.3. Natural Variability 

The North Atlantic Oscillation (NAO) is a large scale see-saw in atmospheric mass 

between the polar low and the subtropical high in the north Atlantic region; it is the 

dominant mode of climate variability during winter around the North Atlantic. A positive 

phase of the NAO shows a stronger North-South pressure difference in the Atlantic. It is 

related to stronger and frequent winter storms travelling on a more northerly track and is 

associated with wet and warm winters in Northern Europe. Here we measure it the 

normalised sea level pressure difference between [20-50°N, 90°W-60°E] and [55-90°N, 

90°W-60°E] (Stephenson et al., 2006). 

 

The Atlantic Multidecadal Oscillation (AMO)  measures how much warmer sea surface 

temperature averaged over the North Atlantic is than the global value. The time scale of 

the AMO is  20-40 years. Here we use the Trenberth & Shea (2006) definition of AMO as 

being the difference between sea surface temperature averaged between 0-60°N, 0-80°W 

and averaged between 60°S-60°N, 0-360°E. 

 

3.4. Climate Models 

Climate models (formally termed 'coupled general circulation models') are some of the 

most sophisticated algorithms available. They solve the fundamental equations of motion 

for the atmosphere, ocean, sea-ice and land surface at tens of thousands of locations 

simultaneously. The atmospheric components are derived from weather forecasting 

models. 

 

A co-ordinated set of experiments were performed by all modelling centres across the 

globe in support of the Intergovernmental Panel on Climate Change's (IPCC) most recent 

assessment report (Flato et al., 2013). As the Earth's atmosphere can only be observed 

once over the 20th Century, historical simulations from these climate models are treated 

here as alternate realisations of past climate variability.  

 

The results of all the IPCC simulations are freely available via the Earth System Grid 

Federation. Only a subset of the simulations have posted daily output data. The Canadian 

Center for Climate Modelling and Analysis has computed and released annual extreme 

indices from this data for the community (Sillmann et al., 2013). We have accessed the 

data for the United Kingdom (Figure 3) via the IPCC's Climate Change Atlas (van 

Oldenborgh et al., 2013). 

 

3.5. Damage Functions 

Damage curves or damage functions relate the severity of a natural hazard to the probable 

consequential impact, typically in financial terms (Oppenheimer et al. 2014) or  some 

cases as human costs (Penning-Rowsell et al. 2005). They are difficult to estimate, and 

the outcomes of hazard studies may be highly sensitive to their correct identification (Smith 

1994). Factors such as flood warnings and defences also reduce incurred losses. 

Nevertheless, simple damage functions are widely implemented and popular due to their 

transparency (Ackerman & Munitz 2012). 
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Plots of damage as response variables to flood depth are known as depth-damage curves. 

Depth-damage curves can be used in combination with depth-frequency plots to determine 

the typical costs associate with events of a given return period. An alternative is to infer the 

damage-frequency relationship directly. Figures for the likely damage to the UK of average 

annual flooding along with 1-in-100 and 1-in-200 year flood events were acquired from the 

Association of British Insurers (Dailey et al. 2009) and combined with the total rainfall 

falling on very wet (>95%) days over the year from the HadUKP dataset (section 3.1). As 

zero damage may occur at low flood levels (Green 2003), the damage-frequency curve is 

evaluated on the interval between the mean annual maximal flow/annual damage and the 

1-in-200 event. The function derived from this approach is damage (£m) = 0.0006 

R95pTOT^2.7676 (mm).  

 

The 10 largest cumulative daily rainfall values were identified along with their associated 

damage and insurance claims (Table). This illustrates the high uncertainty associated with 

the calculation of damage from precipitation frequency through large variability in ensuing 

insurance losses. Other critical factors beyond precipitation are antecedent soil conditions, 

presence and condition of storm water infrastructure and snow melt. 

 

The frequency-damage curve provides a plausible representation of the costs incurred by 

extreme precipitation events. Not every extreme event can be associated with high 

insurance losses; however this may be a function of the imperfect reporting and claims 

record rather than losses incurred. Many of the most extreme flooding events and 

therefore the most damaging conditions are directly attributable to very high levels of 

precipitation, even as observed at the national scale. 

 

3.6. Spatial Heterogeneity 

The analysis described above has all been performed on the national level. This is the only 

scale appropriate given both the observational dataset and the grid resolution of the 

climate models. Clearly national averages hide significant small-scale variations and local 

extreme events. To illustrate the sort of structure lost at this resolution, we performed an 

analysis of a shorter daily record over the UK derived from observations (Met. Office, 

2009). Figure 4 shows the spatial pattern in annual rainfall percentages associated with a 

1 in 3 level of occurrence on the national average. Further work is required to assess the 

impact of the natural variability correction discussed here downscaled to provide a local 

relevance.  

 

3.7. Anthropogenic Climate Change 

The work presented was focussed on uncovering the role that natural climate variability 

has on estimates of extreme events. Nonetheless, the influence of anthropogenic climate 

change cannot be ignored (Figure 3) and has been investigated using the same approach 

(Figure 2). Alternative and more rigorous approaches exist to quantify the human influence 

on extreme events. An ideal methodology has been developed to capture the influence 

both for meteorological (Pall et al., 2011) and hydrological events (Schaller et al., 2016). 

This retrospective attribution technique is highly developed and could be adapted to 

provide more rigorous equivalents of those used here. However, the present methodology 

could be deployed much more rapidly and so would be a more pragmatic choice. Further 

work would be required to assess its adequacy.  
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4. Figures and Table 

 
 

Figure 1. The return levels are estimated for cumulative annual rainfall from very wet days for 

England & Wales. The estimated return levels are shown by black lines, along with its 5-95% 

confidence interval. The observed return levels seen in the rainfall data are shown by the circles. 

Simulated 200-yr return levels are shown with crosses - colour coded by the phase of the North 

Atlantic Oscillation (with blue for positive, black for neutral and red for negative).  
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Figure 2. The return levels estimated for economic damage caused cumulative annual rainfall from 

very wet days for England & Wales. The estimated return levels are shown by black lines, along 

with its 5-95% confidence interval. The observed return levels seen in the rainfall data are shown 

by the circles. Simulated 200-yr return levels calculated from twenty year records centred on 1895 

(left) up to 2015 (right, red crosses).  

 

 
 

Figure 3. The cumulative annual rainfall from very wet days over the United Kingdom over the 20th 

and 21st centuries, as simulated by climate models (generated using the IPCC's Climate Change 

Atlas; climexp.knmi.nl/plot_atlas_form.py). The ensemble mean and spread associated with 

various RCP scenarios (over the 2081-2100 period) are shown at the right. 
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Figure 4. The local expression of rainfall extremes associated with a 66% (1 in 3) exceedance 

threshold in the national, annual mean value. Note that some locations see more extreme rainfall 

increases (blue), while some show much less (orange). 

 

 

Year 
R95pTOT 

(mm) 

Cost 

(£m) 

Cost 

(£m, 

2015) 

Reference 

(Hyperlinked) 

Derived  

Damage  

(£m, 2015) 

2000 336.7 1000 1565 Govt. Report 5923 

2012 318.1 1190 1308 Assoc. Brit. Insurers 5061 

2002 298.2 2 3 Glasgow Council 4232 

2007 229 3200 4178 House of Commons 2038 

1965 226.3     No cost found 1972 

1981 225.3 1 3088 York Council 1948 

2008 223.4 35 44 Env. Agency 1903 

1998 222.8 350 575 Met. Office 1889 

1979 217.6     No cost found 1769 

1940 201     No cost found 1420 
 

 

Table.1. The reported losses resulting from the 10 years with the highest cumulative rain falling on 

very wet days.  
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