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Abstract 

Liquid foams represent an extremely diverse and highly functional form of soft matter, whose 

application is widespread throughout industry. These can range from luxurious and low calorie 

applications in food and beverages, structural and insulating properties in building and 

manufacture, right through to dynamic and transport abilities in the petrochemical industry, 

among others. A common feature of all of these foams is they are required to exhibit longevity, 

however as foams are thermodynamically unstable systems, this is not always a trivial feat. 

Foams are highly complex systems, with dynamic processes occurring on the molecular scale 

that influence properties at the scale of individual bubbles and subsequently at the 

macroscopic scale of bulk foams. A particular challenge of foam research is to unite these 

length scale processes, requiring robust theoretical and experimental studies to be made at 

all size regimes. This PhD thesis is concerned specifically with the microscale process of liquid 

flow between bubbles, as these liquid channels form the primary network through which 

liquid ‘drains’ through a foam under the force of gravity; one of the key mechanisms governing 

foam instability. 

The initial focus of this PhD thesis was the design and implementation of an experimental 

technique to isolate and image liquid foam channels formed under controlled liquid flow rates. 

This was developed with a view to producing highly accurate and reproducible measurements 

of the channel geometries, which would enable the comparison to theory derived to describe 

such systems. 

Measurements of low molecular weight surfactants and higher molecular weight emulsifiers 

clearly demonstrated three previously unseen geometries of foam channel that could not be 



ii 
 

described using existing theory. Instead, a new geometric model was developed which was 

able to account for these differences, relating the bulk and surface properties of the foam 

channel to its length and the rate of liquid flow passing through it. When used as a fitting 

parameter, the new model was able to clearly demarcate between the characteristic low and 

high surface viscosities of the surfactant and emulsifier species respectively. 

The surface viscosity of the surfactant foam channel interfaces was examined throughout this 

PhD study, as the values extracted from model fitting were consistently lower than the 

majority found in literature, but in line with predictions made from hyper-sensitive 

measurement techniques. Ultimately, it was proposed that these differences could be 

attributed to a combination of the limited measurement sensitivity of commercial systems, 

combined with a liquid flow velocity dependence of surfactant concentration at the channel 

surface. 

It was suggested that, in the case of low molecular weight surfactants, a surface tension 

gradient can exist along the length of a foam channel, that is dependent upon the rate of liquid 

flow, the concentration of surfactant and the rate of surfactant adsorption to the interface. In 

the case of high liquid flow velocities, it was shown that surface tensions in some channel 

regions could be almost as high as pure water, despite surfactant concentrations being above 

the CMC. As such, this could have significant consequences for stability in macroscopic foams 

where these conditions are present. 
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1.1 Context for this Study 

The simple incorporation of gas bubbles into a liquid system can have the ability to 

dramatically alter its physical properties and potential applications. Foams exists in a 

massively diverse range of industrial applications, from foods to construction, petrochemical 

to medicine and cosmetics. The reason for their wide uptake throughout these industries is 

their unique structural characteristics, which can be tailored based on the formulation and 

incorporation of gas under a range of conditions. Whether the aim is to create luxurious foods 

and beverages or highly efficient insulation in eco-friendly buildings, the scope for innovation 

in foams continues to expand. 

Despite their many positives as a functional material, foams represent an extremely complex 

medium, which in their liquid form are often highly unstable. In cases where foams may be 

undesirable, such as during the processing of various liquids, this is beneficial; however, in the 

majority of cases where foam stability is required, this represents a significant problem. 

Controlling foam stability is a major area of academic and industrial research, where solutions 

to the fundamental thermodynamic instability of liquid foams are sought. Whether this is to 

create a long lasting beer head that appeals to consumers, or efficiently extract minerals 

during froth flotation; there is a need to understand the dynamic processes that underpin the 

inevitable collapse of these systems. Ultimately, these processes will only be truly controlled 

by forming a complete understanding of foam dynamics from the nanoscale interaction of 

molecular ingredients; the microscale interaction bubbles and liquid channels; right up to the 

macroscale properties of bulk foams. 
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1.2 Motivation 

The study of liquid flow at the microscale in-between bubbles of foam is currently based 

primarily on theoretical modelling, with very little in the way of direct experimental 

observation in the literature. This has largely been due to difficulties in controlling and 

measuring these systems in macroscopic foams. The motivation for this study is to be able to 

add to the current bulk of experimental observation of these microscale systems, therefore 

better informing microscale drainage theory and thus the overall understanding of 

macroscopic foam drainage. 

1.3 Aim and Objectives 

The ultimate aim of this thesis is to create a measurement technique that is capable of 

analysing the microscale flow through liquid foam channels under strictly controlled 

conditions. By deliberately isolating these foam channels and studying their structures under 

forced liquid flow rates, it is hypothesised that simple geometric measurements could be used 

to describe the relationship between bulk liquid and interfacial flow dynamics. Overall, this 

research would add to the limited body of experimental observations made of liquid foam 

channels and aid in providing a more complete understanding of microscale foam drainage. 

As this research is funded as part of the EPSRC’s Centre for Innovative Manufacturing in Food 

(CIM) at the University of Birmingham, a particular focus will be paid towards food grade liquid 

formulations, although the author feels that this does not limit the applicability of this 

research to other industries. The key research objectives of this thesis can therefore be broken 

down as follows: 
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 Design and build an experimental setup capable of producing, and capturing high-

resolution images of, isolated liquid foam channels in controlled arrangements and at 

controlled liquid flow rates.  

  Develop a theoretical background capable of accurately describing the microscale 

geometries of liquid foam channels based on the bulk liquid flow and interfacial 

properties. 

 Examine the relationship between surface rheology and bulk liquid flow for a range of 

formulations, with an emphasis on those with particular relevance to the food 

industry. 

 To better understand the impact of liquid flow on the stabilising action of chemical 

emulsifiers and how this may ultimately affect stability in macroscopic foam systems. 

1.4 Thesis Layout 

This thesis follows the alternative thesis format of the University of Birmingham, where results 

chapters (Chapters 4-6) are either published or under review by peer-reviewed journals. 

Chapter 2. This chapter provides an introduction to the subject of liquid foams and foam 

stability in the literature, with an emphasis on foam systems relevant to the food industry. A 

more comprehensive review of the literature relating to foam drainage follows.  

Chapter 3. This chapter describes the design and development of the experimental setup, the 

‘PB-Node Setup’, used throughout this thesis to gather experimental data on foam channel 

geometries and apply theory developed to describe these systems. 
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Chapter 4. This chapter describes the application of existing theory describing microscale 

foam geometries to experimental data for formulations of Sodium Dodecyl Sulfate (SDS) at 

controlled liquid flow rates and channel lengths. The results of this study demonstrated the 

existence of a previously unseen microscale channel geometry, which could not be described 

by existing theory. It was shown that foam channel length and liquid flow rate directly 

influenced the channel geometry. This work has been published under the title: ‘Measuring 

the Impact of Channel Length on Liquid Flow through an Ideal Plateau Border and Node 

System’ (Clarke et al., 2019). 

Chapter 5. This chapter derives a new theory to describe the geometries of isolated foam 

channels and demonstrates its ability to fit well to experimental profiles for a range of food 

grade liquid formulations. An additional, previously unseen, microscale channel geometry was 

observed for formulations of high molecular weight emulsifiers. The length dependence of 

channel geometries is attributed to the geometry and position of the adjoining node in 

relation to the equilibrium geometry of the foam channel. This work has been published under 

the title: ‘Surface Rheological Measurements of Isolated Food Foam Systems’ (Clarke et al., 

2019). 

Chapter 6. This chapter describes an extension of the method and theory developed in 

Chapter 5, to incorporate the adsorption dynamics of surfactant molecules. This study 

demonstrates how the rate of surfactant adsorption could lead to a non-uniform surface 

tension along foam channel interfaces that varies with liquid flow rate. This provides an initial 

indication that the stability of macroscopic foams could be inhibited by high velocity liquid 

flow through its foam channels, as is often the case both during and shortly after foam 



  Chapter 1 
 

6 
 

formation. This work has been published under the title: ‘A Flow Velocity Dependence of 

Dynamic Surface Tension in Plateau Borders of Foam’ (Clarke et al., 2020). 

Chapter 7. This chapter provides a summary of the key research findings of this thesis, along 

with proposals for future studies that could be conducted as a continuation of this work. 

Appendix A. This appendix contains details of the Matlab code used to process data from the 

‘PB-Node’ experimental setup. 

1.5 Publications and Presentations 

1.5.1 Publications 

 C. Clarke; A. Lazidis; F. Spyropoulos; I. T. Norton, Measuring the Impact of Channel 

Length on Liquid Flow through an Ideal Plateau Border and Node System, Soft Matter 

2019, 15, 1879-1889. 

 C. Clarke; F. Spyropoulos; I. T. Norton, Surface Rheological Measurements of Isolated 

Food Foam Systems, Physics of Fluids 2019, 31, 092002. 

 C. Clarke; F. Spyropoulos; I. T. Norton, A Flow Velocity Dependence of Dynamic Surface 

Tension in Plateau Borders of Foam, Journal of Colloid and Interface Science 2020, 573, 

348-359. 

1.5.2 Presentations 

 C. Clarke; A. Lazidis; F. Spyropoulos; I. T. Norton, Foam Drainage: Microscale Flow in an 

Ideal System, EPSRC CIM in Food 2nd Annual Conference, Birmingham, 2017. 
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 C. Clarke; A. Lazidis; F. Spyropoulos; I. T. Norton, Food Foams on the Microscale, Food 

Matters Live, London, 2017. 

 C. Clarke; A. Lazidis; F. Spyropoulos; I. T. Norton, Food Foams on the Microscale, 17th 

Food Colloids Conference, Leeds, 2018. 

 C. Clarke; A. Lazidis; F. Spyropoulos; I. T. Norton, Foam Drainage: Microscale Flow in an 

Ideal System, EPSRC CIM in Food 3rd Annual Conference, Nottingham, 2018. 

 C. Clarke; F. Spyropoulos; I. T. Norton, Measuring the Interfacial Rheology of Soluble 

Surfactants using controlled Foam Plateau Border and Node Geometries, 8th 

International Symposium on Food Rheology, Zurich, 2019. 
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2.0 Abstract 

The aim of this literature review has been to provide an introduction to aqueous foams, with 

a basic overview of the physical and chemical aspects relating to their production and eventual 

decay. In particular, this work has focused on the destabilising role played by liquid drainage, 

with a more in depth discussion of the current theoretical and experimental work that has 

sought to describe and characterise two-phase aqueous foam systems. A more specific 

background relating to each of the sections of this thesis is given in the introduction to each 

of the experimental chapters. 

2.1 An Introduction to Aqueous Foams 

The formation of a foam is a fascinating phenomenon, wherein a simple liquid is transformed 

into an expansive and complex dynamic structure. In its most simplistic sense, a liquid foam is 

a dispersion of gas in a liquid where the tightly packed gas bubbles occupy most of the 

volume[1]. An example of a so-called two-phase foam can be seen in Figure 2.1, where the 

continuous phase (or ‘matrix’) surrounds the discrete phase of gas bubbles. In reality, things 

are rarely this simple, with the liquid phase often incorporating additional discrete particles 

and/or exhibiting viscoelastic characteristics due to its chemical composition[2]. Indeed, 

Berkman, et al.[3] state that it can only be produced in systems possessing the proper 

combination of surface tension, viscosity, volatility, and concentration of solute or suspended 

solids[4]. 

Overall, these systems are unique in their structural characteristics, giving them a diverse 

range of applications across different industries, from petrochemical[5] through to food[6], fire-
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fighting[7], healthcare[8] and many others. One thing that unites all of these foams, however, 

is their fundamental complexity, and the need for researchers to break this down in order to 

optimise their production and functionality. 

 

Figure 2.1. Simple two-phase foam schematic and micrograph of a commercial confectionary 

foam. 

2.2 Industrial Example: Foams in the Food and Beverage Industry 

While foams in general have been the subject of intensive research for many years, the 

application of theory to foams in the food industry is often secondary. In this regard, food 

foams tend to be formulated largely by a trial and error, ‘top-down’, approach with theory 

applied during their subsequent characterisation. This being said, significant improvements 

have been made in the last 20 years since Campbell, et al.[9] noted in 1999 that in many cases 

a quantitative understanding of aerated foods was distinctly lacking. Much of this work has 

been to do with the action of chemical stabilisers such as proteins at the bubble interfaces[10], 
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however, there remains significant gaps, especially when it comes to uniting the quantitative 

understanding of such molecular scale interactions with macroscopic foam dynamics.[11] 

The need to understand these systems is becoming a matter of increasing importance in the 

food industry, with new formulations and structures being investigated for their often 

remarkable properties. Just a few of these benefits include reduced product density, 

improvements in texture, mouthfeel and appearance, as well as increased absorbance and 

control of digestibility[12]. The inherent increase in surface area and ability to encapsulate 

gases can also have a significant impact on flavour release through a variety of mechanisms[13]. 

This may include the gradual release of flavour volatiles with foam collapse, such as hop 

aromas being released from a beer head (a highly sought after characteristic in the brewing 

industry), and the possibility of either intensified or reduced flavour perception[9]. 

Campbell, et al.[9] identify seven broad groups of what they call ‘aerated foods’ that they 

categorise as follows: 

o Beverages[14,15] 

o Baked products[15,16] 

o Other cereal-based products[17] 

o Dairy products[16,18] 

o Egg products[15] 

o Chocolate and confectionary products[16,19] 

o Others; e.g. sorbets, vegetable paste foams… 

With the exception of most cereal-based products, this list demonstrates aerated foods that 

at least begin as liquid foams, therefore showcasing the extreme variability of chemical 
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compositions and structures available. As such, it is the job of researchers to understand such 

systems and thus provide the basis for innovation that can reflect and meet increasing 

consumer demands. 

One example of such demands, is the increasingly environmentally and health conscious 

western public, which is driving a major trend towards green label, eco-friendly products[20]. 

In this case, long-standing, highly functional ingredients, often animal or synthetic in origin, 

are beginning to be replaced with plant-based alternatives. Notable examples include the 

replacement of gelatine with plant-based polysaccharides[21], or egg white proteins with 

proteins derived from different legumes[22]. Such substitutions to existing products require an 

in-depth understanding of the physicochemical role of each ingredient in order to find a 

suitable replacement that does not alter consumer perception in any way. This understanding 

must extend to the complex interaction of multiple ingredients in a range of processing 

environments, as well as to post-production, where stability of the foam system becomes a 

key concern. Therefore, it is clear that the existing ‘top-down’ approach to foam design must 

begin to give way to a more ‘bottom-up’ approach of tailored formulation. 

2.3 Fundamentals of Foam Structure  

There are many variables at work within a foam structure that produce its final characteristics, 

with contributions from the gas bubbles, the solid/liquid ‘matrix’, and even the interface that 

divides the two phases. Perhaps one of the more simplistic factors determining the 

functionality of the final foam however, is the ratio of gas to liquid, wherein the contributions 

of these phases is determined. 
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2.3.1 Wet Foams and Dry foams 

Liquid foam can be divided into two main categories of ‘wet’ and ‘dry’, which is based on the 

fraction of gas and liquid, 𝜙௚ and 𝜙௟, respectively. Early in the foam lifetime, the majority of 

foams are ‘wet’, where the liquid fraction dominates[7]. Over time however, 𝜙௟  decreases as 

liquid leaves the foam, partially through evaporation, but primarily by draining under the force 

of gravity, resulting in a ‘dry’ foam[23]. In reality, these categories represent either end of a 

spectrum of foam states (see Figure 2.2), but are useful for broadly describing certain key 

characteristics. 

 

Figure 2.2. Micrographs of ‘wet’ and ‘dry’ foam structures: a) Higher liquid fraction (𝝓𝒍 ≈

𝟎. 𝟎𝟖) with approximately spherical bubbles. b) Decreasing liquid fraction (𝝓𝒍 ≈ 𝟎. 𝟎𝟔) with 

distortion to spherical bubbles. c) Dry foam structure with low liquid fraction (𝝓𝒍 ≈ 𝟎. 𝟎𝟑) 

and polyhedral shapes appearing. 

2.3.1.1 Wet Foams 

A wet foam is generally defined as having a liquid fraction that is over 5% of the overall foam 

volume, but less than the so-called ‘critical liquid fraction’, 𝜙௟
∗, where bubbles are no longer 

in contact with one another, also known as the ‘wet limit’ (i.e. 0.05 ≲ 𝜙௟ < 𝜙௟
∗)[1]. The wet 



  Chapter 2 
 

15 
 

limit is usually based on an estimated value for the optimised packing of hard spheres[23], 

which varies based on foam polydispersity[24]. For example the ‘Bernal Packing Density of Hard 

Spheres’ gives a critical liquid fraction of 𝜙௟
∗ = 0.36, however this decreases with increasing 

polydispersity, where packing becomes more efficient. It has been widely noted that these 

bubble size distributions play an important role in the foam’s structural properties, such as 

yield stress and elastic properties, as well as appearance[9,12]. 

Above the wet limit, the interaction of bubbles with one another drops off dramatically, 

reducing the solid-like behaviour of the foam structure. A liquid containing a dispersion of a 

few spherical bubbles where the liquid spacing is of a similar order (or higher) to the gas 

bubble size, can be thought of as a ‘gas emulsion’[25], where a more liquid-like behaviour is 

generally observed. 

The wide range of foam applications are based in the wet foam regime, where the liquid 

formulation contains highly desirable functional attributes. To once again use food foams as a 

prime example, a chocolate mousse can generally contain a liquid fraction anywhere between 

0.5 and 0.9 depending on the desired texture and perceived ‘richness’ of the product, which 

can categorise it as a wet foam or gas emulsion respectively. As with many foams in the food 

industry, too low a liquid fraction can produce an overly ‘light’ texture, which detracts from 

the desired creamy and luxurious mouthfeel[11]. 

2.3.1.2 Dry Foams 

The dry foam regime is one where we expect the gas fraction to dominate over liquid by a 

substantial margin. This regime is usually entered towards the end of a foam’s lifetime, where 

the majority of liquid has drained from the system. Ultimately, all liquid foams will evolve 
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towards a ‘true’ dry foam structure, where 𝜙௟ → 0, however a more general dry foam 

definition can be given as those having a liquid fraction that is less than 5% of the overall 

volume (i.e. 𝜙௟ ≲ 0.05)[1]. This category can apply to many everyday foams, including washing 

up foams, whose liquid fraction is generally less than 1% of the overall volume[26]. 

As can be seen in Figure 2.2c, bubbles within a dry foam tend to take on polyhedral shapes 

owing to the distortions caused by their close proximity to one another. A concise description 

of these fundamental structures is given by Cantat, et al.[1], namely:  

‘[The bubble’s] faces are thin films that are gently curved either because of the pressure 

differences between the bubbles, or simply because its perimeter does not lie in one plane. 

The films intersect in threes along the edges …, which are liquid carrying channels known as 

Plateau borders ... The curvature of the liquid/gas interfaces must remain finite (by the Young-

Laplace Law), which imposes a non-zero thickness on the Plateau borders ... The cross-section 

of each border is a small triangle with concave sides. Four Plateau borders intersect at the 

vertices (or nodes) of each polyhedral bubble.’ (See Figure 2.3). 

This description of a dry foam structure highlights some of the key physical laws that underpin 

the formation and stability of foam systems. It is these laws that transform the apparently 

random arrangement of gas cells in a liquid, into predictable geometric arrangements during 

the drying of foams. 

2.3.2 Foam Stability: Minimisation of Surface Area 

From a thermodynamic perspective, liquid foams are inherently unstable due their high 

surface area to volume ratios and the associated energy ‘cost’ of these interfaces (see below). 

Indeed, the lowest energy state of a foam is one where the foam does not exist at all, with a 
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single interface between the unaerated bulk liquid and the surrounding gas. Ultimately, this is 

the state that liquid foams evolve towards and the reason that increasing foam longevity is 

such a major topic of research[27]. 

The ‘cost’ of creating a gas-liquid interface is that of the surface free energy, which decreases 

with the surface area of the interface[28]. This can also be described in terms of the surface 

tension, where the intermolecular attractions along the liquid surface mean that a force is 

required to extend or distort it. As such, the minimum surface area is the least energy 

intensive[23]. This fundamental law is responsible for many of the phenomena seen in bubbles. 

It is the reason individual bubbles take on spherical geometries and similarly the reason for 

the distinctive polyhedral shapes that arise in dry foams. 

While a sphere is an intuitive shape for minimising surface area, the range of polyhedral 

shapes observed in dry foams are perhaps less obvious. This was the subject of intensive study 

by Belgian physicist Joseph Plateau, who derived a series of laws to describe the bubble 

arrangements. Two of these laws are contained within Cantat’s[1] description of the dry foam 

structure, wherein a dry foam can only be at equilibrium if:[23,29] 

1) Films intersect three at a time and only at 120 degrees. 

2) There are no more than four intersection lines at a stable vertex, with all angles at the 

Maraldi Angle (∼109.5˚). 
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Figure 2.3. Example schematics of fundamental dry foam channel microstructures i.e. 

Plateau borders intersecting at a Node. a) Side view. b) Top down view. 

Due to the strict, thermodynamically imposed, geometries present in dry foam structures, 

they have proven to be a highly useful feature for studying the fundamental dynamics of foam 

systems. 

2.4 Stabilisation of the Gas-Liquid Interface 

In order to maximise foam longevity, it is necessary to minimise the energy cost associated 

with forming and maintaining gas-liquid interfaces. This is a fundamental consideration of 

foam formulation where either chemical emulsifiers/surfactants or macroscopic particles can 

be used to disrupt the attractive intermolecular forces at the surface and thus reduce the 

surface tension. These can be highly effective when used individually, but can also be 

combined to either further improve or reduce their surface disruptive effects depending upon 

whether foams are desirable or not. During this study, we will take the assumption that longer 
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foam lifetimes are a desirable attribute, and will therefore not consider antifoaming agents 

and/or combinations. 

2.4.1 Surfactants 

Surfactants are a group of molecules that exhibit strong surface activity and high surface 

lateral diffusion, while being able to adsorb and desorb from the gas-liquid interface[30]. They 

are usually of a relatively low molecular weight and consist of a hydrophilic ‘head’ group and 

one or several hydrophobic ‘tails’[31]. 

When surfactant molecules diffuse to the gas-liquid interface, they adsorb by arranging the 

hydrophobic region within the gas phase and the hydrophilic section in the liquid phase[32]. 

Being of a low molecular weight means that they generally highly mobile both in the bulk 

liquid and at the interface[33], therefore giving them the ability to rapidly coat newly created 

air–liquid interfaces during foaming[31]. Due to their size, low molecular weight surfactant 

molecules (LMWS) have a tendency to pack efficiently at the interface, making them effective 

at lowering surface tension[28] (See Figure 2.4); however, this can also be affected by factors 

such as molecular charge[34] and Hydrophilic Lipophilic Balance (HLB)[32]. 

Initially, monomeric LMWS adsorption leads to the formation of a surfactant monolayer at the 

interface, whose concentration increases with bulk concentration until the interface becomes 

saturated. The point at which this occurs is known as the critical micelle concentration (CMC) 

and denotes the point at which no additional surfactant is able to adsorb at the interface[35]. 

This is noted in various instances by the appearance of a constant surface tension despite 

increasing surfactant concentration[2,7,23]. The increase in bulk monomeric surfactant as one 

exceeds the CMC favours the formation of micelles, aggregations of 50-100 molecules[23] 
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where the hydrophobic regions are hidden in the centre. Therefore, above the CMC, LMWS 

exists as a monolayer at the interface and in both micellar and monomeric forms in the bulk, 

which can affect the adsorption dynamics of the system[36]. 

While the lowering of surface tension is obviously a key factor in their fundamental ability to 

create foams, it is the highly mobile nature of LMWS at the interface that helps to provide 

longer term foam stability, especially in the case of dry foams. Any localised deformations of 

bubble films results in an increase in the film surface area and a resulting decrease in the 

surfactant concentration at this region of the interface as well as an increase in surface 

tension. The resulting surface tension gradient that forms results in the fast diffusion of 

surfactant both across the surface and within the film, dragging liquid with it[23]. As a result of 

this ‘Gibbs-Marangoni’ mechanism, the film is able to resist localised thinning and hence 

reduce the probability of rupture[9,37]. 

Despite LMWS solutions generally exhibiting excellent foaming characteristics, there are also 

significant drawbacks to the dynamic interfaces they produce. Despite their dense coverage 

of the foam interfaces, the dynamic nature of this layer allows for short term exposure of gaps 

that can allow for diffusion of gas molecules through the membrane. As such, LMWS do not 

render foams completely impervious to gas transfer between bubbles, which is a major driving 

force for foam collapse[10,38]. Furthermore, the mobile nature of the bubble interfaces often 

makes them less robust than their higher molecular weight emulsifier or particle stabilised 

counterparts, leaving interfaces more prone to rupture due to the penetration of larger 

particles or application of shear forces[10]. 
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2.4.2 Emulsifiers 

While it can be said that all surfactants can be classed as emulsifiers, it is not the case that all 

emulsifiers can be classed as surfactants. As discussed above, the ability of surfactants to 

easily adsorb and desorb from the interface forms a key part of their definition, whereas this 

is not necessarily the case for all emulsifiers. More generally, emulsifiers are compounds 

which concentrate around the interface of two immiscible phases, reducing interfacial tension 

and also providing a barrier against coalescence of the discrete phase[39]. This barrier can be 

through electrostatic and/or steric repulsion between neighbouring droplet/bubble interfaces 

thus helping to form stable foams or emulsions[31,40]. This broader grouping includes molecules 

with high molecular weights and low mobility, which can adsorb slowly and practically 

irreversibly to the interface[41]. It should be noted however, that this description is not 

definitive, as has been highlighted by a class of near spherical polar molecules called 

‘hydrophobins’, which blur the lines between emulsifiers and particles[42,43]. 

Proteins provide a very good example of a broad class of emulsifiers, with diverse properties 

and functionality. Proteins are highly complex polymers whose functional properties are 

related to their structural and other physicochemical properties[44,45]. A formal definition 

would yield their classification as macromolecules composed of a linear polypeptide backbone 

to which amino-acid side chains with various degrees of polarity and charge are attached[4]. 

The overall protein conformation is determined by the sequence of the amino acids (the 

primary structure) which ultimately results in further arrangements of the substructure (e.g. 

α-helices, β-sheets, random coils) and further connections and arrangements of these 

substructures[4].  
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For those not of a bio-chemistry persuasion, a more simplistic picture sees proteins as complex 

coiled and contorted chains, with some regions exhibiting hydrophobic properties and some 

hydrophilic. In aqueous solution therefore, a water-soluble protein will generally arrange into 

conformations that hide their hydrophobic regions from solution (e.g. whey proteins in 

dairy)[31,46]. However, upon encountering an air-water interface the protein will begin to 

unfold, projecting its hydrophobic groups above the liquid interface in order to minimise 

contact[9,46] (See Figure 2.4). The protein conformational changes that occur as a result of this 

adsorption are usually referred to as surface denaturation[40]. These tendencies have been 

variously noticed, in part as a result of the positive correlation between increased foamability 

and average protein hydrophobicity rather than just surface hydrophobicity[45]. It is therefore 

the properties of the unfolded protein rather than the native protein that dictate its behaviour 

at the air-water interface[45]. 

On a macroscopic scale, the main stabilisation mechanism of proteins adsorbed at the 

air/water interface (at least those not in a micellar arrangement, e.g. casein micelles[47]) is to 

subsequently form a strong viscoelastic network which significantly reduces the mobility of 

individual proteins[48]. These robust interfaces can impart a high degree of foam stability, not 

least because their elasticity renders them less prone to film rupture. While the viscoelastic 

layer that forms around the interface is not sufficient to dramatically alter the mean-free path 

of gas molecules passing through, and thus prevent gas transfer between bubbles[38,49], they 

can at least provide some resistance to bubble shrinkage. Citing the theoretical work of 

Meinders, et al.[50] and the experimental work of Dickinson, et al.[51], Murray, et al.[38] note 

that while only a purely elastic interface would be able to prevent bubble shrinkage outright, 

the partial elasticity of the protein film is at least enough slow the process. Furthermore, the 
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low mobility of protein molecules at the interface can slow the flow of liquid between bubbles, 

which can be highly efficient at promoting foam stability, as will be discussed in Section 2.4. 

The functional properties of proteins at the air-water interface are highly dependent on the 

conditions within the aqueous phase. Lexis, et al.[52] note that the pH and ionic strengths of 

the protein solutions can have major impacts on their stabilisation properties. In the case of 

ionic strength for example, a reduction in the electrostatic repulsion between proteins can 

lead to their closer packing and thereby increase the probability of aggregation. This in turn 

can lead to an increased ability to ‘plug’ the nodes of Plateau borders, a further means by 

which proteins can help to promote stability by reducing the liquid flow from foams[52]. 

2.4.3 Particles 

As will be discussed in the section on foam drainage, the ability to ‘plug’ nodes does not lie 

solely with aggregated proteins, but is a role that can be played by a wide range of particle 

systems[53-57]. Far from being just an additional suspension in the liquid foam matrix however, 

particles are increasingly being utilised for their own interfacial stabilising properties in 

foams[32,58]. 

Particle stabilised foams are those that are partially or entirely stabilised by small (often nano-

scale), stable, surface active particles[38]. These foams are often significantly more stable than 

their standard emulsifier stabilised counterparts, remaining stable for days, weeks or even 

years in some cases[59]. Ultimately, particles of a sufficient size with suitable surface energy or 

contact angle are able to adsorb at interfaces in a way that is comparable to surfactants[28,32,38] 

(see Figure 2.4). The difference however, is that once adsorbed, this attachment energy can 

be several orders of magnitude higher than that of other emulsifiers. The huge amount of 
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energy (the maximum being at a contact angle of 90˚) required in order to remove the particle 

from the interface, renders its adsorption essentially irreversible[26,38].  

The major outcomes of a particle coated bubble interface is that its ability to shrink is 

dramatically reduced; as this would require at least the partial desorption from the 

interface[38]. Instead, depending upon the relative size of particles to bubbles, the bubbles 

either tend towards a faceted or crumpled shape until a local energy minimum is reached[28]. 

Indeed, the tendency of the interface to fold or crumple was demonstrated experimentally 

early on by Aveyard, et al.[60] who demonstrated the folding of their particle layer under 

compression as opposed to the expulsion of particles. This mechanism has become commonly 

known as ‘armouring’[26,28], with a ‘jamming effect’ used to describe the resistive friction 

between adsorbed particles that occurs as the interface attempts to shrink[61].  

One slight drawback of an armoured interface however is that the requirement of a 90˚ 

contact angle with the aqueous phase demands particles which exhibit a high degree of 

hydrophobicity. As such, these ideal particles would also be likely to form aggregations within 

the liquid phase, paradoxically reducing their stabilising ability at the interface[38]. In fact, for 

particles that are too hydrophobic, it is likely that they will actively induce bubble coalescence 

by bridging and consequently rupturing bubble films. 

 

Figure 2.4. Example schematics of LMWS, protein and particle stabilised interfaces. 
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2.5 Destabilisation of Liquid Foams 

When observing the structure of a freshly foamed solution for any length of time, the head on 

a beer for example, more often than not a gradual change of the bubble size distribution can 

be seen. Thermodynamically speaking, for a simple two-phase foam, there is more surface 

energy when the gas phase is highly subdivided than there is when it is coarsely subdivided[62]. 

As such, the gradual coarsening of the foam is to be expected with time as the foam strives 

towards thermodynamic equilibrium and ultimately collapse. 

There are three primary mechanisms that ultimately determine foam lifetimes, bubble 

coalescence, disproportionation and the drainage of the liquid phase[63]. While these 

mechanisms are each of great significance this study we will focus on foam drainage as a major 

factor influencing foam lifetimes. 

2.5.1 Disproportionation 

Disproportionation refers to the gradual transfer of gas between bubbles due to pressure 

gradients between them[23]. These pressure gradients arise due to the surface tension of each 

bubble giving them their own internal pressure, which is inversely proportional to the radius 

of curvature of the bubble interface. This ‘Laplace Pressure’ means that smaller bubbles have 

a higher internal pressure than larger bubbles[1]. This can act as a driving force for diffusion of 

gas across the interface, the net result being the loss of gas from smaller bubbles and the 

uptake of gas by larger ones. 

There are various methods that can be employed to reduce disproportionation, such as 

minimising the initial bubble size distribution to minimise pressure gradients[26], however it is 
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universally accepted that maintaining a high foam liquid fraction can significantly reduce the 

rate of gas diffusion between bubbles. As such, loss of the foam liquid fraction a major driving 

force for disproportionation. 

2.5.2 Bubble Coalescence 

A further process at work during bubble coarsening is that of coalescence, which occurs as a 

result of film rupture in the bulk foam[23]. The rupture of bubble interfaces can occur through 

various mechanisms, such as the bridging-dewetting of films by particles[26,64] or the localised 

thinning of films due to the presence of antifoaming agents[28]. Regardless of the mechanism 

involved however, the rupture and subsequent coalescence of bubbles leads to sudden and 

unpredictable changes to the foam structure. These ‘topological changes’ and can often be 

seen as rapid shifts in recorded data relating to the foam’s structure and mechanical 

responses[23]. 

A decrease in foam liquid fraction will ultimately result in the thinning of the films that divide 

gas cells and increase the likelihood of their rupture[7]. As such, foam drainage can also be 

seen to be a major driving force for this type of foam instability. 

2.5.3 Foam Drainage 

Foam drainage describes the decrease of the foam liquid phase due to the passage of liquid 

through bubble films and the adjoining network of liquid channels, driven by the competition 

between gravitational and capillary forces[2]. The decrease in foam liquid fraction that results 

from drainage serves to increase the probability of bubble coalescence and can also increase 

the rate of gas transfer between bubbles, thus driving disproportionation. As such, halting or 

slowing foam drainage is often seen as a key way of prolonging foam lifetimes. 
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A popular method of reducing or halting foam drainage is to target the bulk rheology of the 

aqueous phase as this is a relatively simple approach that is highly effective. By increasing the 

liquid viscosity for example, liquid flow can be greatly reduced and dramatically increase foam 

lifetimes (Schramm, 2014). A simple addition of sugar to egg white albumen for example, 

transforms the whipped system from a fast draining dry foam, to a highly stable wet foam 

with desirable textural properties. In order to halt liquid drainage altogether, it is also possible 

to tailor bulk rheology such that the liquid yield stress, when combined with other flow 

resistive elements such as capillary and hydrodynamic forces, is greater than the stress 

imparted by gravity. By doing this it has been shown that the drainage can be effectively 

halted, albeit for a more limited range of formulations[7]. 

While the fairly standard technique of manipulating bulk liquid rheology can reduce drainage 

rates, this is not always a feasible technique when one considers the very broad range of 

applications for foams. A yield stress stabilised foam may be ideal for a meringue, but it may 

not be cost effective or practical in other circumstances e.g. froth flotation in the oil and gas 

industry. Furthermore, altering rheology may have other detrimental effects to the foam 

system. For example, increasing liquid viscosity may actually inhibit the initial formation of the 

foam due to a lower efficiency of incorporation of air, thus requiring longer aeration times or 

just making it impossible to attain desired foam overruns. For example, while pea proteins 

have recently become desirable for food foam applications, high viscosity solutions are 

required to improve long term stability, but negatively impact foamability[65]. In cases such as 

these therefore, compromise and innovation are required to achieve desirable results. 
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A different approach to retarding drainage can be through the physical blocking of foam 

channels through the use of an additional solid particle phase. Such three phase foams can 

occur naturally, as can be seen in the crema of a coffee where coffee solids can be seen to 

restrict flow through foam channels and their nodes. More recently however, investigations 

have been made into better understanding the phenomenon of node ‘clogging’ and ways in 

which this can be intentionally instigated through the inclusion of particles designed for this 

purpose[53,54]. While this has been shown to be a potentially effective means of slowing 

drainage rates, there are problems associated with the presence of macroscopic particles in 

the liquid phase. Primarily, there is the danger that sufficiently large particles can penetrate 

neighbouring gas-liquid interfaces, bridging bubbles and thus enhancing instability through 

bubble coalescence. This issue becomes increasingly prevalent if drainage is still able to 

proceed to some degree, where the decreasing liquid fraction increases the likelihood of 

particles bridging liquid films[2]. 

Perhaps the least explored mechanisms explored to deliberately target foam drainage are 

those that focus on the design of the gas-liquid interface and its effect on liquid flow. In reality 

however, this is unsurprising given that choices of appropriate 

particles/surfactants/emulsifiers are fundamental in determining the foamability and 

subsequent stability of the foam against disproportionation and coalescence[66]. Indeed, the 

impact of the interfacial properties on limiting gas transfer between bubbles and preventing 

coalescence have been well explored and tend to be more intuitive. As such, the design of 

foam interfaces and the effects on drainage are still largely seen as secondary, despite it being 

well-established that the relationship is significant[63,67].  
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A great deal of theoretical work and a far more limited body of experimental work has been 

conducted into the surface properties of liquid films and foam channels[2,63,68]. This work falls 

into two main categories: those analysing the problem from the perspective of macroscopic 

foam drainage; and those investigating from the perspective of individual liquid channels and 

films at the microscale[2,69]. The major benefit of macroscopic studies is that theoretical 

predictions are far easier to verify experimentally, with various experimental techniques 

commercially available to measure foam drainage. However, as such studies are based on 

simplifying the highly complex foam structures into idealised theoretical models, it is essential 

that the assumptions made by such models also receive scrutiny. As will be shown, 

macroscopic drainage models must take into account drainage through the foam 

microstructure, and it is therefore the job of microscale theory and measurements to inform 

these models and improve their reliability and applicability. 

2.5.3.1 Macroscopic Drainage Models 

The vast majority of experimental research into foam drainage is concerned with macroscopic 

systems, where a range of models have been developed in order to describe them. These 

models have evolved over time as our understanding has improved[63], going from simple two-

phase Newtonian dry foams[69,70], to those that attempt to include non-Newtonian bulk and 

interfacial rheologies[71]. 

Macroscopic foam models are generally based on the premise that macroscopic foams can be 

treated in the same manner as flow through a porous medium. Indeed, it has been shown 

that, in many cases, Darcy’s Law for low Reynold number liquid flow through a porous 

medium, gives a good description of foam drainage[68,72-76]. This being said, the complexity of 
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foam systems means that these models are generally based on the assumptions that foam 

channels have constant dimensions, as well as constant interfacial properties throughout the 

entire foam network. In reality, the foam channels can vary dramatically in size between the 

top and bottom of a draining foam network, directly affecting liquid flow rates and interfacial 

properties such as the surface shear viscosity in turn[2]. It is for these reasons that 

measurement of foam drainage rates in macroscopic foams can be quite variable and thus fit 

reasonably well to such approximated theoretical fits. 

An additional approach applied by Stevenson[74] has been to model foam drainage using 

dimensional analysis. By replacing dimensional quantities with non-dimensional counterparts, 

it was shown that greatly simplified drainage models could be produced that ultimately 

related liquid drainage rates and liquid holdup in the foam via a simple power law. This was 

able to accurately predict the relationship of between drainage rate and bubble size, albeit in 

systems where inertial losses were neglected[74]. Two key parameters were required in order 

to develop Stevenson’s technique into a mechanistic approach; however, the viscous losses in 

the PBs and the relative losses in the nodes. 

Regardless of the approach taken, macroscopic foam drainage has been found to fall into one 

of two regimes that are defined by whether or not the viscous dissipation (and consequently 

hydrodynamic resistance) is dominant in the PBs (Channel Dominated), or the nodes (Node 

Dominated)[63,72]. In short, whether the majority of time liquid spends within a foam system is 

in the passage through the PBs, or through the nodes. Ultimately, it has been shown that this 

depends upon the surface viscosity of the air-liquid interface, where the resulting 

hydrodynamic resistances of each channel and node combine to produce an overall picture of 
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foam permeability. It is this proposed importance of viscous dissipation on macroscopic 

drainage that has led to a great deal of theoretical, and much more limited experimental, 

scrutiny on the surface rheological properties of the interface at the microscale. 

2.5.3.2 Microscale Drainage Models 

Unlike their macroscopic counterparts, microscale foam drainage models generally strive to 

make as few approximations as reasonably possible. This is largely due to the fact that, at the 

scale of individual foam channels and nodes, even the smallest inaccuracies can be significant. 

When one considers the substantial scaling required to translate microscale findings to 

macroscale systems, this makes sense. As a pertinent example, combining the hydrodynamic 

resistances calculated for isolated foam channels and nodes into foam comprised of hundreds 

of such units, errors could propagate into a substantially distorted picture of foam 

permeability[77,78]. Given the complexity of these systems however, it is virtually impossible to 

proceed without at least some assumptions being made. 

While some models maintain the assumption that these channels are cylindrical[71], others 

have described them as triangular prisms[79] or incorporated the ideal PB geometries shown 

in Figure 2.3. This has either been done with[54,77,80-82] or without[79,83-88] accounting for the 

effects of the nodes[89]. What unites these models is that they attempt to describe the 

drainage of microscale systems at the level of PBs and nodes in terms of the balance between 

gravitational, capillary and viscous forces[63]. This means that without exception, there is an 

inclusion of surface viscosity, which has been used as a fitting parameter to macroscale[67,90] 

or microscale[77,85-89,91] drainage experiments, in an attempt to better understand transitions 

between channel and node dominated drainage regimes. 
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While microscale drainage theory continues to develop and evolve, its development has far 

exceeded that of complimentary experimental investigation. Indeed, dedicated experimental 

studies of foam channels and nodes at the microscale remain few and far between, a review 

of which was recently published by Anazadehsayed, et al.[89]. As will be discussed extensively 

throughout this thesis, this has largely been due to the difficulties in creating, controlling and 

observing such structures. This is a hugely important deficit in the current literature, as models 

and simulations of idealised cases must be compared to real systems. In the case of channel 

and node dominated drainage for example, separating the complex geometric transition 

between PB and node into a single perfectly uniform PB vs. a single perfect node may not be 

an accurate representation (See Figure 2.5). 

 

Figure 2.5. Schematics of conjoined nodes and Plateau borders from: a) an idealised 

theoretical description; b) a real foam system. 

It is important to note that the majority of microscale drainage models only apply to foam 

systems below the wet limit, after which the dissipative network of PBs and nodes is no longer 
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a valid representation of the system. It can be said that at this point, these structures no longer 

exist, instead being replaced by elastic bubbles in close contact with one another[63]. As such, 

there are still many questions that remain in the theoretical domain of microscale foam 

drainage modelling, and certainly from the experimental perspective. 

2.6 Conclusions 

In general, aqueous foams are an incredibly broad and versatile form of soft matter, with a 

myriad of applications. They can be produced with a wide range of chemical and physical 

stabilisers introduced at the stage of formulation and targeted to bring different functional 

attributes. The decisions made at the stage of formulation ultimately determine the 

mechanisms by which foams are produced and stabilised against the onset of drainage, 

disproportionation, coalescence and ultimately, collapse. 

Of the key mechanisms of foam destabilisation, retarding liquid drainage has proven to be a 

particularly effective tool for extending foam lifetime and functionality. While tailoring liquid 

bulk rheology and including particle structures feature heavily in the literature, the other key 

drainage factor of viscous dissipation at the bubble interface remains a largely secondary 

consideration. 

Understanding the role of the gas-liquid interface in foam drainage remains an ongoing 

investigation. Theory and experiment have been able to clearly demonstrate that the surface 

viscosity of the interface plays a significant role in macroscopic foam drainage, placing it in 

regimes of either node-dominated or channel-dominated drainage. At the microscale 

however, the picture becomes far more complex, where the precise influences of foam 
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channel geometries, and corresponding variations in surface tension and surface 

viscoelasticity can all come in to play. Furthermore, a significant deficit in experimental work 

at the microscale has been identified in the existing literature. 

Overall, it is the opinion of this author that the geometry and interfacial rheology of foam 

channel interfaces during liquid flow requires additional experimental analysis in order to 

confirm theoretical predictions. It is only by doing this that current drainage theory can be 

fully integrated into real foam systems across length scales. 
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3.0 Abstract 

This chapter focuses on the development of a novel experimental setup to enact high-

precision measurements of an isolated Plateau Border and Node foam geometry at controlled 

and varied liquid flow rates. Preliminary measurements on a PB formed in the presence of 

Sodium Dodecyl Sulfate (SDS) solution were used to assess the functionality, flexibility and 

practicality of the setup, which will form the basis for subsequent investigations throughout 

this thesis. 

3.1 Framework 

As discussed in Chapter 2, the phenomenon of foam drainage is a complex multi-scale process. 

Macroscopic foam drainage is ultimately dependent on the microscale liquid flow between 

bubbles, which in turn, is heavily influenced by molecular level interactions both in the liquid 

bulk and at the gas-liquid interface[1]. It is only by uniting our physical understanding of these 

different regimes that a full understanding of foam systems can be achieved[2]. 

The aim of this PhD thesis was to further the current physical understanding of 2-phase foam 

systems, using a well-defined, isolated foam channel geometry. This required accurate control 

over key variables, such as channel lengths, liquid flow rates and surfactant formulations. The 

appeal of these isolated systems is that they are spatially well defined, as well as being easy 

to manipulate and study, unlike macroscopic foam systems[3]. Here a purpose built 

experimental setup is proposed for the study and characterisation of spatially ideal, isolated 

PB-Node geometries at controlled liquid flow rates. The precision measurement of these 

geometries is key to enabling the successful application of theory to describe liquid flow 
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through such systems. The microscale studies of Pitois, et al.[4],[5,6] for example, were designed 

to try and apply theory describing the hydrodynamic resistance of ideal single foam channels 

and nodes[7] to real experimental systems. 

3.1.1 Setup Requirements 

The key requirements for an isolated PB-Node geometric analysis technique were as follows: 

 The technique should be practical to implement and adapt. 

A fundamental aspect of any measurement technique is that it should be reproducible, 

enabling the replication and comparison of experimental data.  Attempts to reproduce 

existing measurement systems[6,8] have proven to be highly challenging, with the lack of 

available detailed data and required manufacturing capabilities confounding such efforts. It 

has therefore become apparent that a well-characterised experimental setup, using 

universally available components and manufacturing techniques, is necessary. 

Furthermore, the use of off the shelf components and simplified manufacture improves the 

scope for setup adaptation. Even when simplified to an idealised microscale structure, fluid 

flow through PBs and nodes can be monitored and influenced in a variety of ways. For 

example, Elias, et al.[9] applied deliberate distortions to foam channels to monitor their elastic 

response, while Rouyer, et al.[8] injected particles into the channels to monitor their behaviour 

at the node. The measurement of these systems can be undertaken in a number of ways, be 

it via pressure measurements[4-6], particle tracking[10], simple geometric analysis[9], or various 

other methods. As such, flexibility and versatility in the fundamental design of the setup could 

prove highly valuable for improving the comparability of future studies. 
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 The technique should be applicable to a variety of surfactant/emulsifier formulations. 

Owing to the wide variety of foamable surfactant/emulsifier formulations available to 

industry, designing a flexible technique to accommodate such differences could maximise its 

potential as a diagnostic tool. It should be stressed however, that the ability of formulations 

to form stable films (at least for the required duration of the experimental study) will always 

be a limiting factor in the production of these setups. To this end, there is likely to be greater 

uptake of this technique for the study of low molecular weight surfactant systems with fast 

film forming capabilities, rather than, for example, the more limited variety of high molecular 

weight polymeric emulsifiers with this property. 

 The technique should be able to directly or indirectly measure interactions between 

bulk liquid and channel interfaces during drainage. 

The ultimate goal of this study is to identify and quantify microscale interactions between 

channel interfaces and bulk liquid. This is a key aspect in determining a ‘bottom-up’ approach 

to foam formulation, wherein foam structure and lifetime can be efficiently tailored to suit 

foam applications. Measurement of such properties will require knowledge of a wide range of 

parameters, which includes, but is not limited to:  

Surface Parameters – e.g. Surface Tension, Surface Viscosity, Surface Elasticity… 

Bulk Parameters – e.g. Dynamic Viscosity, Liquid Density, Flow Velocity… 

Molecular Surfactant/Emulsifier Parameters – e.g. Charge, Maximum Surface Concentration, 

Critical Micelle Concentration… 
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As such, the proposed technique should be able to account for and compare variables from 

each of these subsets. As will be demonstrated in later chapters, the accurate measurement 

of PB geometries at controlled liquid flow rates will form the basis for applied theory that 

achieves this requirement. 

3.2 Development of the PB-Node Setup 

3.2.1 Producing Isolated Foam Geometries 

The production of isolated foam geometries dates back to Belgian physicist Joseph Plateau, 

who submerged and withdrew various wire frame geometries from surfactant solutions. The 

films produced in the wire frames self-assembled into their most thermodynamically stable 

arrangements according to Plateau’s Laws[11]. A tetrahedral frame for example, produces four 

PBs meeting in a single ideal node, while a triangular prism produces two nodes that share a 

common PB down the central axis (Figure 3.1). 

 

Figure 3.1. Examples of frame geometries producing an ideal PB/Node systems when 

withdrawn from surfactant solution. a) Single node tetrahedral frame, b) Dual node 

triangular prism frame.  
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Figure 3.2. Illustration of the Plateau Border Apparatus[4] frame from the side (left) and the 

top (right). Three cylindrical ‘legs’ come off the central body at 120˚ to one another, 

producing an ideal PB when submerged and partially withdrawn from surfactant solution. 

The PB attaches to the central liquid injection reservoir, allowing flow rates through the PB 

to be controlled via a syringe pump. 

An example of the triangular prism frame geometry can be seen in the study of Elias, et al.[9]. 

In this case, the added instability of the second node coupled with the difficulty of liquid 

injection, made it impractical for the study of low flow rates. Of the few existing studies 

however, most set ups are closer to the tetrahedral frame geometry, albeit without a base[4-

6,8,12]. The ‘Plateau Border Apparatus’ of Pitois, et al.[4] for example, comprised of a metal 

tripod frame that could be submerged and partially withdrawn from surfactant solution, to 

produce a central vertical PB terminating in the bulk liquid instead of a node. This was later 

adapted, by injecting a single bubble at the base of the tripod such that a node would form[6,13] 

(see Figure 3.2). However, this had implications both for the geometry of the node produced 
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and for the practicality of producing it. Despite this, a major benefit of the tripod geometry 

was that the central PB would naturally attach itself to a central liquid injection nozzle, thereby 

allowing excellent control over liquid flow rates. 

3.2.2 Frame & Injection System Design and Manufacture 

In order to meet the design targets of the setup, it was necessary to adapt features of previous 

frame designs. From trials it was deduced that the most accurate and versatile way to produce 

consistent PB-Node geometries with direct PB liquid injection was via a closed single-node 

frame (e.g. tetrahedral).  

In order to create precision frame geometries without the need for extensive machining 

capabilities, frames were designed using Tinkercad software (Autodesk inc., USA) and 3D 

printed using stereolithography on a FormLabs Form®2 printer. Stereolithography was chosen 

over conventional extrusion-based 3D printing techniques due to the higher resolutions 

achievable (up to 0.25mm). 

The tripod frame of Pitois, et al.[4] was redesigned to include a base that would produce an 

ideal node when the frame was withdrawn from surfactant solution. Initially the base was 

designed to be adjustable to enable controlled variations of the upper PB length (see Figure 

3.3a); however, this was later replaced with a fixed base in order to ensure measurement 

consistency. As frames could easily be adjusted in CAD software and reprinted, this was found 

to be a more effective and accurate method to alter PB-node geometries. Initially, a simple 

flat base design was implemented (Figure 3.3b); however, pooling of the draining solution on 

the surface and additional film formation due to the base thickness, necessitated adaptations 

to be made. Subsequently, the base surfaces were minimised and bevelled to prevent liquid 
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pooling, and made to converge into a single inner edge to prevent multiple film formation 

(Figure 3.3c). 

The tripod legs were redesigned to triangular rather than circular cross-sections in order to 

minimise any fluctuation in the position of attached films. After trialling a variety of different 

leg separations, the distance between the inner edge of each neighbouring tripod leg was set 

as 𝑦=11.1mm (See Figure 3.3c). The aim was to ensure that 𝑦 was large enough to ensure that 

the film attachment to the tripod legs did not influence the PB and node, but small enough to 

minimise the film surface area and thereby reduce the chance of rupture. The chosen value of 

𝑦 was able to produce stable PB-node systems of 0.5wt% SDS solution for tripods with a height 

range of 5mm< ℎ <35mm and a range of liquid flow rates of 10μl/min≤ 𝑄 ≤300μl/min.  

 

Figure 3.3. a) 3D printed frame with adjustable base, liquid injection nozzle and Luer 

connection for controlled flow injection of surfactant solution. b) & c) CAD drawings of 

frame base showing initial flat and subsequent bevelled designs respectively. 
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As liquid flow rate was a key control variable of the setup, great care was taken to ensure an 

easily reproducible liquid injection system was designed. The injection reservoir included a 

standard male Luer-lock connection, making it compatible with standardised disposable 

1.5mm OD IV tubing and syringes. This simplified the cleaning process, reducing the chances 

of cross-contamination between samples. Syringes could be loaded with surfactant solution 

and injected directly into the upper PB at controlled liquid flow rates, 𝑄, via a Cole-Parmer 

Dual Syringe Pump (Cole-Parmer Instrument Co Ltd, UK). 

Initially, the liquid injection nozzle was 3D printed as part of the frame with outlet diameters 

of 1mm based on the dimensions used by Pitois, et al.[4]. However, tests using this system 

found that this outlet diameter caused the upper PB to ‘pin’ to one side at low flow rates (𝑄 < 

50μl/min), causing a poorly defined vertical axis offset of the PB. Furthermore, the 0.25mm 

maximum print resolution meant that error margins in the outlet diameter were high. As Elias, 

et al.[9] points out, the diameter of the nozzle outlet alters fluid velocity at the point of 

injection, which affects the distortion of the upper PB where it attaches to the injection nozzle. 

In order to maintain consistency of the injection nozzle therefore, frames were printed to 

accommodate the attachment of commercial brass 3D extrusion printer nozzles. As these 

nozzles are machined to a high tolerance and a range of outlet diameters, it was possible to 

optimise the outlet diameter to minimise PB offsets and distortions. To this end, a final outlet 

diameter of 0.4mm was selected for further analysis, where liquid flow rates as low as 𝑄 =

10μl/min did not produce vertical axis offsets. 

The final frame design was mounted inside a glass and acrylic enclosure designed to reduce 

disturbance from air currents as well as to increase humidity so that evaporative losses from 

the PB-Node geometry would be minimised.   
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3.2.3 PB-Node Imaging 

In order to measure PB geometries, a high-resolution optical setup was required. This also 

necessitated the development of an appropriate image analysis technique to quantify image 

data into measurements of the PB radius, 𝑅, and vertical height, 𝑍. 

 

Figure 3.4. Schematic of PB profile indicating orientation of the vertical axis, 𝒁, and the 

radius of the ideal PB cross-section, 𝑹. 

Figure 3.5 shows the optical setup, where the enclosed frame was mounted on an optical rail, 

and imaged via a Manta G-031B camera (Allied Vision Technologies GmbH) with a maximum 

resolution of 1.5μm/pixel. An LED panel light with diffuse filter was used to illuminate the 

frame from behind, creating sharp contrast between the PB-node geometry and its adjoining 

films. The camera was mounted on a custom micrometre stage with linear translation along 

the 𝑍-axis and the focal plane, as well as 90° of angular rotation such that portrait or landscape 

images were available. Portrait was found to maximise the information of from single images 

of the upper PB, while landscape could be used to image the full width of the node and lower 

PB’s even at high magnifications. 
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Figure 3.5. Photographs of node imaging setup. a) Side view showing mounting of CCD 

camera and backlit enclosure on an optical rail. b) Camera view of backlit frame inside 

enclosure. 

 

Figure 3.6. Example images of PB-node arrangement made from 0.5% SDS solution with 

magnifications indicated by scale bars of a) 5mm, b) 2mm, c) 200μm.  
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Figure 3.6 demonstrates a range of image magnifications obtained from this setup using 

appropriate lenses. The huge range in scale demonstrates the effectiveness of this setup for 

imaging effects occurring from the micrometre to millimetre scale across the entirety of the 

PB-node system. 

3.2.3.1 PB Image Calibration 

Calibration images taken at all magnifications used a 1250μm diameter syringe needle as a 

reference width, allowing conversion of spatial coordinates from pixels to micrometres. 

Measurement of the needle width was performed using digital callipers, while the 

corresponding image distance in pixels was undertaken using point-to-point measurement in 

ImageJ imaging software. From this, pixel to micrometre conversion factors could be obtained 

for different camera lenses. 

A reference height for each experiment was performed by taking an initial image of the liquid 

injection nozzle at the desired magnification and using the outlet position as the vertical origin 

(𝑧 = 0). 

In order to calibrate for any rotational offsets (i.e. misalignment of the camera image axis with 

the PB vertical axis), an initial PB image at a flow rate of 10μl/min was used. Comparison of 

the PB edges to an overlaid rectangular wireframe, meant that manual adjustments to image 

orientation would yield a rotational offset value that could be used for all subsequent images 

in that series of tests. 

3.2.4 PB-Node Setup Loading Procedure  

With the physical PB-Node setup constructed, it was necessary to define a standard 

experimental procedure for its effective use. This procedure was devised based on a test 
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solution of 0.5wt% SDS, and may require minor adaptations when considering other 

surfactant/emulsifier solutions. 

First, a BD Plastipak 20ml syringe was filled with surfactant solution and connected to the IV 

tubing input of the PB-Node setup. The syringe was locked into the syringe pump and allowed 

to infuse until surfactant emerged from the injection nozzle and no bubbles were visible in the 

tubing. The CCD camera was focused on the tip of the PB injection nozzle and then adjusted 

vertically such that the tip of the injection nozzle (corresponding to 𝑍 = 0) was at the very top 

of the image. 

Once in position, the desired liquid flow rate was set on the syringe pump and the PB-node 

frame was submerged and withdrawn from a beaker of surfactant solution, producing an 

isolated PB-Node system within the frame. Focal adjustments of the camera were made to 

ensure well-defined PB boundaries in the image. One minute was allowed for PBs to 

equilibrate at each liquid flow rate before image acquisition commenced, based on tests of 

equilibration time. This was inspected visually, where a halt in continuous changes to the PB 

geometry after its formation was taken to represent an equilibrium state. It is recommended 

that such tests be repeated for different surfactant solutions in order to ensure PBs are at 

equilibrium before measurements commence. 

A minimum of three images were obtained at each liquid flow rate, where new PB-node 

arrangements were produced at each liquid flow rate to prevent hysteresis effects. This step 

may be particularly important for surfactants/emulsifiers that form permanent structures at 

the PB-node interfaces (e.g. surface gelation). 
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For high-resolution images of the full PB-node system, multiple images were required at 

discrete vertical increments, which were obtained by vertical translation of the camera. As the 

camera vertical translation was parallel to the PB vertical axis, the scale calibrations were 

deemed valid for all images. The number of increments was dependent upon the camera 

magnification, with images spanning the region of interest and partially overlapping to ensure 

no missing regions. These vertical ‘scans’ of the PB were combined during image processing 

(see below). 

3.2.5 Image Processing  

Images were captured from the CCD camera using VimbaViewer imaging software and then 

exported for further processing using Matlab. Initial scale calibrations were undertaken using 

ImageJ imaging software. The Matlab code, written for this study and used in all subsequent 

image processing, is provided in Appendix A. 

3.2.5.1 Plateau Border Edge Detection and Radius Calculation 

In order to define the edges of the upper PB and node, an edge detection algorithm was 

applied to raw images in Matlab. Figure 3.7 demonstrates the Canny edge detection method, 

which employs a user defined upper and lower intensity threshold in order to identify edges 

within an image. This method has been shown to be robust in detecting the presence of strong 

edges, while removing false edges produced by image noise[14]. 

The ability to adjust the sensitivity of edge detection was necessary due to the presence of 

coloured fringe patterns (indicating regions of localised thinning) in the adjoining films. These 

fringes were often well enough defined to be detected as edges (Figure 3.7b), requiring 

alteration of the intensity thresholds to eliminate them (Figure 3.7c).  

a) b) 
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Figure 3.7. Example of upper PB image a) before Canny edge detection applied, b) after 

Canny edge detection applied without threshold adjustment, and c) with Canny edge 

detection and appropriate thresholding applied. 

Due to the detection of edges within the PB profile, an automated method was required to 

determine profile widths while neglecting interior edges. This was achieved by scanning the 

image pixel matrix and recording the coordinates for the first and last white pixel encountered 

in each row. By subtracting the horizontal coordinate values of these two pixels a profile 

width, 𝑑, was determined. Conversion of PB widths into PB radii, 𝑅, was done using the 

relationship shown in Equation (3.1)[9]. Geometric values of 𝑍 and 𝑅 were converted from 

units of pixels to micrometres using the appropriate scale calibration factors determined from 

needle measurements. An example of a raw PB image converted into 𝑍 and 𝑅 coordinates is 

shown in Figure 3.8. 

𝑅 = 2𝑑
√3

ൗ                       (3.1) 
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For high-resolution profile measurements requiring the combination of multiple images, 

additional steps were required. Measured geometric values were averaged at each height 

increment, to produce an average profile coordinate matrix. These matrices were then 

combined into a single high-resolution coordinate matrix, where any overlaps were averaged. 

                  

Figure 3.8. Example of a plot of measured PB height vs. PB radius for 0.5wt% solution at 𝑸 =

𝟐𝟔𝟎μl/min. 

Having successfully measured ‘ideal’ isolated PB profiles at controlled liquid flow rates, it was 

possible to develop theory to describe these complex geometries 

3.3 Summary of Technique Development 

This chapter has outlined the development of a novel experimental setup for the 

measurement of PB geometries in an ‘ideal’ isolated PB-node system at controlled liquid flow 
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rates. The experimental setup has been shown to accurately measure PB-Node profiles 

making it possible to develop and apply theory describing these geometries to experimental 

data. Indeed, this will be the primary focus of subsequent chapters. 

The proposed setup is unique in its ability to produce high-resolution (1.5μm/pixel) images of 

PB-node geometries with dimensions that can be tailored by the user. In this regard, the use 

of transferrable 3D print designs alongside simple commercially available components make 

the whole setup highly adaptable and reproducible. As such, there is good scope for other 

researchers to utilise this setup to their own ends and gather further experimental data from 

these highly complex systems. 
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4.0 Abstract 

The phenomenon of foam drainage is a complex multi-scale process that unites molecular 

level interactions with bulk foam characteristics. Foam drainage is primarily governed by the 

flow of liquid in the channels and junctions that form between bubbles, which are known as 

Plateau borders (PBs) and Nodes respectively. Existing theoretical work predicts the surface 

rheology of the PB and node air-liquid interface to influence liquid flow rates; however, direct 

experimental observations of this phenomenon remain scarce. This study recognises the clear 

need for a reproducible, accurate and standardised approach to directly studying liquid flow 

at the scale of a theoretically ‘ideal’ PB-node architecture. 

Measurements of PB geometric profiles and their apparent surface shear viscosities, 𝜇௦, 

describing the mobility of the PB interface tangential to liquid flow, were made for an aqueous 

solution of Sodium Dodecyl Sulfate (SDS) at varying PB lengths, 𝑙ଵ, and liquid flow rates in the 

range 10μl/min ≤ 𝑄 ≤ 200μl/min. Geometric profiles displayed previously unobserved 

transitions between PB relaxation and expansion towards the node, with expansion 

dominating under conditions approaching conventional foam drainage. Average values of 𝜇௦ 

in the PB relaxation regions showed virtually inviscid behaviour, with magnitudes of 10-8g/s <

𝜇௦ < 10-4g/s for 𝑙ଵ in the range 27.5mm ≳ 𝑙ଵ ≳  8.0mm. Decreasing magnitudes of 𝜇௦ and 

degrees of shear thinning were observed with increasing 𝑙ଵ. This was predicted to be due to 

decreases in the concentration of SDS at the PB interface with increasing 𝑙ଵ, suggesting 

variations in surface tension with liquid flow rate. The action of Marangoni forces in the 

system were not directly measured, however a brief evaluation suggested that these could 

scale with liquid shear rates adjacent to the PB interface. 
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4.1 Introduction 

4.1.1 Background 

In general terms, a foam can be described as a large number of gas bubbles that are closely 

packed together [1]. Owing to the competing action of capillary and gravitational forces, the 

liquid fraction gradually decreases over time as liquid travels through the network of channels 

between bubbles and back into the bulk solution beneath. This phenomenon of drainage is a 

complex physicochemical process that ultimately leads to the collapse of the foams due to 

eventual film rupture and subsequent bubble coalescence [2,3]. 

The complexity of foam systems have necessitated a bottom-up approach from those 

attempting to model macroscopic drainage. By simplifying the extensive liquid network into 

its component channels, known as Plateau borders (PBs), and junctions or ‘Nodes’, the 

microscale building-blocks of the foam system can be better characterised and subsequently 

reassembled. A large body of theoretical work exists to describe PB flow[4-6]; however, 

corresponding experimental verification is limited due to the difficulties in observing and 

measuring such PB-Node architectures. 

Perhaps the most detailed direct observation of liquid flow through an individual PB within a 

bulk foam comes from Koehler, et al.[7], who used confocal microscopy to measure flow 

profiles in individual channels and a node. Since then, a greater focus has been given to forced 

drainage experiments through isolated PB systems where experimental and formulation 

parameters are easier to control and define [8-12].  

Much of the current theoretical work on isolated PB systems concerns the measurement and 

characterisation of interfacial properties, whose molecular origins have significant 
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macroscopic effects on liquid flow and thus foam drainage [13,14]. Numerous experimental 

techniques are available to quantify the surface rheology of aqueous solutions[15-18], however 

none of these account for the complex geometries and stresses of a PB-Node system[19-21]. 

Development of such in-situ techniques is therefore paramount for both the verification and 

improvement of current microscale drainage theory[10,22-25]. 

The surface parameter that has seen the most in-situ experimental investigation in foam 

systems to date is an apparent surface shear viscosity, 𝜇௦, that ultimately relates the shear 

force per unit length of interface to an applied shear rate, 𝛾௦̇
[26]. While the true surface shear 

viscosity is a material function of the surfactant solution, separation of this value from 

dilational viscous effects and Marangoni stresses has been shown to be highly troublesome 

even for analysis of simple planar interfaces. The combination of these effects into an 

apparent surface viscosity is however, sufficient for analysing the combined effects of the 

interface on liquid flow tangential to the PB vertical axis. Other publications have featured this 

parameter in its dimensionless form, the Boussinesq Number, 𝐵଴, which is scaled by the bulk 

liquid viscosity, 𝜇, and the PB’s radius of curvature, 𝑅, according to Equation (4.1): 

𝐵଴ =
ఓೞ

ఓோ
                      (4.1) 

PB systems with a low 𝜇௦ impart minimal shear on liquid flow, producing a more uniform flow 

profile resembling ‘plug flow’. A high 𝜇௦ would produce profiles closer to that of the Poiseuille 

flow observed in rigid pipes [27]. The contrast between low and high 𝜇௦ is thought to be 

responsible for the two macroscopic regimes of node-dominated and channel-dominated 

drainage respectively, which describe whether the bulk of flow dissipation is thought to occur 

at the nodes or within the PBs themselves[10,13]. 
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Figure 4.1. Comparison of experimental setups from A. the Plateau Border Apparatus of 

Pitois, et al.[9],[10], B. the node adapted Plateau Border Apparatus of Pitois, et al.[11], to C. the 

current PB-Node setup. 

The ‘Plateau Border Apparatus’ of Pitois, et al.[10] (Figure 4.1a) has provided a wealth of 

information on this topic, with identification of ‘mobile’ and ‘rigid’ interfacial  behaviour 

depending on the choice of surfactant. By measuring pressure variations within the PB, the 

authors were subsequently able to determine the apparent PB surface viscosities and 

resultant hydrodynamic resistances that inform models describing macroscopic foam 

permeability [5,9]. However, despite average values of these resistances being in agreement 

with theory, the observed variation with liquid flow rate differed significantly [5,9,28,29]. 

Despite its successes, there are still shortfalls of the Plateau Border Apparatus that need to be 

addressed. Firstly, for channels laden with high mobility surfactants, the node is known to 

dominate flow dissipation, and therefore must be included in investigations. Pitois, et al.[11] 

made one such study in which the Plateau Border Apparatus was adapted to include a bubble 

at the base of the PB (Figure 4.1b); however, the limited amount of data published was 

insufficient to account for large discrepancies in the current theory predicting hydrodynamic 
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resistance of the node [27,30-32]. In addition, the adaptation of the setup meant that the 

apparent surface viscosity needed to calculate hydrodynamic resistance was taken from 

measurements of the original PB-only system. This neglected both the potential impact of PB 

length variation and of variations in PB surface rheology that may have been introduced by 

the very presence of a node. These factors cannot be assumed and must therefore be 

experimentally verified. 

Further challenges of such a system include the complex process of pressure measurement, 

where the significant timescales to achieve equilibrium [10] and induced pressure fluctuations 

often compromise PB and node stability. Overall, this can make the measurement procedure 

extremely labour intensive and therefore severely limit the amount of data that can be 

collected. 

In order to begin to address the challenges above, the development of a purpose-built 

experimental setup is proposed, that can measure the apparent surface viscosity of ‘ideal’ PB-

Node systems for a wide range of flow rates and PB lengths. This reproducible and accurate 

technique will add to the limited body of experimental data that exists to describe such 

systems, while helping to standardise the approach to studying them. Overall, it is hoped that 

this will improve the comparability of findings between both previous and future studies, thus 

enabling further progress to be made in understanding these systems. 

4.1.2 Theory 

The bulk of existing theory relating PB surface viscosity to PB geometry, pertains to idealised 

‘infinite’ PBs. Owing to the complexity of PB geometries, these simplified systems help to 
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identify cross-sectional areas, 𝑆, such as that shown in Figure 4.2, where 𝑆 is a simple function 

of film thickness, 𝑤, and PB Radius, 𝑅, described by Equation (4.2)[6]: 

𝑆(𝑤; 𝑅) = ൫√3(𝑅 + 𝑤)ଶ − 𝜋𝑅ଶ 2⁄ ൯                   (4.2)  

 

Figure 4.2. Cross-section of an infinite PB with Film Width, 𝒘, Radius of Curvature, 𝑹, and 

Cross-Sectional Area, 𝑺. Dashed lines indicate PB symmetry lines and the shaded region 

highlights one of six symmetry units. 

A common approximation is applied to cases where films are thin (𝑤 ≪ 𝑅). In these cases, 𝑆 

can be approximated as a function of 𝑅 only (Equation (4.3)) using the geometric factor 𝑐 ≈

0.161 [6]. 

𝑆 ≈ 𝑐𝑅ଶ                                    (4.3) 

Liquid flow through a PB is defined within the regimes of viscous and inertial flow, with viscous 

flow generally dominating at low flow velocities and high liquid viscosity, and inertial flow 

becoming more prominent with increasing flow velocity and decreasing liquid viscosity. This 

can be described in terms of the Reynolds number, 𝑅௘ு, which describes the ratio of inertial 

to viscous forces, such that decreasing 𝑅௘ு describes an increasing dominance of viscous flow. 

For an ideal, thin-filmed, PB this can be calculated from 𝑅௘ு = 4𝜌𝑢௥𝑐𝑅 𝜋𝜇⁄ , where 𝜌 is the 
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liquid density, 𝜇 is the liquid’s dynamic viscosity and 𝑢௥ is the flow velocity relative to the 

interface. As the viscous regime is known to dominate for liquid foam systems, this has seen 

the majority of theoretical and experimental study [1,6,12,13]. Therefore, in order to maximise 

the applicability of the current study, this work will focus only on the viscous component of 

the liquid flow. 

The role of viscous flow in determining PB velocity profiles is described by the dimensionless 

parameter, 𝐷, which can vary between the limits of ‘plug-flow’ (i.e. flat profiles) where 𝐷 = 0 

and ‘Poiseuille-flow’ where 𝐷 = 312. A derivation of this can be found from Elias, et al.[12]. 

This is dependent upon the shear imparted by the PB interface on liquid flow, which ultimately 

depends on the mobility of the interface, 𝑀, often referred to in its inverted form, the 

Boussinesq number, 𝐵଴ = 1 𝑀⁄ .[12] The current benchmark relationship between 𝐷 and 𝐵଴ is 

the numerical solution of Nguyen[5], which describes the data given by solving the Navier-

Stokes Equation for flow in an ideal ‘infinite’ PB (Equation (4.4)). This has been shown to agree 

well with subsequent model extensions and experimental analysis in macroscopic foam 

systems by Koehler, et al.[6],[7] . 

𝐷ିଵ = 𝑐ൣ0.02 + ൛0.0655𝐵଴
ି଴.ହ ൫0.209 + 𝐵଴

଴.଺ଶ଼൯ൗ ൟ൧                    (4.4) 

In order to relate Equation (4.4) to measureable variables, further considerations of PB 

geometry are required. Elias, et al.[12] describe the ideal relaxation profile of a vertical PB with 

thin films according to an approximated solution to Equation (4.5), which is commonly 

referred to as ‘the standard drainage theory’. This itself is a steady state solution to the Navier 

Stokes Equation for fluid momentum, in the specific case of a PB tangential to the vertical axis, 

𝑍, with liquid flow rate, 𝑄, surface tension, 𝛾, and kinematic viscosity, 𝜈 = 𝜇 𝜌⁄  describing the 
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ratio of dynamic viscosity and fluid density respectively. The dimensionless parameter, 𝐼, is an 

inertial flow parameter whose role will become apparent in subsequent chapters. 

ௗோ

ௗ௓
=

௖஽ఔொି మோర

൬
మ಺ೂమ

ೃ
൰ି൬

೎మೃమം

ഐ
൰
                    (4.5) 

𝑅 = 𝑅௘ + (𝑅଴ − 𝑅௘)𝑒ି௭
௅ൗ                                   (4.6) 

The approximated geometric solution (4.6) describes the transition of the PB profile from 

some initial radius, 𝑅଴, to an equilibrium radius, 𝑅௘, along the vertical axis, 𝑍, according to a 

relaxation length, 𝐿. The equilibrium radius is analogous to the constant radius of the 

theoretical ‘infinite’ PB, where gravitational forces and viscous dissipation are balanced. This 

can be derived from Equation (4.5), where 𝑑𝑅 𝑑𝑍 = 0⁄  (i.e. constant radius), leading to the 

ratio of viscous dissipative and gravitational terms shown in Equation (4.7)[12]. 

𝑅௘ = (𝐷𝜇𝑄 𝑐𝜌𝑔⁄ )ଵ ସ⁄                      (4.7) 

As such, combining Equations (4.4) and (4.7) into Equation (4.8) yields a relationship between 

PB geometry, bulk liquid variables and surface mobility of the equilibrium (or ‘infinite’) PB with 

a thin film approximation. 

ఓொ

ఘ௚௖మோ೐
ర = 0.02 + ൛0.0655𝐵଴

ି଴.ହ ൫0.029 + 𝐵଴
଴.଺ଶ଼൯ൗ ൟ                   (4.8) 

In order to maximise the comparability of the results presented here to existing work, values 

obtained for 𝐵଴ are converted into surface shear viscosities, 𝜇௦, using Equation (4.1) (with 𝑅 =

𝑅௘).  
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Figure 4.3. Imaging for analysis of PB-Node profiles. a) Optical Setup - A CCD camera images 

the enclosed frame using a rear diffuse panel light to create shadow profile images. b) Low 

and high magnification images of a PB node profile, where highest magnification (red 

highlighted images) represents 1.5μm per image pixel. 

4.2 Experimental 

4.2.1 The PB – Node Setup 

The current setup formed an ideal PB and node by submerging and withdrawing a closed 3-

legged frame geometry into surfactant solution (Figure 4.1c). Flow rates, 𝑄, were accurately 

controlled via a Cole-Palmer Dual Syringe Pump, which could directly inject surfactant solution 

into the upper PB through brass 3D print nozzles with outlet diameters of 0.4mm. Larger 

diameter nozzles were found to cause pinning of the PBs to one side of the nozzle at low flow 

rates, thereby distorting the ideal profiles. 

The frame was designed using Tinkercad software (Autodesk inc., USA) and 3D printed using 

stereolithography on a FormLabs Form® 2 printer, as this approach offered fast and simple 

production of precision tailored geometries. The distance between the legs and central tripod 

axis was set at 𝒙 =6.40mm and heights were varied to produce PB lengths of 27.5mm, 
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15.0mm and 8.0mm with absolute errors of approximately 0.5mm. These heights were both 

above and within the ranges used in existing setups [9-12]. The error in PB length resulted from 

the uncertainty in the exact end of the PB and beginning of the node. 

The frame was mounted and enclosed within an acrylic and glass fronted box to allow imaging, 

minimise liquid evaporation and to remove air current disturbances. Access from a rear panel 

allowed investigators to lift and withdraw containers of surfactant solution from the frame. 

The whole system was then mounted on an optical rail to aid in PB profile imaging. 

PB profiles were obtained by illumination from the rear of the setup with a diffuse LED panel 

light and imaging via CCD camera from the front. A micrometre translation stage with 

translation in both the Z and Y directions, allowed precision movement of the CCD camera 

relative to the PB and node (Figure 4.3a).  

The resolution of images varied based on the choice of lens. Image resolution was calculated 

based on calibration images of a syringe needle with measured diameter 1.250 ± 0.006 mm. 

The maximum resolution of 1.5μm per image pixel was used for curve fitting. Due to the high 

magnification at this resolution, it was necessary to combine multiple images along the Z-axis 

in order to visualise the full length of the PB profile (Figure 4.3b). Images were obtained in 

triplicate at 1000 ± 5 μm increments along the Z-axis, then processed and combined in 

Matlab (MathWorks, USA). 

PB profile widths, 𝑑, were measured on a pixel row-by-row basis, using a Canny edge detection 

algorithm to determine PB boundaries. This method has been shown to be robust in detecting 

the presence of strong edges, while removing false edges produced by image noise [33]. The 

sensitivity of the edge detection could be varied by adjusting the upper and lower intensity 
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thresholds used by the algorithm to determine edge strength. As such, it was possible to 

identify only PB profile edges, neglecting any fringe patterns in the adjoining films due to 

localised thinning. 

Profile widths, 𝑑, were converted into PB radii, 𝑅,  using the geometric correction factor 

2 √3⁄ [12] such that:  

𝑅 = 2𝑑 √3⁄                                (4.9) 

Values for the PB Radii were averaged for each of the 1mm incremental images along the Z-

axis and subsequently combined into a single matrix of 𝑍 values and corresponding 𝑅 values 

in the range 0 ≤ 𝑍 ≤ 𝑙ଵ.  

 

Figure 4.4. a) Example of PB profile at 𝑸 = 20μl/min, with nozzle height (𝒁 = 0) and vertical 

offset (𝒁 = 𝒁𝒐𝒇𝒇𝒔𝒆𝒕) indicated by red dashed lines. b) Corresponding 𝒁 vs. PB Radius, 𝑹, plot 

for the region of the distortion with outliers removed. A third order polynomial is used to 

illustrate the shape of the distortion and the second order derivative set to zero determines 

the vertical height of the inflexion point, 𝒁𝒐𝒇𝒇𝒔𝒆𝒕 (red line). 
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As was observed by Elias, et al.[12], around 𝑍 = 0mm the PB exhibited a significant distortion 

due to its attachment to the liquid injection nozzle. This distortion was thought to mark a 

transition from a circular PB cross-section to an ideal cross-section (Figure 4.2) just below the 

point of injection. A vertical offset, 𝑍௢௙௙௦௘௧, was therefore defined at the inflexion point of the 

distortion (see Figure 4.4), below which the ideal PB cross-section could be assumed and curve 

fitting undertaken. 

The PB equilibrium radius was determined by fitting Equation (4.6) to values of 𝑅 and 𝑍 using 

a non-linear least square fit method. 𝑅௘ values were then combined with measurements of 𝜇 

and 𝜌 to calculate the left hand side of Equation (4.8). A least squares method was used to 

solve Equation (4.8) for 𝐵଴, with these values subsequently converted to 𝜇௦ using Equation 

(4.1) with 𝑅 = 𝑅௘. 

A solution of 0.50wt% SDS was selected for analysis owing to its extensive use in previous work 

and its ability to easily produce stable films. This concentration was approximately double the 

Critical Micelle Concentration (CMC) of ~ 0.235wt% [34], ensuring that observations would be 

of a fully populated interface, where little variation in surface tension could be assumed.  

SDS solution was loaded into the PB-Node setup and PB profiles measured for flow rates in 

the range 10μl/min≤ 𝑄 ≤200μl/min, therefore extending beyond the range of conventional 

foam drainage experiments[10]. This was in order to maximise the available data with which to 

investigate flow dependent trends. 

4.2.2 Preparation of SDS Solutions 

SDS (>99.9%) from Fisher Scientific (Loughborough, UK) was weighed using a digital balance 

to an accuracy of three decimal places. Purified water (15.0 MΩ∙cm) was weighed into 
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borosilicate glass beakers and magnetically stirred at room temperature while SDS was added. 

Beakers were covered with cling-film to reduce evaporative water loss or contamination. 

Stirring continued for a minimum of 30 minutes prior to use of the solution. Great care was 

taken to ensure that glassware and stirring bars were thoroughly cleaned and rinsed with 

purified water, then air dried prior to use. Nitrile gloves were worn throughout handling to 

avoid sample contamination. 

Bulk properties 𝜌 and 𝜇 were measured in triplicate using a Krüss Processor® Tensiometer 

K100 (Krüss GmbH, Germany) with density hook attachment and silicon density standard, and 

a Malvern Kinexus® Pro rheometer (Malvern Panalytical, UK) with Double-Gap geometry 

respectively. The averaged results with accompanying measurement errors were then used in 

the calculation of 𝜇௦. 

4.3 Results and Discussion 

4.3.1 SDS Solution Properties 

Values for specific bulk properties of the 0.50wt% SDS solution, that are subsequently used 

for the calculation of 𝜇௦ (according to equations 4.1 and 4.7), are presented in Table 4.1. 

Concentration [wt%] Fraction of CMC Density [mg/ml] Viscosity (10-4) [Pa·s] 

0.50 ~ 2.13 998.7 ± 0.9 9.84 ± 0.05 

Table 4.1. Averaged bulk properties of 0.50wt% SDS solution with associated errors[34]. 

4.3.2 PB Relaxation and Expansion 

Images of PB profiles revealed a previously unreported phenomenon, where sudden rapid 

increases in PB radius could be seen at discrete distances, 𝑍௦௪௘௟௟, along the PB (see Figure 4.5), 
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that changed with liquid flow rate and PB length (see Figure 4.6b). This appeared to mark a 

transition from the ‘relaxation’ (i.e. 𝑑𝑅 𝑑𝑍⁄ < 0) of the PB described by Equation (4.6) to a 

state of ‘expansion’ (i.e. 𝑑𝑅 𝑑𝑍⁄ > 0), where the PB eventually transitioned into the adjoining 

node at 𝑍 = 𝑙ଵ. 

 

Figure 4.5. Visualisation of PB profiles of length, 𝒍𝟏, and liquid flow rate, 𝑸. a) Low 𝑸, small 

𝒍𝟏 resulted in almost complete expansion profiles. b) Increasing 𝑸 and 𝒍𝟏 exhibited both 

relaxation and expansion with increasingly prominent transition distortions at height 𝒁 =

𝒁𝒔𝒘𝒆𝒍𝒍. 

Measurements of the PB profiles clearly highlighted the 𝑄 dependence of 𝑍௦௪௘௟௟, which 

determined the extent to which the PB profile was dominated by relaxation or expansion. The 

Expansion Fraction, 𝛷௘, of the total PB length was described by 𝛷௘ = 1 − 𝑍௦௪௘௟௟ 𝑙ଵ⁄ , and can 

be seen to vary accordingly with 𝑄 in Figure 4.6b. At lower flow rates, expansion was seen to 

almost completely dominate the PB profile until a critical flow rate, 𝑄௖௥௜௧, after which 𝛷௘ 

decreased. 𝑄௖௥௜௧ increased with decreasing 𝑙ଵ as shown in the inset of Figure 4.6b, resulting in 

the increasing dominance of expansion for shorter PBs. Values of 𝑄௖௥௜௧ were 50μl/min, 

100μl/min and 160μl/min for 𝑙ଵ ≈ 27.5mm, 15.0mm and 8.0mm respectively. 
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These findings are highly significant in the context of microscale foam drainage and therefore 

potentially in macroscopic foam systems. As flow rates and PB lengths approached those more 

typically observed in foam drainage experiments[10] (i.e. 𝑄 <100μl/min and 𝑙ଵ <10mm), PB 

relaxation all but disappeared in favour of an expansion limited by the spatial geometry of the 

adjoining node. This therefore represents an important consideration to be made when 

choosing suitable theory to describe PB profiles. 

The differing nature of all existing experimental work in this area meant that this phenomenon 

was not observed[9-11,35]. Firstly, the few isolated PB and PB-Node experiments mainly focused 

on shorter PB lengths, 𝑙ଵ < 15mm and the range of  𝑄 was smaller, 0μl/min ≤ 𝑄 ≤ 100μl/min 

in the case of Pitois, et al.[9],[10,11]. In the only case where PB length was longer (𝑙ଵ ≈ 40mm), 

flow rates were in significantly higher increments of 5ml/min in the range 0ml/min ≤ 𝑄 ≤ 

40ml/min, with considerably poorer image resolution[12]. This indicates that previous 

experiments would either have observed only expansion-dominated PB profiles (e.g. Pitois et 

al.[9-11]), or relaxation-dominated PB profiles (e.g. Elias, et al.[12]), where the swelling region 

may have been obscured by a combination of distortion at the node or the point of liquid 

injection and insufficient image resolution. The range of flow rates and PB lengths studied by 

the current experimental setup therefore make it unique in its ability to observe both 

expansion and relaxation states simultaneously. 

As the current theory does not describe the swelling phenomenon observed here, both this 

and the PB expansion regions should not be considered in the subsequent analysis of PB 

profiles. Instead, curve fitting of Equation (4.6) to experimental data is limited to the 

relaxation region only (see Figure 4.7). 
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Figure 4.6. a) Raw PB-Node profile images for low (left) and high (right) magnifications at 

𝒍𝟏 ≈ 27.5mm and 𝑸 = 200μl/min. 𝒁𝒔𝒘𝒆𝒍𝒍 indicates the distance of the swell below the 

injection nozzle. b) Expansion Fraction, 𝜱𝒆, vs. Flow Rate, 𝑸, for PB lengths 27.5mm, 

15.0mm and 8.0mm. Critical flow rates, 𝑸𝒄𝒓𝒊𝒕, are seen at 50μl/min, 100μl/min and 

160μl/min for PB lengths 27.5mm, 15.0mm and 8.0mm respectively, with the relationship 

between 𝒍𝟏 and 𝑸𝒄𝒓𝒊𝒕 shown inset. Colours correspond to PB lengths as shown. 

4.3.3 Length and Flow Dependence of PB Geometry 

Due to the fundamental differences noted between the present experimental setup and 

others (primarily the range of liquid flow rates and PB length), only limited comparisons could 

be made to existing experimental data. Neither the influence of a node on the upper PB nor 

the specific impacts of height variations are well documented in the literature; however, the 

differences in data obtained here serve to highlight the potential significance of these factors. 

Experimental data were fitted to Equation (4.6) in order to extract values for the equilibrium 

radius, 𝑅௘, which describes the theoretically ideal infinite PB, therefore validating the use of 
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the theory described in section 4.1.2. The fit quality was high in all cases, with a minimum r-

Squared value of 0.87 due to fluctuations in the PB around 𝑄௖௥௜௧, but the majority over 0.95. 

The values of 𝑅௘ were converted to Equilibrium Cross-Sectional Areas, 𝑆௘, using Equation (4.3) 

with 𝑅 =  𝑅௘. These were compared to the minimum cross-sectional areas, 𝑆௠௜௡, measured 

by Pitois, et al.[10] for a 3g/l SDS solution with 𝑙ଵ < 15mm (Figure 4.8). It is important to note 

here that values of 𝑆௠௜௡ may not have corresponded to equilibrium cross-sectional areas, 

which were the basis for the theory used in their subsequent calculations. For PBs of 

insufficient length, it is likely that values for 𝑆௠௜௡ would have been higher than 𝑆௘, with a 

potentially significant impact on the observed flow dependent trends and magnitudes of 

calculated values. 

As it was predicted above that Pitois, et al.[10] may only have observed an expansion-

dominated PB, measurements were also made of the minimum cross-sectional area in the PB 

expansion region, 𝑆ா௫௣, for 𝑄 > 𝑄௖௥௜௧ (Figure 4.8). This would serve to highlight any changes 

in PB geometry that were characteristic of expansion rather than relaxation, where 𝑆ா௫௣ 

would better represent Pitois’ 𝑆௠௜௡ than 𝑆௘. The measurement of 𝑆ா௫௣ was taken from the PB 

profiles at the approximate point where the swelling region had transitioned into a continuous 

expansion towards the node (see Figure 4.7). The difficulty in precisely defining these points 

is reflected in the error margins. 
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Figure 4.7. PB Cross-Sectional Area, 𝑺, vs. Vertical Height, 𝒁, for 𝑸 = 100μl/min with 𝒍𝟏 ≈ 

27.5mm. The green line shows the fit of Equation (4.6) to the relaxation region of the profile. 

Red dashed lines indicate the end of the relaxation region (red), defined as 𝒁𝒔𝒘𝒆𝒍𝒍, as well 

as the Equilibrium Cross-Sectional Area, 𝑺𝒆, and the Minimum Expansion Cross-Sectional 

Area, 𝑺𝑬𝒙𝒑, all labelled accordingly. 
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Figure 4.8. Flow Rate, 𝑸, vs. PB Cross-Sectional Area, 𝑺. Data presented here is for 0.50wt% 

SDS solution with PB lengths 𝒍𝟏 ≈ 27.5mm, 𝒍𝟏 ≈ 15.0mm and 𝒍𝟏 ≈ 8.0mm. Unfilled data-

points represent minimum PB relaxation cross-sectional areas, 𝑺𝒆, while filled points 

represent minimum PB expansion cross-sectional areas, 𝑺𝑬𝒙𝒑, for 𝑸 > 𝑸𝒄𝒓𝒊𝒕. Data is 

compared to the Minimum PB Cross-Sectional Area, 𝑺𝒎𝒊𝒏, measured by Pitois, et al.[10] for 

3g/l SDS solution with 𝒍𝟏 < 15mm. Lines are included to guide the eye. 𝑺𝑬𝒙𝒑 for 𝒍𝟏 ≈ 27.5mm 

at 200μl/min shows a significant deviation from other data resulting from its close proximity 

to the node. 

From Figure 4.8 it can be seen that PB length had a significant impact on the magnitude of 𝑆௘ 

before 𝑄௖௥௜௧ was reached. In this region, 𝑆௘ was invariant to 𝑄 and increased in magnitude 

with decreasing 𝑙ଵ. At flow rates above 𝑄௖௥௜௧, values of 𝑆௘ from the different PB lengths began 

to converge. This suggested that the impact of PB length on the equilibrium PB cross-section 

could become insignificant for flow rates at the top end of those measured here and above. 
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The projected trend of increasing 𝑆௘ with decreasing 𝑙ଵ could have conceivably produced 

magnitudes of 𝑆௘ comparable to the 𝑆௠௜௡ values reported by Pitois, et al.[10], with a PB length 

of approximately 4mm. This would fall within their range of 𝑙ଵ < 15mm, however it does not 

account for the positive correlation between 𝑆௠௜௡ and 𝑄. It was only from the values of 𝑆ா௫௣ 

for 𝑄 > 𝑄௖௥௜௧ that a significant increase in area with flow rate was observed. This suggested 

that the increase in 𝑆௠௜௡ with flow rate observed by Pitois, et al.[10] could be a characteristic 

of the PB expansion region, albeit without the delay imposed by 𝑄௖௥௜௧. It is hypothesised that 

the PB-only nature of Pitois’ setup may have been responsible for the lack of a 𝑄௖௥௜௧ in their 

data. By terminating in the bulk liquid instead of the strict geometry of a node, the expansion 

profile of the PB would have been far less restricted, potentially explaining the immediate 

increase in 𝑆௠௜௡ from 𝑄 = 0μl/min. 

Based on the observations made here, it seems unlikely that 𝑆௠௜௡ accurately represented an 

equilibrium PB cross-section in Pitois et al.’s measurements. This would have introduced a 

degree of error in values subsequently calculated using idealised PB theory, the consequences 

of which are discussed further in section 4.3.4. It is emphasised here that the proposed 

method for extracting the true values of 𝑆௘ from experimental PB profiles is vital for the 

accuracy of subsequent calculations using ideal infinite PB theory. 

4.3.4 Length and Flow Dependence of Apparent PB Surface Viscosity 

The flow rate dependence of the apparent surface shear viscosity, 𝜇௦, was calculated as 

described in section 4.1.2, the results of which can be found in Figure 4.9. 

It was seen that that decreasing 𝑙ଵ produced values of 𝜇௦ that approached those of Pitois, et 

al.[10]. Their average 𝜇௦ in the range 10μl/min≤ 𝑄 ≤100μl/min was 1.57 × 10-5 g/s for 𝑙ଵ < 
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15mm, in comparison to a value of 2.16 × 10-5 g/s for 𝑙ଵ ≈ 8.0mm determined here. It should 

be stressed that values published by Pitois, et al.[10] were for a slightly lower concentration 

(3g/l) of TTAB solution rather than SDS, however the authors reported their SDS data to have 

been similar. Equations 6 and 7 highlight the importance of accurate measurements of the 

equilibrium PB cross-section when using idealised ‘infinite’ PB theory to calculate 𝜇௦. Here it 

can be seen that overestimations of 𝑆௘ would have resulted in overestimations of 𝜇௦. For the 

case of 𝑆௠௜௡ > 𝑆௘ therefore, as described in section 4.3.3, it can be seen how this may have 

obscured flow dependent behaviour and increased the magnitude of  𝜇௦ measured by Pitois, 

et al.[10].  

 

Figure 4.9. Apparent Surface Viscosity, 𝝁𝒔 (x105 g/s), vs. Flow Rate, 𝑸, for 0.50wt% SDS 

solution with PB lengths 𝒍𝟏 ≈ 27.5mm, 𝒍𝟏 ≈ 15.0mm and 𝒍𝟏 ≈ 8.0mm. Critical flow rates, 

𝑸𝒄𝒓𝒊𝒕, before PB expansion are indicated for each. Data is compared to that of Pitois et al.[10] 

for 3g/l Tetradecyltrimethylammonium Bromide (TTAB) solution with 𝒍𝟏 < 15mm, which 

was said to have exhibited similar results to SDS solutions.  
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The range of values shown here for  𝜇௦ with varying 𝑙ଵ, showed a good agreement with those 

measured in the high precision setup of Zell, et al.[17] who reported 𝜇௦ ≲ 10-5 g/s for the true 

surface shear viscosity, in comparison to values of 10-8< 𝜇௦ <10-4 g/s for the apparent surface 

viscosity presented here. Zell’s results are argued to be the most accurate measurements of 

SDS surface shear viscosity to date, where 10-5 g/s represented virtually inviscid behaviour at 

the limit of their technique’s sensitivity. The ability of the new technique to extract values as 

low as 10-8 g/s therefore represents a significant step forward in measurement sensitivity. 

Furthermore, the ability to measure the flow dependent variations in 𝜇௦ at this scale could 

provide a wealth of information regarding the dynamics of the interface. 

In order to interpret the origin of the flow and length dependent trends in 𝜇௦, it was most 

useful to consider the shear imparted by the bulk liquid on the interface, which takes into 

account the variations in the PB cross-sectional area. The average liquid shear rate within the 

equilibrium PB, 𝛾௦̇, for a given geometry and flow rate was approximated from Equation (4.10) 

(Elias, et al.[12]), with the results shown in Figure 4.10a. 

𝛾௦̇ ≈ 𝑄 𝑐𝑅௘
ଷ⁄                                   (4.10) 

Due to the flow rate independence of 𝑆௘ prior to 𝑄௖௥௜௧, the resulting shear rates in these 

regions approximately scaled with 𝑄. Here the apparent surface viscosity increased with 

decreasing 𝛾௦̇, initially being well described by power laws, but beginning to deviate towards 

finite values of 𝜇௦ for the lower values of 𝛾௦̇. 

For flow rates larger than 𝑄௖௥௜௧ a distinctive change in the behaviour of 𝜇௦ with 𝛾௦̇ was 

observed, reflecting the transition to a 𝑄 dependent 𝑆௘ (Figure 4.10a). From this point, the 

data for all PB lengths began to converge abruptly, following what appeared to be a single 
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trend of decreasing 𝜇௦ with 𝛾௦̇. While additional PB length data is required to confirm this, it 

would imply that this flow region marked a response of the PB interface that was similar for 

all PB lengths. Indeed, the appearance of maximum shear rates for 𝑙ଵ ≈ 27.5mm (blue points) 

and 𝑙ଵ ≈ 15.0mm (red points), where 𝜇௦ appeared to increase, implied a resistance of the 

interface to further apparent shear thinning. These maximum shear rates also corresponded 

to the beginning of expansions of the PB cross-sections (see Figure 4.8) implying a causal link 

between interfacial resistance and expansion. 

 

Figure 4.10. a) Apparent Surface Viscosity, 𝝁𝒔 (x105 g/s), vs. Average Shear Rate, 𝜸̇𝒔, for 

0.50wt% SDS solution with PB lengths 𝒍𝟏 ≈ 27.5mm, 𝒍𝟏 ≈ 15.0mm and 𝒍𝟏 ≈ 8.0mm. Critical 

flow rates, 𝑸𝒄𝒓𝒊𝒕, before PB expansion are indicated for each. b)  Calculated Dimensionless 

Marangoni Force, 𝑭෡𝟏, vs. Boussinesq Number, 𝑩𝟎, from different 𝒍𝟏 PBs for virtually inviscid 

surface viscosity[36]. c) Frumkin Isotherm for SDS at surface concentrations, 𝜞𝑺𝑫𝑺, 

approaching the CMC using model parameters of Kinoshita et al.[37].  
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The apparent shear thinning of the PB interfaces could have resulted from two primary effects: 

changes in surfactant concentration at the PB interface, and/or the non-trivial combination of 

surface dilational viscosity and Marangoni forces with the surface shear viscosity[36,38], which 

describe surfactant transport across the interface due to dilation, distortion and shear of the 

interface respectively. Both of these are influenced by rates of adsorption/desorption, which 

are not taken into account during the present study. A full numerical analysis of these effects 

represents a complex task that is beyond the scope of this study; however, initial comparisons 

to theory and experimental observations by other authors were able to suggest a physical 

basis for the observed trends. 

In a recent study by Elfring et al.[36] it was shown that very low surface viscosity interfaces, 

such as those described here, are expected to experience increasing Marangoni forces, 𝐹෠ଵ, 

upon applied forces to the interface according to: 

𝐹෠ଵ ∼ 2 25𝐵଴√1 + 𝛼⁄                    (4.11) 

Where 𝛼 = 𝑂(1) and represents the ratio of surface dilational to shear viscosities, and 𝐵଴ ≪ 

1. The divergence of this term as 𝐵଴ → 0 was justified as a result of the limits of their problem, 

where instead it would be expected that 𝐹෠ଵ → constant, as 𝐵଴ → 0. The results of Equation 

(4.11) when applied to the values of 𝐵଴ obtained here are shown in Figure 4.10b, to 

demonstrate the scaling of 𝐹෠ଵ with 𝐵଴. Figure 4.11 shows how the contribution of Marangoni 

forces to the apparent surface viscosity would have been expected to scale with increasing 

shear rates and could therefore have been responsible for the apparent shear thinning 

behaviour. Furthermore, the apparent tendency of 𝜇௦ towards a constant value with 
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decreasing 𝛾௦̇ noted previously, reflected the behaviour that would be expected from Figure 

4.10b were it not for the limitations of Equation (4.11) discussed above. 

 

Figure 4.11. Average Liquid Shear Rate, 𝜸̇𝒔, vs. predicted Dimensionless Marangoni Force, 

𝑭෡𝟏, for surface shear viscosity data measured at PB lengths 𝒍𝟏 ≈27.5mm, 15.0mm and 

8.0mm. 

The theory of Elfring et al.[36] relies upon a limited degree of compressibility of the interface 

in order to form the concentration gradients necessary to produce Marangoni forces. The 

increase in surfactant concentration, 𝛤, at the interface results in a decrease in the surface 

tension that is well described by theory and experiment alike[37,39-43]. Figure 4.10c shows the 

theoretical relationship using the Frumkin isotherm adsorption model with model parameters 

for pure SDS solution as described by Kinoshita et al.[37]. At the CMC, the formation of micelles 

in the bulk liquid and the subsequent reduction in the energy barrier limiting surfactant 

desorption tends to reduce further compression of the interface[44]. This would imply that 

around this point, any differences in the interfacial structures caused by PB length 
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dependence should have become less pronounced. The convergence of the 𝜇௦ data in Figure 

4.10a at flow rates above 𝑄௖௥௜௧ could therefore represent the tendency towards a common 

limit of interfacial compressibility for the different PB lengths. 

Based on the analysis so far, a logical prediction for the strong PB length dependence of 𝜇௦ 

observed below 𝑄௖௥௜௧ was that it was likely to have been the result of differences in bulk 

and/or surface concentrations of SDS. Such differences would have affected the rates of 

adsorption/desorption of SDS as well as the compressibility of the interface at given liquid 

shear rates. Indeed, the effect of varying bulk concentrations on the compressibility of SDS 

interfaces has been directly observed in experimental work by Vogel[45]. In order to obtain an 

approximation of how SDS concentrations may have varied for different PB lengths, the 

average moles of surfactant contained in the liquid volume of each full-length PB profile was 

compared to the average PB interfacial area over the same length. This was done using 

Equation (4.12), producing a value for the maximum average available moles of SDS to 

populate an average unit area of interface, 𝛤௠௔௫.  Here the initial bulk concentration of SDS, 

𝐶௪௧%, was 0.5 for all solutions, and the molar mass of SDS was[46] 𝑀 = 288.38gmol-1. It is 

important to note that interfacial area and volume calculations were based on ideal PB cross-

sections with negligible film thickness[12]. 

𝛤௠௔௫ ≈
௖ோమ௟భ

గோ௟భ

஼ೢ೟%ఘ

ଵ଴଴ெ
                   (4.12) 

The results of Equation (4.12) are plotted in Figure 4.12, and show a marked difference 

between values of 𝛤௠௔௫ for the different PB lengths. This difference was approximately 

independent of the liquid shear rates, giving average values of 3.56mol/cm2, 2.90mol/cm2 and 

2.37mol/cm2, for 𝑙ଵ ≈ 8.0mm, 15.0mm and 27.5mm respectively.  
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Figure 4.12. Average Maximum Available moles of SDS per Unit Interfacial Area, 𝜞𝒎𝒂𝒙, vs. 

Average Shear Rate, 𝜸̇𝒔, for 0.50wt% SDS solution with PB lengths 𝒍𝟏 ≈ 27.5mm, 𝒍𝟏 ≈ 

15.0mm and 𝒍𝟏 ≈ 8.0mm. Dotted lines indicate average values of 𝜞𝒎𝒂𝒙 for corresponding 

coloured data points. 

The results of Figure 4.12 clearly show that an average variation in either the bulk or surface 

concentration of SDS could have occurred as a result of varying PB length. The reduction in 

concentration with increasing 𝑙ଵ fits well with the observed trends in 𝜇௦ and the equilibrium 

cross sectional area. A lower initial surfactant population at the interface would have reduced 

the interfacial area due to the increase in the surface free energy, therefore increasing the 

liquid shear rates at given liquid flow rates according to Equation (4.10). Furthermore, one 

would expect a reduced 𝜇௦ for a lower surfactant population at the interface, due to the 

increased freedom of individual surfactant molecules. During compression experiments of SDS 

interfaces, Vogel[45] observed that the reduction in bulk concentration of SDS solutions 

resulted in a reduction in the compressibility of the interface. This would have served to 
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reduce the variation in 𝜇௦ at lower SDS concentrations, in agreement with the results shown 

here. It is important to note that these findings serve as an indication of possible factors that 

could lead to variations in surface viscosity with liquid shear rate, rather than a comprehensive 

answer. In order to probe this further, more detailed studies will be required that investigate 

variations in PB surface tension with liquid flow rates and the role played by rates of surfactant 

adsorption/desorption. 

4.4 Conclusions 

In this study, a novel technique is proposed for studying liquid flow through an isolated Plateau 

border of foam terminating in a geometrically ‘ideal’ node. The high resolution of the imaging 

achieved, combined with the flexibility of the setup to vary both liquid flow rate and the length 

of the PB, have proven capable of exploring a broad range of experimental conditions not seen 

in previous work. 

An unexpected outcome of this study was the appearance of a clear distortion in the PB 

profiles that marked a sudden transition from the anticipated PB relaxation to a gradual PB 

expansion that transitioned smoothly into the node. These ‘swelling regions’ were found to 

be both PB length dependent and flow rate dependent after a critical flow rate, 𝑄௖௥௜௧. After 

𝑄௖௥௜௧, swelling regions propagated discrete distances, 𝑍௦௪௘௟௟, along the PB, thus determining 

whether the PB profiles were dominated by relaxation or expansion. While previous work was 

found to have observed profiles dominated by either expansion or relaxation, this marks the 

first instance where this dominance could be precisely controlled. As conditions approached 

those of conventional foam drainage (i.e. PB lengths less than 10mm and flow rates less than 

100μl/min), PB profiles were increasingly dominated by expansion into the node. The variable 
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of PB length is therefore deemed an important consideration when selecting relevant theory 

to describe the evolution of PB profiles. A further study of this region is proposed, wherein 

theory describing both PB relaxation and PB expansion is applied to the profiles studied here. 

A successful theoretical description of both regions should be able to describe the geometric 

evolution of their profiles, while predicting the appearance of the swelling regions at varying 

PB lengths and liquid flow rates. As the theory discussed here was relevant only to cases of PB 

relaxation, the subsequent analysis of measured PB profiles was therefore limited to the 

relaxation regions of these profiles. 

Theory describing ideal PB relaxation agreed well with measured PB profiles, producing 

equilibrium cross-sectional areas, 𝑆௘, that could then be accurately interpreted using idealised 

‘infinite’ PB theory. The values of 𝑆௘ obtained here were shown to be consistently lower than 

the minimum cross-sectional areas for similar systems in previous studies[9,10], suggesting that 

direct measurement of minimum PB cross-sectional areas provides a poor indication of the 

equilibrium PB geometry. In turn, it was shown that inaccurate measurements of the 

equilibrium PB geometry would have resulted in artificially high measurements of the surface 

shear viscosity when applying idealised PB theory. It is also thought that the PB-only nature of 

previous setups may have influenced measurements, requiring a more direct investigation of 

the limits imposed on the PB by the node geometry. 

The magnitudes of the apparent surface shear viscosity, 𝜇௦, and its dimensionless equivalent, 

the apparent Boussinesq number, 𝐵଴, agreed well with values from the most precise existing 

measurements of true surface shear viscosities of SDS interfaces in the literature[17], exceeding 

the measurement sensitivity by approximately three orders of magnitude. Values of 𝜇௦ were 
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in the range 10-8 g/s < 𝜇௦ <10-4 g/s corresponding to PB lengths within the range 27.5mm≳

𝑙ଵ ≳8.0mm respectively, while corresponding values of 𝐵଴ were in the range 10-4 < 𝐵଴ <10-3.  

The high sensitivity of the measurements here were able to detect a PB length dependence 

and flow rate dependence of 𝜇௦ has not been measured in previous studies. While a full 

numerical analysis of these effects was beyond the scope of the present study, a partial 

numerical and qualitative analysis is provided that indicates likely causes for the observed 

dependencies. 

The apparent shear thinning behaviour of the PB interface is likely to have been the effect of 

variations in the surface concentration of SDS, which could have resulted in an increasing role 

played by Marangoni forces, which were predicted numerically[36] for virtually inviscid 

interfaces such as those described here. Marangoni forces were predicted to have increased 

with the liquid shear rate. 

PB length dependence of 𝜇௦ has been attributed to differences in the bulk and interfacial 

concentrations of SDS that occurred at the different PB lengths. The average available moles 

of SDS in the bulk liquid per unit area of interface for the different PB lengths was measured 

to have decreased with increasing 𝑙ଵ. This decrease was roughly independent of liquid shear 

rate, scaling with factors of 1.00, 0.82 and 0.67 for 𝑙ଵ = 8.0mm, 15.0mm and 27.5mm 

respectively. The variations in the bulk and surface concentrations of SDS are hypothesised to 

have resulted in changes to the compressibility of the PB interface, as observed in previous 

SDS compression experiments[45]. These observations indicated a lesser degree of interfacial 

compressibility for lower surfactant concentrations, which at the same time would be 

expected to lower initial values of 𝜇௦, as was seen from the length dependence of 𝜇௦ here. The 

convergence of the length dependent 𝜇௦ data with increasing shear rates above 𝑄௖௥௜௧, 
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suggested a limit in the compressibility of the interfaces, wherein a common interfacial 

structure was approached for all PB lengths. 

The complex interactions of the forces and geometries described here represent a significant 

challenge for the application of a full numerical analysis. Indeed, further work is still required 

in order to untangle these effects at the level of simple planar interfaces[36]. In order to better 

understand the contributions of the factors discussed, it is proposed that further studies of 

soluble surfactant systems, with known variations in chemical and physical characteristics, be 

undertaken. Variations in bulk concentrations and viscosities, for example, would be expected 

to elicit changes in the measured 𝜇௦ that could then be used to better understand the effects 

proposed above. 

Overall, this study has shown that the present technique represents a potential milestone in 

measurement sensitivity for the interfacial responses of soluble surfactants to applied shear. 

Furthermore, it directly relates these values to flows through ideal foam channels, a key aspect 

of macroscopic foam drainage models where the significance of 𝜇௦ is often contested for 

soluble surfactants[17]. It is hoped that the further exploration of soluble surfactants in this 

manner will yield insights into the dynamic nature of these foam interfaces, ultimately 

improving the current understanding of these complex systems. 
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5.0 Abstract 

Liquid foams represent a key component to a vast range of food industry products, from ice 

creams to the crema on coffee. Longevity of these foams is a highly desireable attribute, 

however in order for foam stability to be effectively controlled, a better understanding of the 

interdependence of the bulk liquid and air-liquid interfacial rheologies is required. This study 

follows an increasing trend in experimental investigations made of isolated foam structures at 

the microscale, where the bulk and surface dynamics of a single foam liquid channel can be 

accurately assessed. Isolated foam channels with adjoining nodes were studied for aqueous 

solutions of four food grade surfactants. Existing observations of distortions to Sodium 

Dodecyl Sulfate (SDS) channel geometries were confirmed for solutions of Tween 20 (T20) and 

Tween 80 (T80), and were well described by the theory presented here. Moreover, previously 

unseen distortions to liquid channels were observed for polymeric surfactant systems 

(hydroxypropyl methylcellulose (HPMC) and hydrolysed pea protein blend (HPP)), which were 

proposed to result from their high surface viscosities. The apparent surface viscosities, 𝜇௦, of 

surfactants tested here ranged from high (10 g/s< 𝜇௦ <10-3 g/s) for polymeric surfactants, to 

very low (10-10 g/s< 𝜇௦ <10-8 g/s) for Tweens, clearly demarking the regimes of viscous and 

inertial dominant flows respectively. It is recommended that further work seeks to investigate 

the finding of a strong correlation between 𝜇௦ and channel surface tension, 𝛾, for soluble 

surfactant systems, which could explain the apparent non-Newtonian values of 𝜇௦ that were 

consistently measured here. 
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5.1 Introduction 

5.1.1 Background 

The phenomenon of foam drainage is a complex multi-scale process that ultimately leads to 

the collapse of foams due to film rupture and bubble coalescence[1]. Foam longevity is a 

common problem in the food industry, where the instability of liquid foam products such as 

whipped toppings, ice cream, mousses and confectionary fillings can dramatically decrease 

their potential shelf life[2]. 

As a key mechanism underlying foam collapse, arresting liquid drainage through the network 

of channels or Plateau borders (PBs) between bubbles is often a key focus in foam formulation. 

In many food products (and indeed non-food products) this is still largely addressed by 

increasing the bulk liquid viscosity using a trial and error approach[3]. The ultimate goal in these 

instances is to create a yield stress of the bulk liquid that cannot be reached by the action of 

gravitational forces alone, therefore halting liquid flow altogether. 

More recently, the drive to improve our understanding on food ingredients has led to an 

increasing number of innovations in formulation and processing that target drainage via other 

means. Examples range from the blocking of liquid channels using novel particle systems[4], to 

creating more robust interfacial structures that increase the channels’ hydrodynamic 

resistance with varying combinations of surface active particles, low molecular weight 

surfactants (LMWS) and polymeric surfactant systems[2,3]. 

As the development of novel food microstructures and foam formulations continues, the need 

to better understand the role played by the air-liquid interface in foam drainage is becoming 
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increasingly apparent. Different surfactants dramatically alter the physical properties of the 

interface, whose surface rheology and subsequent impact on liquid flow are still extensively 

studied in both liquid films and foam channels alike.[5-12] 

Theoretical modelling of foam channels has presented a significant challenge to 

researchers[13]. The already complex geometries within the foam microstructure undergo 

expansion and distortion, with these phenomena determined, to an extent, by the rheology 

of the bulk liquid and the gas-liquid interface, which themselves are dependent on the liquid 

flow rate[14]. In addition, the body of experimental work studying these isolated channels is 

extremely limited[15], making it difficult to clearly confirm or refute theoretical predictions. 

When one considers that many studies of macroscopic foam systems are based on such 

microscale theory, it is clear that more microscale evidence is required[16], in terms of both 

quantity and accuracy. 

The most recent experimental studies of isolated PB and PB-Node geometries have proved to 

be a step forward with respect to understanding channel surface rheology. By creating 

spatially ‘ideal’ arrangements of foam channels within bespoke frames, researchers have been 

able to probe specific physical and chemical variables thought to influence the nature of the 

interface[8,9,15,17-21]. Such in-situ measurements of channel surface rheology are critical, as they 

provide unparalleled control and measurement consistency. 

So far, the study of these isolated systems has been limited to simple LMWS systems such as 

Tetradecyltrimethylammonium Bromide (TTAB)[17-19] and Sodium Dodecyl Sulfate (SDS)[8,18,19]. 

Variations in interfacial rheology have been introduced by small additions of dodecanol (DOH), 

which acts to dramatically increase the surface viscosity of the interface, while changes to the 
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bulk rheology has been undertaken by the addition of glycerol. Most recently, the work by 

Clarke et al.[8] using an isolated PB-Node system with pure SDS solution, has yielded surprising 

findings regarding previously unobserved changes to fundamental liquid channel geometries 

during forced liquid flow. In addition, these results appear to confirm what are purported as 

the most accurate surface viscosity measurements of SDS to date[22], predicting the air-liquid 

interface of SDS and other soluble LMWS systems to be so low as to be considered virtually 

inviscid. 

The surface shear viscosity, relates the shear force per unit length of interface to an applied 

shear rate[23], which in PB systems arises from liquid flow adjacent to the interface. Higher 

values of surface viscosity result in greater dissipation of liquid flow at the PB boundaries, 

resulting in increasingly Poiseuille-like flow velocity profiles[24]. The contrast between low and 

high surface viscosity is thought to be responsible for the two macroscopic regimes of node-

dominated and channel-dominated foam drainage respectively, which describe whether the 

bulk of flow dissipation is thought to occur at the nodes or within the PBs themselves [8,18,25]. 

The extremely low values of surface viscosity found by Zell et al.[22] and Clarke et al.[8] for 

soluble LMWS systems therefore suggests that flow dissipation occurs primarily in the nodes 

in these cases, with surface viscosity having little impact on macroscopic foam drainage. 

As the theory used by Clarke et al.[8] was unable to describe the full extent of the unusual PB 

geometries identified, and based only on results from SDS solutions, the present study aims 

to further probe this promising measurement technique. In order to do this, the current work 

assesses a range of surfactant solutions that are anticipated to display a wide range of surface 

viscosities. In order to maximise the relevance of these results to the food industry, 
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formulations investigated here reflect the diversity of food grade surfactants ranging from 

soluble LMWS systems (similar to SDS) to polymeric surfactant systems such as proteins and 

long chain polysaccharides. The theory used by Clarke et al.[8] has been assessed and 

potentially revised if it is to account for the unusual PB geometries that were previously 

observed for SDS.  

5.1.2 Theory 

5.1.2.1 The PB Relaxation Equation 

In the previous study by Clarke, et al.[8], a simplified solution to the standard drainage theory 

(Equation (5.1))[16] was fitted to vertical geometric PB profiles measured for 0.5wt% SDS 

solution at a range of liquid flow rates, 𝑄, and PB lengths, 𝑙ଵ. This solution is shown in Equation 

(5.2), the derivation of which is laid out by Elias, et al.[9] and describes the relaxation of the PB 

radius between the limits of an initial radius, 𝑅଴, at the vertical height 𝑍 = 0, and an 

equilibrium radius, 𝑅௘, over a vertical distance set by the relaxation length, 𝐿. 

ௗோ

ௗ௓
=

௖஽ఔொି௚௖మோర

൬
మ಺ೂమ

ೃ
൰ି൬

೎మೃమം

ഐ
൰
                    (5.1) 

𝑅 = 𝑅௘ + (𝑅଴ − 𝑅௘)𝑒ି௭
௅ൗ                                  (5.2) 

The equilibrium radius is defined by Equation (5.3), describing the lower limit of the PB radius, 

gravitational forces are balanced by viscous dissipation. Here 𝑐 is a geometric constant 

(~0.161), 𝜈 is the kinematic viscosity of the solution, 𝑔 is the acceleration due to gravity and 

𝐷 is the viscous flow parameter: 

𝑅௘ = ቀ
஽ఔொ

௖௚
ቁ

ଵ ସ⁄

                                  (5.3) 
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The relaxation length, 𝐿, is described by Equation (5.4) and includes the effects of surface 

tension, 𝛾, solution density, 𝜌, and inertial contributions to liquid flow via the inertial flow 

parameter, 𝐼, whose role is described in more detail below. 

𝐿 =
ூொమ

ଶ௖మ௚ோ೐
ర −

ఊ

ସఘ௚ோ೐
                    (5.4) 

As a simplified solution to Equation (5.1), Equation (5.2) was easily applied to measured PB 

geometric profiles using automated fitting methods. The obtained values of the fitting 

parameters 𝑅௘ and 𝐿 were then used to calculate the physical variables 𝐷 and 𝐼 from Equation 

(5.2) and (5.3) respectively, using pre-measured values of 𝜈, 𝜌, 𝑄 and 𝛾. Here it was 

approximated that the surface tension, 𝛾, was equal to its equilibrium value as measured by 

Wilhelmy Plate measurements (𝛾 = 𝛾௘) and also independent of liquid flow rate and PB 

length. However, the results of Clarke’s study suggested that this approximation was unlikely 

to be accurate, and is especially unlikely to be the case where rates of surfactant adsorption 

are slow. 

The dimensionless parameters 𝐷 and 𝐼 ultimately describe the shapes of the PB velocity 

profiles according to Equations (4.6) and (4.7), where individual flow velocity components, 𝑢, 

across a given PB cross section give the average flow velocity, 𝑢ത = 𝑈.[9] Flow velocity profiles 

lie between the two extremes of Poiseuille flow and Plug flow, which are described by 𝐷 →

312, 𝐼 > 1, and 𝐷 → 0, 𝐼 → 1, respectively[9]. Low molecular weight surfactants such as SDS 

and Polysorbates/Tweens are generally expected to fall into the latter category, as their 

extremely high mobility at the air/water interface[22] results in minimal viscous dissipation of 

liquid flow at the PB boundaries. 
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𝐷 = −𝑅ଶ∆𝑢തതതത 𝑢ത⁄                      (5.5) 

𝐼 = 𝑢ଶതതത
𝑢തଶൗ                       (5.6) 

A more detailed derivation of Equation (5.1), based on that of Elias, et al.[9], is given in 

Appendix B, where the origins of Equations (5.5) and (5.6) become apparent. 

Flow velocity profiles lie between the two extremes of Poiseuille flow and Plug flow, which are 

described by 𝐷 → 312, 𝐼 > 1, and 𝐷 → 0, 𝐼 → 1, respectively[9]. Low molecular weight 

surfactants such as SDS and Polysorbates/Tweens are generally expected to fall into the latter 

category, as their extremely high mobility at the air/water interface[22] results in minimal 

viscous dissipation of liquid flow at the PB boundaries. 

The values for the viscous flow parameter, 𝐷, were converted into values for the 

dimensionless Boussinesq Number, 𝐵଴, and its dimensional counterpart, the surface shear 

viscosity, 𝜇௦, using the phenomenological expression proposed by Nguyen[26] (Equation (5.7) 

and the definition of the surface shear viscosity given by Equation (5.8). It should be noted 

that Equation (5.7) is only valid for a straight, vertical PB, and therefore these calculations 

were applied only to the equilibrium case 𝑅 = 𝑅௘. 

𝐷ିଵ = 𝑐 ቂ0.02 +
଴.଴଺ହହ஻బ

షబ.ఱ

଴.ଶ଴ଽା బ
బ.లమఴቃ                  (5.7) 

𝜇௦ = 𝐵଴𝜇𝑅  (with 𝑅 = 𝑅௘)                  (5.8) 
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Figure 5.1. Visualisation of PB profiles of length, 𝒍𝟏, and liquid flow rate, 𝑸. a) Low 𝑸, small 

𝒍𝟏 resulted in almost complete expansion profiles. b) Increasing 𝑸 and 𝒍𝟏 exhibited both 

relaxation and expansion with increasingly prominent transition distortions at height 𝒁 =

𝒁𝒔𝒘𝒆𝒍𝒍 [8]. 

Despite Equation (5.2) being a good description of PB geometric profiles exhibiting relaxation, 

Clarke et al.[8] found that increasing proportions of the profile were replaced with expansion 

into the adjoining node at decreasing liquid flow rates and PB lengths (see Figure 5.1). As such, 

these expansion regions were excluded, resulting in an incomplete analysis of the PB profiles. 

Furthermore, the unusual nature of the transitions between relaxation and expansion at 𝑍 =

𝑍௦௪௘௟௟ and their PB length and flow rate dependence requires explanation, as a potential 

change in the physical parameters of the system might be suggested. 

5.1.2.2 The Relaxation-Expansion PB Profile Equation 

In order to address the inability of Equation (5.2) to describe PB expansion, a full geometric 

profile solution was derived from Equation (5.1). The variables: 𝐷, 𝜈, 𝑄, 𝑔, 𝑐, 𝐼, 𝛾 and 𝜌 in 

Equation (5.1) were once again substituted for 𝑅௘ and 𝐿 using Equation (5.3) and (5.4), with 
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an additional term, the capillary length, 𝐿௖ = ඥ𝛾 𝜌⁄ 𝑔. Equation (5.9) sets up the solution to 

this revised form of Equation (5.1) as an integral with the limits of the initial radius, 𝑅଴, at 𝑍 =

0 to some radius 𝑅 at a distance 𝑍 from 𝑍 = 0. Equation (5.9) was solved using the computer 

algebra system, Maxima (VA Software, USA), yielding Equation (5.10); a complete geometric 

PB profile solution. 

∫ 𝑑𝑍
௓

଴
= ∫ ൜

௅೎
మ

ோ(ோ೐ାோ)
+

௅೎
మோ೐

൫ோ೐
మାோమ൯(ோ೐ାோ)

+
ସ௅ோ೐

ర

ோ൫ோ೐
రିோర൯

ൠ ∙ 𝑑𝑅
ோ

ோబ
                 (5.9) 
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ோబ
ర൫ோరିோ೐

ర൯
൨ +

௅೎
మ

ସோ೐
൜𝑙𝑛 ൤
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ோబ
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൨ + 2 𝑡𝑎𝑛ିଵ ൤
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మ⁄ ൯

൨ൠ          (5.10) 

Figure 5.2 shows the form taken by Equation (5.10) for a set of physical parameters that are 

representative of the systems in this study. It can be seen that there are two potential 

solutions for 𝑅 at any given height, 𝑍, for the same set of physical variables, with the exception 

of 𝑍 = 0. These solutions for 𝑅 either follow a pattern of relaxation, which is closely 

approximated by the Elias’ relaxation Equation (5.2), OR expansion. These solutions join at a 

minimum occurring at 𝑍 = 0, 𝑅 = 𝑅଴; resulting in the initial condition given by Equation 

(5.11): 

𝑅଴ = ቀ
ଶఘூொమ

௖మఊ
ቁ

ଵ ଷ⁄

                  (5.11) 
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Figure 5.2. Equation (5.10) example, demonstrating simultaneous relaxation and expansion 

solutions. Solutions meet in the minimum occurring at 𝑹 = 𝑹𝟎, 𝒁 = 𝟎, while the relaxation 

solution tends to 𝑹 = 𝑹𝒆 as 𝒁 → ∞. 

The initial condition set by Equation (5.11) is striking, as it shows a dependence of 𝑅଴ on bulk 

and surface liquid properties, as well as liquid flow rate. When one considers the case of PB 

expansion into an adjoining node, both the rate of expansion (𝑑𝑅 𝑑𝑍⁄ ) and the initial radius 

from which this expansion can commence are shown to be dependent on the bulk and surface 

parameters of the liquid (Equation (5.1) and (5.11)). Furthermore, the final radius of this 

expansion must coincide with the initial radius of the adjoining node, 𝑅௡௢, at a height 𝑍 = 𝑙ଵ 

(see Figure 5.3). In a forced flow system where the value of 𝑙ଵ is primarily set by the length of 

the frame geometry producing the PB-node system, there are limited ways in which the above 

conditions can be satisfied. The first would require a significant change in the physical 
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parameters 𝐼, 𝐷 and 𝛾 as the PB transitions from the relaxation to the expansion state. The 

second would require an offset of the zero height of the expansion solution, 𝑍், allowing 𝐼, 𝐷 

and 𝛾 to remain the same as for the relaxation solution, but providing a smooth transition into 

the node at 𝑅௡௢ (see Figure 5.3). The third would require a combination of both these effects, 

wherein changes to 𝐼, 𝐷 and 𝛾 are minimised by the zero offset of the expansion solution. 

 

Figure 5.3. Relaxation (red) and expansion (green) solutions against an example PB profile 

(blue), with key coordinates marked (yellow). Zero or small variations in the physical 

parameters 𝑰, 𝑫 and 𝜸 between relaxation and expansion solutions require a zero offset 𝒁𝑻. 

Grey regions represent parts of the profile unaccounted for in the current theory, namely: 

The distortion of caused by the PB attachment to the frame, the transition from relaxation 

to expansion solutions, and the node.  

A revised form of Equation (5.10) is given by Equation (5.12) wherein the zero offset, 𝑍், is 

incorporated. It is important to note that this amendment is only necessary in the context of 

a fixed point of reference for 𝑍 = 0. 
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5.2 Experimental 

5.2.1 Preparation of Solutions 

Tween® 20 and Tween® 80 from Sigma-Aldrich (UK), Methocel™ F50 from The Dow Chemical 

Company (USA), and Hyfoama™ (pea) from Kerry (Ireland) were selected for investigation, due 

to their ability to quickly form stable films while representing stabilisation mechanisms 

dependent upon surface viscosities at opposite ends of the spectrum.  

Tween 20 and Tween 80 represent two commonly used soluble surfactants in the food 

industry, where Tween 20 in particular is regularly used in foaming applications. The Gibbs-

Marangoni stabilisation mechanism of these LMWS systems is reliant upon the high mobility 

of surfactant molecules at the interface, therefore yielding extremely low surface 

viscosities[22]. 

In contrast, the stabilisation mechanism of most polymeric surfactants is to form a more 

robust network through the cohesive interaction of adsorbed polymers at the interface, 

resulting in significantly higher values of surface viscosity[3]. Methocel™ F50 consists of the 

long chain polysaccharide Hydroxypropyl methylcellulose (HPMC), with controlled degrees of 

methoxyl and hydroxypropyl substitution improving its film forming ability. It is claimed to 

exhibit surface gelation at the air-liquid interface, with higher bulk concentrations leading to 

increased gel strength[27]. As such, this represents a potentially extreme case of a virtually 

immobile air-liquid interface, which would therefore be expected to yield very high values of 

surface shear viscosities. The surface active component of the Hyfoama™ used in this study 
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were pea protein hydrolysates (HPP), these having been found to exhibit far greater 

functionality than their native pea protein isolates[28]. Hyfoama™ has not been reported to 

exhibit surface gelation, and was therefore expected to yield lower values of surface shear 

viscosity than for Methocel™ F50. 

Surfactants were weighed using a digital balance to an accuracy of three decimal places. 

Purified water (15.0 MΩ∙cm) was weighed into borosilicate glass beakers and magnetically 

stirred at room temperature while surfactants were added. Stirring continued for a minimum 

of 30 minutes after all surfactant was visibly in solution in order to ensure full incorporation 

of surfactant and solution homogeneity. A minimum of 60 minutes stirring was used for HPMC 

preparation, as this was required to ensure its complete hydration. 

5.2.2 Characterisation of Surfactant Solutions 

Two solution concentrations of each surfactant were chosen for analysis, details of which can 

be found in Table 5.1. In the case of polymeric surfactants, initial concentrations were chosen 

based on the solutions’ ability to reliably form stable films within the PB-Node Setup. These 

concentrations were subsequently doubled and trialled again for comparison. Concentrations 

of Tween 20 and Tween 80 were selected to be ~10× and ~20× the literature CMC 

values[29,30], as these would serve to test the assumption that constant equilibrium surface 

tension values can be assumed in PBs for surfactants well above their CMC concentrations (i.e. 

𝛾 ≡ 𝛾௘). To the knowledge of these authors, there is no instance of this assumption ever 

having been tested, most likely due to the difficulties in doing so. It is highly possible however 

that the variations in channel geometries and shears associated with different liquid flow rates 

could affect these values. 
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Bulk properties 𝜌 and 𝜇 were measured in triplicate using a Krüss Processor® Tensiometer 

K100 (Krüss GmbH, Germany) with density hook attachment and silicon density standard, and 

a Malvern Kinexus® Pro rheometer (Malvern Panalytical, UK) with Double-Gap geometry 

respectively. Reference values for the solution surface tensions, 𝛾, were measured in triplicate 

using a Krüss Processor® Tensiometer K100 (Krüss GmbH, Germany) with Wilhelmy Plate 

attachment. All property values were averaged with absolute errors of one standard 

deviation. 

5.2.3 The PB-Node Setup 

The isolated PB-Node setup used to create and observe the desired PB-Node geometries is 

well described in Chapter 3. This forced flow setup consisted of a closed 3-legged frame that 

could be submerged and withdrawn from surfactant solution to produce an ideal PB and node 

configuration (Figure 5.4). The selected frame geometry produced PB lengths of 𝑙ଵ ≈ 25.5 mm, 

as this maximised the amount of experimental data to fit to while still producing stable PB-

Node systems. Backlit profiles of the PB-Node geometries were imaged and processed to allow 

fitting of Equation (5.12). 

Controlled liquid flow rates, 𝑄, were achieved by injecting surfactant solution directly into the 

upper PB at increments of 20 μl/min in the range 20 μl/min ≤ 𝑄 ≤ 180 μl/min, therefore 

describing conventional drainage flow rates (0 μl/min ≤ 𝑄 ≤ 100 μl/min) and beyond. By 

using this broad range of liquid flow rates, any flow rate dependent trends of fitting variables 

were expected to become more apparent. Once equilibrium was achieved at each flow rate, 

PB profile widths were acquired from images taken at increments along the full PB length, 

using an image processing technique developed in chapter 3. Image resolutions varied 
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between 1.5μm/Pixel to 10μm/Pixel depending upon the necessary magnification for given 

PB widths. These were used to calculate PB radii, 𝑅, for the full PB profiles, starting from 𝑍 = 

0 at the injection nozzle to 𝑍 ≈ 𝑙ଵ. 

 

Figure 5.4. Imaging for analysis of PB-Node profiles. a) Optical Setup - A camera images the 

enclosed frame using a rear diffuse panel light to create shadow profile images. b) Low and 

high magnification images of a PB node profile, where highest magnification (red highlighted 

images) represents 1.5 μm per image pixel. 

5.2.4 Model Fitting 

The fitting parameters, 𝑅௘, 𝐼, 𝛾 and 𝑍்  were used to fit Equation (5.12) to measured PB 

profiles, where 𝑄 was controlled and 𝜈, 𝜌 were directly measured from the liquid solutions 

(see below). While Chapter 4 previously assumed that constant 𝛾, where 𝛾 = 𝛾௘, could be 

applied for SDS solutions, these resulted in some values of 𝐼 below their physical limit of 1 

when fitting Equation (5.2). In this study, 𝐼 was restricted to its physical lower limit of 1. As a 

result, the only means by which quality fits could be achieved was by allowing for variations 

in 𝛾. The physical limits of 𝛾 were also put in place, such that 𝛾௘ ≤ 𝛾 ≤ 𝛾଴ where 𝛾଴ describes 

the surface tension of a pure water interface. 
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Utilising automated fitting methods in this study represented a significant technical challenge. 

This was due in part to the complexity of Equation (5.12), but also to a number of poorly 

characterised distortions and transitions in the PB profiles (see Figure 5.3). Ultimately, it was 

shown that manual fitting was consistently able to produce better quality fits to experimental 

data than automated methods at this stage. 

The initial attempts to fit Equation (5.12) to PB profiles exhibiting simultaneous relaxation and 

expansion without the inclusion of a zero offset (i.e. 𝑍் = 0), were found to be completely 

unsuitable. In these instances, even vaguely appropriate fits required values for the surface 

tension to be higher than that of pure water, making them unfeasible as solutions. As such, it 

was assumed that in these cases 𝑍் > 0 for expansion solutions and that this would have 

served to minimise or remove variations in 𝐷, 𝐼 and 𝛾 over  the length of the PB at constant 

liquid flow rates. In order to assess whether this was the case, potential solutions were further 

limited such that the fitting variables 𝑅௘, 𝐼 and 𝛾 were the same for both relaxation and 

expansion solutions at any given liquid flow rate. 

5.2.5 Measurement of Relaxation-Expansion Transition Points 

The distinctive transition regions between profile relaxation and expansion observed in 

section 4.3.2 became increasingly evident with increasing values of 𝑙ଵand liquid flow rates, 𝑄. 

These regions were estimated based on measured PB profiles, where the transition spanned 

the end of consistent PB relaxation behaviour to the beginning of consistent expansion 

behaviour (see Figure 5.5). No visible transition regions were recorded for PB profiles showing 

expansion only (i.e. 𝑍் < 0). 
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Figure 5.5. Example of the relaxation-expansion transition region visually determined from 

a measured PB profile. 

5.3 Results 

5.3.1 Solution Properties 

Values for specific bulk and surface properties of surfactant solutions are presented in Table 

5.1, where measured density, 𝜌, and dynamic viscosity, 𝜇, were used in subsequent 

calculations of the surface shear viscosity, 𝜇௦, according to Equation (5.2) and (5.7), where 𝜈 =

𝜇 𝜌⁄ . Dynamic viscosity of the Tween solutions showed the anticipated minor increase in 

Newtonian viscosity from pure water (𝜇 ≈ 8.9×10-4 Pa∙s at 25°C)[31] with increasing 

concentration. The viscosity of polymeric surfactants showed shear thinning behaviour, 

requiring the ability to determine appropriate viscosities for given liquid flow rates through 

their PBs. In order to do this, Equation (5.13)[9] was used to calculate the average shear rate, 
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𝛾̇௦
ഥ , of a PB cross section with radius, 𝑅. While this provides an excellent representation of 

shear rates adjacent to the PB interface for plug flow-like velocity profiles (𝐷 → 0, 𝐼 → 1), it 

was duly noted that gradually Poiseuille-like flow profiles (𝐷 → 312, 𝐼 > 1) would increasingly 

overestimate shear rates adjacent to the interface. As such, it was anticipated that small 

underestimations of dynamic viscosity in shear thinning samples would be made, causing an 

artificial increase in the calculated values of 𝐷 according to Equation (5.3). This was taken into 

account in the subsequent analysis of HPMC and HPP results (see Figure 5.6).  

𝛾̇௦
ഥ ≈

ொ

௖ோయ
                               (5.13) 

Surfactant & 
Concentration [wt%] 

Density 

[mg/ml] 

Viscosity 

[Pa·s] (×104) 

Average Surface 
Tension [mN/m] 

0.075wt% Tween 20 997.7 ± 0.3 9.56 ± 0.07 36.3 ± 0.2 

0.150wt% Tween 20 997.9 ± 0.1 10.23 ± 0.48 35.9 ± 0.5 

0.020wt% Tween 80 997.9 ± 0.1 8.84 ± 0.03 40.0 ± 0.5 

0.039wt% Tween 80 997.6 ± 0.4 9.69 ± 0.23 39.2 ± 0.5 

3.700wt% HPP 1011.0 ± 0.4 13.20 ± 0.20 43.2 ± 0.5 

7.400wt% HPP 1025.8 ± 0.4 15.23 ± 0.65 41.6 ± 0.4 

1.000wt% HPMC 1000.0 ± 0.1 90.20 ± 6.43 46.9 ± 0.4 

2.000wt% HPMC 1002.6 ± 0.5 412.94 ± 1.43 48.1 ± 0.7 

Table 5.1. Averaged results of triplicate measurements of physical properties of surfactant 

solutions with associated errors of one standard deviation.  
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Figure 5.6. Example of errors in the calculated viscous flow parameter, 𝑫, introduced by 

underestimating values of the bulk viscosity 𝝁. The red curve represents the potential values 

of 𝑫 for 2.0wt% HPMC at 180μl/min, where a range of values of 𝝁 are used in its calculation. 

The dashed blue line indicates the viscosity chosen for the calculation based on the average 

liquid shear rate, 𝜸̇𝒔. As this shear rate is expected to be an overestimation of that adjacent 

to the PB interface, the dotted blue line represents the maximum potential viscosity at this 

region based on measured flow curves of 2.0wt% HPMC. The resulting potential decrease in 

𝑫 is indicated by the red 𝝈𝑫. The same calculations are applied for liquid flow rates of 

100μl/min (orange) and 20μl/min (green), demonstrating the scaling of this error with liquid 

flow rate. 
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5.3.2 Model Fitting 

Measured profiles of Tween 20 and Tween 80 were found to be similar to those described by 

Clarke et al.[8], producing the anticipated flow rate dependent transitions from relaxation to 

expansion with increasing liquid flow rates (see Figure 5.1). A typical profile example of this is 

shown in Figure 5.7 for 0.075wt% Tween 20 at 𝑄=140 μl/min, alongside the corresponding 

flow rate profile measured for 2wt% HPMC. Equation (5.12) was consistently able to describe 

both relaxation and expansion profiles for both Tween systems with a single set of values for 

𝑅௘, 𝐼 and 𝛾. R-squared values confirmed this with an overall range of 0.70≤ R-Squared<1.00, 

and an average of 0.96. The poorest fits (e.g. R-Squared = 0.70) consistently occurred at flow 

rates closest to the transition from 𝑍் < 0 (Figure 5.1a) to 𝑍் > 0 (Figure 5.1b), where 

separate relaxation and expansion regions began to appear. This was hypothesised to be the 

result of rapid fluctuations between these two profile states, which were observed during 

image acquisition and resulted in a superposition of these states in the final PB profiles. 

The measured profiles of HPMC and HPP had substantially higher radii than those for the 

Tween systems, yielding a previously unseen profile geometry. Figure 5.7 shows a typical 

example, where a solution of 2.0wt% HPMC quickly approached its equilibrium radius, 𝑅௘, 

before suddenly decreasing in radius as the PB transitioned into the node at 𝑍 ≈ 𝑙ଵ. It is 

proposed that this node transition represents the case where 𝑅௘ exceeds the initial node 

radius, 𝑅௡଴, (𝑅௘ > 𝑅௡଴) in contrast to the LMWS PB distortions that ultimately resulted from 

𝑅௘ < 𝑅௡଴. 
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Figure 5.7. Measured profiles of 0.075wt% Tween 20 and 2wt% HPMC at 𝑸=140μl/min, with 

corresponding fits of Equation (5.12). Two distinctive profile distortions emerge based on 

whether 𝑹𝒆 > 𝑹𝒏𝟎 (HPMC) or 𝑹𝒆 < 𝑹𝒏𝟎 (Tween 20). 

A lower magnification was required to obtain images of the polymeric surfactant PBs due to 

its higher values of 𝑅, which increased the error margins in measured values of 𝑅௘. This made 

it difficult to assess whether or not any relaxation of the PB profile was due to measurement 

error, meaning that fitted values of 𝛾 and 𝐼 could vary substantially without a marked effect 

of fit quality. As such, values of 𝛾 and 𝐼 were neglected for further analysis for HPMC and HPP. 

5.3.3 Relaxation-Expansion Transitions 

The transitions between PB relaxation and expansion (see Figures 5.1, 5.3 and 5.5) were well 

described by Equation (5.12), as shown in Figure 5.8. Values of 𝑍் > 0 (shown by data points) 
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matched well with visible transition regions (see Figure 5.5) between relaxation and expansion 

solutions (green and red coloured regions). 𝑍் < 0 occurred where no transition regions were 

visible and the full profile being dominated by expansion into the node (Figure 5.1a). Once 

again, profiles closest to the transition between 𝑍் > 0 and 𝑍் < 0 were shown to produce 

the poorest match between 𝑍்  and visible transitions, owing to the suspected superposition 

of these two states distorting the measured PB profiles. Overall, it was shown that Equation 

(5.12) was able to produce a very accurate description of the measured PB profiles, including 

the flow rate dependent variations in relaxation-expansion transitions. 

 

Figure 5.8. Comparison of the fitted profile offset, 𝒁𝑻, for a) Tween 20 and b) Tween 80 

solutions to the visible relaxation-expansion transitions observed around 𝒁𝒔𝒘𝒆𝒍𝒍. The full 

range of 𝒁 covered by the visible transition regions (see Figure 5.5) are highlighted by red 

and green bars. 
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5.3.4 Fitting Parameters 

The fitted surface tension, 𝛾, for solutions of Tween 20 and Tween 80 at discrete liquid flow 

rates are shown in Figure 5.9. Surface tension increased with liquid flow rate until the critical 

point at which relaxation and expansion solutions separated (i.e. 𝑍் > 0), after which it began 

to decline once more (Figure 5.9a and 7b). Minimum values of 𝛾 approach the measured 

equilibrium surface tensions, 𝛾௘, of each solution. While an in-depth study of surface tension 

variability is beyond the scope of the current study, it was clearly observed that surface 

tension increased with calculated values of the apparent surface viscosity, 𝜇௦ (Figure 5.9c and 

7d). As surface tension varies inversely with the surfactant concentration at the air-liquid 

interface[32], this would suggest that less surfactant at the interface caused an increase in the 

apparent surface viscosity. This counterintuitive result is explained when one considers that 

the range of apparent surface viscosity values calculated here was in the range 10-10 g/s<

𝜇௦ <10-8 g/s, while the surface shear viscosity of pure water is approximately 1.2×10-5 g/s[33]. 

Therefore, it follows that a decreased population of surfactant species must increase the 

surface viscosity as a pure air-water interface is approached. 
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Figure 5.9. Surface Tensions, 𝜸, from fits of Equation (5.12) to a) & c)Tween 20 and b) & d) 

Tween 80 PB profiles. a) & b) show the relationship between 𝜸 and Liquid Flow Rate, 𝑸, 

while c) & d) show the relationship between 𝜸 and the Apparent Surface Viscosity, 𝝁𝒔, 

calculated from Equation (5.3), (5.7) and (5.8). 

Values for the inertial flow parameter, 𝐼, of Tween solutions can be found in Figure 5.10, 

where they are plotted alongside the calculated values of the viscous flow parameter, 𝐷, for 

the equilibrium PBs (𝑅 = 𝑅௘). As discussed in Section 1.2.1 (Equation (5.5) & (5.6)), the values 

of 𝐼 and 𝐷 describe the flow velocity profiles, where 𝐼 → 1 as 𝐷 → 0 as perfect plug flow is 

approached.  This relationship was well described by Figure 5.10, and matches well with the 

finding of a virtually inviscid interface for the PBs calculated here. The size of the error margins 
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in 𝐼 made it difficult to draw any firm conclusions on the impact of the different surfactants 

on the 𝐼-𝐷 relationship, however combining all solutions indicated the same fundamental 

trend.  

 

Figure 5.10. Inertial Flow Parameters, 𝑰, vs. Calculated Viscous Flow Parameters, 𝑫, from fits 

of Equation (5.12) to a) Tween 20 and b) Tween 80 PB profiles. Black dashed line represents 

a value of 1 and the physical lower limit of 𝑰. 

Despite it not being possible to establish meaningful values of 𝐼 and 𝛾 for polymeric surfactant 

solutions, the calculated values of 𝐷 from the fitted equilibrium radii, 𝑅௘ (Equation (5.3)), 

could still be compared to LMWS solutions. Figure 5.11 shows that values of  𝐷 for solutions 

of HPMC and HPP lay at the opposite end of the spectrum from the Tween solutions, 

approaching the limits of an immobile interface as 𝐷 → 312. As a general trend, it was noted 

that the average 𝐷 value (and consequently 𝜇௦) for a given surfactant solution strongly related 

to its average liquid shear rate, with high 𝐷 producing lower liquid shear rates and vice versa. 

Visualisations of the kind of flow velocity profiles expected between these low mobility and 

high mobility regimes are shown in the relevant regions of Figure 5.11. 
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Values of 𝜇௦ for HPMC were calculated to range from 10-1g/s< 𝜇௦ <101g/s for 2.0wt% and to 

be consistently of the order 10-2g/s for 1.0wt% concentration. This was a strong indication that 

these concentrations produced the gelled PB interfaces described in Section 2.1, where the 

higher concentration would be expected to have increased gel strength[27] and therefore an 

interface of enhanced resistance to liquid shear.  

Values of 𝜇௦ for HPP solutions were in the range 10-3 g/s< 𝜇௦ <10-2 g/s for both 

concentrations, indicating a higher mobility of the hydrolysed protein chains at the interface 

than HPMC. This suggested that the HPP viscoelastic network at the interface was weaker than 

that of HPMC. 

The values of 𝜇௦ for the Tween systems were in the extremely low range of 10-10 g/s< 𝜇௦ <10-

8 g/s, where 𝜇௦
 decreased with increasing liquid shear rate 𝛾̇௦

ഥ  in a manner similar to that 

observed by Clarke et al.[8] for a solution of SDS. At this stage, it is anticipated that the apparent 

surface shear thinning effect is related to the variation in surfactant population at the 

interface that was seen from the variation in PB surface tension (Figure 5.9). A more complete 

analysis of the surface tension variability will be required in order to better understand this 

effect however. 

It is important to remember that the values for 𝐷 and subsequently 𝜇௦ were calculated for 

equilibrium PB systems (𝑅 = 𝑅௘), representing the maximum shear rates at any given liquid 

flow rates. In the Tween systems, values of 𝑅 for a given PB profile could be over 3.5 times 

higher than the corresponding 𝑅௘ value, decreasing shear rates by up to 2 orders of 

magnitude. By estimating values of 𝐷 and 𝜇௦ based on the equilibrium PB trends in Figure 

5.11, this could yield values of 𝐷 with magnitudes as high as 100 for the Tween systems, with 
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subsequent values of 𝜇௦ in the order of 10-7g/s. As the average 𝐷 in a given region of PB profile 

is expected to scale with its inertial flow parameter, 𝐼 (Figure 5.10), this suggests the need to 

address the small variations in physical parameters that are likely to occur between the 

expansion and relaxation regions of the PB profile. Indeed, future work should seek to fit 

Equation (5.12) separately to these regions, where it is expected that fit quality will further 

increase. 

 

Figure 5.11. Viscous Flow Parameter, 𝑫, vs. Calculated Average Shear Rate, 𝜸̇𝒔
തതത, for HPMC, 

HPP, Tween 20 and Tween 80 solutions. The dashed blue line is to guide the eye. The physical 

limit of 𝑫 = 312 is indicated. Visualisations of liquid flow velocity profiles are given alongside 

relevant data regions, where colours indicate liquid flow velocities, 𝒖, from low velocities 

(blue) to high velocities (dark red). Velocity profiles of HPMC and HPP show near ideal 

Poiseuille flow, while Tween systems were closer to ideal plug flow. 
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5.4 Conclusions 

The novel experimental setup of Clarke, et al.[8] was further investigated using updated theory 

derived from the standard drainage theory[16] to model both PB relaxation and PB expansion 

in food grade surfactant systems. The updated theory was able to accurately describe the full 

length of measured PB profiles, including previously unexplained transitions between profile 

expansion and relaxation. The shapes and vertical heights of these transitions along the PB, 

𝑍், were shown to result from the difference between the equilibrium PB Radius, 𝑅௘, and the 

initial radius of the adjoining node, 𝑅௡଴, where the change in PB radius with height was limited 

by the bulk and surface properties of the surfactant solutions. These transitions have so far 

been seen exclusively for the low molecular weight surfactant systems SDS[8], Tween 20 and 

Tween 80 where 𝑅௘ < 𝑅௡଴. However, the polymeric surfactant systems of HPP and HPMC also 

investigated here, demonstrated the inverted case of this distortion, where 𝑅௘ > 𝑅௡଴. To this 

author’s knowledge, this is the first such case to be described in literature. 

The fitting parameters 𝑅௘, surface tension, γ, and inertial flow parameter, 𝐼, were used to 

match theory to PB profiles at controlled liquid flow rates, 𝑄. A single set of fitting parameters 

was used for each liquid flow rate, representing averaged values for the full PB profile. Despite 

this producing a good representation of these systems, it was shown that the increase in 

average PB radius of the PB expansion regions would have been expected to result in minor 

increases to the inertial flow parameter, 𝐼. As such, it is recommended that further 

investigation of LMWS solutions with this technique use separate fitting variables for PB 

relaxation and expansion regions. 
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While meaningful values for 𝐼 and 𝛾 could not be obtained from fits to HPMC and HPP, the 

calculated values of the dissipative flow parameter, 𝐷, from 𝑅௘ allowed a clear comparison 

between polymeric surfactants and LMWS to be made. Values for HPMC and HPP both tended 

towards the upper limit of 𝐷=312, with average values of 𝐷=263 for HPMC solutions and 

𝐷=225 for HPP solutions. Values for Tween 20 and Tween 80 both tended towards the lower 

limit of 𝐷=0, with average values of 𝐷=0.17 for Tween 20 solutions and 𝐷=0.19 for Tween 80 

solutions. These findings showed that the current technique was clearly able to differentiate 

between the viscous dominated and inertial dominated flow regimes. 

Despite the expected clear separation of low and high mobility interfaces, it was noted that 

the accuracy with which the HPMC and HPP interfaces were characterised was relatively poor. 

This was primarily due to the need for highly accurate values of the bulk viscosity, 𝜇, when 

calculating 𝐷, which was non-trivial for these non-Newtonian solutions. These errors were 

reduced at lower liquid flow rates however, where variations in 𝜇 produced less significant 

variations in calculated values of 𝐷. 

Values of equilibrium PB 𝜇௦ for Tween 20 and Tween 80 solutions were within the range of 10-

10 g/s< 𝜇௦ <10-8 g/s representing a virtually inviscid interface in both cases. A degree of 

surface shear thinning was observed in a similar manner to that of Clarke et al.[8] for SDS 

solution, which is proposed to be related to variations in surfactant population at the PB 

interface. This hypothesis was based on the observation of a single trend of increasing 𝜇௦ with 

increasing surface tension for regardless of surfactant concentration. A more in depth 

numerical analysis of these findings will be essential in establishing whether the occurrence 
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of such surface shear thinning for LMWS systems is a real effect or an artefact of the 

measurement technique. 

Overall, the results presented here show that the PB-Node setup was able to describe highly 

complex PB profiles using bulk and interfacial physical variables that consistently fell within 

expected limits. Despite the lower accuracy in measuring the surface viscosities of polymeric 

surfactant systems, it was clear that the technique could clearly distinguish them from the 

extreme low surface viscosity LMWS systems of Tween 20 and Tween 80. Values calculated 

for LMWS surface viscosity clearly show them to be below the measurement sensitivity of 

conventional techniques as predicted in existing literature[22]. Therefore, it is believed by this 

author that further analysis of such systems in this manner present a great opportunity to 

probe the fundamental mechanisms underlying LMWS surface viscosity in PB systems. 
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6.0 Abstract 

Liquid drainage through foams is a multiscale process, that primarily occurs through channels 

known as Plateau borders (PBs). Recent experimental studies of isolated PBs have observed 

variations in channel surface tension, 𝛾, with liquid flow rate, 𝑄, for systems containing soluble 

low molecular weight surfactant (LMWS). The current study proposes that the dynamic 

surface tension (DST) could be responsible for this effect, where the residence time of 

surfactant molecules in the PB is similar to the time required for their adsorption to the 

channel interface. 

Profile geometries of isolated ‘ideal’ PB’s were created in a bespoke experimental setup at 

controlled forced liquid flow rates. Average surfactant residence times, 𝜏ோ௘௦, were calculated 

for solutions of Sodium Dodecyl Sulfate (SDS), Tween 20 (T20) and Tween 80 (T80), and used 

to calculate corresponding average DST values in discrete regions of measured PB profiles. 

DST values were combined with microscale drainage theory to assess the potential physical 

implications on liquid flow. 

Significant variations in the magnitude of 𝛾 were calculated based on surfactant 

characteristics, where only the rapid adsorption of SDS was sufficient to produce DST values 

approaching equilibrium. These findings seriously question assumptions of near equilibrium 

surface tension in LMWS foam systems above their critical micelle concentration (CMC). 

Furthermore, the presence of surface tension gradients identified using this discrete 

approach, highlights the need to further refine the current theory to a continuous approach 

incorporating Marangoni effects. 
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6.1 Introduction 

6.1.1 Background 

Foam drainage is a highly complex phenomenon that is the combined result of dynamic 

processes occurring over a range of different length-scales[1]. Because of its essential role in 

destabilising foams, those seeking foam longevity often aim to retard this process, typically 

employing basic assumptions regarding liquid flow to inform a trial and error approach to 

formulation development[2]. While this tactic has been met with measured success, the 

increasing demand for foams with specific functionality, using a limited range of ingredients, 

has necessitated a much more rigorous approach to understanding foam microstructure and 

its impact on microscale liquid flow[3]; which in turn drives macroscopic behaviour.  

At the microscale, liquid transport through foams primarily occurs through the interconnected 

network of channels between bubbles, known as Plateau Borders (PBs), and their junctions, 

or Nodes[4,5]. As these structures ultimately form the ‘building blocks’ of macroscopic foams, 

their microscale behaviour is scaled accordingly, thereby describing the overall functionality[6]. 

One common approach is to ‘build’ a picture of macroscopic foam drainage by ‘adding’ the 

hydrodynamic resistance of isolated channels and nodes in series[7]. It can be seen therefore, 

that any inaccuracies in the properties of these isolated systems propagate to a substantial 

degree of error when scaled to describe macroscopic systems. 

Modelling foam channels using a theoretical framework represents the substantial majority 

of research undertaken in the area of foam channel drainage. However, even using simplified 

models to represent real systems has proved challenging, with results often conflicting[7,8]. 
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This is largely due to the wide range of co-dependent variables involved in the process, which 

dramatically increases the complexity of the systems studied. For example, the surface 

rheology of foam channels is dependent on the shear imparted on it by flow of bulk liquid[9]; 

however, liquid flow rates vary with bulk liquid rheology and channel widths, which are 

themselves dependent upon the surface rheology and surface tension[10,11]. As such, one 

cannot treat any of these variables in isolation without directly measuring or resorting to 

assumptions regarding the others. 

In addition to the difficulties faced by theoretical modelling, there are very few studies 

dedicated to the experimental measurement of microscale foam channels[12]. This means that 

any predictions that are made from microscale drainage models are difficult to assess for 

accuracy in real systems. This is largely due to the difficulties in effectively measuring such 

systems, which can be extremely difficult to isolate and effectively control in macroscopic 

foams[13]. 

More recently, studies of isolated PB and PB-Node geometries in bespoke experimental setups 

have provided an alternative to microscale measurements made from macroscopic foams. 

The superior control and repeatability provided by these systems has allowed for more 

detailed experimental studies into the co-dependence of PB bulk and surface parameters 

during microscale drainage. To date, isolated foam systems have been used to study a range 

of surfactants, including ionic and non-ionic low molecular weight (LMWS) systems[6,7,14-17], as 

well as more limited investigations of protein and polysaccharide solutions[10]. While these 

studies have been able to identify fundamental differences in key parameters such as surface 
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shear viscosity for different surfactant systems, the practical difficulties in measuring such 

systems still necessitate certain assumptions to be made. 

A major assumption that features heavily in both microscale and macroscale foam drainage 

concerns the PB surface tension, which is an important parameter for determining bubble and 

channel dimensions, but is not measured in-situ. Instead, foam surface tensions are generally 

approximated based on the results of more conventional  measurement techniques such as 

Wilhelmy Plate, Pendant Drop, Expanding Bubble, etc.[5]. It is generally considered, for 

example, that soluble LMWS solutions above their critical micelle concentration (CMC) 

produce foams with surface tensions approaching equilibrium, 𝛾௘
[18]. Recently however, 

measurements of isolated Tween 20 and Tween 80 PB geometries at constant liquid flow 

rates, have suggested this may not be the case, with the appearance of an apparent flow rate 

dependent surface tension[10]. 

The idea of time-dependent surface tension is certainly not new, and has been studied 

extensively for a wide range of surface-active species and concentrations[19-24], with 

adsorption dynamics for solutions above the CMC being further influenced by the presence of 

micelles[25,26]. This dynamic surface tension (DST), 𝛾, is primarily governed by the rate of 

adsorption of surface active molecules/particles to the air-liquid interface, where transport of 

surfactant molecules to the interface is either dominated by convection or diffusion, followed 

by a characteristic adsorption time. The dominant effect can generally be identified by solving 

the convective diffusion equation and using the Péclet’s criterion to assess the relative 

magnitude of the terms[27,28]. In the case of soluble LMWS systems with static boundaries for 

example, adsorption is generally dominated by diffusion[20]. The rate of diffusion is highly 
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dependent on the diffusivity of the LMWS species and the dimensions of the liquid channel, 

which therefore dictates how quickly surfactants are able to reduce surface tension when 

adsorbing at an interface. 

The application of DST models to Plateau borders with liquid flow becomes far more complex, 

partially because of the geometry of the PB cross-section, but also because of the surface 

velocity of the PB interface. While a detailed physicochemical approach to the problem of PB 

drainage has been put forward by Durand, et al.[11], a means of experimentally validating these 

findings at the scale of individual Plateau borders remains elusive. In the more simplistic case 

of flow in horizontal liquid films, more experimental data is available, where the Marangoni 

effect describes the influence of surfactants on the hydrodynamics of the system, preventing 

localised thinning and therefore improving film stability[27-31]. More recently, the experimental 

examination of vertical films draining under the force of gravity have yielded interesting 

findings relating to the stability of thin films due to forced liquid flow[32] that may have parallels 

with forced flow in Plateau borders. 

In the study of de Gennes[32], the impact of soap film drainage rates on surface tension and 

film stability is described. As the liquid flow increased, it was found that slower diffusing 

surfactants did not have time to adsorb at the air-water interface before exiting the film. These 

films, with reduced surfactant concentration at the interfaces, were termed ‘Young’ films due 

to liquid flows being faster during the early stages of film drainage. It follows therefore, that 

such a mechanism is also likely to play a role in the stabilisation of PBs, where the inherently 

higher liquid flow rates would be expected to accentuate the effects seen by de Gennes[32]. If 

the majority of surfactant molecules were transported through the PB before being able to 
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adsorb at the interface, then values of PB surface tension higher than 𝛾௘ could be expected, 

potentially lowering PB stability. 

This study aims to provide a method that can assess the degree to which liquid flow rate could 

affect PB surface tension for high mobility surfactant species based on their characteristic 

adsorption behaviour. The ability to control liquid flow rates through well-defined PB 

geometries using the experimental setup of Clarke, et al.[10] means that the ‘ageing’ of PBs 

should be effectively halted. As was shown for de Gennes[32] ‘young’ films, adjoining ‘young’ 

PBs could also suffer from reduced stability during the early stages of macroscopic foam 

drainage. As such, it is hoped that the current study will help to produce a more complete 

picture of the fundamental mechanisms underlying drainage and stability of LMWS 

macroscopic foams. Ultimately, this may prove valuable for researchers hoping to identify 

suitable surfactant species and concentrations for specific formulation applications. 

6.1.2 Theory 

6.1.2.1 Model Fitting to Geometric PB Profiles 

In chapters 5 and 6, the geometries of vertical, isolated PB’s were measured at different forced 

liquid flow rates, 𝑄, and fitted with solutions to the standard drainage theory[13,17] (Equation 

(6.1)). This dynamic equation accounts for the liquid flow through a PB tangential to the 

vertical axis, 𝑍, with a radius, 𝑅, and the physical parameters 𝐼, 𝐷, 𝜈, 𝑔, 𝛾, and 𝜌 denoting 

inertial and viscous flow parameters, kinematic viscosity, acceleration due to gravity, surface 

tension and bulk liquid density, respectively. The constant, 𝑐, is a geometric factor (~0.161) 

which can be used to describe the thin-film PB cross-section with area, 𝑆 = 𝑐𝑅ଶ (See Figure 

6.1c). The parameters 𝐷 and 𝐼 are dimensionless variables that describe the shape of the 
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velocity flow field through the PB and ultimately depend on the surface rheology of the PB 

interface. Further information on these is given below and can also be found in Appendix B. 

Appendix B also gives a more complete description of Equation (6.1) and its derivation, in 

order to provide additional physical context. 
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    The standard drainage theory             (6.1) 

 

Figure 6.1. a) Typical low flow rate, 𝑸, PB vertical cross-section for LMWS systems. b) Typical 

high flow rate PB vertical cross-section for LMWS systems. c) Thin-film PB horizontal cross-

section with radius, 𝑹, and area, 𝑺. 

As can be seen from Figures 6.1a) & 6.1b), measured PB profiles for LMWS systems have been 

shown to exhibit complex flow rate dependent geometries comprised of regions of relaxation 

and expansion. The geometric solution to Equation (6.1) for constant 𝐼 and 𝛾, as proposed in 

chapter 5, was shown to account for both relaxation and expansion of the PB profile (see 

Figure 6.2) and is given by Equation (6.2), which was derived in section 5.1.2.2. 
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In this solution, the constant values of the inertial flow parameter, 𝐼, and surface tension, 𝛾, 

result in values for an initial PB radius, 𝑅଴, according to Equation (6.3), that is located at a 

vertical offset, 𝑍், from the top of the PB at 𝑍 = 0 (Figure 6.2). The PB equilibrium radius, 𝑅௘, 

is defined by Equation (6.4), describing the lower limit of the PB radius, at which gravity and 

viscous dissipation are balanced[17]. The vertical distance over which 𝑅଴ transitions to 𝑅௘ is 

determined by the PB relaxation length, 𝐿, which is given by Equation (6.5). Finally, the 

variable 𝐿௖, refers to the capillary length defined as 𝐿௖ = ඥ𝛾 𝜌⁄ 𝑔. 

𝑅଴ = ቀ
ଶఘூொమ

௖మఊ
ቁ

ଵ ଷ⁄

                     (6.3) 

𝑅௘ = ቀ
஽ఔொ

௖௚
ቁ

ଵ ସ⁄

                                   (6.4) 

𝐿 =
ூொమ

ଶ௖మ௚ோ೐
ర −

ఊ

ସఘ௚ோ೐
                     (6.5) 

Figure 6.2 shows that Equation (6.2) takes the form of a curve with two solutions for 𝑅 for a 

given value of 𝑍, and demonstrates the application to PB profiles exhibiting regions of 

relaxation and expansion similar to that in Figure 6.1b. 

Section 5.1.2.2 showed that a single set of physical variables for Equation (6.2) could be used 

to describe both expansion and relaxation regions of the PB, where it was assumed that the 

effect of variations in 𝑅 would be small within a single PB. However, it was found that the 

agreement between theory and data decreased sharply for PBs at flow rates close to the 

transition point between profiles of the type shown in Figure 6.1a to those in Figure 6.1b (i.e. 

relaxation only to combined relaxation AND expansion). Furthermore, analysis of the fitting 

parameters indicated the counterintuitive result that an increase in surface concentration of 
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surfactant at the PB interface acted to lower its surface shear viscosity, 𝜇௦. As such, it was 

deemed necessary to account for the impact of variations in 𝑅 within a single PB in future 

studies. 

When one considers, the physical interpretation of the viscous and inertial flow parameters 

as describing the shape of flow velocity profiles through a horizontal PB cross-section, the 

need to account for 𝑅 dependence in a single PB becomes clear. Equations (6.6) and (6.7) 

show the relationship between the velocity field of liquid flow through the PB[17], 𝑢ሬ⃗ (𝑥, 𝑦), and 

the viscous and inertial flow parameters obtained by averaging across the horizontal PB cross-

section (see Elias, et al.[17] for details). At a constant liquid flow rate, the average flow velocity, 

𝑢ത, through an ideal horizontal PB cross-section can be calculated from Equation (6.8), such 

that the dependence of both 𝐷 and 𝐼 on PB radius is taken into account[17]. Note that in 

Equation (6.6), ∆𝑢തതതത describes the Laplacian of the velocity flow field averaged over the 

horizontal PB cross-section. 

𝐷 = −𝑅ଶ∆𝑢തതതത 𝑢ത⁄                      (6.6) 

𝐼 = 𝑢ଶതതത
𝑢തଶൗ                       (6.7) 

𝑢ത = 𝑄 𝑐𝑅ଶ⁄                       (6.8) 
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Figure 6.2. a) High magnification view of highlighted profile regions with visualisation of 

fitted curved overlaid. b) Low magnification PB profile image. c) Example of Equation (6.2) 

fit to profile data for a 182mM SDS solution at a flow rate of 100μl/min. Dashed blue lines 

indicate the position of key geometric variables. Grey shaded regions indicate poorly 

defined transitions/distortions, namely: i) the injection nozzle distortion around 𝒁 = 𝟎, ii) 

the relaxation-expansion transition around 𝒁𝑻, and iii) the PB to Node transition at 𝒍𝟏.  

In order to address 𝑅 dependence during fitting, it was necessary to apply multiple fits of 

Equation (6.2) to PBs with regions varying significantly in average PB radius. This is a 

consequence of the discrete nature of Equation (6.2), which assumes constant values for all 
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of the variables contained within the fitting region. In reality, a perfect fit to any real PB system 

would require the division of the PB into an infinite number of sections with an infinite number 

of solutions, however; this would obviously be impractical for experimental purposes. Instead, 

the criteria of an R-Squared value greater than 0.9 was used to designate a ‘good’ fit of a 

solution to a region of the PB geometry. This criterion meant that a maximum of four solutions 

to Equation (6.2) could provide a ‘good’ fit to the full length of any observed PB geometry. 

Note that these solutions neglected the distortion regions (i) and (ii) shown in Figure 6.2. 

The approximation of constant variables within each discrete fitting region of the PB has some 

important physical implications, particularly with regard to the assumption of constant surface 

tension. Using this method, it is possible to determine magnitudes and changes in surface 

tension over the length of the vertical PB based discrete changes in 𝛾 for each fitting region. 

However, as the overall gradient in surface tension, ∇𝛾, is neglected, this model also neglects 

contributions due to Marangoni stresses that would arise from these gradients. While the 

variations in 𝛾 are expected to be small for the systems that will be studied here, this is an 

important point for future studies, wherein a dynamic version of Equation (6.2) will be 

required in order to account for these effects. 

6.1.2.2 Dynamic Surface Tension as a Model Parameter 

In order to identify the potential impact of liquid flow rates, 𝑄, on the DST in these isolated 

PB systems, it is necessary to determine whether surfactant transport to the interface is 

dominated by convection or diffusion. Only then can an appropriate model describing 

surfactant adsorption rates be selected. 
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In the case of immobile PB interfaces, the geometry of the channel cross-section is such that 

the Péclet number would be expected to vary between diffusion dominated and convection 

dominated surfactant transport depending on position (i.e. Péclet numbers varying between 

𝑃௘ ≪ 1 and 𝑃௘ ≫ 1 respectively)[33]. This can be simply approximated based on the standard 

equation 𝑃௘ = 𝑈଴𝐻 𝐷௦⁄  where 𝑈଴ describes the fluid velocity relative to the immobile 

interface, 𝐻 describes the channel width, and 𝐷௦ is the diffusion coefficient of the 

surfactant[33]. The channel width inside an ideal Plateau border with thin films varies between 

0 < 𝐻 ≤ ൫√3 − 1൯𝑅 giving a maximum range of 0 < 𝑃௘ < 𝑢൫√3 − 1൯𝑅 𝐷௦ൗ . Approximating 𝑢 

based on the cross-sectional average shown in Equation (6.8), and with maximum flow rates 

𝑄 = (𝜗)10ିଵଶ, minimum radii, 𝑅 = (𝜗)10ିହ, and minimum surfactant diffusivity, 𝐷௦ =

(𝜗)10ିଵଶ, yields a maximum range of 0 < 𝑃௘ < (𝜗)10ହ. 

Despite the significant potential variation between convective and diffusive surfactant 

transport shown, the case of an immobile interface is far from that expected for highly mobile, 

soluble LMWS species such as Tween and Sodium Dodecyl Sulfate (SDS) [10,14,20,34]. In these 

cases, the dominant flow profile is expected to be plug-flow, where 𝑈଴ → 0 (i.e. a stationary 

mode) as perfect plug-flow is approached. In this limiting case therefore, diffusion would be 

expected to be the dominant mode of surfactant transport. Indeed, in the majority of 

literature describing adsorption of LMWS systems, diffusion is found to be the dominant 

mode[20], with diffusion coefficients measured based on this finding[22]. 

While a far more in depth treatment of this problem is possible by solving the convective 

diffusion equation for the PB system, the treatment above was deemed sufficient for the 

purpose of this study using highly mobile LMWS systems exhibiting Plug-like flow[10,14]. As 
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such, the Ward-Tordai (W-T) model for diffusion-controlled adsorption was adopted, which 

has been previously applied to successfully describe the kinetics of ionic surfactants with high 

surface concentrations[19]. 

The expressions describing the W-T model used here are given by Equations (6.9) and (6.10), 

expressing the short-time and the long-time approximation regions with ideal ionic activity 

(IIA) correction, respectively[19,35]. 

𝛾ௌ்(𝑡) = 𝛾଴ − 2𝐶଴𝑅௚𝑇ඥ𝐷௦𝑡 𝜋⁄            Short Time Approximation                         (6.9) 

𝛾௅்(𝑡) = 𝛾௘ + 𝑛𝑅௚𝑇 ቀ
௰೐

మ

஼బ
ቁ ට

గ

ସ஽ೞ௧
 Long Time Approximation with IIA Correction             (6.10) 

The surface tensions, 𝛾଴ and 𝛾௘, describe the pure solvent surface tension (in this case water) 

and the equilibrium surface tension of the surfactant solution with concentration, 𝐶଴, 

respectively. The molar gas constant is denoted by 𝑅௚, while the temperature is given by 𝑇. 

The equilibrium surface excess, 𝛤௘, describes the equilibrium concentration of surfactant at 

the air-water interface, and can be influenced by the electrostatic interactions of charged 

species. The correction factor, 𝑛, was introduced to the W-T long time approximation by 

Kinoshita, et al.[19] in order to account for the action of ionic surfactants. For non-ionic 

surfactants (e.g. Polysorbates) 𝑛 = 1, whereas for a univalent ionic surfactant in the absence 

of supporting electrolyte (e.g. SDS in aqueous solution) 𝑛 = 2. No IIA corrected form of the 

W-T short time approximation is currently available in the literature; however, such a 

derivation would only be required for the analysis of charged species in their short time region. 

As the only charged species analysed in this study was SDS, it will be shown that its very small 
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short time approximation region (𝑡 ≪ 10ms)[19] meant that only the IIA corrected long time 

approximation was required in this case. 

Having identified a suitable models of surfactant diffusion, it was necessary to identify a means 

of measuring values for 𝑡 that could be used in conjunction with the fitting of Equation (6.2) 

to measured PB profiles. Given that the fitting of Equation (6.2) required PB profiles to be 

broken down into discrete regions with constant surface tension, it was therefore necessary 

to measure an average value for 𝑡 over each discrete profile section. 

When surfactant solution is injected at constant 𝑄 directly into the PB at 𝑍 = 0, the resulting 

average velocity in a given PB section is dependent upon that region’s average radius, i.e. 𝑉 =

𝑢ത(𝑅 = 𝑅ത). Therefore, for a surfactant molecule travelling with the bulk liquid, its average 

residence time in that PB region, 𝜏ோ௘௦, can be approximated by the distance over velocity 

relationship shown in Equation (6.11). 

𝜏ோ௘௦ ≈ 𝑐𝑅തଶ𝑍
𝑄ൗ                    (6.11)  

While Equation (6.11) is a suitable approximation for a PB with an ideal cross-section (see 

Figure 6.1c), this is not the case for the systems studied here. Instead, the PB cross-section 

becomes ill-defined as it approaches the liquid injection nozzle at 𝑍 = 0, transitioning from 

an ideal geometry to an approximately cylindrical one[14,17] over a distance, 𝑍஽ (See Figure 

6.3). 
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Figure 6.3. Characterisation of PB distortion between 𝑍 = 0 and 𝑍 = 𝑍஽, where PB geometry 

transitions from an approximately circular to an ideal PB cross-section. Left – Image of PB 

distortion. Right – Schematics of the corresponding 2D and 3D cross-section geometries. 

In order to account for this effect, Equation (6.11) was amended to Equation (6.12), giving 

equal weight to the ideal and cylindrical geometries in the distortion region. PB radii in the 

distortion region were given the notation 𝑅஽. 

𝜏ோ௘௦ ≈
௖ோതమ

ொ
(𝑍 − 𝑍஽) + ൬

ோವതതതതమ
(ଵ଺௖ାଷ )

ଷଶொ
൰ 𝑍஽                (6.12) 

Using the approximation that 𝑡 = 𝜏ோ௘௦, values for 𝛾ௌ்(𝜏ோ௘௦) and 𝛾௅்(𝜏ோ௘௦) can be calculated 

using literature values of 𝐷௦ and 𝛤௘ from Equations (6.9) and (6.10). The best approximation 

for  𝛾(𝜏ோ௘௦) was then based on the minimum of the two values, such that 𝛾(𝜏ோ௘௦) =

min [𝛾ௌ்(𝜏ோ௘௦), 𝛾௅்(𝜏ோ௘௦)]. As can be seen in the example for an aqueous solution of Tween 

20 in Figure 6.4, this produced a natural transition between short and long time 

approximations at the crossover of Equations (6.9) and (6.10). At times below the crossover, 

DST was described by 𝛾ௌ், while above the crossover DST was described by 𝛾௅். 
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Figure 6.4. Example of short time and long-time with IIA W-T approximations of DST for an 

uncharged surfactant species (Tween 20). Examples of estimated values were taken based 

on 𝜸(𝝉𝑹𝒆𝒔) = 𝐦𝐢𝐧 [𝜸𝑺𝑻(𝝉𝑹𝒆𝒔), 𝜸𝑳𝑻(𝝉𝑹𝒆𝒔)]. Maximum and minimum values of surface 

tension are given by the surface tension of water, 𝜸𝟎, and the equilibrium surface tension, 

𝜸𝒆, respectively. 

 

6.1.2.3 PB Surface Viscosity 

Chapters 4 and 5 have consistently indicated that PB surface viscosity for LMWS systems 

exhibits a significant degree of surface shear thinning. Indeed, such a result has also been 

suggested by Gauchet, et al.[18] to account for their findings in addition to potentially be 

responsible for the large variation in literature values for SDS surface viscosity. Chapter 5 

proposed this to be a consequence of variations in the PB surface tension, however; results 

counterintuitively indicated that surface shear viscosity decreased with increasing interfacial 

surfactant concentration[10]. In order to address whether the theory proposed here was able 
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to account for this behaviour, it was necessary to calculate the surface viscosity, 𝜇௦, and 

average liquid shear rate, 𝛾̇௦
ഥ . 

PB surface viscosity can be calculated for an equilibrium PB by combining Equations (6.4), 

(6.13) and (6.14)[10,14].  

𝐷ିଵ = 𝑐 ቂ0.02 +
଴.଴଺ହହ బ

షబ.ఱ

଴.ଶ଴ଽା஻బ
బ.లమఴቃ                 (6.13) 

𝜇௦ = 𝐵଴𝜇𝑅  (with 𝑅 = 𝑅௘)                 (6.14) 

Equation (6.13) is the phenomenological expression proposed by Nguyen[36] to calculate the 

dimensionless Boussinesq Number, 𝐵଴, from the viscous flow parameter, 𝐷. Subsequently, 𝐵଴ 

can be converted into its dimensional counterpart, the surface viscosity, using the dynamic 

bulk viscosity, 𝜇, via Equation (6.14). In previous studies, Equation (6.14) is presented in an 

alternative form, 𝑀 = 𝜇𝑅 𝜇௦⁄ , where the dimensionless parameter, 𝑀, was one of four 

dimensionless groups first derived by Leonard, et al.[37] as a solution to the velocity profile 

through a Plateau border. This parameter was later described as the relative surface mobility 

by Kraynik[38] who noted that: ‘the use of surface viscosity to describe interfacial mobility 

should not be viewed as exact because the Boussinesq surface fluid is a relatively simple model 

of the interfacial region’. Subsequently, B଴ has been used to describe the inverse of the 

relative surface mobility[17,36] thereby yielding the form of Equation (6.14) presented here. 

In order to better understand the relationship between PB surface tension and 𝜇௦, the 

dependence of surface tension on PB radius first had to be taken into account. As Equations 

(6.13) and (6.14) are only valid under equilibrium PB conditions (i.e. 𝜇௦(𝑅 = 𝑅௘)), it follows 

that a direct link to surface tension can only be made for the case 𝛾(𝑅 = 𝑅௘). However, as the 
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‘infinite’ PB geometry, 𝑅 = 𝑅௘, is a theoretical ideal case, only approximations of the 

relationship between surface tension and surface viscosity could be made here. Therefore, 

only fitted surface tensions extracted from PB regions where the minimum radius, 𝑅௠௜௡, 

approached the corresponding fitted 𝑅௘ (i.e. 𝛾(𝑅௠௜௡ → 𝑅௘)), were deemed suitable for 

analysis in this instance. 

Calculation of the average shear rates through equilibrium PB were undertaken using the 

approximation[17] shown below: 

𝛾̇௦
ഥ ≈

ொ

௖ோ೐
య                                             (6.15) 

6.2 Experimental 

6.2.1 Preparation of Surfactant Solutions 

SDS (>99.9%) from Fisher Scientific (Loughborough, UK), Tween® 20 and Tween® 80 from 

Sigma-Aldrich (UK), were weighed and magnetically stirred at room temperature with 

15.0MΩ∙cm purified water. Stirring continued for a minimum of 30 minutes prior to use of the 

solution to ensure the complete dissolution of surfactant. 

These surfactants represent both charged (SDS) and non-ionic (T20/T80) species that are 

commercially significant and have therefore been well studied in literature[19,20,22,34,39-42]. 

Despite some variation in reported values of 𝐷௦ and 𝛤௘ due to variations in the composition of 

Tween systems and the presence of impurities in SDS, these surfactants were still deemed the 

most suitable for the present study. This was partially due to the bulk of available literature 

examining their adsorption dynamics, but also in order to directly compare the findings of the 
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revised analysis presented here with those in previous studies using this experimental 

setup[10,14]. Furthermore, the substantial difference in critical micelle concentration 

(CMC)[42,43] and rates of adsorption[19,22] between the Tweens and SDS were expected to yield 

observable differences in PB behaviour. It should be noted however, that in order to improve 

the precision of the current technique in future studies it will be necessary to select 

surfactants with highly consistent purity and composition. 

6.2.2 Characterisation of Surfactant Solutions 

Each surfactant solution was studied at two different concentrations (see Table 1). 

Concentrations of SDS were chosen to represent ~2× and ~20× the CMC according to 

literature values[22,42-44], however it was necessary to amend this to ~10× and ~20× the CMCs 

of T20 and T80 due to the poor PB stability in the experimental setup at lower concentrations. 

Furthermore, these high concentrations would have been expected to dramatically reduce the 

impact of the characteristic adsorption times, 𝜏ఊ, of surfactant at the PB interface, where 𝜏ఊ =

𝛤௠
ଶ 𝐶଴

ଶ𝐷௦⁄ , with 𝛤௠ representing the limiting surface excess[45]. 

Values for 𝐷௦ and 𝛤௘ of each surfactant were taken from representative values produced by 

dedicated experimental studies of DST in literature[19,22]. These values can also be found in 

Table 1, where it can be seen that the diffusion coefficients for SDS were approximately 100× 

larger than those for the Tween systems, suggesting much faster rates of SDS adsorption than 

Tween adsorption. It should be noted here that the decreasing values of 𝐷௦ with increasing 

surfactant concentration made by Bąk, et al.[22] for the Tweens is in agreement with 

observations made by other authors for different non-ionic surfactants[46-49]. This decrease is 

most likely due to the increasing number of micelles formed with increasing surfactant 
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concentration above the CMC[50], where monomer exchange with micelles increasingly 

dominates over monomer diffusion to the interface[51]. 

Surfactant 𝑪𝟎 [mM] 𝜞𝒆 [mol/m2] 𝒏 𝑫𝒔 [m2s-1] 

Tween® 20[22] 
0.61 3.50 × 10ି଺ 1 7.00 × 10ିଵଶ 

1.22 3.50 × 10ି଺ 1 1.50 × 10ିଵଶ 

Tween® 80[22] 
0.15 2.20 × 10ି଺ 1 10.00 × 10ିଵଶ 

0.30 2.20 × 10ି଺ 1 2.00 × 10ିଵଶ 

SDS[19] 
17.40 6.75 × 10ି଺ 2 5.30 × 10ିଵ଴ 

182.00 6.75 × 10ି଺ 2 5.30 × 10ିଵ଴ 

Table 6.1. Characterisation of surfactant property variables for aqueous solutions of T20, 

T80 and SDS based on representative literature values[19,22]. 

A Krüss Processor® Tensiometer K100 (Krüss GmbH, Germany) with density hook attachment 

and silicon density standard was used to measure liquid density, while surface tension was 

measured using a Wilhelmy Plate attachment.  The solution dynamic viscosity was measured 

using a Malvern Kinexus® Pro rheometer (Malvern Panalytical, UK) with Double-Gap 

geometry, which provided excellent measurement sensitivity for the low viscosity solutions 

studied here. All measurements were carried out at 𝑇 = 295K, and presented data are average 

values with absolute errors of one standard deviation. 

6.2.3 The PB-Node Setup 

In order to create the isolated PB’s required for analysis at controlled liquid flow rates, the 

isolated PB-Node setup of  Clarke, et al.[14] was used. More details of this setup can be found 

in literature[10,14], however it relies on the principle of a closed tripod frame that can be 
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withdrawn from surfactant solution to produce and arrangement of liquid films that terminate 

in a spatially ‘ideal’ PB and node (see Figure 6.5). PBs were directly injected with additional 

surfactant solution at controlled liquid flow rates (20μl/min ≤ 𝑄 ≤ 180μl/min) and imaged, 

to create geometric PB profiles of PB radius, 𝑅, vs. height below the liquid injection nozzle, 0 

≤ 𝑍 ≤ 𝑙ଵ (see Figure 6.2). 

 

Figure 6.5. The isolated PB-Node setup of Clarke, et al.[14]. a) Imaging setup showing camera, 

frame setup and rear light source. b) Images of PB/node profiles at different magnifications, 

with the highest resolution of 1.5μm per image pixel. Reprinted with permission from C. 

Clarke, A Lazidis, F Spyropoulos, and I. T. Norton, “Measuring the impact of channel length 

on liquid flow through an ideal plateau border and node system,” Soft Matter 15, 1879–

1889 (2019). Copyright 2019 The Royal Society of Chemistry. 

6.2.4 Model Fitting 

Due to difficulties in utilising automated fitting methods, as discussed in previous work[10], 

manual fitting of Equation (6.2) to PB profile sections was able to consistently produce good 

agreement between theory and experimental data. 
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Measured PB profiles were divided into a maximum of four fitting regions, based on a 

coverage of the PB profile from 0 ≤ 𝑍 ≤ 𝑙ଵ with a minimum R2 value of 0.9 being required for 

each solution. These solutions did not include the distortion regions (i) and (ii) in Figure 6.2 as 

discussed above. Examples of dividing PB profiles into fitting regions in order to calculate their 

respective surfactant residence times, 𝜏ோ௘௦, is shown in Figure 6.6. 

 

Figure 6.6. Example of PB profile divided into PBs fitting regions to calculate their respective 

surfactant residence times, 𝝉𝑹𝒆𝒔. 

6.3 Results 

6.3.1 Solution Properties 

The measured surfactant solution parameters as well as those taken from representative 

literature are presented in Table 2. As anticipated, the dynamic viscosity of solutions was only 
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slightly higher than that of pure water at ~8.9×10-4 Pa∙s at 25°C[52]. Values for the equilibrium 

surface tension were in good agreement with those found in existing literature[19,22,44,53-56]. 

This provided increased confidence that the literature values[19,22] for 𝛤௘ and 𝐷௦ in Table 1 were 

reasonable representations of the surfactant behaviour in this study. A trend of decreasing 

surface tension with increasing surfactant concentration above the CMC was observed for all 

surfactants, however this variation was within the measurement errors shown for the tween 

systems and is often seen in literature for SDS systems[19,44,56]. This may represent the effect 

of trace impurities (e.g. lauryl alcohol), which are common in SDS systems. However, as the 

measured SDS surface tensions were almost identical to those measured by Kinoshita, et al.[19] 

from which 𝛤௘ and 𝐷௦ were taken, these were still determined to be a good representation of 

the system in this study. 

6.3.2 Relaxation-Expansion Model 

Fitting of Equation 2 to PB profiles was carried out in accordance to the theory and procedure 

outlined above. A maximum of four fits was applied to any one PB profile, providing an 

excellent description of its geometry. Average R2 values were consistently in excess of 0.9 for 

all liquid flow rates. This marked a significant improvement on previous fit quality[10], where 

flow profiles transitioning between types in Figure 6.1a and 1b were poorly characterised. 

Figure 6.7 shows the fits applied to profiles of 17.4mM SDS, 0.61mM T20 and 0.15mM T80 at 

𝑄 = 20μl/min and 𝑄 = 100μl/min, with corresponding values for the inertial flow parameter, 

𝐼, shown. 
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Surfactant 

Concentration 

[mM] 

Density 

[mg/ml] 

Viscosity 

[Pa·s] (10-4) 

Equilibrium 
Surface Tension 

[mN/m] 

Tween® 20 0.61 997.70 ± 0.30 9.56 ± 0.07 36.3 ± 0.2 

Tween® 20 1.22 997.90 ± 0.10 10.23 ± 0.48 35.9 ± 0.5 

Tween® 80 0.15 997.90 ± 0.10 8.84 ± 0.03 40.0 ± 0.5 

Tween® 80 0.30 997.60 ± 0.40 9.69 ± 0.23 39.2 ± 0.5 

SDS 17.40 998.70 ± 0.90 9.84 ± 0.05 37.9 ± 0.1 

SDS 182.00 1005.00 ± 0.50 13.65 ± 0.14 35.4 ± 0.1 

Table 6.2. Averaged measurements of surfactant solution bulk and surface properties. 
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Figure 6.7. Fits of Equation (6.2) to PB profiles for: a), b) 17.4mM SDS; c), d) 0.61mM T20; 

and e), f) 0.15mM T80. a), c) and e) are for liquid flow rates of 𝑸 = 20μl/min. b), d) and f) 

are for liquid flow rates of 𝑸 = 100μl/min. Inset diagrams provide visualisations of the 

behaviour of 𝑰 along the equivalent vertical PB cross-sections.  
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6.3.3 Inertial Flow Parameter 

Values for the inertial flow parameter, 𝐼, were shown to exhibit a strong linear relationship 

with 1 𝑉ଶ⁄ , taking the form  𝐼 = (𝑚 𝑉ଶ⁄ ) + 1 with 𝑚 being the gradient of the straight line 

(see Figure 6.8). This appeared to reflect the 1 𝑢ଶ⁄  dependence of 𝐼 in Equation (6.7). The 

intercept of 1 is a key physical limit of, 𝐼, where the relationship measured here of 𝐼 → 1 as 

𝐷 → 0 represents the tendency of these systems towards ideal plug-flow through the PB. This 

was in line with the expected behaviour of high mobility surfactants.[34,57] Little discernible 

difference was observed in these relationships due to bulk surfactant concentration; however, 

a clear difference in gradient was seen between the Tween and SDS systems. The average 

gradient of SDS solutions compared to that of Tween solutions was 𝑚 = 0.003 and 𝑚 = 0.037 

respectively, suggesting flow profiles of Tween systems to be more Poiseuille-like than SDS. 

 

Figure 6.8. Values of the inertial flow parameter, 𝑰, as a function of the inverse square of the 

average flow velocity in the fitting region, 𝟏 𝑽𝟐⁄ . Linear fits to data take the form of 𝑰 =

(𝒎 𝑽𝟐⁄ ) + 𝟏 where 𝒎 is the gradient of the straight line.  
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6.3.4 Dynamic PB Surface Tension 

PB residence times were calculated as outlined above, and then used to calculate PB DST using 

Equations (6.9) and (6.10), with 𝑡 = 𝜏ோ௘௦. As SDS has been extensively studied using other 

experimental techniques, it was possible to directly compare the DST values calculated here 

with those measured in literature[19,20]. DST calculated for 17.4mM SDS was the most 

comparable, with measured literature DST available for 15mM and 10mM samples. This 

showed a very strong agreement (see Figure 6.9) and confirmed that only the IIA corrected 

form of the W-T long time approximation (i.e. Equation (6.10)) was required for this study. 

 

Figure 6.9. Comparison of calculated DST, 𝜸, of 17.4mM SDS using the W-T long time 

approximation with IIA correction with 𝒕 = 𝝉𝑹𝒆𝒔, in comparison to experimental values for 

10mM SDS[19] and 15mM SDS[20] from existing literature. 
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Figure 6.10. Calculated DST, 𝜸, of a) SDS, b) T20 and c) T80 based on the average PB residence 

time of surfactant molecules, 𝝉𝑹𝒆𝒔. Errors are not shown for 𝜸, as values would follow the 

lines of the W-T long and short time approximations shown for any changes in 𝝉𝑹𝒆𝒔
𝟏/𝟐. 

Figure 6.10 highlights the dramatic differences between 𝛾 for SDS and Tween solutions, which 

result from the faster adsorption rates of SDS. While SDS approached 𝛾௘ within its PB 

residence times (𝛾 → 𝛾௘), the Tween systems at many 𝑄’s remained closer to the surface 

tension of pure water (𝛾 → 𝛾଴). This implied that for high fluid velocities, the rate of 

adsorption of T20 and T80 resulted in poor surfactant coverage of the PB interface. Indeed, 

this would explain why lower concentrations of Tweens than those used here were unable to 
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produce stable PBs for analysis, and why even at higher concentrations, PBs of both T20 and 

T80 were more prone to collapse than those of SDS. 

When discussing PB stability, it must be remembered that the collapse of these systems is 

primarily attributed to the rupture of films adjoining the PB rather than the breaking of the PB 

itself. As the liquid flow rates through adjoining films are generally considered significantly 

smaller than those through PBs[58], it could be expected that surfactant residence time in these 

films was higher and thereby resulted in lower film surface tension. In this instance, one would 

expect the presence of Gibbs Marangoni forces due to the resulting concentration gradient of 

surfactant between film and PB interfaces[59]. The questions concerning stability therefore, 

relate to the extent of this concentration gradient and the rate at which surfactants could 

diffuse from the adjoining film interfaces to those of the PB. When one considers that film 

drainage has also been shown to result in ‘younger’ interfaces, the suggestion is that in the 

very early stages of foam drainage, slower adsorbing LMWS may provide little contribution to 

foam stability. Answering such questions is beyond the scope of the current study, however 

could be highly relevant in assessing foamability and short timescale stability of LMWS foams. 

It has already been noted that the assumption of homogeneous surface tension in each of the 

separate PB fitting regions prevents an analysis that includes Gibbs-Marangoni Effects in this 

instance. However, it is clear from Figure 6.10 that the variation in surfactant residence times 

calculated here would be expected to result in vertical surface tension gradients, ∇𝛾, along 

the PB. Indeed, this was seen from the differences in surface tension between neighbouring 

sections of PB. As the surface coverage of the PB increases with increasing 𝑍 (i.e. increasing 

𝑡), the resulting Marangoni stresses would be expected to oppose the concentration gradient, 
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therefore opposing liquid flow. In this respect therefore, it would be expected that the role of 

Marangoni forces would decrease bulk flow velocities adjacent to the interface, thereby 

increasing surfactant residence times and reducing the surface tension gradient. While the 

results presented here therefore provide a good indication of the expected magnitudes of PB 

surface tension, a full dynamic equation describing the PB profile geometry is still required in 

order to enact precision measurements of the physical parameters described here. 

An important issue regarding the calculation of PB surface tensions for PB profiles was the 

errors involved in calculating timescales, 𝑡. As can be seen from Figure 6.10a, the errors in 𝜏ோ௘௦ 

for SDS would have had little impact on the calculated 𝛾 according to the W-T approximations. 

However, Figure 6.10b shows that the errors in 𝜏ோ௘௦ for T20 and T80 could have resulted in 

decreases in γ of up to 15%, making this a significant source of error for these systems. As the 

bulk of the error in 𝜏ோ௘௦ originated from the approximation of the PB geometry between 𝑍 =

0 and 𝑍 = 𝑍஽  (see Figure 6.3), this highlights the need for the precise characterisation of the 

full PB geometry, regardless of the subsequent method of analysis. 

6.3.5 PB Surface Viscosity 

When comparing 𝛾 with PB surface shear viscosity, 𝜇௦, Clarke, et al.[10] found the 

counterintuitive result that 𝜇௦ decreased with increasing surfactant concentration at the 

interface. Figure 6.11 shows that this was no longer the case when the theory proposed here 

is applied. The plotted data points represent values extracted from PB fitting regions where 

the minimum radius was approaching the equilibrium radius (i.e. 𝑅௠௜௡ → 𝑅௘). As discussed 

previously, the closer the values of 𝑅௠௜௡ to 𝑅௘, the more reliable the visual relationship 

between 𝛾 and 𝜇௦. As such, data points are categorised in to those whose 𝑅௠௜௡ were ≤10% 
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(green), ≤15% (orange) and ≤20% (red) greater than their 𝑅௘ values, therefore helping to 

provide an indication of the strength of the trends. 

The extrapolation of data trends in Figure 6.11 are clearly largely approximated, however; the 

purpose here was to show that relationships similar to those observed between surface 

tension and other surfactant concentration variables (e.g. bulk concentration, surface 

concentration[19,22]) fit well with the data here. Ultimately, this suggests the far more intuitive 

result that surface viscosity increases with increasing surfactant concentration at the PB 

interface. This relationship exists between the two extremes of a clean air-water interface 

with a surface viscosity of zero, and a surfactant saturated air-water interface with a 

corresponding maximum surface viscosity depending on the surfactant species. While 

maximum 𝜇௦ for T20 and T80 could not be established based on the data here, the maximum 

𝜇௦ for SDS was suggested to be ~1 × 10ି଼g/s. This is in line with the previous lower limit set 

by Clarke, et al.[14], as well as the high precision measurements made by Zell, et al.[34], whose 

studies of planar interfaces showed that soluble LMWS systems (including T20 and SDS) had 

surface viscosities lower than the measurement sensitivity of existing techniques (i.e. 𝜇௦ <

10ିହg/s). 
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Figure 6.11. Calculated DST, 𝜸, vs. calculated surface viscosity, 𝝁𝒔, for concentrations of SDS, 

T20 and T80. Fill colours of data points represent how close values of 𝑹𝒎𝒊𝒏 were to 𝑹𝒆 with 

𝑹𝒎𝒊𝒏 ≤+10% (green), ≤ +15% (orange) and ≤ +20% (red). Black lines indicate suggested 

trends based on standard surface tension vs. surfactant concentration relationships.  

It is also clear from the revised theory applied here, that the apparent surface shear thinning 

observed by Clarke, et al.[10],[14] for both SDS and Tween systems was likely to have been largely 

a result of the restrictions imposed on fitting variables in these cases. Data from this study 

showed that 𝜇௦ was virtually independent of average liquid shear rate at the concentrations 

and liquid flow rates studied, with any variations in 𝜇௦ that did occur being attributed to 

changes in surface tension (see Figure 6.12). 
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Figure 6.12. Calculated surface viscosity, 𝝁𝒔, vs. calculated average liquid shear rate, 𝜸̇𝒔
തതത for 

SDS, T20 and T80 solutions. 

6.4 Conclusions 

The novel experimental setup of Clarke, et al.[10],[14] was further investigated for the soluble 

surfactants SDS, T20 and T80. The hypothesis that increasing liquid flow velocity through ideal 

isolated Plateau borders of a foam microstructure could result in ‘younger’ PB interfaces was 

assessed using a novel analytical technique. Analysis of measured PB profiles indicated that 

the average timescales over which soluble LMWS molecules could reside in the PB were 

similar to those required for surfactant molecules to diffuse to the air-water interface. As such, 

the adsorption kinetics of each surfactant were shown to play a major role in the flow rate 

dependence of PB geometries and their stability. 
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The liquid flow rates resulting in the highest DST were always in the range 40μl/min< 𝑄 <100 

μl/min, which is within the range of liquid flow rates generally observed during macroscopic 

foam drainage. This implies that LMWS surfactants with longer adsorption timescales could 

have detrimental effects on macroscopic foam stability during the early stages of foam 

drainage. This effect is likely to be compounded by the adjoining ‘young’ films also formed at 

this stage[32]. 

The physical parameters derived from the present model each PB system were consistent with 

those expected for high mobility LMWS. Liquid flow profiles tended towards plug-flow, with 

surface shear viscosity for all systems at levels far below the measurement sensitivity of 

existing direct measurement methods, as proposed by Zell, et al.[34]. The increase in surface 

viscosity increased with surface surfactant concentration, while showing no discernible 

relationship to liquid shear rate. As such, the refinement of the model and fitting procedure 

in this study was able to address the counterintuitive findings of previous work[10,14]. 

The present study demonstrates how the geometric analysis of controlled, isolated, foam 

systems has the potential to yield precision data regarding their complex and dynamic nature. 

A static geometric profile solution is able to provide a good description of vertical PB profiles 

at constant liquid flow rates, however a complete approach requires that the dynamic nature 

of the interface be taken to account in a dynamic geometric profile equation. Only then can 

the full potential of this technique be realised. 
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7.1 Conclusions 

The development of the experimental protocols and theory that accompany the PB-node 

setup for studying the geometry of microscale foam channels and their junctions has led to a 

number of insights. Detailed conclusions presented for the work in each experimental chapter 

have either been published or are pending publication, however, an overview of the key 

research findings of this thesis is given here. 

7.1.1 The Microscale Geometries of Foam Plateau Borders 

I. Fundamental foam channel geometries vary with channel length, liquid flow rate 

and choice of emulsifier. 

Previous studies of isolated foam channels have reported only one fundamental foam channel 

geometry, wherein a vertical channel gradually expands from its initial height into either an 

adjoining node or bulk liquid (Figure 7.1a)[1-5]. Present study has demonstrated this channel to 

be just one end of a spectrum of channel geometries that can exist (Figures 1b &1c), 

depending on the emulsifier properties, channel length and liquid flow rate[6,7]. 

II. All of the observed foam channel geometries can be well described by a single 

solution to the foam drainage equation. 

Using the foam drainage equation[8,9] for a vertical, thin-filmed PB, Clarke, et al.[7] derived a 

solution that was able to explain each of the PB profiles shown in Figure 7.1. This solution 

ultimately showed that PB profiles can exhibit both relaxation and expansion and that the 

degree to which a profile demonstrates either of these traits is dependent upon the position 

and geometry of the adjoining node. 
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Figure 7.1. Schematics of isolated PB vertical profiles demonstrating: a) The conventional 

expansion profile; b) The expansion-relaxation profile discovered by Clarke, et al.[6] for 

LMWS at high liquid flow rates and long PB lengths; c) The equilibrium-contraction profile 

discovered by Clarke, et al.[7] for high molecular weight emulsifiers. 

7.1.2 Flow Dissipation within Foam Channels 

III. Viscous and inertial dissipation can vary substantially within a single foam 

channel depending on the channel length and rate of liquid flow. 

The observations made in this thesis suggest that the non-linear profiles of isolated foam 

channels at constant liquid flow rates can result in significant variations to viscous and inertial 

flow parameters. The fact that these variations are both flow rate and PB length dependent, 

suggests that the general simplified assumption of a straight PB with average radius may be 
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insufficient to correctly characterise these systems in macroscopic foams. Furthermore, it 

appears that the presence of the node greatly influences the adjoining PB geometry, 

suggesting that the separate treatment of PBs and nodes to describe macroscopic drainage 

may also be questionable. 

IV. The surface viscosity of an isolated foam channel stabilised by low molecular 

weight surfactants appears to be substantially lower than that predicted by most 

commercial surface rheological measurement techniques. 

While the theory presented here is only suitable for predicting the surface shear viscosity of 

foam channels in their equilibrium state, it is clear that these values are substantially lower 

than predicted by conventional measurement techniques. These findings follow a trend of 

decreasing surface viscosity for such systems, as measurement sensitivity has increased[10]. 

The virtually zero values of surface shear viscosity measured here support the assumption of 

a ‘node dominated flow regime’ for most LMWS surfactants, wherein viscous dissipation in 

the foam channels is considered to be negligible in comparison to dissipation within the 

nodes[10,11]. 

7.1.3 Foam Channel Surface Tension 

V. A non-uniform surface tension is proposed to exist along the foam channel 

interface. The extent of this effect appears to depend upon the emulsifier 

adsorption dynamics relative to liquid flow rates. 

The theory and observations presented in Chapter 6 suggest the presence of a surface tension 

gradient along the PB interface that is governed by the rate of surfactant adsorption and the 

average residence time of surfactant molecules within the PB. Indeed, such a finding has 
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already been made in the literature for isolated soap films under free drainage conditions[12]. 

At the constant liquid flow rates provided by the PB-node setup, PB surface tension gradients 

are sustained and can be studied from the resulting PB geometries fitted with the geometric 

foam equation derived here. The surface tension was subsequently linked to the surface shear 

viscosity, where an increased surfactant concentration at the air-liquid interface decreased 

surface tension while increasing the surface viscosity. 

7.2 Recommendations for Future Work 

The PB-node setup has so far proven to be capable of making high-resolution measurements 

of PB geometries under carefully controlled flow conditions. It is the belief of this author that 

there is still much potential in this experimental setup for conducting additional experimental 

investigations of microscale foam dynamics. The three studies discussed here represent the 

most poignant of these potential investigations, with the potential to answer further 

questions raised by the current research. 

I. Study the impact of controlled variation in bulk and surface parameters for LMWS 

systems such as bulk and surface viscosity. 

Initial tests of the PB-node setup have shown it to be capable of measuring foam channel 

geometries of SDS and Tween 20 with added glucose or glycerol to control the dynamic 

viscosity of the liquid. As a well-known inhibitor of liquid drainage, studying the impact of 

increasing liquid viscosity on PB geometries could provide useful information relating to how 

this affects viscous dissipation and foam channel stability for different surfactants. Similarly, 

chemically altering the surface viscosity of the channel interface could provide more 
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information that relates surfactant adsorption dynamics to bulk liquid flow. For example, 

additions of salts, such as sodium chloride, can substantially alter the bulk and surface 

properties of SDS. The resulting shielding of the electrostatic repulsion between SDS 

molecules can increase the CMC and lower the surface tension, as well as changing the shape 

of the SDS micelles (from spherical to worm-like), altering the bulk viscosity of the system[13]. 

Furthermore, additions of 1-Dodecanol have been shown by various authors[2,3,14] to 

dramatically decrease the mobility of SDS at the air-liquid interface. 

II. Analyse the geometries of isolated nodes using theory analogous to that 

presented in this thesis for isolated PBs. 

As already discussed, the measurement of surface shear viscosity in the PB-node setup 

suggests the viscous dissipation within isolated PBs of low molecular weight surfactants to be 

virtually zero. This implies that the viscous dissipation within the adjoining node must be 

considerably higher to be in agreement with the theory of a ‘node dominated drainage regime’ 

that is usually measured for corresponding macroscopic foam systems. In order to confirm 

this, it would be prudent to measure the flow rate dependent node geometries for these 

systems and relate this to their viscous dissipation. As channel or node-dominated drainage 

regimes ultimately separate and compare the flow dissipation of these structures, the ability 

to directly study the transition between them could prove valuable. Indeed, it has already 

been suggested here that the node can dramatically influence the adjoining PB geometry; 

suggesting a clear-cut distinction between node and PB dissipation is inaccurate. 
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III. Assess the degree of coupling of PB flow with that in adjoining films by studying 

the flow rate and length dependent coloured fringe patterns observed in the 

adjoining films during these studies. 

While this study has essentially neglected the influence of flow in adjoining films, it has been 

suggested by theory that a degree of coupling between films and PBs can exist[15-17]. During 

the investigation of the PB-node setup, coloured fringe patterns were observed in the 

adjoining films, which circulated in a manner that was dependent on the liquid flow rate and 

PB length. As the presence of coloured fringes in thin films is well known to represent regions 

of localised film thinning[18], this suggested the circulation of the liquid in these films. The 

ability to record the circulation of these films at controlled PB liquid flow rates in the PB-node 

setup could be a useful tool for directly studying PB-film coupling, thus directly linking these 

dominant microscale foam structures. 
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Appendix A 

Matlab code used in the processing of 

raw PB profile images 
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A1.1 Measuring PB Profile Geometries 

The Matlab code below was written to measure the length and radius of foam channels from the 

raw images collected at 1mm increments along the PB length. 

clc; 
format long g; 
format compact; 
fontSize = 20; 
  
c = 0.161254480773981; 
 
ScaleFactor = 9.64285714285714; % Insert Micrometre to Pixel 
conversion factor 
RotFactor = -90;         % Image rotational offset 
Xmin = 0;                % Choose cropping distance [pixels] from 

left hand side of image (remove 
unnecessary image details) 

ZeroOffset = 55;         % Choose cropping distance from top of 
  image[pixels](identify zero height of 
channel) 

cols = 2000;             % Choose width of image[pixels](starting 
from left hand side across 

rows = 1300;             % Choose height of image[pixels] 
(starting from top down) 

RGeom = 2/sqrt(3);       % Channel width to radius conversion 
factor 

  
Zoff = -0.72;   % Micrometre stage zero offset [mm] 
Imoff = 19;   % Image increment offset [mm] (based on 

Images taken at 1mm increments)) 
Offset = (Zoff+Imoff)/1000; % Image height offset [micrometres] 

  gives zero height of image 
  relative to zero position of foam 
  channel. 

Img=imread('19_80ulpmin_1.tiff');% Read image with file name in 
Pink‘increment_flowrate_repeat
.file’ 

figure;                  % Display original image 
imshow(Img) 
title('Original'); 
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RotImg = imrotate(Img,RotFactor,'bilinear'); % Rotate image by 
  RotFactor 

figure;                              % Display rotated 
  image 

imshow(RotImg) 
title('Rotated'); 
  
threshold=[0.0001, 0.05];    % Set lower and upper edge 

   detection thresholds 
BW2 = edge(RotImg,'canny',threshold);   % Use 'Canny' edge 

  detection algorithm 
figure;                                 % Display Canny edge 

  detected image 
imshow(BW2) 
title('Canny Filter'); 
  
crp=imcrop(BW2,[Xmin ZeroOffset cols rows]); % Crop image[xmin 

  ymin width height] 
figure;                         % Display cropped image 
imshow(crp) 
title('Slice 19 @ 80ulpmin_1'); 
 
widths = zeros(rows, 1);    % Define starting row for measured 

widths 
Radii = zeros(rows, 1);     % Define starting row for widths 

converted to radii 
Height = zeros(rows, 1);    % Define starting row for distance 

from top of image (height) 
HeightSI = zeros(rows, 1);  % Define starting row for distance 

converted to SI units 
AreaSI = zeros(rows, 1);    % Define starting row for Cross- 

sectional area in SI units 
for row = 1 : rows          % Begin loop conditions for pixel row 

by pixel row image scan 
    thisRow = crp(row, :);  % Define current row 
    leftPixel = find(thisRow, 1, 'first');  % Find the first 

 black pixel (Black 
 = 1) 

    LeftScaled = leftPixel*ScaleFactor;     % Convert pixel 
 distance to microns 

    LeftRadScaled = LeftScaled*RGeom;       % Apply geometric 
      conversion  

    rightPixel = find(thisRow, 1, 'last');  % Find the last black 
 pixel 

    RightScaled = rightPixel*ScaleFactor;   % Scaling as before 



  Appendix A 
 

198 
 

    RightRadScaled = RightScaled*RGeom; 
    YScaled = row*ScaleFactor;              % Convert row number 

 to height [microns] 
    if isempty(leftPixel) || isempty(rightPixel) 
        continue; % Skip rows with only one pixel i.e. part of an 

edge is missing  
    end 
    widths(row) = RightScaled - LeftScaled;  % Calculate and 

  output width 
    Radii(row) = RightRadScaled -  LeftRadScaled; % Calculate 

  radius 
    Height(row) = YScaled;                   %Output Height 
    AreaSI(row)= c*(((Radii(row))/1000000).^2); 
    HeightSI(row) = ((Height(row))/1000000)+ Offset; 
end 
  
HeightArea = [HeightSI,AreaSI]; 
HeightArea(~any(HeightArea,2), : ) = [];  %remove zero or nan 

   rows 
AreaSI = HeightArea(:, 2); 
HeightSI = HeightArea(:, 1); 
  
% Remove 'missing edge' measurements 
% If edges are badly defined and other edges are picked up INSIDE 
the object, the loop will still measure a width between the first 
and last edge in the image row. If you have a good idea of 
roughly how many pixels wide your object is, you can neglect 
measurements below this minimum width 
OriginalMeasure = [Radii Height]; 
condition = OriginalMeasure(:,1) < 50;  % Set min. width [pixels] 
OriginalMeasure(condition,:) = []; 
RealRadii = OriginalMeasure(:,1);       % Output Radii neglecting 

  false widths 
RealHeight = OriginalMeasure(:,2);  % Rename Height 
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A1.2 Combining Incremental Profile Data into Single Profile Dataset 

The following Matlab code was designed to take the height and corresponding triplicate radius 

data from each image increment and combine these into a single height vs. average cross-

sectional area (easily converted back to radius using 𝑆 = 𝑐𝑅ଶ) dataset for the full foam channel. 

This is demonstrated for three image increments but can be extended to any number of 

increments. 

clc; 
format long g; 
format compact; 
fontSize = 20; 
  
%Import raw data of heights and corresponding radii e.g. [height 
1, area 1, area 2, area 3, height 2, area 2 etc.] 
M = RawData; 
  
M0 = M(1:end,1:4); 
M1 = M(1:end,5:8); 
M2 = M(1:end,9:12); 
 
%Check for any nan and leave row blank if so 
M0(any(isnan(M0),1),:)=[]; 
M1(any(isnan(M1),1),:)=[]; 
M2(any(isnan(M2),1),:)=[]; 
 
%Average triplicate cross-sectional area measurements 
X0Av = mean([M0(:,2),M0(:,3),M0(:,4)], 2); 
X1Av = mean([M1(:,2),M1(:,3),M1(:,4)], 2); 
X2Av = mean([M2(:,2),M2(:,3),M2(:,4)], 2); 
 
%Make new matrices of height vs. average area data  
M0Av = [M0(:,1), X0Av]; 
M1Av = [M1(:,1), X1Av]; 
M2Av = [M2(:,1), X2Av]; 
 
%Combine profile for increments 0 and 1, averaging cross 
sectional areas for overlapping heights. Outputs new matrix of 
combined 0 and 1 increment profile measurements. 
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x = M0Av(:,1); 
Val1 = M1Av(1,1); 
  
[ d, ix ] = min( abs(x-Val1) ); 
x(ix-1:ix+1); 
  
L0i = ix; 
L0Av = M0Av(ix:end,1); 
L1Av = M1Av(1:end-ix+1,1); 
L01Av = mean([L0Av, L1Av], 2); 
AVl = size(L01Av); 
L01Avg = [M0Av(1:ix-1, 1); L01Av; M1Av(AVl(1)+1:end,1)]; 
S0Av = M0Av(ix:end,2); 
S1Av = M1Av(1:end-ix+1,2); 
S01Av = mean([S0Av, S1Av], 2); 
AVs = size(S01Av); 
S01Avg = [M0Av(1:ix-1, 2); S01Av; M1Av(AVs(1)+1:end,2)]; 
M01Avg = [L01Avg, S01Avg]; 
  
plot(L01Avg, S01Avg, 'b-', 'LineWidth', 2); 
grid on; 
xlabel('Height in Meters', 'FontSize', fontSize); 
ylabel('Area in Meters Squared', 'FontSize', fontSize); 
  
%Combine profile for combined 0-1 and 2 increment, averaging 
cross sectional areas for overlapping heights. Outputs new matrix 
of combined 0-2 increment profile measurements. 
 
x = M01Avg(:,1); 
Val1 = M2Av(1,1); 
  
[ d, ix ] = min( abs(x-Val1) ); 
x(ix-1:ix+1); 
  
L1i = ix; 
L1Av = M01Avg(ix:end,1); 
L1AvSize = size(L1Av); 
L1AvL = L1AvSize(1); 
L2Av = M2Av(1:L1AvL,1); 
L12Av = mean([L1Av, L2Av], 2); 
AVl = size(L12Av); 
L12Avg = [M01Avg(1:ix-1, 1); L12Av; M2Av(AVl(1)+1:end,1)]; 
S1Av = M01Avg(ix:end,2); 
S1AvSize = size(S1Av); 
S1AvL = S1AvSize(1); 
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S2Av = M2Av(1:S1AvL,2); 
S12Av = mean([S1Av, S2Av], 2); 
AVs = size(S12Av); 
S12Avg = [M01Avg(1:ix-1, 2); S12Av; M2Av(AVs(1)+1:end,2)]; 
M12Avg = [L12Avg, S12Avg]; 
  
plot(L12Avg, S12Avg, 'b-', 'LineWidth', 2); 
grid on; 
xlabel('Height in Meters', 'FontSize', fontSize); 
ylabel('Area in Meters Squared', 'FontSize', fontSize); 
  
%Output combined profile of height vs. cross-sectional area. 
 
Raw = [L12Avg, S12Avg]; 
 
 

A1.3 Fit PB Relaxation Equation to Measured Profiles 

The following code was designed to fit the profile relaxation equation (Equation 4.5) to the 

relaxation regions of measured channel profiles as described in Chapter 4. This code was added 

directly to the profile measurement code shown previously. The fitting variables, 𝑅଴, 𝑅௘ and 𝐿 

were used to match theory to profiles and subsequently output for analysis. 

clc; 
format long g; 
format compact; 
fontSize = 20; 
 
%First import data from combined profile measurement with height 
as Lexp and corresponding area as Sexp. Areas are converted to 
radii.  
c = 0.161254480773981; 
FitHeight = Lexp; 
FitRadii = (Sexp/c).^0.5; 
  
  
% Display the Fitting Region. 
plot(FitHeight, FitRadii, 'b-', 'LineWidth', 2); 
grid on; 
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xlabel('Height in Micrometers', 'FontSize', fontSize); 
ylabel('Radius in Micrometers', 'FontSize', fontSize); 
  
%Curve Fitting (calls function createFit detailed below) 
[fit2, gof] = createFit(FitHeight, FitRadii); 
  
%Export Coefficients 
Coeff = coeffvalues(fit2); 
L = Coeff(1); 
Re = Coeff(2); 
Ro = Coeff(3); 
%Determine R-Square value 
Rsqr = gof.rsquare; 
  
Outputs = [Rsqr, Ro, Re, L]; 
 

%The fitting function ‘createFit’ was defined in a separate 
command file and linked to the code above. 
 
function [fit2, gof] = createFit(FitHeight, FitRadii) 
  
%% Fit: 'Data_Fit'. 
[xData, yData] = prepareCurveData( FitHeight, FitRadii ); 
  
% Set up fittype and options. 
ft = fittype( 'Re + ((Ro-Re)*exp(((-1)*x)/L))', 'independent', 
'x', 'dependent', 'y' ); 
opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 
opts.Display = 'Off'; 
opts.Lower = [10 0 0]; 
opts.StartPoint = [1000 100 150]; 
  
% Fit model to data. 
fitresult = fit( xData, yData, ft, opts ); 
  
 
%Identify and remove outliers caused incorrect image edges. 
fdata = feval(fitresult,xData); 
CheckOutliers = abs(fdata - yData) > 0.5*std(yData); 
outliers = excludedata(xData, yData,'indices',CheckOutliers); 
opts2 = fitoptions( 'Method', 'NonlinearLeastSquares' ); 
opts2.Display = 'Off'; 
opts2.Lower = [10 0 0]; 
opts2.StartPoint = [1000 100 150]; 
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opts2.Exclude = outliers; 
  
%Fit Curve to data with outliers removed 
[fit2, gof] = fit(xData,yData,ft,opts2); 
  
% Plot fit with data. 
figure( 'Name', 'Data_Fit' ); 
h2 = plot( fit2, xData, yData, outliers);  
%outliers here indicates highlight of outliers in diff colour 
legend( h2, 'PB Radii vs. Height NO OUTLIERS', 'Fitted Theory', 
'Location', 'NorthEast' ); 
% Label axes 
xlabel FitHeight 
ylabel FitRadii 
grid on 
  
end 
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B1.1 Derivation of the Standard Drainage Theory 

Equations (4.5), (5.1) and (6.1) describe the standard drainage theory when applied to an ideal vertical PB 

with liquid flow field, 𝑢ሬ⃗ . An abridged version of the full derivation provided by Elias et al.[17] is given here 

in order to provide context, although it is recommended that readers refer to Elias et al.[17] for further 

detail. 

Equations (4.5), (5.1) and (6.1) are ultimately derived from the Navier-Stokes equation for fluid momentum 

(Equation (B1)) where 𝑃 is the pressure and 𝑓 is the external volume force. 𝑓 itself can be described as the 

summation of the two forces 𝑓௟
ሬሬ⃗  and 𝑓௥

ሬሬሬ⃗  (Equation (B2)), where the volume force, 𝑓௟
ሬሬ⃗ , includes a ‘line tension’ 

effect due to the minimisation of PB surface energy and 𝑓௥
ሬሬሬ⃗  is the elastic restoring force exerted on the PB 

by its three adjoining films. 

ௗ௨ሬሬ⃗

ௗ௧
= 𝑔⃗ + 𝜈∆𝑢ሬ⃗ + ൫𝑓 − ∇ሬሬ⃗ 𝑃൯/𝜌                              (B1) 

𝑓 = 𝑓௟
ሬሬ⃗ + 𝑓௥

ሬሬሬ⃗                                 (B2) 

The surface free energy of the PB can be expressed as 𝐸௦ = −2𝛾𝑙ଵ𝑐𝑅, where 𝑙ଵ describes the length of the 

PB. At this point, we must also introduce a curvilinear coordinate, 𝑠௩ሬሬሬ⃗ , which follows any deformation in 

the PB, a vector tangential to the PB, 𝑡௩ሬሬሬ⃗ , and a vector normal to the PB, 𝑛௩ሬሬሬሬ⃗ . The ‘line tension’, 𝑇ሬ⃗ , of the PB 

is then expressed as: 

 𝑇ሬ⃗ =
డ(ாೞ)

డ௟భ|ೇ௧ೡሬሬሬ⃗
= −𝛾𝑐𝑅𝑡௩ሬሬሬ⃗                                (B3) 

From this, we can derive the external volume force acting on the PB element between 𝑠௩ and 𝑑𝑠௩ as: 

𝑓௟
ሬሬ⃗ = ቀ

ଵ

௖ோమௗ௦ೡ
ቁ

ௗ ሬ்⃗

ௗ௦ೡ
𝑑𝑠௩ = −

ఊ

ோమ

ௗோ

ௗ௦ೡ
𝑡௩ሬሬሬ⃗ −

ఊ

ோ

ௗ௧ೡሬሬሬ⃗

ௗ௦ೡ
                            (B4) 
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Finally a force per unit length exerted by the three films is introduced in the form of Equation (B5) where 

𝜒 is a dimensionless vector and 𝑆 = 𝑐𝑅ଶ is the PB cross-sectional area. A specific derivation of 𝜒 can be 

found in Elias et al.[17]. 

𝛾𝜒⃗=S𝑓௥
ሬሬሬ⃗                                  (B5) 

At this point, we must also introduce the variables 𝐷 and 𝐼, which are defined in Equations (5.5) and (6.6), 

and (5.6) and (6.7) respectively in the main manuscript, and describe the viscous and inertial terms of the 

fluid flow. These were obtained by averaging across the PB horizontal cross-section[17], and can ultimately 

be used to describe the shape of the liquid flow velocity profiles. 

𝐷 = −𝑅ଶ∆𝑢തതതത 𝑢ത⁄                                 (5.5, 6.6) 

𝐼 = 𝑢ଶതതത
𝑢തଶൗ                        (5.6, 6.7) 

When in the steady state, substituting Equations(B4), (B5), (5.5, 6.6) and (5.6, 6.7) into Equation (B1) 

becomes: 

𝐼൫𝑢തሬ⃗ ∙ ∇ሬሬ⃗ ൯𝑢തሬ⃗ = 𝑔⃗ −
஽ఔ

ோమ 𝑢തሬ⃗ −
ఊ

ఘோమ

ௗோ

ௗ௦ೡ
𝑡௩ሬሬሬ⃗ −

ఊ

ఘோ

ௗ௧ೡሬሬሬ⃗

ௗ௦ೡ
+

ఊఞሬሬ⃗

ఘ௖ோమ                           (B6) 

As 𝑢തሬ⃗  is tangential to the PB axis, this can be rewritten as Equation (B7), where the parameter, 𝜅, is 

introduced to describe the curvature in the vertical plane. 

𝐼 ቂ𝑢തଶ𝜅𝑛௩ሬሬሬሬ⃗ + 𝑢ത
ௗ௨ഥ

ௗ௦ೡ
𝑡௩ሬሬሬ⃗ ቃ = 𝑔⃗ −

஽ఔ

ோమ 𝑢ത𝑡௩ሬሬሬ⃗ −
ఊ

ఘோమ

ௗோ

ௗ௦ೡ
𝑡௩ሬሬሬ⃗ −

ఊ

ఘோ
𝜅𝑛௩ሬሬሬሬ⃗ +

ఊఞሬሬ⃗

ఘ௖ோమ                          (B7) 

In the ideal case of a vertical, undistorted PB, Equation (B7) can be projected along the tangential vector 

to yield Equations (4.5), (5.1) and (6.1), where the curvilinear coordinate 𝑠௩ becomes equivalent to the 
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vertical coordinate 𝑍. Here, the definition 𝑢ത = 𝑄/𝑐𝑅ଶ is used to describe the relationship between liquid 

flow rate and average flow velocity across the PB horizontal cross-section. 

ௗோ

ௗ௓
=

௖஽ఔொ మோర

൬
మ಺ೂమ

ೃ
൰ି൬

೎మೃమം

ഐ
൰
               (4.5, 5.1, 6.1) 
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