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Abstract 

Formation of genetic crossovers (COs) during prophase I of meiosis is essential for 

faithful segregation of chromosomes at anaphase I. As in many organisms, in 

Arabidopsis thaliana, CO number and distribution is non-random, and thus 

understanding the factors that influence CO localization is of great interest. One such 

factor is the chromosome axis: a proteinaceous meshwork that organizes the 

chromatin into a linear array of loops. Previous work has identified ASY1 and ASY3 

(homologues of yeast Hop1 and Red1 respectively) as key constituents of the axis in 

A. thaliana.  

In this study, we commence a functional analysis of novel chromosome axis 

associated protein ASY4, identified via immuno-affinity proteomics with ASY1. Using 

a range of cytological and molecular techniques including structured-illumination 

microscopy and CRISPR-Cas9, we confirm that ASY4 is required for normal fertility, 

CO number and maturation, axis structure, and synapsis in A. thaliana. Using both an 

antibody raised against ASY4 and ASY4 tagged with yellow fluorescent protein, we 

show that ASY4 is associated with the chromosome axis during prophase I of meiosis. 

We confirm that ASY4 is a direct interacting partner of core axis protein ASY3, and 

that this is potentially facilitated through the second coiled-coil domain of ASY4. 

Combined, this data shows ASY4 to be an essential component of the meiotic 

chromosome axis in A. thaliana, and highlights the importance of the axis structure in 

crossover formation.   
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For Mum & Dad  

“Education never ends, Watson. It is a series of 
lessons, with the greatest for the last.”  

– Sherlock Holmes in His Last Bow, Sir Arthur 
Conan Doyle (1917).  
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1 Introduction 

1.1 An Overview of Meiosis 

In sexually reproducing organisms, meiosis is an essential cell division responsible for 

maintaining the ploidy level of the species, and for introducing genetic variation (Kerr 

et al., 2012). Both are achieved by the process of inter-homolog recombination (IHR), 

which results in the formation of genetic crossovers (COs) (reviewed in Arabdiopsis in 

Osman et al., 2011).  

The meiotic programme is split into two divisions, following one round of DNA 

replication. Meiosis I is termed the ‘reductional’ division, where homologous 

chromosomes are separated. The second is the ‘equational’ division, where the sister 

chromatids, held together since replication, are pulled apart. The products of meiosis 

are therefore four genetically non-identical haploid gametes. This is in contrast with 

mitosis, where two genetically identical sister cells are produced (reviewed in 

McIntosh, 2016).  

1.2 The Stages of Meiosis 

In common with mitosis, the process of meiosis I is split into several cytologically 

distinct phases: prophase, metaphase, anaphase, and telophase. In meiosis II, stages 

consist of a dyad (two-cell) stage, followed by metaphase II, anaphase II, and 

telophase II, culminating in the formation of the final tetrad of cells. 

As in other organisms, in Arabidopsis thaliana, prophase I takes the longest time to 

complete, accounting for c. 30 hours of the total 33 hours it takes to reach the end of 

meiosis II (Armstrong et al., 2003). Prophase I is divided further into five sub-stages: 

leptotene, zygotene, pachytene, diplotene, and diakinesis (Figure 1.1).  
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Figure 1. 1 A Brief Overview of the Meiotic Programme. DAPI stained meiocytes from Arabidopsis thaliana PMCs. Diagrams 
illustrate the conformation of the chromosomes during each stage shown. Bar = 5 µm.    
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Leptotene occurs after S-phase and meiotic G2. During S-phase, the DNA is 

replicated, resulting in each chromosome consisting of two sister chromatids held 

together by the cohesin complex. The cohesins form the base of what will become the 

meiotic chromosome axis, and will continue to hold the sister chromatids together until 

anaphase II (Cai et al., 2003; Lam et al., 2005; Strunnikov et al., 1993).  

As the cells exit G2 and enter leptotene, the meiotic chromosome axis commences 

extension along the chromosomes. Cytologically, the chromatin begins to appear more 

discrete than at earlier stages as the chromatin is elaborated into a linear array of 

loops, constrained at the bases by the axis meshwork (reviewed in: Kleckner, 2006). 

In Arabidopsis, this is characterised by the installation and extension of two key axis-

associated proteins, ASY1 and ASY3 (Armstrong et al., 2002; Caryl et al., 2000; 

Ferdous et al., 2012). As zygotene commences and progresses, the chromosomes 

that have successfully identified their homologs begin to synapse, as is indicated by 

the formation of the synaptonemal complex (SC): a tripartite structure comprised of 

the central transverse filament (TF) protein ZYP1 in Arabidopsis, and the axial 

elements, termed as the ‘lateral elements’ in the context of the SC (Higgins et al., 

2005). Once synapsis is complete along all chromosome pairs, the cell is defined as 

having reached pachytene. This stage is defined by its thick, rope-like chromosomes 

that represent the paired homologs in close apposition. In immunolocalisation studies, 

this stage is notable for the presence of a fully extended ZYP1 signal, with ASY1 

appearing more diffuse (Armstrong et al., 2002; Higgins et al., 2005; Lambing et al., 

2015). From pachytene, further remodelling of the axis occurs with the removal of the 

SC at diplotene, at which point the homologues are held together at chiasmata. 

Condensation of the chromatin then compacts the chromosomes down into discrete 

bivalents which can align on the equatorial plate of the cell at metaphase I. At this 



5 
 

 

stage, chiasma can be identified and counted (Jahns et al., 2014; Sanchez Moran et 

al., 2001).  

Homologous chromosomes are then pulled apart by the spindle at anaphase I, which 

eventually results in the two-cell dyad stage. Through a further division in meiosis II, 

sister chromatids finally separate, and the four resultant daughter cells are visible as 

a tetrad (Figure 1.1). 

This global remodelling of chromosomes during prophase I is contemporaneous with 

the progression of meiotic recombination: the process by which COs are formed. This 

process commences with the initiation of pre-programmed double-strand breaks 

(DSBs) in DNA during leptotene, and their subsequent repair, which is complete by 

the end of pachytene. The process of recombination is tightly regulated, as will be 

explored later. High levels of regulation are necessary not only because DSBs are 

highly genotoxic if they go unrepaired, but also because various meiotic mutant studies 

have revealed that errors during IHR can lead to chromosomes failing to locate and 

synapse with their partner, and thus ultimately fail to align correctly at metaphase I. 

Incorrect alignment at metaphase I may then lead to incorrect separation at anaphase 

I. This is termed ‘non-disjunction’, and is thought to arise due to the inability of the 

meiotic spindle to orient chromosomes by a mechanism that senses a tension 

‘threshold’ when the bivalents, attached by chiasmata, are correctly aligned (Forejt, 

2001; Lampson and Cheeseman, 2011).  

The process of meiotic recombination itself will now be discussed in detail.  

1.3 Meiotic Recombination 

An overview of the process of meiotic recombination is presented in Figure 1.2.  
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Figure 1. 2 Overview of the process of meiotic recombination. Main pathways to resolving pre-programmed double strand breaks 
in DNA. Modified from Osman et al., 2011.  
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1.3.1 Double Strand Break Initiation 

Inter-homolog recombination commences with the formation of double strand breaks 

(DSBs) in DNA at pre-programmed locations termed ‘DSB hotspots’ (reviewed in: 

Petes, 2001). In Arabidopsis, between 250 and 300 DSBs are formed per cell 

(reviewed in: Serrentino and Borde, 2012). DSBs are created by a transesterification 

reaction, catalysed by Spo11: an archaeal topoisomerase-VI subunit A-like protein 

(Bergerat et al., 1997; Keeney et al., 1997). In Arabidopsis, Spo11 has three non-

functionally redundant homologues: SPO11-1, SPO11-2, and SPO11-3 (Grelon et al., 

2001; Hartung and Puchta, 2000; Stacey et al., 2006). Whilst SPO11-3 is only required 

for somatic development, both the active Tyr-103 in SPO11-1 and Tyr-124 in SPO11-

2 are required to catalyse DSB formation (Hartung et al., 2007b). The three SPO11 

genes are common to all land plants, but only homologues of SPO11-1 are present in 

animals and fungi (Sprink and Hartung, 2014). The more recent discovery of 

AtMTOPVIB, which is also essential for DSB induction, has also shown that SPO11-1 

and SPO11-2 work in a heterodimer, the formation of which is dependent on 

AtMTOPVIB (Robert et al., 2016; Vrielynck et al., 2016). 

In Saccharomyces cerevisiae, Spo11 works with a combination of other proteins, 

including Mre11, Xrs2, Rad50, Ski8, Rec102, Rec104, Rec114, Mer2, and Mei4 

(reviewed in: Borde and de Massy, 2013). As in S. cerevisiae, SPO11 does not work 

alone in initiating DSBs in Arabidopsis. The other accessory proteins identified thus 

far to work with AtSPO11 are: AtPRD1, AtPRD2, AtPRD3, AtDFO, and AtSWI1, some 

of which have homologs in S. cerevisiae (De Muyt et al., 2007; Mercier et al., 2001; 

Muyt et al., 2009; Zhang et al., 2012). AtPRD1 is a homologue of Mei1 from mammals 

and yeast; AtPRD2 is a functional orthologue of Mei4; and AtPRD3 is a homologue of 

OsPAIR1 in rice, and appears to be specific to plants (Nonomura et al., 2004). AtDFO 
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and AtSWI1 are also specific to plants. AtRAD50, AtMRE11 and a Ski8 orthologue 

have also been identified in Arabidopsis, but are non-essential for DSB formation 

(Jolivet et al., 2006; Osman et al., 2011).  

1.3.1.1 Controlling DSB Formation 

Given the toxic nature of DSBs, their timing, location, and number are tightly 

controlled. DSB formation commences between 1.5 and 2 h after DNA replication in 

S. cerevisiae, and between 1 and 5 h after replication in A. thaliana (Borde et al., 2000; 

Sanchez-Moran et al., 2007). Timing is thought to be controlled in a number of ways.  

Firstly, the expression of meiotic genes – including those involved in DSB production 

– increases during the appropriate stage of meiosis. For example, in 

Schizosaccharomyces pombe and Caenorhabditis elegans, Spo11 is only expressed 

during meiosis (Atcheson et al., 1987; Dernburg et al., 1998; Lin and Smith, 1994). In 

A. thaliana, it appears that whilst SPO11 is transcribed in non-meiotic cells, it is 

inactive, most likely due to alternative splicing (Sprink and Hartung, 2014), i.e., only 

during meiosis are meiotic transcripts spliced efficiently such that they can carry out 

their role. In budding yeast, meiosis specific splicing factors have been identified, and 

it has been suggested that Mei4 is required to promote efficient splicing of Rem1: a 

cyclin necessary for normal recombination (Malapeira et al., 2005). It has also been 

shown that Mer2 is transcribed during meiosis and mitosis, but is only spliced to 

become active during meiosis, and that this is dependent on Mer1 (Engebrecht et al., 

1991). As Mer2 is needed for Spo11 induced DSBs, DSB licencing could only occur 

once Mer2 had been efficiently spliced at the onset of meiosis. That the meiotic 

programme is coupled with a large-scale alteration in splicing has also been 

documented in Mus musulus (Schmid et al., 2013), suggesting splicing is a conserved 

mechanism of controlling the timing of recombination and DSB induction.   
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Licencing of DSBs in budding yeast also depends on the S-phase cyclin dependent 

kinases CDK-S, and DDK: a member of the replication fork protection complex (Wan 

et al., 2008). To become active, Mer2 requires phosphorylation first by CDK-S, and 

subsequently by DDK. Crucially, CDK-S and DDK are most active after DNA 

replication, which is when DSBs begin to form during leptotene; this therefore couples 

DSB induction to DNA replication, and sets the sequence of events to occur one after 

the other (Wan et al., 2008). In species with larger genomes such as Barley, there is 

a 2 h delay between replication in the distal regions of the chromosomes, and the more 

proximal regions (Higgins et al., 2012). The roles of these kinases could therefore 

provide an efficient method via which DSBs cannot be induced before replication has 

occurred, and this would be of particular importance in an organism such as Barley. 

Though, thus far, this particular mechanism of regulation has not been demonstrated 

in plants.  

1.3.1.1.1 Location and Number of DSBs 

Where a DSB is formed on the chromosome, and how many are made, is pre-

determined and non-random. In S. cerevisiae, around 160 DSBs are made per meiosis 

(Panizza et al., 2011). This value remains constant in mutants with elevated levels of 

Spo11 (Neale et al., 2005). This is via a process termed ‘DSB homeostasis’, and the 

fact that this buffering exists highlights the importance of forming the correct number 

of DSBs. In S. cerevisiae, DSB homeostasis is at least in part governed by the kinases 

Tel1 and Mec1, homologs of plant and mammalian ATM/ATR respectively, and are 

part of the DNA Damage Response (DDR) machinery (Carballo et al., 2013). In M. 

musculus and Drosophila melanogaster, it has been demonstrated that once DSBs 

are formed, the DDR machinery becomes active. Specifically, ATM activity increases, 

which then phosphorylates its targets, and thereby prevents further DSB formation 
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(Joyce et al., 2011; Lange et al., 2011). In yeast, one such target is Rec114: part of 

the RMM complex. Once Rec114 is phosphorylated, its activity decreases, and the 

formation of more DSBs is restricted (Carballo et al., 2013). This has not been 

demonstrated in A. thaliana, but it is possible that this is still the case, as a Rec114 

homolog has been identified (AtPHS1) with having a meiotic role, and A. thaliana also 

possesses ATM/ATR (Ronceret et al., 2009).  

As mentioned, DSBs form in locations termed ‘hotspots’: regions of approximately 200 

bp in length at GC sites, away from the AT-rich axis-associated sites. Notably, in S. 

cerevisiae, DSBs usually occur within gene promoters (Berchowitz et al., 2009). Gene 

promoters in S. cerevisiae are nucleosome depleted regions (NDRs), marked by the 

presence of fewer histones, and more open chromatin marks. 88% of S. cerevisiae 

DSBs occur in these NDRs (Berchowitz et al., 2009). Open chromatin marks such as 

trimethylation of lysine four of histone three (H3K4me3) has been noted to be 

associated with DSB hotspots in budding yeast (Borde et al., 2009; Pan et al., 2011). 

In S. cerevisiae, H3K4me3 is deposited by Set1, and knocking out the Set1 gene 

results in both fewer DSBs, and different DSB localisation (Borde et al., 2009). In A. 

thaliana, H3K4me3 is thought to be deposited by the SET DOMAIN group of proteins, 

including AtSDG2: a protein essential for normal pollen development (Berr et al., 

2010). So far, no link has been conclusively proven between loss of SDG2 and any 

change in DSB localisation or number, but given the recent studies in plants showing 

no obvious link between DSBs and H3K4me3, this is perhaps unsurprising (Choi et 

al., 2018; He et al., 2017). Current data does suggest, however, that CO localisation 

is altered in these sdg2 knockout lines, which may or may not reflect an alteration in 

DSB hotspot localisation (West, 2015).  
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Localisation of DSBs in mammals, however, is different to yeast and plants. Instead 

of occurring predominantly in promoters, mammalian DSBs occur in intergenic 

regions, including transcription start sites (TSS). Hotspots are reported to be in some 

way linked to H3K4me3, but it is proposed that other factors including the genome 

architecture also need to ‘favour’ the formation of DSBs as H3K4me3 alone is not 

necessarily a reliable indicator of DSB formation (Lange et al., 2016). Nonetheless, 

the altered location in mammals compared to plants and yeast is predominantly due 

to the zinc-finger containing PRDM9: a protein that has the capability to deposit 

H3K4me3 marks (Baudat et al., 2010). In mouse, 73% of hotspots contain the PRDM9 

consensus sequence, and knocking out PRDM9 results in DSBs reverting to a similar 

location to that in yeast. This suggests that gene promoters are a default location for 

DSB formation (Baudat et al., 2010; Smagulova et al., 2016).  

1.3.1.2 DSB Processing and Formation and Single End Invasion 

As it forms the DSB, Spo11 becomes covalently bound to the 5′ end of the DNA, and 

so for the break to be repaired, Spo11 must first be removed, and the DNA resected. 

In S. cerevisiae, the MRX-N complex, containing Mre11, Rad50, and Xrs2/Nbs1, along 

with Com1/Sae2, completes removal of Spo11 (reviewed in: Lam and Keeney, 2014).  

Resection of the overhangs at the break site is conducted by Sgs1-Dna2, and Exo1 

(Mimitou and Symington, 2009). The result of DSB resection is a long 3′ end tract of 

single stranded DNA that, in S. cerevisiae, is loaded by Replication Protein A (RPA) 

and Rad52, which protects the ends from degradation (Gasior et al., 1998; Soustelle 

et al., 2002).  In Arabidopsis, RPA has five homologs, yet no binding of ssDNA has 

been demonstrated, and RNAi mutants of AtRAD52 show phenotypes consistent with 

meiotic defects, but no conclusive role has been determined (Aklilu et al., 2014; 

Samach et al., 2011; Shultz et al., 2007).  In S. cerevisiae, RPA and Rad52, along with 



12 
 

 

accessory proteins Rad54, Tid1/Rdh54, Mei5-Sae3, and Hop2-Mnd1 allow for the 

loading of the RecA-related recombinases Rad51 and Dmc1, creating a nucleoprotein 

filament that can commence the search for its homologue (Chan et al., 2014; Cloud et 

al., 2012; Ferrari et al., 2009; Hayase et al., 2004; Miné-Hattab and Rothstein, 2012; 

Nimonkar et al., 2012). Successful single end invasion (SEI) of the homologous 

chromosome by this nucleoprotein filament results in the formation of a nascent 

displacement loop (D-loop) structure, and the formation of the pre-synaptic filament, 

which will later be cytologically visible as an inter-axis bridge (Dubois et al., 2019; 

Gasior et al., 1998; this thesis in Arabidopsis). Recombination-associated DNA 

synthesis may then occur, thus forming an extended D-loop structure. At this point, 

the second end may go on to be captured, and form a double Holliday junction (dHJ), 

or could be disrupted by either STR or Srs2 (discussed below) (Holliday, 1964; Piazza 

et al., 2019).  

In plants, AtDMC1, AtRAD51, AtRAD51C, and AtXRCC3 all appear to have a role in 

meiotic DSB repair, with DMC1 and RAD51 acting as the essential components for 

facilitating formation of the nucleoprotein filament, and directing the homology search. 

Loading of DMC1 and RAD51 appears to be promoted by AtBRACA2, and DMC1 itself 

may require RAD51 for normal localisation (Kurzbauer et al., 2012; Seeliger et al., 

2012; Siaud et al., 2004).  

1.3.2 DSB Repair: COs and NCOs 

Ultimately, meiotic DSBs will either be repaired as a crossover (CO), resulting in a 

reciprocal exchange of genetic content, or as a non-crossover (NCO), resulting in the 

non-reciprocal exchange of DNA.  
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1.3.2.1 CO/NCO Repair Decision 

A key question in meiosis research has related to how the decision of whether to 

resolve a recombination intermediate as a CO or as an NCO is made. Studies in 

budding yeast have shed some light on the timing of this process, with many favouring 

the proposal of an ‘Early CO decision’ (ECD) model (Allers and Lichten, 2001; Börner 

et al., 2004). This stipulates that the decision of whether to repair a recombination 

intermediate as a CO or NCO is made prior to dHJ resolution, possibly as early as the 

point at which a stable single end invasion intermediate is made. This is based on the 

observation that yeast zmm mutants (mer3, msh5, zip1, zip2, zip3) had reduced levels 

of COs (following a reduction in the number of stable SEI intermediates and dHJs), 

but DSB production and NCO resolution was unaffected (Börner et al., 2004). This 

suggested that the decision to repair a DSB as a CO must come before the 

establishment of dHJs, in contrast to the previously proposed DNA double strand 

break repair (DSBR) model. DSBR proposed that the orientation in which a dHJ was 

resolved could yield either a CO or NCO, and so the CO/NCO decision would be made 

at this point (Bell and Byers, 1983; Holliday, 1964; Szostak et al., 1983). Later research 

that led to the proposal of the ECD found that, via physical detection methods of 

recombination intermediates, the isolated structures did not fit with the idea that a 

proportion of dHJs were resolved as NCOs. This research went further to propose 

that, at least in yeast, it is likely that all dHJs are pre-CO intermediates (Allers and 

Lichten, 2001; Gilbertson and Stahl, 1996; Porter et al., 1993). Furthermore, 

intermediates analysed from the zmm mutants revealed that there was a delay in 

progression of recombination intermediates post-DSB, but pre-SEI. This led to the 

conclusion that SEIs are likely CO-specific, and given that NCOs were still produced 
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normally in these mutants, these DSBs had likely already been designated as COs 

(Hunter and Kleckner, 2001).  

Based on these observations, it was therefore proposed that NCOs arose though a 

distinct pathway in S. cerevisiae, namely, synthesis dependent strand annealing 

(SDSA) (McMahill et al., 2007; Nassif et al., 1994; Resnick and Martin, 1976). This is 

where a D-loop is dissolved after a short stretch of DNA has been synthesised, 

resulting in a non-reciprocal genetic exchange. Whilst yeast appear to primarily utilise 

the SDSA pathway to resolve its NCOs, this does not appear to be obvious in plants. 

It is suggested that SDSA could result in gene conversion (GC) tracts, resulting from 

the non-reciprocal nature of the DSB repair (McMahill et al., 2007).  In plants, however, 

there is no obvious evidence of GC occurring at a detectable level; but it is nonetheless 

possible that the NCOs in plants merely result in very short GC tracts (Drouaud et al., 

2013; Wijnker et al., 2013). This could also be consistent with the idea of the majority 

of NCOs in plants arising from early dissolution of unregulated joint molecules, or from 

inter-sister repair, which may also be difficult to detect. Supporting this latter idea, no 

chromosome fragmentation was observed in IHR-defective Atdmc1 and Atasy1 

mutants, suggesting that inter-sister repair is actively utilised during Arabidopsis 

meiosis (Couteau et al., 1999; Sanchez-Moran et al., 2007).  

The decision to direct a D-loop toward an NCO or a CO in yeast is in part controlled 

by the STR complex, comprised of Sgs1, Top3, and Rmi1, along with helicases Mph1 

(a relative of human FANCM) and Srs2, modulated by Rdh54 (Mazón and Symington, 

2013; Mitchel et al., 2013; Piazza et al., 2019; Prakash et al., 2009; Sun et al., 2008; 

Tang et al., 2015; Tay et al., 2010). It is thought that these proteins can disassemble 

distinct D-loop structures, including those that may have otherwise been directed down 

the Class II CO route (such as abnormal joint molecules) to be processed by the 
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structure specific endonucleases (SSN; 1.3.2.2.2). Successfully dissolved 

intermediates may then form an NCO via SDSA, or become a Class I CO if captured 

and stabilised by the ZMM complex. If the joint molecule persists/escapes this level of 

regulation, it may be resolved as a Class II CO (see 1.3.2.2.2) (Kaur et al., 2015).  

In Arabidopsis, it is not exactly clear at which point the CO/NCO decision is made. An 

analogous system to yeast does appear to be present, however. The proteins involved 

in these processes are referred to as ‘anti-recombinases’, and include the RTR 

complex (AtRMI1/BLAP75, AtTOP3α, and AtRECQ4A, AtRECQ4B); AtFANCM and 

its DNA-binding cofactors AtMHF1 and AtMHF2; and AtFIGL1 with its partner AtFLIP 

(Chelysheva et al., 2008; Crismani et al., 2012; Fernandes et al., 2018; Girard et al., 

2014; Hartung et al., 2008, 2007a; Higgins et al., 2011; Knoll et al., 2012; Séguéla-

Arnaud et al., 2017, 2015). These factors limit the levels of COs by either acting to 

unwind particular joint molecules/recombination intermediates (RTR, FANCM, limiting 

COs produced by the Class II pathway), or by interfering in the process of strand 

invasion (FIGL and FLIP) (Fernandes et al., 2018; Girard et al., 2015; Séguéla-Arnaud 

et al., 2015).  

In S. cereivisiae, phosphorylation of the C-terminal end of the ZMM/TF protein Zip1 

also appears to be essential in committing a particular DSB to become a CO (Chen et 

al., 2015). This data also supports the idea of the ECD, as it was proposed that Zip1 

is phosphorylated after DSB formation, but before the action of the other ZMMs. Thus 

under this model, after DSB initiation, Zip1 becomes directly/indirectly associated with 

the DSB, and then its phosphorylation designates the site to be repaired by the Class 

I CO pathway (discussed below) (Chen et al., 2015). Future research would need to 

be conducted on AtZYP1 to determine if it acts similarly.  
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1.3.2.2 Crossover Formation  

Further to the distinction of whether an intermediate is resolved as a CO or an NCO, 

COs can be further categorised by the recombinases that are responsible for their 

formation and resolution. These are referred to as the Class I and Class II pathways. 

1.3.2.2.1 The Class I CO Pathway: ZMM Dependent  

COs dependent on the Class I pathway of CO resolution are both essential for 

maintenance of the obligate chiasma necessary for normal disjunction, and 

interference-sensitive; that is, the presence of one Class I CO decreases the likelihood 

of another forming nearby, and thus their distribution along the chromosome is non-

random (Jones and Franklin, 2006).  The proteins responsible for these COs were first 

comprehensively characterised in budding yeast. These are the ZMMs: Zip1, Zip2, 

Zip3, Zip4, Msh4, Msh5, Mer3, and Spo16 (Börner et al., 2004). Mutants of these 

genes present with a reduction in CO numbers, confirming that they are essential for 

normal levels of CO formation. Notably, they are reduced to a CO level of only 15% of 

that of WT, therefore suggesting that there they are not required for formation of all 

COs in yeast (Börner et al., 2004). That the ZMMs all work in the same pathway was 

shown in double zmm mutant experiments, which revealed that the double mutants 

had a phenotype nearly indistinguishable from that of the single mutants (Börner et 

al., 2004; Fung et al., 2004; Hunter and Kleckner, 2001).  

In Arabidopsis, several ZMMs have also been identified. These are AtSHOC1/ZIP2, 

AtHEI10, AtZIP4, AtMSH4, AtMSH5, AtPTD, and AtMER3/RCK (Chelysheva et al., 

2007, 2012; Higgins et al., 2004a, 2008b; Lu et al., 2014; Macaisne et al., 2008; 

Mercier et al., 2005). Future research could also explore whether a potential 

Arabidopsis homologue of the recently identified rice ZMM HEI10 INTERACTION 



17 
 

 

PROTEIN 1 (HEIP1) identified via BLAST is also required for Class I CO formation in 

Arabidopsis (Li et al., 2018).  

The individual functions of these proteins have been explored, mostly through work 

conducted in budding yeast. Msh4/Msh5 are homologues of the bacterial MutS 

proteins, which, like Msh4/Msh5, also form a dimer. In E. coli, MutS is an essential 

component of the mismatch repair (MMR) pathway in responding to DNA damage, but 

in yeast was shown to be essential for stabilisation of proto-dHj structures (SEI and D-

loops) via a ‘sliding clamp’ mechanism that can embrace, and thus stabilise, DNA 

duplexes (Snowden et al., 2004). Its stability is also further influenced by post-

translational modification of at least MSH4 by the protein kinase DDK in yeast, and 

RNF212 and HEI10 in mouse (He et al., 2018; Qiao et al., 2014). In Arabidopsis, 

MSH4/MSH5 are proposed to execute their role in a similar manner. The 

Atmsh4/Atmsh5 mutants were also some of the first to suggest that there was indeed 

likely two CO resolution pathways in Arabidopsis, with each mutant retaining a residual 

chiasma number of approximately 15% of that of WT, reminiscent of data presented 

in S. cerevisiae (Higgins et al., 2004a, 2008b).  

Mer3 is a 5′ to 3′ DNA helicase conserved across yeast, plants, and mammals 

(Guiraldelli et al., 2013; Mercier et al., 2005; Storlazzi et al., 2010; Wang et al., 2009). 

It has been shown to load early in the recombination process, and is proposed to bind 

to D-loops to promote their stabilisation, thus aiding their transition by other ZMMs into 

later CO intermediates such as an SEI (Börner et al., 2004; Duroc et al., 2017; Hunter 

and Kleckner, 2001; Mazina et al., 2004). That Arabidopsis AtMER3 is also a ZMM 

was determined in an Atmer3 mutant study which revealed a significant reduction in 

COs, with the residual COs appearing insensitive to interference (Mercier et al., 2005).  
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Recent studies have determined that Zip2, Zip4, and Spo16 work together in a 

complex, called the ZZS (Muyt et al., 2018). Zip2-Spo16 (homologues of the 

XPF/ERCC1 endonucleases) are proposed to direct the ZZS complex to D-loops and 

Holliday junctions, and Zip2 itself has been identified as the component responsible 

for the complex’s CO promoting role (Arora and Corbett, 2019; Muyt et al., 2018). Zip4 

is proposed to, in part, act as a ‘scaffold’ due to its ability to stabilise Zip2, and interact 

with both the other ZMMs and the chromosome axis (Muyt et al., 2018). 

In Arabidopsis, the shoc1 (zip2) mutant presented with a phenotype similar to that of 

the other Arabidopsis zmm mutants with a reduction in COs, despite no obvious effect 

on the levels of DSBs or synapsis, and shoc1/msh5 double mutant analysis confirmed 

it acted alongside the ZMMs (Macaisne et al., 2008). This was similarly the case for 

Atzip4 (Chelysheva et al., 2007). Though the functions of these ZMMs has not been 

explored in such detail as in yeast, it is suggested that they possibly work in a similar 

capacity, further supported by the fact that AtPTD (ERCC1-like) has been shown to 

interact with SHOC1, and that the formation of this complex is likely necessary for 

Class I CO formation via stabilisation of dHJs (Lu et al., 2014; Macaisne et al., 2008). 

Thus, a ZZS-analogous system may also operate in Arabidopsis. 

The role of Zip3 in the formation of Class I COs has perhaps remained the most 

elusive. The Zip3 family in meiosis function as either SUMO or ubiquitin E3 ligases, 

and appear to be recruited as DSB processing commences; that Zip3 is loaded early 

is supported by the fact that it appears to be required for loading of other ZMMs 

(Serrentino et al., 2013; Shinohara et al., 2015, 2008). As with the other ZMMs, in 

budding yeast, Zip3 is required for both Class I CO formation and polymerisation of 

the SC (Shinohara et al., 2015). Whilst the precise function of Zip3 and its homologues 

in other organisms remains unclear, there are several theories surrounding its 
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function. In budding yeast, normal CO formation and SC polymerisation is also reliant 

on the SUMOylation of axis element component Red1. It has been proposed that this 

SUMOylation is necessary for the TF protein Zip1 to interact directly with Red1, and 

thus help promote formation of the SC (Cheng et al., 2006). As with other ZMMs, it is 

also possible Zip3 is another factor required for stabilisation of Class I CO 

intermediates. Fitting with this suggestion, in Arabidopsis, an antibody raised against 

the Zip3 homologue HEI10 revealed that HEI10 forms c. 97 small foci across the 

nucleus during early prophase I, reducing down to c. 8.8 large foci by the end of 

pachytene. This is consistent with the CO number in WT meiosis, suggesting it has 

essential roles in CO maturation (Chelysheva et al., 2012). Furthermore, in M. 

musculus, it is suggested that the action of its Zip3 homologues RNF212 and HEI10 

may prevent removal of the MutSγ MSH4-MSH5 heterodimer from CO sites, and that 

this is how RNF212 and HEI10 stabilise, and thus promote, CO formation (Qiao et al., 

2014).  

Lastly, the ZMM Zip1 is both required for normal Class I CO formation, and forms the 

transverse filament of the SC (Sym et al., 1993). In budding yeast, zip1 mutants also 

suffer a reduction in spore viability and a significant reduction in CO number (Tung 

and Roeder, 1998). In Arabidopsis, the two ZYP1 homologues ZYP1a and ZYP1b also 

present with a reduction in fertility, but also with an inability to correctly regulate CO 

formation; at metaphase I in a zyp1aT-DNA/zyp1bRNAi mutant line, there was an increase 

in ectopic recombination, resulting in both multivalents and non-homologous bivalents 

(Higgins et al., 2005). In contrast to budding yeast where Zip1 is absolutely required 

for Class I COs, the chiasma frequency in zyp1aT-DNA/zyp1bRNAi was 80% of that of 

WT; this would suggest that, in contrast to yeast, ZYP1 is not absolutely required for 

CO formation per se, but rather for properly controlled CO formation/CO fidelity. 
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Though for future experiments, it would be interesting to produce a completely ZYP1 

null mutant, potentially via gene editing, as it could be argued that there is the 

possibility of these zyp1 mutants being hypomorphic, i.e., with some protein still being 

produced. The role of ZYP1 as an SC component is discussed in 1.4.2.  

1.3.2.2.1.1  Class I CO Resolution  

The Class I CO dHJ intermediates are then finally resolved by the E. coli MutL 

homologues Mlh1 and Mlh3 in yeast. Mlh3 executes the endonucleolytic role, making 

single-stranded nicks in DNA, which is thought to be the basis of how it may resolve 

the dHJ (Al-Sweel et al., 2017; Nishant et al., 2008; Ranjha et al., 2014; Rogacheva 

et al., 2014; Wang et al., 1999). In Arabidopsis, MLH1/MLH3 are also essential for CO 

formation, with mutants for both presenting with a significant reduction in fertility and 

homologous recombination (Dion et al., 2007; Jackson et al., 2006). At late prophase 

I, antibodies raised against MLH1 and MLH3 are used as markers for COs, presenting 

with around 9 foci per nucleus, corresponding with the WT CO number (Franklin et al., 

2006). Furthermore, in Atmlh3, MLH1 is unable to localise onto the chromosomes, as 

has been observed in other systems (Franklin et al., 2006). Therefore, it is proposed 

that MLH1/MLH3 likely function in a similar manner to yeast and other systems in 

Arabidopsis.  

1.3.2.2.2 The Class II CO Pathway 

As previously discussed, the ZMMs account for 85% of the total number of COs in 

both budding yeast and Arabidopsis. The remaining 15% are from the Class II CO 

pathway, characterised by both the distinct manner in which they arise and are 

processed, and by the fact that they are interference insensitive. Given their stochastic 

formation along the chromosomes, Class II COs are not primarily responsible for 

formation of the obligate CO (Zickler and Kleckner, 1999).  
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Class II COs are thought to arise from the formation of unregulated/abnormal joint 

molecules. These structures are usually disassembled by STR/Srs2, but some may 

escape this stage of processing, and thus must be resolved in a different way (de los 

Santos et al., 2003; Kaur et al., 2015; Oh et al., 2008; Zakharyevich et al., 2012). In S. 

cerevisiae, the resolution of Class II COs is dependent on the structure-specific 

nucleases (SSN), comprised of Mus81-Eme1/Mms4, Yen1, and Slx1-Slx4 (De Muyt 

et al., 2012; Zakharyevich et al., 2012).  

In Arabidopsis, AtMUS81 is thought to be required for the resolution of some, but not 

all Class II COs, given that the Atmus81 single mutant has no significant reduction in 

chiasma frequency, and the Atmus81/Atmsh4 double mutant still had some residual 

chiasma, albeit at a reduced level compared to the single msh4 mutant (Higgins et al., 

2008a). More recent work has identified Fanconi anaemia D2 (AtFANCD2) as a 

potential key-player in the Class II CO resolution pathway. In Atfancd2, CO number is 

reduced by 14%, consistent with the proposed proportions of Class I/Class II COs. 

Furthermore, the residual chiasmata are interference sensitive (Kurzbauer et al., 

2018). Kurzbauer et al. (2018) also suggest that, given that univalents were observed 

in an Atfancd2/Atmus81 double mutant, that the Class II pathway may also contribute 

toward formation of some obligate chiasma. Nonetheless, a 

Atfancd2/Atmus81/Atmsh4 triple mutant still formed some bivalents, and thus CO 

formation was not completely abolished, suggesting the importance of further 

components of the Class II pathway that are yet to be discovered in Arabidopsis 

(Kurzbauer et al., 2018).  

1.3.3 Control of Meiotic Crossovers 

Given the importance of genetic COs during meiosis in ensuring timely and accurate 

segregation of the homologues, COs are subject to several layers of control.  
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1.3.3.1 CO Assurance and Homeostasis 

The first is, as has been previously mentioned, the formation of the ‘obligate CO’, i.e., 

the one CO necessary per chromosome pair to ensure correct tension on the 

metaphase I plate. This is true irrespective of chromosome size; both the smallest and 

largest chromosomes will receive, on average, between 1 and 2 COs (discussed in 

Jones and Franklin, 2006; Wang et al., 2015). That the obligate CO is maintained even 

when earlier recombination intermediates are reduced is referred to as CO assurance, 

and is directly related to CO homeostasis.   

CO homeostasis refers to the process by which CO levels are usually protected 

despite perturbations to the numbers of initial recombination precursors. Therefore, 

irrespective of increases or decreases in DSB levels, for example, the CO number 

remains constant. This phenomenon has been experimentally observed in several 

systems, and in some cases, has been related to the existence of a specific ‘CO 

assurance checkpoint’ (Cole et al., 2012; Deshong et al., 2014; Hartung et al., 2008; 

Martini et al., 2006; Mehrotra and McKim, 2006; Xu et al., 1997; Yokoo et al., 2012; 

Yu et al., 2016).  

1.3.3.2 CO Interference: localisation and distribution of COs 

1.3.3.2.1 CO Hotspots 

Despite COs forming at different sites between meioses, COs nonetheless tend to 

form in 1 - 10 kb regions known as ‘CO hotspots’ (Choi and Henderson, 2015). 

Unsurprisingly, these are also usually correlated with the locations of DSB hotspots, 

though in S. cereivisiae, this relationship is not necessarily so clear (Hyppa and Smith, 

2010; Smagulova et al., 2016). As previously mentioned in 1.3.1.1.1, there are several 

factors that correlate with recombination hotspots across species, e.g., NDRs, open 
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chromatin marks such as H3K4me3 and H3K9ac, and low mDNA (Borde et al., 2009; 

Choi et al., 2013; Pan et al., 2011; Shilo et al., 2015; Wijnker et al., 2013; Yamada et 

al., 2013). More recent research has highlighted in plants that recombination hotspots 

may also be associated with particular types of transposons, including Stowaway and 

gypsy: a somewhat unexpected result given previous observations that DSBs tend to 

be directed away from repetitive sequences which are prevalent in some transposons 

(Choi et al., 2018; He et al., 2017; Marand et al., 2019, 2017).  

In Arabidopsis, COs appear to be most concentrated at gene promoter and terminator 

sequences, and associated with the unstable histone H2A.Z variant (Choi et al., 2013; 

Drouaud et al., 2013; Yelina et al., 2012). In general, however, the COs in plants are 

associated with the gene-rich euchromatic regions, and are suppressed within 

heterochromatic regions (Fu et al., 2001; Li et al., 2015; Saintenac et al., 2009; Yelina 

et al., 2012). A key phenomenon also noted in plant crop species such as grasses is 

the tendency for the COs to form at the very distal ends of the chromosomes, 

visualised by the large ring bivalents that can be observed at metaphase I in barley 

and wheat (Higgins et al., 2012; Künzel et al., 2000; Osman and Franklin, 

unpublished). This amounts to in excess of 30% of the genes in wheat occurring in 

recombination ‘cold-spots’ (Künzel and Waugh, 2002; Mayer et al., 2011). In barley, 

and potentially wheat, this is thought to be the result of the distal chromosomal ends 

completing replication, and thus initiating meiotic recombination, well before the 

pericentromeric regions (Higgins et al., 2012). Indeed, in wheat, IHR-promoting axis 

protein ASY1 appears to load at the sub-telomeric regions first during early prophase 

I, and thus the distal ends of the chromosomes have a linearised axis well before the 

centromere-proximal regions (Osman and Franklin, unpublished). Thus, it is possible 

that these early COs can establish CO interference. 
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1.3.3.2.2 CO Interference 

CO interference is a long-observed phenomenon first described in the early 1900s 

(Muller, 1916; Sturtevant, 1915). It is the observation that the formation of one CO 

reduces the likelihood of another forming nearby. The precise details of how it works 

are not yet fully understood, but several theories have been suggested.   

The first was the ‘polymerisation model’ of CO interference, proposed in 1990 by King 

and Mortimer. They posited that that the interference signal spreads along the 

chromosome via the polymerisation of a particular protein, having nucleated from an 

initial CO site. The ‘strength’ of this signal is maintained, never dissipating as it spreads 

out from the CO. This polymerised element was then proposed to remove pro-CO 

machinery from other recombination intermediates downstream of the successful CO 

site, and thus, the machinery was then free to re-attach to other precursors. Evidence 

contrary to recombination machinery re-binding discounts this model (Muyt et al., 

2014; L. Zhang et al., 2014a), as does research suggesting interference weakens over 

distance (Drouaud et al., 2007; Hou et al., 2013; Petkov et al., 2007; L. Zhang et al., 

2014a, 2014b).  

The second model was proposed in 1993 by Foss and colleagues, where it was 

suggested that there was a ‘counting’ mechanism involved; that outward from an 

original, randomly selected CO site, a fixed-number of recombination precursors would 

be repaired as NCOs. By this theory, however, increasing the number of initial 

recombination precursors would result in a distinct difference of the number of COs 

produced; this is therefore not compatible with data presented in many organisms that 

suggest the existence of CO homeostasis (Cole et al., 2012; Deshong et al., 2014; 

Hartung et al., 2008; Martini et al., 2006; Mehrotra and McKim, 2006; Xu et al., 1997; 

Yokoo et al., 2012; Yu et al., 2016). Thus, the model has also since been discounted.  
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The most recent, and most convincing, model of CO interference with the most 

supporting evidence was proposed by Kleckner et al. in 2004. This is the ‘beam-film’ 

(BF) model of CO interference. The BF model proposes that, due to the constraints of 

the chromosome axis on chromatin as it expands and contracts, the chromosomes 

experience a high level of mechanical stress. This mechanical strain is proposed to be 

the main factor promoting CO formation, as in this model, a CO will provide local stress 

relief, with the signal dissipating over the physical distance of the chromosome. Where 

the stress reaches a particular ‘threshold’ is where another recombination precursor 

will be designated as a CO (Kleckner et al., 2004). This fits with observations that 

interference does indeed act across physical distances rather than genomic or genetic 

(i.e., over µm, not kb or cM) (Drouaud et al., 2007; Hou et al., 2013; Petkov et al., 

2007; L. Zhang et al., 2014a, 2014b). Furthermore, it is compatible with the notion of 

assuring the obligate CO, given that mechanical stress would always be high enough 

to ensure at least one CO-designated event. Crucially, it is also compatible with CO 

homeostasis, as if the stress-relief is spreading over a physical distance, an increase 

or decrease in DSBs would lead to no change in CO number (more DSBs = more 

interference signals = no overall increase in COs; fewer DSBs = reduced interference 

signal = more COs formed in response). Mathematical models derived using the BF 

hypothesis also fit with observed data (Zhang et al., 2014a, 2014b). What these 

‘precursor’ sites may be is not strictly defined within the literature, however, recent 

work in Sordaria macrospora describes the presence of inter-axis bridges during late 

leptotene when CO patterning is proposed to be imposed (Dubois et al., 2019). These 

are comprised of both axis components, and those involved in the recombination 

pathways, thus linking the chromosome axis and SC directly to recombination. These 

bridges could therefore be the ‘weak-points’ described by Kleckner et al. (2004), and 
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that stress at these particular sites would induce the designation of these 

intermediates as COs.  

Through this BF model of CO patterning, we therefore see the influence of the axis on 

meiotic recombination, highlighting that they are intrinsically linked. It is possible that 

through this model, perturbing the structure of the axis in such a way as to alter the 

mechanical stress it may be able to accumulate could affect CO distribution. In yeast, 

interference has been linked to a Top2/SUMO/STUbL related pathway, with axis 

components TopoII and Red1 as targets (L. Zhang et al., 2014b). The authors note, 

however, that they suspect we have not yet uncovered all of the key-players in this 

process. Thus, a deeper understanding of the chromosome axis, and all of its 

constituents and their individual roles, will be necessary if we are to learn how we 

might manipulate the recombination process. 

1.4 The Chromosome axis in meiosis 

As discussed, the processes necessary to complete meiosis are tightly regulated, and 

coincident with the global remodelling of the chromosomes (Blat et al., 2002; Kleckner, 

2006; Storlazzi et al., 2008). This includes the formation of the chromosome axis: a 

proteinaceous meshwork that organises the chromatin into linear, co-oriented dual-

loop arrays, conjoined at the loop bases by the axial structural components. The axis 

appears to be comprised of a structural ‘core’, onto which additional meiosis-specific 

axis-associated proteins load (Moses, 1956) (Figure 1.3). 
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(Alberts et al., 1983)

Figure 1. 3 The Meiotic Chromosome Axis and Synaptonemal Complex. (A) The chromosome axis from leptotene through 
pachytene. Sister chromatids are held together in a dual-loop array by the axial elements. As prophase I progresses, the 
synaptonemal complex forms, comprised of two lateral elements and a central element region comprised of the transverse filament 
(TF). A recombination complex is shown, associated with the SC. (B) Close up of the synaptonemal complex structure. Circles 
represent the globular domains at the N- and C- termini, with coiled-coil regions in-between. Modified from Alberts et al., 1983 and 
Higgins et al., 2005. 
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The ‘core’ axis components are the cohesins, which hold the sister chromatids 

together, and are deposited onto the chromosome during pre-meiotic S-phase. In S. 

cerevisiae, meiotic sister cohesion is maintained by Smc1, Smc3, Scc3, and the kleisin 

Rec8 (Kim et al., 2010). This core structure is then further elaborated by Hop1, the 

main yeast HORMAD (HORMA Domain protein; first described in Hop1 Rev1 Mad1), 

and Red1 (Carballo et al., 2008; Woltering et al., 2000). In Arabidopsis, structural and 

functional homologues have been identified for all of these proteins, as well as some 

specific to plants. Thus, in Arabidopsis, the cohesins are comprised of SMC1, SMC3, 

SCC3/STAG3 and the kleisin REC8/SYN1/DIF1 (Bhatt et al., 1999; Cai et al., 2003; 

Chelysheva et al., 2005; Lam et al., 2005; Lambing et al., 2019). Further components 

of the axis include the HORMADs ASY1 (homologue of Hop1) and ASY2 (no yeast 

homologue); and two coiled-coil containing proteins, ASY3 (homologue of Red1), and 

most recently, ASY4 (no known yeast homologue) (Armstrong et al., 2002; Cai et al., 

2003; Caryl et al., 2000; Chambon et al., 2018; Ferdous et al., 2012; Osman et al., 

2018; this thesis).  

 

Other axis-associated proteins include the AAA+ ATPase Pch2 (PCH2 in Arabidopsis, 

TRIP13 in mammals), and recently characterised in Arabidopsis, TOPII (Börner et al., 

2008; Lambing et al., 2015; Martinez-Garcia et al., 2018). In Arabidopsis, TOPII has a 

proposed role in interlock resolution (Martinez-Garcia et al., 2018). In yeast, Pch2 is 

required for proper loading of Hop1 which forms alternating domains of high and low 

abundance along the axis (Börner et al., 2008). It also appears that the Arabidopsis 

homologue PCH2 is required for normal levels of ASY1 on the axis, given that in the 

pch2 mutant, the overall ASY1 signal appeared much dimmer (Lambing et al., 2015; 

West, 2015). Later during prophase I, PCH2 is involved in the remodelling of the 
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chromosome axis, removing ASY1 as the SC extends (Lambing et al., 2015). 

Pch2/TRIP13 are also part of a defined ‘pachytene-checkpoint’ in yeast and mammals, 

required to detect proper levels of recombination and synapsis (reviewed in: Roeder 

and Bailis, 2000). This is less clearly defined in Arabidopsis, with no direct evidence 

currently existing for a pachytene-checkpoint. However, in Atpch2, a delay of ≤ 8 h in 

prophase I was detected, suggesting the possibility of such a system (Lambing et al., 

2015).  

Despite high sequence divergence between some axis components in different 

species, it appears that their structure, and often, methods of assembly, interactions, 

and functions are conserved (Bomblies et al., 2015; West et al., 2019), as is discussed 

below. 

1.4.1 Axis Assembly 

In S. cereivisiae, the axis protein Red1 is proposed to load first, and recruit Hop1 to 

the axis via a ‘closure motif’: a short peptide series that was first defined in C. elegans, 

and which contains a highly conserved Pro-Tyr-Gly motif necessary for HORMAD self-

assembly (Kim et al., 2014; West et al., 2019; Woltering et al., 2000). Red1 also 

contains a C-terminal coiled-coil domain that is required for its self-assembly onto the 

axis (Hollingsworth and Ponte, 1997; Woltering et al., 2000). In contrast to S. 

cereivisiae, plants and mammals appear to contain two coiled-coil domain containing 

axis proteins: ASY3 and ASY4 in Arabidopsis, and SYCP2 and SYCP3 in mammals 

(Chambon et al., 2018; Ferdous et al., 2012; Kouznetsova et al., 2005; Osman et al., 

2018; Yang et al., 2006; Yuan et al., 2002, 2000; this thesis). Uniting all three systems, 

these coiled-coil proteins appear to be required for normal axis formation, loading of 

the HORMADs, and proper polymerisation of the SC (Chambon et al., 2018; Ferdous 

et al., 2012; Kouznetsova et al., 2005; Osman et al., 2018; Woltering et al., 2000; Yang 
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et al., 2006; Yuan et al., 2002, 2000; this thesis). Furthermore, both ASY3/ASY4 and 

SYCP2/SYCP3 interact via these C-terminal coiled-coil domains, and in mammals, 

removing the SYCP2 coiled-coil is sufficient to prevent SYCP3 localisation (Ferdous 

et al., 2012; Shin et al., 2010; West et al., 2019; Yang et al., 2006; this thesis). In yeast, 

mammals, and plants, the coiled-coils are essential for their self-assembly into a Red1 

homotetramer in yeast, and an ASY3/ASY4 and SYCP2/SYCP3 heterotetramer in 

plants and mammals respectively (West et al., 2019). This therefore highlights the 

importance of the structure of the axis, given that it has been so well conserved across 

such diverged species. 

 

The HORMADs appear to rely on their HORMA domains for axial localisation. The 

HORMA domain itself is ~200 aa in length, and can be split into two functional units of 

a ‘core’, and a ‘safety-belt’ region at its C-terminus. This safety-belt region can 

topologically secure protein-protein interactions, and exists in two states: open or 

closed. Based on evidence in C. elegans, these safety-belt interactions allow the 

proteins to self-assemble, and more recently, have been suggested to allow them to 

interact with other chromosome axis components such as Red1/ASY3/SYCP2  (Hara 

et al., 2010; Kim et al., 2014; Luo et al., 2002; Rosenberg and Corbett, 2015; Sironi et 

al., 2002; West et al., 2019). This led to a proposed, conserved model of axial filament 

assembly by West et al. (2019) (Figure 1.4). Precisely how the meiotic axis-associated 

proteins interact with the SC and cohesins, however, remains to be determined. 

Evidence in mammals, however, suggests axis-SC interaction may closely involve the 

cohesins (Rong et al., 2016). 
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Figure 1. 4 Proposed model of Axis Assembly. ASY3/ASY4 self-assemble into head-to-tail heterotetramers, associated with the 
cohesins. ASY3 recruits ASY1 to the axis via a closure motif that can interact with the ASY1 HORMA domain. ASY1 then assembles 
via interactions between closure motifs and HORMA domains, secured by the safety belt region. Adapted from Rosenberg and 
Corbett, 2015; and West et al., 2019.   
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Another uniting characteristic of the axis proteins is that perturbing them results in a 

reduction in the number of COs, as well as a disruption to chromatin structure. 

Knocking out ASY1, for example, reduces the CO number to ~1.39 per nucleus, and 

in asy3, to ~3.3 per nucleus (Armstrong et al., 2002b; Caryl et al., 2000; Ferdous et 

al., 2012a; Ross et al., 1997). Knocking out SYCP3 in mouse results in a doubling in 

chromosome axis length, as well as various other meiotic defects (Syrjänen et al., 

2014).  

Thus, the functions of the axis can be split into two major roles. Primarily, it acts as an 

organisational unit, holding the chromosomes in the looped-array, and ensuring proper 

compaction, as illustrated by mutants where the axis structure is in some way 

disrupted (Fukuda et al., 2014; Novak et al., 2008; Ward et al., 2016). Indeed, in 

mouse, it is proposed that both SYCP3 and SMC1β are essential for loop organisation 

(Novak et al., 2008; Syrjänen et al., 2014).  Linked to this, it also acts as a scaffold 

and landing site for other meiotic proteins. This includes those involved in SC 

polymerisation, after which, the axis will ultimately comprise the lateral elements of the 

SC structure.  Secondly, the axis promotes formation of DSBs, and is necessary to 

establish the inter-homologue repair bias necessary for CO formation (see 1.4.3). 

1.4.2 The Synaptonemal Complex and Axis Remodelling 

As meiosis progresses, the synaptonemal complex (SC) polymerises between 

homologous chromosomes. At this point, the axial elements become the ‘lateral 

elements’, and form one part of the tripartite structure of the SC. Thus, the SC is 

comprised of two flanking lateral elements, with the transverse filament (TF) protein 

loaded between them (Figure 1.3 A,B). In yeast, the TF protein is Zip1: also a member 

of the ZMMs (ZMM role: 1.3.2.2.1)(Sym et al., 1993). In Arabidopsis, the TF is 

comprised of ZYP1 (Higgins et al., 2005b), and in mouse, SYCP1, SYCE1, SYCE2, 
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SYCE3 and TEX12 (Costa et al., 2005; Hamer et al., 2006; Schramm et al., 2011). 

AtZYP1 is, like Zip1 and its mammalian counterparts, predicted to be comprised of a 

central coiled-coil, flanked by two unstructured globular domains (Higgins et al., 

2005b; Page and Hawley, 2004; Sym et al., 1993). In yeast and mouse, it has been 

demonstrated that the SC TF forms homodimers that align in parallel between 

synapsing axes. The C-terminal domains are associated with the lateral elements, and 

the N-terminal domains overlap in the centre, creating the characteristic ‘zipper’ 

structure in its centre region, as observed via microscopy (Dong and Roeder, 2000; 

Liu et al., 1996) (Figure 1.3, B).  

1.4.2.1 SC Assembly 

In S. cerevisiae, the SC emanates outward from synapsis initiation sites (SIS) at both 

the centromeres, and from Class I COs (Chua and Roeder, 1998; Fung et al., 2004; 

Tsubouchi et al., 2008). In Arabidopsis, ZYP1 is seen as c. 25 foci at late leptotene, 

which later extend into the full SC (Higgins et al., 2005). The polymerisation of the SC 

in Arabidopsis, also appears to require DSBs, and its localisation occurs prior to stable 

strand invasion; crucially, ZYP1 cannot polymerise when recombination is defective 

early on, as highlighted by immunolocalization revealing foci, but not extension, of the 

ZYP1 signal in Atdmc1 (Higgins et al., 2005). Therefore, it is possible that SC 

polymerisation in Arabidopsis also relies, in part, on the formation of recombination 

intermediates, although perhaps not necessarily COs. This close association between 

SC assembly and meiotic recombination could perhaps be attributed in part to a 

requirement to regulate the structure, ensuring it is more likely to polymerise at the 

correct time between homologous chromosomes, given the fact it has been observed 

to self-assemble even without the presence of meiotic chromosomes, forming aberrant 

structures such as polycomplexes (Ollinger et al., 2005). There is currently no 
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evidence suggesting that ZYP1 also emanates outward from centromeres in 

Arabidopsis as it does in yeast, but this is not necessarily the case for other plants 

such as maize (Higgins et al., 2005; Zhang et al., 2013). 

Dynamics of the axis and SC can be traced throughout prophase I of meiosis using 

immunolocalisation with antibodies raised against the key proteins. Thus, we can see 

that many of the chromosome axis components appear late in G2, before becoming 

linear structures by the end of leptotene. During zygotene, the SC begins to 

polymerise, reaching full synapsis by pachytene. At this point, the homologous 

chromosomes are held together in close apposition of approximately 100 nm: a value 

conserved across species (Zickler and Kleckner, 2015).  

The direct relationships between recombination, the axis and SC, are discussed 

further below.  

1.4.3 The Chromosome Axis and Recombination  

1.4.3.1 DSBs 

As meiotic recombination occurs within the context of the chromosome axis, it has 

influence during DSB formation, as well as in CO localisation and number. Data 

suggests Spo11 loads onto chromatin before the axis, but does not initiate DSBs until 

the axis has formed (Panizza et al., 2011). Consistent with this, in Arabidopsis, SPO11 

and ASY1 loading are independent, but the DNA-damage marker γH2AX does not 

appear until the axis has formed (Sanchez-Moran et al., 2007). Furthermore, DSBs 

themselves occur in the loop regions, yet the RMM complex – a group of Spo11 

accessory proteins including Rec114, Mei4, and Mer2 – is axis associated (Li et al., 

2006; Sasanuma et al., 2007). This data has been combined to propose a ‘tethered-

loop’ method of DSB induction, where Spp1 located at the axis via an interaction with 
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Mer2, recognises the histone H3K4me3 mark, and thus brings the future site of DSB 

cleavage in toward the axis where it can be acted upon by Spo11 and its associated 

proteins (Panizza et al., 2011; Sommermeyer et al., 2013) (Figure 1.5).  

 

 

 

 

 

 

 

In Arabidopsis, a normal axis structure is also essential for WT levels of DSBs; in the 

axis mutant asy3-1, DSB number is reduced to 70% of the WT level (Ferdous et al., 

2012a). In contrast to yeast hop1 mutants, however, no reduction in DSBs was 

observed in asy1 (Sanchez-Moran et al., 2007), suggesting some divergence in the 

roles of these proteins.  

1.4.3.2 Crossovers 

1.4.3.2.1 The Influence of the Axis 

In yeast, it has been shown that phosphorylation of Hop1 is essential for maintenance 

of the inter-homolog repair (IHR) bias: the preference to repair a DSB via the 

homologue, rather than the sister. This depends on Hop1, Red1, and the formation of 

DSBs, which result in the activation of the kinase Mek1. Once it is active, Mek1 can 

then phosphorylate its targets, including Rad54. Phosphorylation of Rad54 alters its 

Figure 1. 5 The Tethered-loop model of DSB formation. Spp1 interacts with both 
Mer2 at the axis, and the H3K4me3 mark out in the chromatin loop, thus bringing the 
loop into the axis. This allows Spo11 and its accessory proteins to initiate DSB 
formation. Modified from Sommermeyer et al., 2013.  
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association with Rad51. Subsequently, there is a reduction in inter-sister DSB repair, 

and so relative increases Dmc1-mediated inter-homolog repair (Callender et al., 2016; 

Carballo et al., 2008; Chuang et al., 2012). For Hop1 to activate Mek1, however, Hop1 

must already have been phosphorylated by Tel1/Mec1: homologues of ATM/ATR 

respectively, which are activated by Red1 as DSBs form (Carballo et al., 2008; Lin et 

al., 2010). IHR can therefore be eradicated in budding yeast by mutating the T-318 

residue of Hop1, which is the Tel1/Mec1 phosphorylation target (Carballo et al., 2008; 

Lin et al., 2010). Axis component Pch2 has also been implicated in this process, with 

the yeast pch2∆ mutant presenting with defects in suppressing inter-sister repair, thus 

leading to the proposal that Pch2 is required for optimal levels of Mek1 activity, and is 

thus required for promotion of IHR (Ho and Burgess, 2011; Zanders et al., 2011).  

Furthermore, the beam-film model of CO-designation and interference (see 1.3.3.2.2) 

directly links the chromosome axis to the CO/NCO decision, as well as CO patterning. 

Interference does not appear to absolutely require the SC, however. This can be 

inferred from the fact that SIS in yeast and mammals show interference, suggesting it 

arises before the synapsis initiation complex (SIC) can load, and that the COs in the 

Arabidopsis zyp1RNAi still appeared to be interference-sensitive (Boer et al., 2007; Cole 

et al., 2012; Fung et al., 2004; Higgins et al., 2005b). The SC appears to have an 

unclear, but potentially distinct role in recombination, as is discussed below.  

1.4.3.2.2 The Role of the SC  

As previously mentioned, the polymerisation of the SC in many organisms appears to 

be linked to meiotic recombination, though how remains elusive. Recent work has 

strengthened this association between the SC and the progression of recombination 

further, giving some functional explanation for previously observed phenotypes.  
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The direct functions of Zip1 as both a ZMM and as an SC component have been most 

extensively explored in yeast. Work conducted by Voelkel-Meiman et al. (2015) 

revealed that whilst Zip1 itself is required for formation of MutSγ-MutLγ COs, the fully 

assembled, mature SC structure is not. More recent work from the same lab found 

that this could be explained by functionally separate but physically-linked regions of 

the Zip1 N-terminus. That is, amino acid residues directly next to each other have 

different roles. These residues are contained within the first 20 amino acids of the 

protein, with separate regions engaging with pro-CO machinery (such as E3 ligase, 

Zip3), and pro-synapsis machinery. Thus, this lab propose that Zip1 can physically link 

recombination to the SC, explaining the observation of SC associated recombination 

nodules in many species (Anderson et al., 2001, 1997; Carpenter, 1975; Lake et al., 

2015; Zickler and Kleckner, 1999). It is also suggested that Zip3 can prevent 

recombination-independent SC formation, thus further supporting the previously 

mentioned notion that linking these processes may prevent polycomplex formation 

(Macqueen and Roeder, 2009; Voelkel-Meiman et al., 2019, 2015). Furthermore, if the 

SC forming is linked to the progression of recombination, a complete SC could act as 

a signal to the cell when each homologous pair has likely received the obligate CO 

(discussed in: Page and Hawley, 2004; Zickler and Kleckner, 1999). 

Study of inter-axis bridges in Sordaria macrospora also provides a link between the 

SC and recombination progression. Inter-axis bridges are thought to be sections of 

DNA, axis/SC proteins, and recombination machinery, that form a physical link 

between two aligned axes (Albini and Jones, 1987; Dubois et al., 2019). It is proposed 

that these bridges form when axes are ~400 nm apart, prior to pulling them into ~200 

nm co-alignment. Following the assembly of the TF, the homologous axes are thus 

held at ~100 nm distance. Therefore, bridges are potentially both necessary for pre-
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synaptic alignment, and facilitate the movement of recombination complexes from the 

axis to the SC; they may mediate the initial the axis-association of recombination 

intermediates, prior to releasing them into the space between co-aligned axes, and 

finally, promoting SC nucleation from these sites (Dubois et al., 2019).  

The particular reason for why it is important for recombination intermediates to become 

SC associated has been investigated in C. elegans. Previous groups have suggested 

the possibility that the SC may merely provide a stable environment in which COs can 

be resolved. In favour of this assertion, in C. elegans, the SC forms a protective 

‘bubble’ around recombination sites, enriching those regions with pro-CO factors 

(Woglar and Villeneuve, 2018). This would fit together the combined data on SC 

proteins from other organisms presented above.  

Whilst the SC is thus proposed to provide a physical scaffold for recombination, there 

is also the possibility that it regulates the progression of recombination. In several 

organisms, it is known that the AAA-ATPase Pch2/PCH2/TRIP13 depletes HORMADs 

from the axis as the SC polymerises (Joshi et al., 2009; Lambing et al., 2015; Ye et 

al., 2017, 2015). As previously discussed, HORMADs are known to promote the 

formation of DSBs (though there is no evidence for this in Arabidopsis), and promote 

the IHR bias (Chuang et al., 2012; Sanchez-Moran et al., 2007). Therefore, it has been 

proposed that the SC could indirectly regulate the levels of CO formation via a 

feedback loop where removal of the IHR promoting HORMAD prevents further DSB 

and CO initiation after synapsis (Börner et al., 2008; Joshi et al., 2009; Lambing et al., 

2015; San-Segundo and Roeder, 1999).  

Thus, the roles of the axis and SC are tightly coordinated with recombination 

progression, and thus the two must be thought of almost as one process. This 
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relationship has also clearly made the axis a target for meiosis research to uncover 

precisely how the axis and SC influence recombination outcomes, with particular 

interest in CO localisation. This relates back to the common theme presented in this 

thesis: the requirement to understand the axis, so that we might ultimately manipulate 

the recombination process.  

Why this is of particular importance is explored below.  

1.5 Meiosis Research and Food Security  

1.5.1 The Food Security Crisis 

In recent years, plant research efforts are increasingly focused on ensuring and 

creating food security. Food security is defined as all people having ready access to 

sufficient affordable, safe, and nutritious food at all times (Food and Agriculture 

Organisation of the United Nations, 2001). In a recent report (2018) from the Food 

Security Information Network (FSIN), it was estimated that 124 million people across 

51 countries are currently facing a food crisis. This is an overall increase of 16 million 

people since 2017 (“Food Security Information Network (FSIN) Global Report,” n.d.). 

In 23 of these countries, the main factor contributing to the food insecurity is ‘climate 

shocks’, predominantly drought.  

This problem is predicted to worsen in the upcoming decades. Climate change 

threatens to alter precipitation patterns, which is expected to increase the likelihood of 

flooding and droughts, and the prevalence of pests. Global temperatures are rising, as 

is the concentration of CO2 in the atmosphere. Furthermore, current predictions 

envision the declaration of the day of 10 billion to occur by the year 2050, which will 

require food productivity to be increased on less land (United Nations, 2017). To meet 

demand, food production needs to increase by 70%, which corresponds to an extra 



40 
 

 

yield of 1 billion tonnes of cereals. The Food and Agriculture Organisation of the United 

Nations (FAO) identifies a key area of tackling this problem in protecting biodiversity 

to maintain the genetic variation that will be available to plant breeders, highlighting 

the importance of improving the crop production process (Food and Agriculture 

Organisation of the United Nations, 2009). They also attribute 50% of the global 

increase in crop productivity over the last century to plant breeding (Global Partnership 

Initiative for Plant Breeding Capacity Building (FAO), n.d.).  

1.5.2 Meiosis and Plant Breeding  

Traditional breeding technologies rely on the process of meiosis to introduce genetic 

variation. During meiosis, the allelic content of the parent is shuffled in the process of 

meiotic recombination, the product of which is genetic crossovers (COs). Plants 

displaying ideal characteristics (e.g., increased resistance to drought, pests et cetera) 

are crossed, and the resultant hybrids are screened for these traits. This forms the 

basis of the development of elite crop varieties.  

Where COs form, however, is pre-determined and tightly limited in plants. This is 

especially pronounced in cereals: one of the most economically important crop groups, 

which are thought to account for 50% of human caloric intake each day (Awika, 2011). 

As previously mentioned, it is estimated that in barley and wheat, over 30% of the 

genes are in recombinationally ‘cold spots’: areas that rarely receive a CO (Erayman 

et al., 2004; Künzel and Waugh, 2002; Mayer et al., 2011). One such example of this 

polarisation is chromosome 3B of the bread wheat Triticum aestivum L., where only 

13% of the chromosome receives COs (Choulet et al., 2014). The limitations placed 

on CO localisation thus impede the ability to introduce new, desirable alleles into 

extant crop varieties. It also contributes to linkage drag: a process by which an 

undesirable allele/gene is inherited due to its proximity to a desirable allele/gene. 
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Therefore, research into meiosis and the factors that determine where COs are made 

are of great importance if we are to increase how quickly new, elite cultivars can be 

made that will be better suited to the changing climate, and satisfy the demand for high 

quality, nutritious food (Lambing et al., 2017).  

Research councils, government organisations, and private companies are therefore 

collaborating to support research efforts into the advancement of crop breeding, with 

emphasis on improving access to recombination cold spots, and utilising gene editing 

technologies in plants.  
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1.6 Project Aims 

The objective of this thesis is to further elucidate the roles and importance of the 

chromosome axis during meiosis, and how perturbing its dynamics and organisation 

affects recombination processes in Arabidopsis thaliana. This is with focus on a 

previously uncharacterised protein, ASY4 (At2G33973). 

ASY4 was identified in an immuno-affinity proteomics study with BoASY1 (the 

homologue of ASY1 in Brassica oleracea), and independently by Mathilde Grelon’s 

group (INRA, Versailles) in a BLASTP search with the sequence of ASY3 (Osman et 

al., 2018; Chambon et al., 2018). It was therefore suggested that ASY4 could be 

another axis-associated component.  

In this project, we first examined the phenotype of two hypomorphic T-DNA insertion 

mutants for ASY4 to begin to uncover any potential meiotic role. We conducted a range 

of molecular and cytological experiments to determine if ASY4 was indeed axis-

associated, with focus on examining fertility, CO number, and axis formation. To 

confirm its localisation at the axis, we developed a fluorescently tagged ASY4 line, 

and investigated potential protein-protein interactions with ASY3: one of the key axis 

proteins in A. thaliana (Ferdous et al., 2012). This work was subsequently published 

in collaboration with the Grelon lab, and is presented at the end of this thesis 

(Chambon et al., 2018).   

As this analysis was conducted in hypomorphs, we sought to develop a true null 

mutant for ASY4 using the gene editing technique, CRISPR-Cas9. We then 

investigated the effects of a complete absence of ASY4 in A. thaliana on fertility, 

meiotic recombination, and axis organisation, including the use of structured-

illumination microscopy to observe the axis in more detail. This research therefore 
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builds on previous knowledge of several axis components, but in particular, ASY1 and 

ASY3 (Armstrong et al., 2002; Caryl et al., 2000; Ferdous et al., 2012).  

As previously discussed, whilst the axis is known to influence COs, its precise role is 

unclear. Gaining an in-depth understanding of the roles of the chromosome axis during 

meiosis should shed light on the currently unknown processes that govern CO 

localisation and number. The ultimate aim of this research is to provide future targets 

that may facilitate manipulation of homologous recombination with minimal effect on 

fertility, working toward the ultimate goals outlined above of ensuring and creating food 

security in the upcoming decades. 



 

 

 

 

 

 

 

 

 

 

Chapter 2 

Materials and Methods 
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2 Materials and Methods  

2.1 Plant Material  

All Arabidopsis thaliana plant material was obtained from the European Arabidopsis 

Stock Centre (NASC), Nottingham, UK. Columbia (Col-0) ecotype was used as the 

wild-type control. T-DNA lines used in this study are listed in Appendix Table A1.  

Plants were grown under glass in soil-based compost (4 parts M3 compost, 2 parts 

vermiculite, 1 part Silvaperl soil) with a lighting regime of 16 h light, and 8 h darkness. 

Temperature was maintained year-round at approximately 20oC.  

2.1.1 Seed Sterilisation and Plant Selection 

Prior to growth on MS Medium (as in Murashige and Skoog, 1962) for plant selection 

or germination assay, seeds were sterilised in 20% v/v bleach (Parozone), and then 

mixed at 200 rpm for 10 min. The bleach was then removed, and the seeds washed 3 

x 5 min in sterile, distilled water. The seeds were then plated out in a petri dish on MS 

medium, and incubated at 4oC for 3 days to vernalise. Plates were then put under a 

16 h light and 8 h dark light cycle at 21oC until the first rosettes were established. The 

plantlets were then transplanted into soil-based compost, and kept under the 

conditions outlined above.  

If the plants had been transformed (as in 2.4), 50 µg/mL Kanamycin was added to the 

media to select for successful transformants. In the case of plants transformed with 

the CRISPR/Cas9 construct, a lower concentration of 30 µg/mL Kanamycin was used.  

2.1.2 Seed Counts 

10 to 15 siliques were taken from the primary stem from plants of a similar size, at 

either the point where the siliques had immature seeds, or when the plants were 
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completely dry. The siliques were then measured and dissected under a stereo-

microscope, and the seeds counted. 

2.1.3 Crossing Arabidopsis thaliana mutant lines 

Arabidopsis plants were allowed to reach a growth stage where the central stem had 

become thick and sturdy, and the plants had developed open flower buds. Plants were 

treated differently depending on whether they were to contribute the egg or the pollen. 

If the plant was chosen to contribute the female gamete, all siliques and open flowers 

were removed. At the apical inflorescence, all but several of the largest buds were 

kept. These were then opened using jeweller’s forceps to check if the stigma was at 

the correct size (large, sticky), and then the buds were emasculated by removing the 

immature anthers. A single open bud of the correct stage (large, yellow pollen visible) 

was taken from the plant chosen to contribute the male gamete, and rubbed onto the 

stigma until it was covered in pollen. Plants were then labelled and allowed to set seed.  

2.2 Nucleic Acid Extraction and Manipulation 

2.2.1 DNA Extraction  

Up to 100 mg of Arabidopsis leaf tissue was first collected in sterile 1.5 mL microfuge 

tubes, selecting the smallest and youngest leaves for optimal DNA yield. Total 

genomic DNA was extracted using the DNeasy® Plant Mini Kit (Qiagen) as per the 

manufacturer’s instructions.  

2.2.2 DNA Extraction for Genotyping 

No more than 0.5 cm2 of leaf tissue was collected in a sterile 0.5 mL microfuge tube, 

and placed on ice. 40 µL of extraction buffer (10mM EDTA, 250mM KCl, and 100mM 

TRIS-HCl at pH 9.5) was added to the tube, and the leaf sample macerated using a 

20-200 µL size sterile pipette tip until the buffer became green. The tube was then 
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incubated at 95oC in a PCR machine for 10 min, and then placed on ice for 2 min. 40 

µL of dilution buffer (3% BSA, filter sterilised) was added, and then the sample was 

spun down in a table-top centrifuge for 1 min at 13,200 rpm. The supernatant was then 

transferred to a new sterile microfuge tube, taking care not to disturb the pellet. If the 

samples were not for immediate use, they were stored at -20oc until required.  

2.2.3 RNA Extraction  

All microfuge tubes, storage jars, and polypropylene pestles were washed overnight 

in 0.1% DEPC (diethylpyrocarbonate) and autoclaved prior to use to denature any 

RNases. Up to 100 mg of Arabidopsis buds, leaves, flowers, or siliques, were collected 

in DEPC treated 1.5 mL microfuge tubes, and flash frozen in liquid nitrogen. If the 

tissues were not used immediately, they were then stored at -80oC until required. RNA 

was extracted using the RNeasy® Mini Kit (Qiagen) as per the manufacturer’s 

instructions.  

To check RNA quality and to give an indication of concentration, 5 µL of sample RNA 

was added to 15 µL of RNA Sample Buffer (Thermo Fisher Scientific), and incubated 

at 65oC for 20 min, and subsequently quenched on ice for 2 min. This denatures 

secondary RNA structure. 20 µL of the sample was then run on a 0.8%-1% (w/v) 

agarose gel (Invitrogen) alongside HyperLadder™ 1 kb (Bioline).  

2.2.4 Genotyping T-DNA Insertion Lines 

Genotyping to confirm the presence or absence of a T-DNA was conducted using gene 

specific (GSP) forward (F) and reverse (R) primers, and a primer to the left border (LB) 

of the T-DNA. Primers were designed using the T-DNA Primer Design tool (SIGnAL, 

Salk Institute, available at: http://signal.salk.edu/tdnaprimers.2.html). For each plant, 

two PCR reactions were conducted with the following rationale. GSP F and GSP R 

http://signal.salk.edu/tdnaprimers.2.html
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amplify products without a T-DNA insertion. Dependent on the direction of the T-DNA 

insert, the LB primer was paired with the appropriate GSP to amplify products where 

the insert is present. If the plant was wild-type for the insert, then only the reaction with 

GSP F and GSP R would provide a band. If the plant was homozygous for the insert, 

only the reaction with the GSP and LB would produce a band. Heterozygous plants 

would have a band visible for both reactions. Primers used are listed in Appendix Table 

A2.  

PCR was conducted using DreamTaq (Thermo Fisher Scientific), as per the 

manufacturer’s instructions. PCR products were visualised via DNA electrophoresis 

on 0.8%-1% (w/v) agarose gel (Invitrogen) alongside HyperLadder™ 1 kb (Bioline). 

2.2.5 RT-PCR  

RNA was extracted from Arabidopsis thaliana Columbia ecotype plants as described 

in 2.2.3. 1st Strand cDNA synthesis was completed using the Invitrogen Superscript II 

kit, as per the manufacturer’s instructions. This is with the exception of the use of 

RNasin® Ribonuclease Inhibitor (Promega) as opposed to RNaseOUT™ (Invitrogen). 

Primers for RT-PCR are listed in Appendix Table A3.   

2.2.6 Spectrophotometry 

Quantification of DNA and RNA concentration (ng/µL) was determined using a 

NanoDrop® ND-1000 Spectrophotometer.  Where a more accurate measure was 

required, DNA and RNA concentration was determined using the Qubit™ 2.0 

Fluorometer (Invitrogen). Protocol was followed as per the manufacturer’s instructions 

for the specific buffer kits provided.  
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2.3 General Cloning 

PCR products amplified using a Taq-based polymerase were conducted using the p-

GEM®-T Easy kit from Promega, as per the manufacturer’s instructions. For cloning 

PCR products with blunt ends, such as those produced by high-fidelity enzymes (e.g. 

Phusion), the Zero Blunt® PCR Cloning Kit (Invitrogen) was used, as per the 

manufacturer’s instructions.  

2.3.1 Transformation of chemically competent Escherichia coli DH5α via Heat 

Shock 

50 µL aliquots of E. coli DH5α cells were removed from storage at -80oC, and thawed 

on ice. Once thawed, the appropriate amount of plasmid DNA (usually between 1 µL 

and 10 µL) was added to the cells, gently swirled to mix, and incubated on ice for 30 

min. The cells were then subjected to heat shock by placing the tubes in a 42oC water 

bath for 90 s, and then returned to ice for 3 min. 900 µL of lysogeny broth was then 

added to the tube, and the cells allowed to recover by incubation at 37oC for 1h, 

horizontally, with 220 rpm shaking.   

150 µL of the mixture was then spread on LB agar (LA) plates with the appropriate 

antibiotic, and incubated at 37oC for between 16 and 18 h. Concentrations for 

antibiotics are listed in 2.3.4.  

2.3.2 Transformation of electrocompetent Escherichia coli DH5α via 

Electroporation 

10 µL of the mix containing the plasmid of interest was first dialysed for 45 min on a 

MF-Milipore™ Nitrocellulose membrane (Merck), floating in ddH2O in a petri dish. 50 

µL aliquots of cells were removed from storage at -80oC, and allowed to thaw on ice. 

10 µL of dialysed plasmid was then added to the cells, and gently swirled to mix. The 
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cells and plasmid mix was then pipetted into a chilled electroporation cuvette, and 

placed into the Electroporator (Bio-Rad) using the ‘Ec2’ setting. 800 µL of liquid LB 

was then added to the cuvette. The mix was then transferred into a 2 mL microfuge 

tube, and incubated horizontally at 37oC for 1 h with 220 rpm shaking.  

150 µL of the mixture was then spread on LA plates with the appropriate antibiotic 

(concentrations 2.3.4), and incubated at 37oC for between 16 and 18 h.  

2.3.3 Transformation of electrocompetent Agrobacterium tumefaciens GV3101 

via Electroporation 

Transformation of electrocompetent Agrobacterium tumefaciens (strain GV3101) was 

as above in 2.7.2, with the exception of the use of the ‘Agr’ setting on the 

Electroporator (Bio-Rad). For the recovery period, cells were incubated horizontally at 

28oC with 200 rpm shaking for 2 h. 150 µL of the mixture was then spread on an LA 

plate, with rifampicin, gentamycin, and the plasmid-specific antibiotic (concentrations 

2.3.4) and incubated at 28oC for at least 48 h.  

2.3.4 Bacterial Selection 

In all cases, Ampicillin was used for selection at 100 µg/mL; Kanamycin was used at 

50 µg/mL; Spectinomycin at 100 µg/mL; Gentamycin at 50 µg/mL; and Rifampicin at 

100 µg/mL.  

2.3.5 Colony PCR  

To confirm the presence of the insert of interest in selected bacterial colonies before 

growth in liquid media, the individual sample colonies were split in half. Half was used 

to re-streak onto a fresh LA plate with the appropriate selection antibiotic(s), and half 

used to inoculate 20 µL of sterile distilled water. 2 µL of the bacterial mix was then 
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used as DNA template in a PCR reaction using DreamTaq (Thermo Fisher Scientific) 

as per the manufacturer’s instructions.   

2.3.6 Plasmid DNA Extraction 

Individual selected E. coli colonies were used to inoculate 10 mL of liquid LB in a 100 

mL conical flask with the appropriate selection antibiotic (concentrations 2.3.4). 

Cultures were incubated overnight (16-18 h) at 37oC with 220 rpm shaking. 500 µL of 

culture was taken to make a glycerol stock (added to 500 µL 50% glycerol, then stored 

at -80oC). 5 mL of the remaining culture was used for plasmid extraction using the 

GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific).  

To once more confirm if the plasmid contained the insert, 3 µL of plasmid was digested 

with the appropriate restriction enzyme(s) to release the insert, and was then imaged 

on a 0.7% (w/v) agarose (Invitrogen) gel.  

2.3.7 Saccharomyces cerevisiae Transformation via Polyethylene 

Glycol/Lithium Acetate 

Transformation of S. cerevisiae Y2H Gold Competent cells (Clontech/Takara). Yeast 

Transformation Buffer (YTB) was prepared by combining 400 µL 50% PEG 3350, 200 

µL 1M Lithium Acetate, and 4 µL β-Mercaptoethanol (all provided by Sigma). 100 µL 

of YTB was added to a 2 mL microfuge tube containing 2 µg of each pDEST vector. 

This was vortexed briefly to mix. One 1 µL loop of yeast was used to inoculate the 

YTB. The tubes were then incubated at 37oC for 45 min with 200 rpm shaking at a 45o 

angle. The entire mix was then spread onto Synthetic Defined (SD) /-Leucine/-

Tryptophan dropout media (DDO) (as in 2.3.7.1), and incubated at 30oC for 3 to 5 

days.  
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2.3.7.1 Yeast Media Preparation 

All yeast media was prepared by adding a pouch of pre-mixed SD media powder 

(Takara) to 500 mL of sterile distilled water. The media was then autoclaved. Plated 

media was stored at 4oC, and liquid media stored at room temperature, in a sterile 

manner until required.  

2.4 Transforming A. thaliana with Agrobacterium tumefaciens via floral 

dipping 

A. thaliana plants were grown as in 2.1 until the primary stem had bolted. The plants 

were then cut back to induce an increased number of stems to grow. Once the plants 

had bolted again and had produced closed buds, they were chosen for transformation 

via floral dipping (Clough and Bent 1998), performed as below.  

Agrobacterium tumefaciens (strain GV3101) was transformed via electroporation, and 

selected for as described in 2.3.3.  

Up to three colonies were then used to inoculate 5 mL LB with rifampicin, gentamycin, 

and the appropriate marker antibiotic for the plasmid of interest. The cultures were 

grown for 24 h at 28oC with 200 rpm shaking.  

To confirm the presence of the plasmid of interest, an aliquot of the culture was taken 

forward for PCR. The aliquot was first diluted 1:50 into ddH2O, prior to amplification 

with the appropriate primers, as in 2.3.5. Once the presence of the plasmid of interest 

was confirmed, 1.5 mL of this original 5 mL culture was used to inoculate 500 mL of 

LB containing the appropriate antibiotics. This culture was grown for 48 h at 28oC with 

200 rpm shaking. The cultures were then allowed to cool at room temperature for 15 

min. The culture was then halved, and transferred into two sterile 250 mL centrifuge 

tubes. The tubes were then centrifuged for 10 min at 5000 rpm, at 4oC. Following 
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centrifugation, the supernatant was removed, and the pellets resuspended in 100 mL 

of 5% sucrose solution. Following resuspension, a further 150 mL of 5% sucrose 

solution, and 65 µL of Silwet-77 (Lehle Seeds), was added to each tube. The two tubes 

were then combined into an autoclaved P1000 tip tray.  

Plants were dipped and stirred in the solution for approximately 15 s. The plants were 

then incubated horizontally overnight under high humidity, and in darkness. The plants 

were then allowed to dry vertically on the bench top, before being returned to the 

glasshouse.  

2.5 Yeast-2-Hybrid 

2.5.1 Cloning into pENTR™/D-TOPO® and pDEST vectors 

RNA was extracted from unopened A. thaliana flower buds, as described in 2.2.3. Total 

cDNA synthesis was then conducted using the Tetro™ cDNA Synthesis Kit (Bioline), 

and the supplied oligo dT18 primer, as per the manufacturer’s instructions. The cDNA 

of interest (ASY4 (full length and halves), ASY3, ASY3 coiled-coil, ASY1) was then 

amplified using Phusion polymerase (New England Biolabs). Primers used can be 

found in Appendix Table A4. Importantly, the forward primer contained a CACC 

addition to the 5’ end for TOPO cloning. The product was then cloned into pENTR™/D-

TOPO® (Invitrogen) as per the manufacturer’s instructions. Incubation times varied 

dependent on the size of the product to be cloned:  
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Table 2. 1 Incubation times for TOPO reactions 

Size of Product (kb) Incubation time at Room Temperature 

(min) 

>2 10 

1 ≤ x ≤ 2 5 

<1 0.5 

 

The whole reaction mix was then used to transform One Shot™ TOP10 Chemically 

Competent E. coli (Invitrogen), as per the manufacturer’s instructions. The bacteria 

were then incubated overnight on LB agar plates with kanamycin. Colony PCR was 

performed as per 2.3.5 to confirm the presence and orientation of the insert (primers 

in Appendix Table A4). Correct colonies were taken forward to inoculate 10 mL of LBB 

with kanamycin. Cultures were incubated as in 2.3.4, and the plasmid extracted as in 

2.3.6. Plasmid was then submitted for in-house sequencing.  

A Gateway reaction was then performed to shuttle the insert into the pDEST-22 and 

pDEST-32 vectors (Invitrogen) using the LR Clonase® II Kit, as per the manufacturer’s 

instructions.  

The mix was incubated at room temperature for 1 h 30 min. To stop the reaction, 0.5 

µL of Proteinase K (Invitrogen) was added, and the mix incubated at 37oC for 10 min 

before transferring to ice. The whole reaction mix was then used to transform One 

Shot™ TOP10 Chemically Competent E. coli (Invitrogen), as per the manufacturer’s 

instructions. Selection performed as in 2.3.4. Colony PCR and overnight cultures 
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performed as for cloning into the entry vector. Primers used are listed in Appendix 

Table A4.   

2.5.2 Yeast-2-Hybrid Assay 

After incubation on DDO plates, a discrete single colony selected to inoculate SDW in 

a 1.5 mL microfuge tube. Different volumes of SDW were used: 100 µL SDW for test 

samples, and 400 µL for the positive control. This was to account for the fact that the 

positive control grows significantly faster than the samples. Three colonies were used 

in total for three replicate plates.  

5 µL was taken from each microfuge tube, and plated onto DDO, TDO (SD/-Leucine/-

Tryptophan/-Histidine), and QDO (SD/-Leucine/-Tryptophan/-Histidine/-Adenine) 

plates (preparation as in 2.3.7.1). Plates were incubated at 30oC for 3-5 days, or until 

the colonies had reached ~5 mm in diameter. Plates were then photographed using a 

Nikon D5000 camera.  

.  

2.6 Targeted Gene Editing in Arabidopsis thaliana using the Staphylococcus 

aureus CRISPR-Cas9 system  

The pDe-Sa-Cas9 destination vector and pEn-Sa-Chimera entry vector based on the 

CRISPR-Cas9 system in Staphylococcus aureus were obtained from the Holger 

Puchta laboratory (Karlsruher Institut für Technologie, Germany; 

http://www.botanik.kit.edu/molbio/940.php). Vector maps can be found in Appendix 

Figure A1. The following protocol is based on the generation of a CRISPR construct 

using the Streptococcus pyogenes system by Schiml et al., 2016.  

http://www.botanik.kit.edu/molbio/940.php
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Oligonucleotides to target AtASY4 were designed using the online CCTop tool, with 

the Protospacer Adjacent Motif (PAM) sequence set to NNGRRT for S. aureus 

(available at: http://crispr.cos.uni-heidelberg.de/), and the appropriate overhangs 

complementary to the sticky ends produced by BbsI digestion added to the 5’ ends. 

The oligonucleotides, and all primers used for this experiment can be found in 

Appendix Table A6. Oligonucleotides were ordered from Eurofins Genomics, with 

HPLC purification. pEn-Sa-Chimera was propagated in Bioline α-Select Gold 

Efficiency cells, as per the manufacturer’s instructions. pDe-Sa-Cas9 was propagated 

in E. coli strain DB3.1, transformed by heat shock as in 2.3.1.  

2.6.1 Making the CRISPR-Cas9 ASY4 construct 

The AtASY4 forward and reverse oligonucleotides were diluted to 50 µM each, and 2 

µL of each added to 46 µL of SDW. The mix was then heated to 95oC for 5 min to 

denature, then allowed to anneal at room temperature for 20 min. The oligonucleotides 

were then stored at -20oC until required.  

pEn-Sa-Chimera was prepared for cloning by digestion with BbsI (New England 

Biolabs) as per the manufacturer’s instructions, and purified using MSB® Spin 

PCRapace kit (Stratec Molecular), as per the manufacturer’s instructions. The 

annealed oligonucleotides were then ligated into the BbsI digested pEn-Sa-Chimera 

as follows:  

 

 

 

 

http://crispr.cos.uni-heidelberg.de/
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Table 2. 2 Components required for the ligation of annealed oligonucleotide 
pairs into the entry vector, pEN-Sa-Chimera.  

Component Amount 

BbsI Digested pEn-Sa-Chimera (at 5 ng/uL) 3 µL 

Annealed Oligonucleotide pair 4.5 µL 

T4 Buffer 1.5 µL 

T4 Ligase 1 µL 

SDW 5 µL 

 

The complete ligation mix was then transformed into Bioline α-Select Gold Efficiency 

cells, as per the manufacturer’s instructions. Selection on LA media with Ampicillin 

was conducted as in 2.3.4, colony PCR with SS129/ASY4Pair(x)F was performed as 

in 2.3.5, and plasmid extraction as in 2.3.6. The resultant concentration of DNA was 

then determined using the Qubit (as in 2.2.6).  

Plasmids from three of the successful colonies were then selected, and sequenced 

using SS42. Once the presence of the correct insert was confirmed, Gateway cloning 

performed as follows:  
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Table 2. 3 Components required for the CRISPR Gateway reaction.  

Component Amount 

pEn-Sa-Chimera with ASY4 oligos (at 

100 ng/µL) 

2 µL 

pDe-Sa-Cas9 (at 50 ng/µL) 3 µL 

TE Buffer (Tris-EDTA), pH 8 4 µL 

LR Clonase™ II (Invitrogen)  1 µL 

 

The reaction mix was then incubated for 3 h at 25oC. The reaction was then stopped 

by the addition of 1 µL of Proteinase K (Invitrogen), and incubated at 37oC for 10 

minutes. The mix was then transformed via heat shock into One Shot OmniMax® 2 

T1R chemically competent cells (Invitrogen), and selected for on LB and 100 µg/mL 

Spectinomycin plates. Success was determined via colony PCR with SS42 and 

SS102. 

Following miniprep, the resultant plasmid was double digested with AflII and NheI 

(New England Biolabs), as per the manufacturer’s instructions, and run on a 0.8% 

agarose Ethidium bromide gel. The plasmid was also sequenced using SS42/SS61 

for final confirmation that the sequences were correct.  

2.6.2 Transforming A. thaliana with CRISPR-Cas9 

Confirmed CRISPR-Cas9 ASY4 vectors were then used to transform A. tumefaciens 

(as per 2.3.3), and the successful transformants subsequently used to transform Col-

0 A. thaliana via floral dip (as per 2.4).  
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2.6.3 Selection and Identification of potential mutants  

T0 primary transformants were grown on soil under long day conditions post-dip (as 

in 2.1), and allowed to set seed. The subsequent generation (T1) were put to 

kanamycin MS plates (as per 2.1.1) to select for plants containing the CRISPR/Cas9 

construct. Plants were transplanted to soil after 14 days growth on MS media (as in 

2.1.1), and genotyped for the Cas9 construct using SS42/SS102 to be certain the 

construct was present. Plants were then allowed to set seed.  

The subsequent generation (T2) was then screened on Kanamycin MS plates (as in 

2.1.1) for Mendelian segregation of Kanamycin resistance, as this would confirm that 

there was only one copy of the CRISPR/Cas9 construct inserted in the genome. For 

each correctly segregating line, at least 10 seeds were put directly to soil. 

Initial PCR screening for novel mutants was conducted using DreamTaq (Thermo 

Fisher Scientific) on DNA extracted from leaf discs (as in 2.2.2) with the primers ASY4 

CRISPR Check F2/ASY4 CRISPR Check R1, and the products analysed on an 

ethidium bromide agarose gel. Gel imaging detects band shifts (INDELS), or potential 

rearrangements (e.g., no band present). If the PCR result proved promising, the 

primers A4_WHOLE_F1/A4_WHOLE_R2 which amplify ASY4 from the intergenic 

region through to the 3′-UTR were used. PCR mixes from all plants were purified using 

MSB® Spin PCRapace (Stratec Molecular) as per the manufacturer’s instructions. The 

purified product was then sent for sequencing by Eurofins Genomics to confirm any 

mutations.  

2.6.3.1 Genotyping the final asy4-4 mutant line 

To check that the asy4-4 mutant carries the deletion, and has no Cas9, three PCRs 

are conducted on leaf-discs (as in 2.2.2), and analysed on an ethidium bromide gel. 
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The first PCR checks for the INDEL (i.e., a band shift of approximately 1.7 kb) using 

primers A4 CR F1 and A4 CR F2. This PCR does detect heterozygous plants, but to 

be certain, the plants are then analysed using ASY4 CRISPR Check F2/ASY4 

CRISPR Check R1 to check if there is a WT size band. The final PCR (optional in later 

generations) will check for the presence of Cas9 using SS42/SS102.  

2.7 Cytology 

2.7.1 DAPI Staining of Meiocytes 

Arabidopsis inflorescence were picked from the plants using sharp forceps, and fixed 

on ice in 3:1 100% ethanol:glacial acetic acid. The fixative was changed three times 

in the space of two days, and the fixed material stored between 4oC-10oC until 

required.  

The inflorescences were washed in citrate buffer (at pH 4.5) in a watch glass three 

times, for five minutes each. During these washes, the opened buds and larger buds 

containing pollen were removed from the inflorescence, leaving only those that should 

contain meiocytes. Following the last wash, 300 µL of digestive enzyme mix (0.3% 

cellulase and 0.3% pectolyase in 10 mM citrate buffer) was added to the watch glass, 

ensuring all of the buds were completely submerged. The watch glasses were then 

placed in a humid container, and incubated at 37oC for 1 h 35 min. After this time, the 

enzyme mix was removed, and replaced with 200 µL of sterile, distilled water to 

prevent over-digestion. 1-2 buds were then selected based on size (between 400 µm 

and 500 µm), and picked out with fine-pointed forceps. The chosen buds were then 

released onto a glass microscope slide, and subsequently macerated with the end of 

a brass rod until fine. 10 µL of 60% glacial acetic acid was then added to the slide, and 

the slide was placed on a heated plate set to 45oC for 30s, stirring continuously. 
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Another 10 µL of 60% acetic acid was added, and the slide heated for a further 30s. 

After this time, 100 µL of fresh, cold fixative (as above) was used to wash the slide. 

The slide was then dried using a hairdryer. Once dry, the slides were mounted in 7 µL 

of 1 µg/mL DAPI (4',6-diamidino-2-phenylindole) in Vectashield mounting medium 

(Vector Laboratories). 

Slides were stored at 4oC thereafter.   

2.7.2 Fluorescence in-situ Hybridisation (FISH) of meiotic spreads 

Slides stained using DAPI (2.8.1) were selected based on how many metaphase I 

spreads they contained, determined via fluorescence microscopy. These slides were 

then washed in a coplin jar in 100% ethanol for 10 min to dissolve Vectashield, thereby 

allowing the removal of the coverslips. The slides were then washed for 1 h in 4T (4X 

SSC (sodium chloride and sodium citrate buffer: for 20x SSC, 3M NaCl, 300 mM 

trisodium citrate, pH 7)), and 0.05% Tween 20), and then washed for 10 min in 2X 

SSC at room temperature. Slides were then washed in a pepsin solution (0.01% 

pepsin in 0.01M HCl at 37oC) for 90 s to destroy the cytoplasm, and then immediately 

washed in 2X SSC for 10 min to remove debris from the digest. In a fume hood, the 

slides were then washed in 4% paraformaldehyde (pH 8) for 10 min. To dehydrate the 

material, the slides were then washed for 2 min each in a series of 70%, 90%, and 

100% ethanol. The slides were then drained, and allowed to dry in the fume hood for 

at least 15 min. 20 µL of labelled probe mix (prepared as in 2.8.2.1) was added to the 

slide, and a coverslip gently placed atop it. The coverslip was not pressed down, but 

sealed onto the slide with rubber solution. The slide was then heated on a hotplate set 

to 75oC for 4 min. Slides were then incubated overnight in the dark in a humid chamber 

at 37oC. The rubber solution was then peeled away using a pair of fine-pointed 

tweezers, and the coverslips removed. Slides were then washed 3 times for 5 min 
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each in 50% formamide and 2X SSC pre-heated to 45oC. The slides were then washed 

in 2X SSC at 45oC for 5 min, 4T at 45oC for 5 min, and finally for 5 min in 4T at room 

temperature. Excess 4T was then drained from the slides, but the slides were not 

allowed to dry before the addition of the secondary antibodies (anti-Digoxigenin 

conjugated to FITC (fluorescein isothiocyanate), anti-Biotin (Avidin conjugated to 

Cy3)). Anti-Digoxigenin was prepared in dioxigenin blocking solution, comprised of 

0.25 g of Boehringer Mannheim DIG nucleic acid blocking reagent, diluted in 4X SSC 

and 0.05% Tween20. Anti-Biotin was diluted in milk blocking solution, comprised of 

2.5 g of skimmed milk powder, also diluted in 4X SSC and 0.05% Tween20. 80 µL of 

the first secondary probe was added to a slip of parafilm cut to the size of a coverslip, 

which was placed atop the slide. The slides were then incubated in the dark for 30 min 

at 37oC. The parafilm was then gently removed with tweezers, and the slides washed 

in the dark 3 times for 5 min each in room temperature 4T. The secondary antibody 

was then added, and then incubated and washed as was executed for the secondary 

probe. Slides were then finally washed in a series of 70%, 90% and 100% ethanol for 

5 min each at room temperature, and then were left to dry for 15-20 min. 10 µL of DAPI 

in Vectashield was then added to the coverslip, and the slide pressed gently atop it. 

The slides were then viewed with an epi-fluorescence microscope (Nikon, 90i).  

Slides were stored at 4oC thereafter.   

2.7.2.1 Probe Preparation for FISH 

The 45s and 5s probes were labelled using the Biotin or DIG-Nick translation mix 

(Roche, via Sigma Aldrich).  Probes were prepared by adding 14 µL of hybridisation 

master mix (1 mL 20X SSC (as in 2.8.2), 5 mL deionised formamide, and 1 g dextran 

sulphate (MW 500,000) in 10 mL SDW, pH 7) to 0.5-2 µL of labelled probe, and then 

the mix was made up to a final volume of 20 µL with sterile, distilled water. The mix 
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was then incubated in a PCR machine at 94oC for 10 min to denature the probes. This 

was then kept on ice until required.  

2.7.3 Spreading Immunolocalisation using Fresh Material  

Unopened buds from Arabidopsis inflorescence were picked using fine-pointed 

forceps, and immediately transferred to wet filter paper in a petri dish lid. The buds 

were then picked out from up to 4 inflorescence using fine-pointed forceps and a sharp 

mounted needle, and arranged by size. Starting with the largest buds (~ 500 µm), the 

anthers were dissected out, and one anther taken for staging (see 2.8.3.2). Anthers 

were placed in a pile on the filter paper. 5 µL of digestion mix (0.4% cytohelicase, 1.5% 

sucrose, 1% polyvinylpyrrolidone) was added to the centre of a washed glass 

microscope slide (washed in a series of in 100% acetone, sterile distilled water, and 

100% ethanol for five min each), and the anthers placed into it using fine-pointed 

forceps. The anthers were then macerated with the end of a brass rod for 

approximately 1 min. A further 5 µL of digestion mix was added, and then the slide 

was incubated at 37oC in a humid chamber for 2 min. The slide was then removed 

from the chamber, and 10 µL of 1-1.5% Lipsol added. The mixture was gently stirred 

with the end of a pipette tip, and spread into a square smaller than the size of a cover 

slip. In a fumehood, 20 µL of 4% paraformaldehyde was added to fix the cells. The 

mix was stirred once more, and then the slides were allowed to dry in the fumehood 

for at least 2 h, taking care to ensure the slides were kept flat. Once dry, 50 µL of the 

primary antibodies diluted in blocking solution (1% bovine serum albumin (BSA) in 

PBS) were added to a piece of parafilm (Sigma-Aldrich) cut to the size of a coverslip 

(3 x 3 cm). Primary antibodies used for immunolocalisation and their dilutions can be 

found in Appendix Table A7. The slide was briefly dipped into PBST (phosphate 

buffered saline, 0.1% Triton X100), briefly dried, and then placed onto the parafilm. The 
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slides were then incubated overnight at 4oC in a humid chamber. After overnight 

incubation, the parafilm was removed, and the slides washed 3 times for 5 min each 

in PBST. 50 µL of the appropriate secondary antibody (all Alexa Fluor™, Thermo 

Fisher Scientific) was added to fresh parafilm slips and then added as above. The 

slides were then incubated for 30 min in a humid chamber at 37oC.  Following 

incubation, the slides were washed 3 times for 5 min each in PBST in the dark to 

prevent photobleaching. The slides were then dried, and mounted in 7 µL 1 µg/mL 

DAPI in Vectashield.  

 

Slides were stored at 4oC thereafter.   

2.7.3.1 Modified Immunolocalisation protocol for Structured Illumination 

Microscopy (SIM)  

If the slides were for SIM, some alterations were made to the immunofluorescence 

protocol. These were as follows:  

1. Buds were prepared directly onto a high precision coverslip (No. 15, 

Marienfeld), rather than onto the slide.  

2. Slides were pre-blocked by adding 50 µL 3% bovine serum albumin directly to 

the coverslip, covering with a square of parafilm, and incubating on the bench-

top for 5 min before primary antibody incubation.  

3. Primary antibodies were added as previous, but were incubated at 37oC in a 

humid chamber for 45 min. After this time, the coverslips were washed in a petri 

dish containing PBST as previous. After washing, the coverslip was dipped in 

sterile distilled water.  

4. Secondary antibodies were added as previous. Following washing in PBST, 50 

µL of 1 µg/mL DAPI was then added to the coverslip, covered with parafilm, 



65 
 

 

and incubated at room temperature for 10 min. The coverslips were then 

washed in PBST 3 times, and then once in sterile distilled water, before finally 

being mounted in 7 µL Vectashield.  

2.7.3.2 Staging buds using Aceto-Orcein  

To determine which buds contain meiocytes of the desired stage, one anther was 

taken from each bud, and placed on a glass microscope slide. A small drop of aceto-

orcein was added, and a coverslip pressed atop it. The slide was then viewed via 

bright-field microscopy. Working back to the largest bud that did not contain pollen 

provided assurance that all buds smaller should contain meiocytes. This is usually 

between bud widths of ~350 µm to ~500 µm.  

2.7.4 Immunolocalisation on Acid-Fixed Material (Microwave Technique) 

As developed by Chelysheva et al., 2010. Slides were prepared as per 2.7.1 with the 

exception of not adding the DAPI-stain unless the slides had already been stained and 

imaged. In a coplin jar, coverslips were removed by immersing the slides in 100% 

ethanol. Citrate buffer (10 mM tri-sodium citrate, adjusted to pH 7 using citric acid) was 

then heated in a microwave until it began to boil. The slides were then placed in a 

plastic slide rack, and immersed in the hot citrate buffer for 45 s. The slides were then 

immediately washed in PBST (as in 2.7.3) for 5 min. The slides were then blocked 

using 50 µL of EM block (as in 2.7.3) added to a piece of parafilm, cut to the size of a 

coverslip. The slides were placed atop this, and incubated at room temperature for 5 

min. Antibody staining was as in 2.7.3, and antibody concentrations as in Appendix 

Table A7.  

Slides were stored at 4oC thereafter.   
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2.7.5 Microscopy and Image Analysis 

Microscopy was conducted on a Nikon 90i Epifluorescence microscope, and the initial 

image analysis and editing using the NIS-Elements software (Nikon). Slides for SIM 

were imaged using the Zeiss ELYRA PS1 at the John Innes Centre, Norwich, UK. 

Later analysis and processing was conducted within FIJI (ImageJ; available at: 

https://imagej.net/Fiji/).  

Measuring of the synaptonemal complex lengths was conducted within FIJI using the 

‘Simple Neurite Tracer’ plugin. Data was then exported to GraphPad Prism 7 for 

statistical analysis.   

2.8 Bioinformatics and Sequencing Analysis 

Sequencing analysis, alignments, and vector maps were generated within Geneious 

9.1.7 for Mac OS X (available at: http://www.geneious.com/). Protein and nucleic acid 

data was gathered from the SALK Arabidopsis 1,001 Genomes database.  

2.9 Statistics 

All statistical analysis was carried out using GraphPad Prism 7 for Mac OS X Version 

7.0d (available at: https://www.graphpad.com/scientific-software/prism/), after 

ensuring all parameters for each test used had been met.

https://imagej.net/Fiji/
http://www.geneious.com/
https://www.graphpad.com/scientific-software/prism/
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3 ASYNAPTIC 4 is a novel component of the meiotic chromosome 

axis in Arabidopsis thaliana 

3.1 Introduction 

As discussed, previous work has identified the main components of the chromosome 

axis in A. thaliana to be ASY1, ASY3, the cohesin complex, including the meiosis 

specific kleisin, REC8/SYN1, and likely TOPII (Armstrong et al., 2002c; Bai et al., 

1999; Cai et al., 2003; Caryl et al., 2000; Ferdous et al., 2012a; Martinez-Garcia et al., 

2018; Osman et al., 2018; Sanchez-Moran et al., 2007). To begin to document which 

other proteins the axis interacts with, Osman and colleagues (2018) conducted an 

immuno-affinity proteomics (co-IP) study using BoASY1: the ASY1 homologue in 

Brassica oleracea. From a pool of 589 proteins pulled-down with BoASY1, 492 

orthologues were identified in Arabidopsis. Of these, 11 were of unknown function. 

Concurrent with this study, one of the genes of unknown function identified by Osman 

et al. (2018) had also been identified by Mathilde Grelon’s group (INRA, France) in a 

BLASTP homology search using the ASY3 sequence, and named ASY4: At2G33793 

(Chambon et al., 2018). The Chambon et al. (2018) paper is presented at the end of 

this thesis. 

ASY4 is predicted to be a comparatively small protein, composed of only 212 amino 

acid residues (24.6 kDa). ASY4 has 23.9% identity and 40.1% similarity to ASY3, and 

aligns to the C-terminal coiled-coil region of ASY3 (Figure 3.1).  

 

 

 

Figure 3. 1 ASY4 ClustalW Alignment of ASY3 and ASY4. Greyscale boxes denote 
areas of identity, from black (100%) through to light grey/white (0%). This information 
is also shown in the green ‘identity’ bar. Red coiled-coil label illustrates the coiled-coil 
region of ASY3 between amino acid residues 623-785.    
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ASY4 is predicted to contain two coiled-coil domains in the central portion of the 

protein, separated by 26 amino acid residues (Figure 3.2) (Chambon et al., 2018). 

Three T-DNA insertion mutant lines were obtained for the gene, with positions in the 

promoter region (characterised in Osman et al., 2018), the fourth exon (asy4-2), and 

in the fifth exon (asy4-1) (Chambon et al., 2018) (Figure 3.2).  
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Outside of plants, this protein appears to have no obvious homologues based on 

protein BLAST searches; this is not unexpected due to the high sequence divergence 

observed in meiotic chromosome structural components (Bomblies et al., 2015). It is 

therefore possible that characterisation will reveal any functional homologues ASY4 

may have in other organisms.  

In this study, we analysed the two separate T-DNA insertion mutant asy4 lines to begin 

to uncover any meiotic role for ASY4. This initially encompassed cytological analysis, 

and later, complementation with a fluorescently tagged version of ASY4. We have 

confirmed ASY4 localisation at the chromosome axis during meiosis, and its 

importance for proper formation of the synaptonemal complex and normal levels of 

homologous recombination.  

Characterisation of the three asy4 mutant lines was conducted independently by both 

the Birmingham Franklin/Sanchez-Moran lab, and Mathilde Grelon’s lab at the INRA, 

Versailles, France. All the results presented in this thesis were obtained through my 

own work unless otherwise stated.  

3.2 Results 

3.2.1 T-DNA insertions in asy4 cause a reduction in fertility that correspond 

with errors during meiosis 

Two T-DNA insertion mutant lines for ASY4 were obtained from a private collection 

and sent to Birmingham by the Grelon lab, further to the initial allele (asy4-3) discussed 

in Osman et al. (2018). These are the lines asy4-1 and asy4-2. The locations of the 

respective T-DNAs are labelled in Fig. 3.2, denoted as ‘Insertion 4.1’ and ‘Insertion 

4.2’, respectively.  
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3.2.1.1 asy4-1 and asy4-2 produce a truncated ASY4 transcript 

To confirm whether the T-DNA insertions had successfully prevented expression of 

ASY4, I conducted RT-PCR on cDNA obtained from buds from WT, asy4-1, and asy4-

2 using two sets of primers: one to amplify the full-length ASY4 product, and one set 

to amplify from up to the 4.2 T-DNA insertion site (RT-PCR as in 2.2.5; primers in 

Appendix Table A3). Furthermore, in WT, I also conducted RT-PCR on cDNA from 

leaves, siliques, and open flowers to determine whether ASY4 transcription is meiosis 

specific. 

PCR products obtained from the reactions were analysed via gel electrophoresis (Fig. 

3.3). In WT, the full-length ASY4 transcript was identified in buds, open flowers, and 

as a very faint band in siliques (Fig.3.3 A), suggesting that ASY4 transcription is not 

meiosis specific. I also show that whilst bands for full-length ASY4 are not present in 

the asy4-1 and asy4-2 mutants, both produce a ~200 bp product from upstream of the 

T-DNA insertion sites, suggesting these plant lines to be partial knock-outs of ASY4 

(Fig. 3.3 B). The Grelon group also obtained this result in an independent experiment 

with different primers. Based on this result, we propose the asy4-1 and asy4-2 mutants 

are hypomorphic.  
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3.2.1.2 asy4-1 and asy4-2 have reduced fertility and crossover number  

Initial characterisation of the three asy4 mutants involved seed counts (as in 2.1.2) to 

determine if mutating ASY4 conferred any fertility defect. Line asy4-3 (SAIL_886_D04) 

was characterised by Osman et al. (2018). It displayed a modest yet significant 

reduction in fertility from an average of 60.54 seeds per silique in WT to 57.50 seeds 

in the mutant (P < 0.001, n=50). Cytological analysis showed that at metaphase I, the 

mutant produced some univalents (chromosomes that have failed to form a CO with 

their homologue) (2.3% frequency, n=130), and at anaphase I, some bridging 

(persisting connections between separating chromosomes). As this phenotype was 

Figure 3.3 Expression of ASY4 in various Arabidopsis tissues and asy4 mutants. 

Gel electrophoresis imaged using ethidium bromide. (A) Analysis of ASY4 

transcription in various aerial tissues in WT A. thaliana. (B) A truncated 187 bp product 

of ASY4 is present in the asy4-1 and asy4-2 mutants.  
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comparatively mild, characterisation did not extend further than this, and focus was 

turned to asy4-1 and asy4-2.  

The Grelon group reported a significant reduction in fertility compared to WT in both 

asy4-1 and asy4-2. Seed count data revealed that asy4-1 displayed a reduction in 

fertility of approximately 42.65% compared to WT, and asy4-2 had a 20% reduction in 

fertility compared to WT (Chambon et al., 2018).  

To determine whether the reduction in fertility corresponded with a defect in meiosis, 

I commenced cytological analysis on DAPI stained PMCs from both asy4-1 and asy4-

2 (Fig. 3.4). In both lines, there is no obvious defect at leptotene and early zygotene. 

As the cells progress through zygotene, however, there is a notable issue with 

condensation and pairing. In WT, the chromatin follows a program of conserved cycles 

of expansion and contraction during prophase I. During leptotene, the chromatin is 

expanded and diffuse, prior to contracting down during zygotene, resulting in 

Arabidopsis zygotene cells appearing small and compact (Fig. 3.4 A2). The chromatin 

then expands again during mid-pachytene, and thus pachytene cells appear larger 

(Fig. 3.4 A3) (Kleckner et al., 2004). In both asy4 mutants, the chromatin appears to 

retain a thinner, thread-like appearance. There does appear to be some alignment and 

synapsis however; thicker paired regions are apparent, and paired centromeres are 

also visible in cells that seem to be progressing toward diplotene (Fig. 3.4, B2-B3, C2-

C3).  

Pachytene is defined as the stage at which the chromosomes have all reached full 

synapsis, and as such, no pachytene cells have ever been observed in either asy4-1 

or asy4-2 by myself or the Grelon group. After the cells commence desynapsis at 

diplotene, condensed bivalents become visible at diakinesis. In asy4-1 and asy4-2, 
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this appears to progress normally (Fig. 3.4, B5 and C5). As the chromosomes 

condense further and align on the metaphase I plate, some connections are visible 

(Fig. 3.4, B6 and C6). For the purpose of this thesis, I define a connection as anything 

from thin threads of chromatin stretching between adjacent bivalents (telomere 

‘stickiness’; entanglements, for example) through to thick sections of chromatin that 

could potentially be sites of ectopic recombination. With this definition, I observe 

connections with a frequency of approximately 21.9% in asy4-1 (16 out of 73 

metaphase I images), and 19.4% in asy4-2 (6 out of 31 metaphase I images) (see 

Appendix Fig. A2). Connections are not observed in WT. Univalents are also observed 

at metaphase I, with a frequency of 52% in asy4-1, and 43% in asy4-2. Univalents are 

not observed in WT cells. That univalents are present means that asy4-1 and asy4-2 

are not maintaining the formation of the obligate chiasma. The Grelon group did not 

report identification of connections.  

Later at anaphase I, as the bivalents separate, bridging and laggards (chromosomes 

delayed in separation) are evident (Fig. 3.4, B7 and C7). This could also be due to 

connections observed at earlier stages. Potentially also supporting the suggestion that 

there are connections, I observed fragments in asy4-1 at both anaphase I and 

metaphase I. Fragments at anaphase I could be due shearing of the connected 

chromosomes as they are pulled apart by the spindle, or is the result of unrepaired 

DSBs. One cell out of the eight anaphase I cells identified had fragments (Figure 3.4, 

B7). Fragments are observed at metaphase I with a frequency of 2.7% (2 of 73 

metaphase I images), which could be explained by unrepaired DSBs (Appendix Figure 

A3). This was not reported by the Grelon group, however. 

To increase the likelihood of obtaining the desired meiotic stage on a slide, bud sizes 

were measured using a microscope with a graticule lens prior to slide preparation. For 
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WT meiosis, buds between 400 µm and 500 µm were used, with 400 – 440 µm buds 

most often yielding cells between leptotene and pachytene, but rarely any further than 

diplotene/diakinesis. It was therefore notable that in both asy4 mutants, bud sizes of 

between 460 µm and 500 µm yielded cells at early prophase I, and furthermore, would 

often yield cells much later in the meiotic programme; thus, slides containing zygotene 

through to anaphase II were obtained: a very rare occurrence when preparing slides 

with measured buds from WT plants. This would therefore suggest that progression 

through meiosis is potentially delayed in these mutant lines, and furthermore, that 

there is an asynchrony in timing of meiosis in absence of normally functional ASY4.  

Ultimately, these earlier defects in prophase I result in mis-segregation and aneuploidy 

in the resultant daughter cells.  
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Figure 3. 4 DAPI stained PMCs 

from WT A. thaliana, asy4-1 and 

asy4-2. Spreads from WT (A1-

A9), asy4-1 (B1-B9), and asy4-2 

(C1-C9). (A1, B1, C1) Leptotene. 

(A2, B2, C2) Zygotene/Zygotene-

like. (A3, B3, C3) WT image shows 

pachytene. For asy4-1 and asy4-2, 

pachytene was not observed; 

images shown are cells that 

appear to have paired the most 

from the sample. Paired 

centromeres indicated with 

arrows. (A4, B4, C4) Diplotene. 

(A5, B5, C5) Diakinesis. (A6, B6, 

C6) Metaphase I. Arrows indicate 

univalents and connections. (A7, 

B7, C7) Anaphase I. Arrows 

indicate bridges, fragmentation, 

and laggards. (A8, B8, C8) Dyad. 

(A9, B9, C9) Tetrad. Bar = 5 µm.  
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As univalents were observed in metaphase I cells from both lines, I conducted chiasma 

counts using the minimum chiasma number (MCN) (Jahns et al., 2014) to determine 

the severity of the suggested reduction in CO number. In asy4-1, there was a reduction 

in CO number from 8.6 (n=28) in WT, to 6.5 (n=67; P < 0.0001; Mann-Whitney U test, 

2 tailed, 5% level). In asy4-2, the CO number was also reduced to 6.6 (n=31; P < 

0.0001; Mann-Whitney U test, 2 tailed, 5% level). No significant difference was found 

in the number of chiasma between asy4-1 and asy4-2 (P = 0.6942; Mann-Whitney U 

test, 2 tailed, 5% level) (Figure 3.5).   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 11  Chiasma number is significantly reduced in asy4-1 and asy4-2. 
Data obtained from DAPI stained metaphase I cells from A. thaliana PMCs. Each 
plotted shape represents the chiasma count for one cell. Middle line represents the 
mean, plotted with the standard deviation. Top bars indicate results of significance 
testing. **** indicates P<0.0001. N.s. indicates that no significant difference was 
found.    

 



79 
 

 

As discussed, some metaphase I cells appear to show connections between bivalents, 

as well as fragments. To help determine the nature of these connections (e.g., 

entanglements or non-homologous recombination events), fluorescence in situ 

hybridisation (FISH) was conducted on the DAPI stained slides using the 45s and 5s 

rDNA probes (Sanchez-Moran et al., 2002) (as in 2.8.2). This process labels the 

chromosomes with a fluorescent marker, thus enabling identification of the 

chromosome. Based on this, it is possible to determine how many COs we might 

expect to be present in the bivalent/multivalent due to the shapes they form, given that 

we know the size of the chromosome arms, and the location of the centromeres.  

Of the 67 asy4-1 cells, 14 were retrieved; of these, only one metaphase appeared to 

have connections. Of the 30 asy4-2 cells, only one cell was retrieved. As such, 

analysis of spreads has been hindered by the number of cells available for analysis. 

Nonetheless, the cell with possible multivalents retrieved from asy4-1 confirms 

evidence of connections, but not necessarily of non-homologous recombination (Fig. 

3.6).  

 

 

 

 

 

 

 

 

Figure 3.12 Fluorescence in situ hybridisation (FISH) on a metaphase I spread 

from asy4-1. (A) Original DAPI image. (B) Schematic illustrating the conformation of 

the chromosomes, as revealed by FISH. (C) DAPI spread after FISH, labelled with the 

45s and 5s rDNA probes. Scale bars = 5 µm.  
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As illustrated in the schematic presented in Fig. 3.6 B, the threads of chromatin 

connecting chromosomes 2, 3, and the two univalents of chromosome 4, are rather 

thin. There is also no obvious evidence of mis-alignment which would suggest 

improper tension on the spindle caused by an ectopic CO. Furthermore, the shapes 

of the bivalents formed by chromosomes 3 and 5 are not unexpected if chromosome 

3 has three COs, and chromosome 5 has two to three. The simplest explanation for 

the connections in this cell, therefore, is that they are the result of entangled 

chromosomes.  

3.2.1.3 ASY1 localisation is abnormal in asy4 

Silver-staining analysis of the chromosome axis by the Grelon group suggests that the 

underlying structure of the axis is still present in asy4-1 (Chambon et al., 2018). In 

asy3, ASY1 does not localise to the chromosome axis, instead remaining on the 

chromatin in foci (Ferdous et al., 2012). To determine whether ASY1 requires ASY4 

for normal loading, I conducted immunolocalisation with an antibody against ASY1 to 

image the axis in asy4-1.  

In asy4-1, ASY1 appears on the axis during leptotene. In WT, the ASY1 signal is strong 

and linear. In asy4-1, however, it takes on a ‘lumpy’ and ‘fuzzy’ appearance, appearing 

as a series of intense foci close together rather than the continuous signal it appears 

to form in epi-fluorescence images of cells during leptotene and early zygotene (Fig. 

3.7).  
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3.2.1.4 Early recombination events appear normal in asy4-1 

As described in Chapter 1, the chromosome axis is required for normal progression 

of meiotic recombination. To determine at which point recombination is compromised 

in asy4, immunolocalisation was conducted on early prophase I PMCs using 

antibodies against several early recombinases. The Grelon group confirmed that the 

levels of DMC1 foci were not significantly different to WT in asy4, suggesting that both 

the number of DSBs is normal, and also, that strand invasion is likely to proceed 

normally (Chambon et al., 2018).  

Figure 3.13 Immunolocalisation of ASY1 in WT and asy4-1. Top two cells WT Col-
0 background. Bottom two cells from asy4-1. ASY1 appears more foci-like in asy4-1, 
rather than as a clear linear signal as observed in WT. Scale bars = 5 µm.  

 

 

Figure 3.14 Immunolocalisation of MSH4 and MSH5 and comparison of number 
of foci. Immunolocalisation conducted on early prophase I PMCs. (A, C) Cells from 
asy4-1. (B, D) Cells from WT Col-0 control. (A, B) MSH4 foci shown in red. (C, D) 
MSH5 foci shown in red. Chromatin in all cells stained with DAPI. All images are a 
representative single slice from a stack. Texas Red channel processed with Mexican 
Hat to increase clarity. All scale bars represent 5 µM. (E) Box and whisker plot to 
demonstrate the spread of the data between sample groups. Each shape represents 
the number of foci counted in one cell. Top and bottom lines represent the standard 
deviation. Middle line represents the mean.Figure 3.15 Immunolocalisation of ASY1 
in WT and asy4-1. Top two cells WT Col-0 background. Bottom two cells from asy4-
1. ASY1 appears more foci-like in asy4-1, rather than as a clear linear signal as 
observed in WT. Scale bars = 5 µm.  

 

 

Figure 3.16 Immunolocalisation of MSH4 and MSH5 and comparison of number 
of foci. Immunolocalisation conducted on early prophase I PMCs. (A, C) Cells from 
asy4-1. (B, D) Cells from WT Col-0 control. (A, B) MSH4 foci shown in red. (C, D) 
MSH5 foci shown in red. Chromatin in all cells stained with DAPI. All images are a 
representative single slice from a stack. Texas Red channel processed with Mexican 
Hat to increase clarity. All scale bars represent 5 µM. (E) Box and whisker plot to 
demonstrate the spread of the data between sample groups. Each shape represents 
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After strand invasion, D-loop stabilisation and extension, and second end capture, a 

double Holliday junction (dHj) is established (reviewed in: Wyatt and West, 2014). This 

is stabilised in Arabidopsis by the MutS homologs MSH4 and MSH5: members of the 

ZMM pathway (Higgins et al., 2008b, 2004; Snowden et al., 2004). Immunolocalisation 

of MSH4 and MSH5 on PMCs during leptotene to mid-zygotene revealed an average 

of 109.1 ± 20.41 (n=15) MSH4 foci, and an average of 121.1 ± 29.55 (n=15) MSH5 

foci in asy4-1. In WT, an average of 120.3 ± 20.8 (n=15) was found for MSH4 foci, and 

an average of 110.9 ± 38.61 (n=15) for MSH5. To increase certainty of the foci being 

genuine, only foci detected as co-localising with the ASY1 signal were counted. Thus, 

I found no significant difference in the number of MSH4/MSH5 foci between WT and 

asy4 (MSH4 P=0.17; MSH5 P=0.3835. Two-tailed Mann-Whitney U test, 5% level) 

(Fig. 3.8). This suggests that stable, proto-dHjs are being produced in asy4. Data 

available in Appendix Table A9.     

 

 

 

 

 

 

 

 

 

Figure 3.22 Immunolocalisation of MSH4 and MSH5 and comparison of number 
of foci. Immunolocalisation conducted on early prophase I PMCs. (A, C) Cells from 
asy4-1. (B, D) Cells from WT Col-0 control. (A, B) MSH4 foci shown in red. (C, D) 
MSH5 foci shown in red. Chromatin in all cells stained with DAPI. All images are a 
representative single slice from a stack. Texas Red channel processed with Mexican 
Hat to increase clarity. All scale bars represent 5 µM. (E) Box and whisker plot to 
demonstrate the spread of the data between sample groups. Each shape represents 
the number of foci counted in one cell. Top and bottom lines represent the standard 
deviation. Middle line represents the mean.   
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3.2.2 Characterisation of an asy4-1 line complemented with ASY4eYFP 

confirms that ASY4 is associated with the chromosome axis during 

meiosis 

3.2.2.1 An antibody raised against ASY4 suggests axis localisation  

The co-immunoprecipitation study conducted by Osman et al. (2018) suggested that 

ASY4 was an axis-associated protein, given that it interacts either directly or indirectly 

with ASY1. Previous studies have used immunocytochemistry to show the localisation 

of ASY1 and ASY3 on the chromosome axis (Armstrong et al., 2002c; Ferdous et al., 

2012a). To conduct a similar study, an antibody was raised in rat against ASY4 by Kim 

Osman (University of Birmingham). 

I conducted immunolocalisation using anti-ASY4 on wild-type Col-0 PMCs. The ASY4 

antibody shows signal on the axis during prophase I of meiosis. ASY4 is first observed 

in late leptotene/early zygotene, and persists into late prophase I (Figure 3.9). It 

appears to form foci that seem relatively discrete on the chromatin, but forms a more 

linear signal at the axis. During leptotene, the ASY4 signal appears to co-localise with 

that of the cohesin SYN1, and later during zygotene through pachytene, with the SC 

central component ZYP1 (Fig 3.9, A-F). This confirms that ASY4 is present on the axis 

at both synapsed and unsynapsed regions (Fig. 3.9, D). ASY4 is also visible on the 

chromatin during all of these stages. 

The ASY4 signal appears to be at its strongest and most linear from the 

commencement of zygotene and polymerisation of the SC, with the ASY4 foci 

appearing much more abundant in both the chromatin and at the axis where it is co-

localising with the ZYP1 signal (Figure 3.9, G-I). At diplotene, the ASY4 signal persists, 
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but appears to be being depleted as the axis is remodelled, with the signal appearing 

patchy (Fig 3.9, J-L).  
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Figure 3.23 Immunolocalisation of ASY4 relative to the SC and sister cohesion 
in wild-type Arabidopsis thaliana. Immunolocalisation conducted on PMCs during 
prophase I. (A-C) Early zygotene stage meiocyte: (A) merged image; (B) dual 
localisation of ASY4 (green) and DAPI (blue); (C) dual localisation of SYN1 (red) and 
DAPI (blue). (D-F) Mid-zygotene stage meiocyte: (D) merged image; (E) dual 
localisation of ASY4 (green) and DAPI (blue); (F) dual localisation of ZYP1 (red) and 
DAPI (blue). (G-I) Pachytene stage meiocyte: (G) merged image; (H) dual localisation 
of ASY4 (green) and DAPI (blue); (I) dual localisation of ZYP1 (red) and DAPI (blue). 
(J-L) Early diplotene meiocyte (J) merged image; (K) dual localisation of ASY4 
(green) and DAPI (blue); (L) dual localisation of SYN1 (red) and DAPI (blue). All scale 
bars represent 5µm. Modified from Darbyshire 2015, p. 30. 
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3.2.2.2 Complementation of asy4-1 with ASY4eYFP restores fertility, and 

increases CO number  

Whilst the signal of the ASY4 antibody co-localises with the axis, western blots on total 

protein from A. thaliana inflorescence did not appear to exclusively identify ASY4 (Kim 

Osman, University of Birmingham, personal communication). Furthermore, signal was 

still seen on the chromosome axis in the asy4 mutants, and therefore the antibody 

could not be verified (Appendix Figure A4, courtesy of Kim Osman, University of 

Birmingham). Combined with the RT-PCR results in 3.2.1.1, this suggests the 

presence of a truncated protein in the asy4-1 and asy4-2 mutants, confounding 

antibody verification. To get around this problem, a version of ASY4 tagged with eYFP 

via triple template PCR was produced by Allan West (University of Birmingham) based 

on a protocol developed by Tian et al. (2004), and modified by Heckmann and Franklin 

(unpublished). The eYFP tagged ASY4 was then used to complement the asy4-1 and 

asy4-2 mutants via floral dipping. 

After selecting for successfully transformed plants on kanamycin plates, I was 

provided with the resultant plants for analysis by Allan West (University of 

Birmingham). The success of the complementation was initially determined via seed 

counts as an indication of fertility. A Kruskal-Wallis test was then conducted to identify 

those lines that no longer had significantly reduced fertility compared to wild-type. The 

most fertile T2 generation was considered to be the best complemented line, and was 

therefore taken forward for further analysis (Figure 3.10). The asy4:ASY4eYFP line 

165.15 was chosen as the best complemented line (x̄ 164.15 = 47; x̄ Col-0 = 50; P > 

0.05), which shall henceforth be referred to as ‘asy4:ASY4eYFP’. 
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I next sought to confirm whether the rescued fertility corresponded with more WT 

levels of COs. Chiasma counts were conducted on 75 DAPI metaphase I spreads from 

the T3 generation of plants from the T2 asy4:ASY4eYFP line to determine if there was 

any difference in CO frequency compared to wild-type. Spreads with between 5 and 

10 chiasma were observed, with an average chiasma frequency of 7.72. This was 

significantly different to wild-type (x̄=8.64, n=28) in a Mann-Whitney U test at the 5% 

level (P=0.0002). However, this result was also significantly different to asy4-1 (x̄=6.5, 

n=64; (P<0.0001)) (Figure 3.11).   

Figure 3.24 Seed Count data from asy4 Arabidopsis thaliana mutants 
transformed with ASY4eYFP. Asterisks indicate plant lines with a fertility significantly 
different to the Col-0 WT control at the 5% level in a two-tailed Kruskal-Wallis test. 
Bars with hashed lines indicated that the plants with the highest fertility, and that were 
not significantly different to Col-0 in a two-tailed Kruskal-Wallis test (P>0.05). Error 
bars indicate standard deviation. The 4.1 and 4.2 legends denote which T-DNA asy4 
mutant background the plants were from. Selected line indicated with arrow. 
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Some meiotic errors were also identified at the MI stage in asy4:ASY4eYFP. Crucially, 

univalents were observed in 2 of the 75 cells (2.6% frequency) (Figure 3.12). There 

also potentially appears to be a persistent issue with connections, as is observed in 

the asy4-1 mutant, suggesting the possible presence of interlocks and entanglements 

(Fig. 3.12, B).  

Aberrations were also observed at anaphase I (Figure 3.13). This included bridges 

(Fig. 3.13, D), and laggards (Fig. 3.13, C). There also appears to be an issue with 

segregation between chromosomes that may have been entangled. It appears that a 

bivalent is separating, but another chromosome is also attached to the pair, connected 

by a thin thread of chromatin (Fig. 3.13, B).  

Figure 3.25 Comparison of distribution of chiasma number between Col-0 (WT), 
asy4:ASY4eYFP, and asy4-1. Grey shapes depict the number of chiasma in 
individual cells. In black, the mean (central horizontal line) and standard deviations are 
shown for each plant line. Top bars indicate results of the significance testing. *** 
illustrates P=0.0002. **** denotes P<0.0001.   

 

 

Figure 3.26 DAPI-stained PMCs at metaphase I and Telophase II in asy4:ASY4eYFP. 
(A) WT Metaphase I. (B, C, D) Metaphase I images from T3 generation of 
asy4:ASY4eYFP. (B) Cell displaying a potential interlock and entanglement. (C, D) 
Cell with univalents. Scale bars = 5 µm.Figure 3.27 Comparison of distribution of 
chiasma number between Col-0 (WT), asy4:ASY4eYFP, and asy4-1. Grey shapes 
depict the number of chiasma in individual cells. In black, the mean (central horizontal 
line) and standard deviations are shown for each plant line. Top bars indicate results 
of the significance testing. *** illustrates P=0.0002. **** denotes P<0.0001.   

 

 

Figure 3.28 DAPI-stained PMCs at metaphase I and Telophase II in 
asy4:ASY4eYFP. (A) WT Metaphase I. (B, C, D) Metaphase I images from T3 
generation of asy4:ASY4eYFP. (B) Cell displaying a potential interlock and 
entanglement. (C, D) Cell with univalents. Scale bars = 5 µm. 

 

Figure 3.29 DAPI-stained PMCs at Anaphase I. DAPI-stained male meiocytes. (A) WT 
anaphase 1. (B, C) and anaphase I images from T3 generation of asy4:ASY4eYFP. 
(D) Telophase II. (B) shows bridging, potentially between non-homologous 
chromosomes. (C) Shows laggards. (D) 6:4 segregation of chromosomes. (A, B, C) 
Scale bars represent 5 µm. (D) Scale bars represent 10 µm.Figure 3.30 DAPI-stained 
PMCs at metaphase I and Telophase II in asy4:ASY4eYFP. (A) WT Metaphase I. (B, 
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Mis-segregation was also observed at telophase II, but only one cell was observed 

displaying this characteristic (Figure 3.13 D). 

 

 

 

 

 

 

 

  

Figure 3.34 DAPI-stained 
PMCs at metaphase I and 
Telophase II in 
asy4:ASY4eYFP. (A) WT 
Metaphase I. (B, C, D) 
Metaphase I images from T3 
generation of asy4:ASY4eYFP. 
(B) Cell displaying a potential 
interlock and entanglement. (C, 
D) Cell with univalents. Scale 
bars = 5 µm. 

 

Figure 3.35 DAPI-stained 
PMCs at Anaphase I. DAPI-
stained male meiocytes. (A) 
WT anaphase 1. (B, C) and 
anaphase I images from T3 
generation of 
asy4:ASY4eYFP. (D) 
Telophase II. (B) shows 
bridging, potentially between 
non-homologous 
chromosomes. (C) Shows 
laggards. (D) 6:4 segregation 
of chromosomes. (A, B, C) 
Scale bars represent 5 µm. (D) 
Scale bar represents 10 µm. 
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3.2.2.3 Complementation of asy4-1 with ASY4eYFP restores synapsis 

One significant phenotype in the asy4 mutant is persistent regions of asynapsis, 

resulting in apparent absence of a true pachytene stage (Chambon et al., 2018). I thus 

commenced immunolocalisation on acid-fixed PMCs (2.8.4) to investigate whether 

ASY4eYFP complementation restored synapsis to wild-type levels. As illustrated in 

Fig. 3.14 B, near complete synapsis is observed in asy4:ASY4eYFP, with the ZYP1 

signal appearing to extend the full length of the chromosomes. Comparing the images 

directly to asy4-1, it is evident that synapsis extends much further in the ASY4eYFP 

complemented line than in the homozygous mutant, where only short, aberrant 

stretches of ZYP1 are visible (Fig. 3.14 C).    

 

 

 

 

 

 

 

 

 

Figure 3.36 Microwave immunolocalisation shows near complete synapsis is 
achieved in asy4:ASY4eYFP. Immunolocalisation conducted on late zygotene PMCs 
from Arabidopsis. (A) WT. (B) asy4:ASY4eYFP. (C) asy4-1 homozygote. Chromatin 
is stained with DAPI. ZYP1 shown in Texas Red. All scale bars represent 5 µm. 
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3.2.2.4 ASY4eYFP signal is axis associated 

To complete characterisation of this line, I conducted immunolocalisation on 

chromosome spread preparations from fresh pollen mother cells (PMCs) from the T3 

generation of asy4:ASY4eYFP to image the axis directly, and finally confirm the axis 

localisation of ASY4. This showed that the ASY4 signal (eYFP native fluorescence) 

co-localises at the majority of sites with ASY1 (Fig. 3.15), thereby confirming its 

presence at the chromosome axis during prophase I of meiosis in A. thaliana. Data 

presented in Chambon et al. (2018) suggests that ASY4 loads during leptotene, and 

persists on both synapsed and unsynapsed regions of the chromosomes, 

corroborating the result observed in 3.2.2.1. 

 

 

 

 

Some aberrations in ASY4 localisation, however, are apparent in the complemented 

lines. Large foci of ASY4eYFP are present on the axis, around which, the ZYP1 signal 

is extending, suggesting the foci are genuine and not an artefact of the 

immunolocalisation protocol (Fig. 3.16 A). Whilst the more extended ZYP1 signal 

curves around these foci, interestingly, the points from which ZYP1 seems to be 

Figure 3.37 Spreading immunolocalisation on PMCs from asy4:ASY4eYFP 

confirms ASY4 is axis-associated during prophase I. Immunolocalisation 

conducted on zygotene stage PMCs from the T3 of 165.15 asy4:ASY4eYFP. (A) 

Merged image. (B) ASY4eYFP auto-fluorescence imaged in the FITC channel. (C) 

ASY1 in Texas Red. All scale bars represent 5 µm.  
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initially extending are flanked by the large ASY4eYFP foci (Fig. 3.16 B). It was also 

found that the cells that contained the large ASY4eYFP foci also had large aggregates 

of ASY1 (Fig. 3.16, C). Some of these ASY1 foci co-localise with ASY4eYFP, but not 

all. This phenotype is not ubiquitous, only being observed in a subset of cells, but the 

foci were present in many of the plants screened that had been complemented with 

ASY4eYFP.  

  

DAPI ASY4eYFP ASY1 

 

ASY1 

 

 

ASY4eYFP 

 

 

Figure 3.38 Large foci of ASY4eYFP 
are present on the axis and at the 
SC in some asy4:ASY4eYFP cells. 
Immunolocalisation conducted on an 
asy4-2 line complemented with 
ASY4eYFP. ASY4eYFP imaged in 
FITC channel (native fluorescence). 
ZYP1/ASY1 imaged in Texas Red. 
Chromatin is stained with DAPI. (A) 
Zygotene cell showing ZYP1 
curvature around the large 
ASY4eYFP foci. (B) Early zygotene 
cell showing ASY4eYFP foci flanking 
synapsis initiation sites. (C) Early 
zygotene cell showing aggregates of 
ASY4eYFP and ASY1. Some ASY1 
foci co-localise with foci of ASY4eYFP 
(inlay). All scale bars represent 5 µm. 
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3.2.2.5 ASY4 loading requires ASY3 

Whilst ASY1 requires ASY3 for proper loading onto the axis, ASY3 does not appear 

to be dependent on ASY1, as it still localises to the axis in asy1 (Ferdous et al., 2012a). 

The Grelon group also reported that ASY3 localisation is disrupted in the asy4-1 

mutant (Chambon et al., 2018).  

We next sought to determine whether ASY4, like ASY1, requires ASY3 for localisation 

to the axis. To do this, the asy3-1 mutant (Ferdous et al., 2012) was transformed with 

the ASY4eYFP construct by Allan West (University of Birmingham). Previous work 

with ASY1eYFP had indicated that whilst this inserts another copy of a gene already 

present in the plant (albeit with a fluorescent tag), it can still localise to the axis 

(Heckmann and Franklin, unpublished). Thus, we expected that ASY4eYFP would 

also be able to localise to the axis. As a control, the WT Col-0 was also transformed 

with ASY4eYFP by Allan West (University of Birmingham) to determine whether 

ASY4eYFP can still localise to the axis when native ASY4 is still present. 

I commenced immunolocalisation on PMCs during early prophase I when ASY4 is 

abundant using antibodies against SMC3 (part of the cohesin complex), and GFP 

(Lam et al., 2005). In the asy3-1:ASY4eYFP transformed lines, the ASY4eYFP signal 

appears as small foci, and no cells with a linear signal have ever been observed in this 

mutant background (Fig. 3.17). Interestingly, the foci do not appear to be axis-

associated, instead appearing next to the SMC3 signal, but not co-localising with it.  
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To confirm that this was not due to an issue with ASY4eYFP expression being 

silenced, inflorescence were checked for fluorescence in the FITC channel by pressing 

them under a coverslip onto a slide with DAPI. As is evident in Fig. 3.18, fluorescence 

localised only to the anthers is present in the plant lines used for immunolocalisation, 

suggesting that ASY4eYFP being unable to load and polymerise on the axis is likely 

to be genuine, and not due to a lack of expression.  

 

Figure 3.17 Immunolocalisation of ASY4eYFP using the anti-GFP antibody in an 
asy3-1 mutant background. Chromatin stained with DAPI. Anti-SMC3 in Texas Red. 
Anti-GFP in FITC. The asy4-1 and asy3-1 images show standard background for the 
GFP antibody. In asy3:ASY4eYFP, foci of ASY4eYFP are visible in the chromatin and 
co-localising with the SMC3 signal. Scale bars = 5 µm. 
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For the Col-0:ASY4eYFP lines that have been investigated, the ASY4eYFP signal is 

visible on the axis, but as blobs, similar to what we have observed in Figure 3.16 (Fig. 

3.19). Nonetheless, these large foci are distinct to those seen in the asy3:ASY4eYFP 

lines; in Col-0:ASY4eYFP, the accumulations of ASY4 are far larger and brighter than 

is observed in asy3:ASY4eYFP.  

 

 

 

 

 

 

Figure 3.39 Anthers from asy3:ASY4eYFP are fluorescent, confirming 
expression of the ASY4eYFP construct. Whole inflorescence imaged in the FITC 
channel. Scale bar = 50 µm. 
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3.2.3 ASY4eYFP structure appears abnormal in pch2  

To further our understanding of which proteins might be required for normal loading 

and/or polymerisation of ASY4eYFP, the pch2-1 mutant (Lambing et al., 2015) was 

transformed with the ASY4eYFP construct by Allan West (University of Birmingham). 

A key phenotype of pch2 is that it is defective in axis remodelling; the ASY1 signal 

appears to persist, instead of being depleted, at sites of SC polymerisation (Lambing 

et al., 2015). The ASY1 signal during prophase I also appears dimmer along the axis 

in pch2-1 than in WT (West, 2015). The loading and dynamics of SYN1 and ASY3, 

however, appear unaffected in pch2, and thus the core axis structure is still present. 

As discussed in 1.4, PCH2 is an AAA+ ATPase. In immunolocalization studies, it was 

found that the PCH2 signal can be seen as foci during leptotene, but its signal does 

not extend until zygotene; PCH2 extends exclusively at sites where the SC has 

commenced polymerisation, and co-localises with ZYP1. Combined, these data 

suggest that PCH2 is an axis remodeller, as opposed to a crucial, structural 

component of the axis. It is also not a core component of the SC, as synapsis still 

occurs in pch2, albeit at a reduced level (Lambing et al., 2015). Given that data 

presented by the Grelon group in Chambon et al. (2018) suggests that ASY1 is not 

depleted from the axis in asy4-1, we were curious to see whether there was any clear 

difference in the behaviour of ASY4eYFP in the pch2 background.  

I conducted immunolocalisation using antibodies raised against GFP, ASY1, and 

ZYP1, which revealed that ASY4eYFP does indeed load to the axis in pch2, but its 

appearance seems altered to that observed in asy4:ASY4eYFP (Fig. 3.20, and 

3.2.2.4). Instead of forming the thick, linear signal we see at late leptotene/early 

zygotene in asy4:ASY4eYFP, ASY4eYFP appears much more dotty and irregular (Fig. 

3.20, row C). This signal is, however, only seen during leptotene; as zygotene 
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commences with the extension of the SC, once again, large aggregates of ASY4eYFP 

become visible (Fig. 3.20, row D). Some of these large ASY4eYFP foci appear to co-

localise with ASY1, as was observed in Figure 3.16. That ASY1 is co-localising with 

ASY4eYFP foci was perhaps unexpected, given that ASY1 is not properly remodelled 

in the absence of PCH2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.41 Immunolocalisation of PMCs from pch2-1 transformed with 
ASY4eYFP show aggregates of ASY4eYFP and ASY1 signal at the 
leptotene/zygotene transition. ASY1 in Texas Red channel. ASY4eYFP in FITC. 
ZYP1 shown in DAPI channel. As the SC begins to polymerise in WT and pch2-1, the 
ASY1 signal remains linear. As ZYP1 commences extension in pch2:ASY4eYFP, 
ASY4eYFP and ASY1 form large foci. All scale bars represent 5 µm.  

 

 

Figure 3.42 Yeast-2-Hybrid shows ASY4 interacts with ASY3, potentially via its 
second coiled-coil. –LT = selection for presence of Y2H vectors. –LTH = medium 
stringency. –LTHA = stringent media. (A) ASY4 interaction with full-length ASY3. (B) 
ASY4 tested against the ASY3 coiled-coil domain as defined in Ferdous et al., (2012). 
(C) ASY4 tested against the coiled-coil domain of ASY3 as defined in this thesis. (D) 
ASY4 tested against the ASY3 without its coiled-coil domain. (E) First half of ASY4 
tested against full-length ASY3. (F) Second half of ASY4 interaction with full-length 
ASY3. SV40/p53 interaction is the control for all. Each figure represents the result from 
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3.2.4 ASY4 directly interacts with ASY3 in Yeast-2-Hybrid 

Yeast-2-Hybrid (Y2H) is a common method used to determine protein-protein 

interactions. It utilises the modular nature of the Gal4 transcription factor by creating 

two fusion proteins with the proteins of interest: one fused to the DNA-binding domain 

(DBD), and one fused to the activation domain (AD). Interaction between the proteins 

of interest is confirmed via expression of several reporter genes related to the ability 

of the yeast to produce amino acids and the nucleobase, adenine. In this study, 

colonies containing DBD and AD fusion proteins that can interact will be able to grow 

on triple (TDO) and quadruple dropout (QDO) media. TDO lacks leucine (L), 

tryptophan (T), and histidine (H). QDO is also -LTH, as well as adenine (A) (Y2H 

system reviewed in: Mehla et al., 2015).   

In Osman et al. (2018), Chambon et al. (2018), and most recently, West et al. (2019), 

ASY4 is shown to interact with ASY3 in Y2H experiments. Previous studies have used 

Y2H to confirm physical interactions between ASY1 and ASY3 (Ferdous et al., 2012). 

This interaction was dissected further to reveal that the ASY1/ASY3 interaction 

requires the presence of the C-terminal coiled-coil region of ASY3, and further, 

suggested that the coiled-coil domain alone from ASY3 is sufficient to interact with 

ASY1 (Ferdous et al., 2012). In West et al. (2019), it was shown that a HORMA-

interacting domain located at the N-terminal of ASY3 (amino acid residues 2-50) is 

necessary and sufficient for binding of ASY1, suggesting that binding of ASY3 to ASY1 

is not entirely reliant on the presence of the ASY3 coiled-coil domain, in contrast to 

what was published by Ferdous et al. (2012).  

As discussed, ASY4 is predicted to contain two coiled-coil domains that take up the 

majority of its central portion, separated by 26 amino acids. To uncover over which 

regions ASY4 and ASY3 interact, I tested several truncated versions of the proteins 
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against each other. The first was to determine whether, as with ASY1 and ASY3, the 

coiled-coil domain of ASY3 was both necessary and sufficient for interaction with 

ASY4. The second was to test whether either coiled-coil in ASY4 is necessary and/or 

sufficient for interaction with ASY3. Furthermore, if ASY4 and ASY1 interacted with 

the same region of ASY3, it could suggest the possibility for competition between the 

two proteins for ASY3 binding.  

To perform the Y2H experiment, I amplified ASY3 and ASY4 from A. thaliana bud 

cDNA. Methodology can be found in 2.5, and primers in Appendix Table A4. The PCR 

products were cloned into pDEST-22 (contains the Gal4 activation domain) and 

pDEST-32 (contains the Gal4 DNA-binding domain) (Invitrogen). Plating transformed 

Saccharomyces cerevisiae onto drop out media (as described in section 2.5) reveals 

whether a physical interaction is likely between the two proteins of interest.  

As pDEST-22 and pDEST-32 are different vectors than those used in Osman et al. 

(2018), Chambon et al. (2018), and West et al. (2019), I first tested the interaction 

between full-length ASY3 and ASY4 using this vector set (Fig. 3.21 A). As this 

combination grows on the stringent –LTHA media, it suggests ASY3 and ASY4 can 

interact. Next, I tested whether the coiled-coil domain of ASY3 is necessary and 

sufficient for interaction with ASY4, as is proposed to be the case in Osman et al. 

(2018). Initially, a primer set used in Ferdous et al. (2012) was utilised for cloning the 

ASY3 coiled-coil (amino acid residues 623-793). However, upon closer inspection, it 

appears that if the primers published are correct, this would produce an out of frame 

protein (Appendix Fig. A5). Thus, a different primer set was designed to make a 

predicted in-frame protein, and subsequently both versions of the coiled-coil domain 

(C1 ASY3: coil as defined by Ferdous et al. (2012); C2 ASY3: coil as defined in this 

thesis) were tested against ASY4. A truncated version of ASY3 that did not contain 
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the coiled-coil regions (N-terminal ASY3), and so extended from amino acid residue 1 

to 622, was also tested against ASY4 (Fig. 3.21 D).  

For both versions of the ASY3 coiled-coil domain, neither were shown to interact with 

ASY4 in this study (Fig. 3.21 B, C). This is converse to what has been proposed in 

Osman et al., (2018). It is possible that ASY4 does interact with the coiled-coil of ASY3 

as defined in this thesis, but only weakly; it manages to grow on -LTH media. However, 

there is some uncertainty whether there is some auto-activation as the negative 

controls for C2 ASY3 also show some growth on the -LTH media. Nonetheless, these 

results suggest the coiled-coil domain is at least necessary for interaction with ASY4 

as the result for ASY4 vs N-terminal ASY3 was negative. 

Next, two truncated versions of ASY4 containing only one coiled-coil each (ASY4 H1 

(residues 1 to 127) and ASY4 H2 (residues 128 to 212)) were tested against full-length 

ASY3 (Fig. 3.21 E, F). As there is no growth on –LTH or –LTHA media for the H1 

ASY1 vs ASY3 FL interaction, we conclude that, using this method, we cannot show 

interaction with the first coiled-coil containing region of ASY4 and ASY3. For the 

second coiled-coil region of ASY4, however, there is growth on –LTH and –LTHA that 

looks similar to what is seen for the SV40/p53 control vectors, thus suggesting that 

ASY4 may interact with ASY3 via its second coiled-coil. However, growth on –LTHA 

was only achieved in one of the two reciprocal reactions; the yeast only grow on -

LTHA when ASY4 H2 is in pDEST-22 and ASY3 is in pDEST-32. Explanations for this 

are explored in the discussion.  

Replicate plates for all interactions are presented in Appendix Figure A6.  

Thus, in this thesis, the second coiled-coil of ASY4 is likely necessary and sufficient 

for interaction with ASY3, and so we propose that the interaction with ASY3 is between 
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amino acid residues 128 and 212 of ASY4. The coiled-coil domain of ASY3 is 

necessary but potentially not sufficient for interaction with ASY4.  

  

Figure 3.48 Yeast-2-Hybrid shows ASY4 interacts with ASY3, potentially via its 
second coiled-coil. –LT = selection for presence of Y2H vectors. –LTH = medium 
stringency. –LTHA = stringent media. (A) ASY4 interaction with full-length ASY3. (B) 
ASY4 tested against the ASY3 coiled-coil domain as defined in Ferdous et al., (2012). 
(C) ASY4 tested against the coiled-coil domain of ASY3 as defined in this thesis. (D) 
ASY4 tested against the ASY3 without its coiled-coil domain. (E) First half of ASY4 
tested against full-length ASY3. (F) Second half of ASY4 interaction with full-length 
ASY3. SV40/p53 interaction is the control for all. Each figure represents the result from 
one replicate plate. 2nd and 3rd replicate plates can be found in Appendix Figure A5.  
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3.3 Discussion 

In this chapter, we describe a novel component of the chromosome axis in Arabidopsis 

thaliana required for normal fertility, axis structure, synapsis, and CO number: 

ASYNAPTIC 4 (ASY4). Combined, this body of work has used affinity-proteomics to 

identify new candidate meiotic proteins, a variety of cytological techniques to analyse 

mutant lines, yeast-2-hybrid to test potential protein-protein interactions, and a novel 

triple-template PCR technique to tag proteins for analysis in planta. 

As in Chapter 5 we present a novel asy4 mutant developed by CRISPR-Cas9, a more 

in-depth discussion regarding ASY4 will be covered in Chapter 6 for clarity.  

3.3.1 ASY4 is required for normal maturation of COs 

As has been presented in Chambon et al. (2018), the two T-DNA insertion mutants 

available for asy4 display a reduction in fertility, along with a reduction in CO number, 

and defects in chromosome axis formation. Furthermore, there is a reduction in the 

extent of SC polymerisation. Given that early recombination events appear to progress 

normally with WT levels of DMC1 foci (Chambon et al., 2019), and MSH4/MSH5 foci, 

the reduction in CO number could be attributed to a defect in CO maturation. This 

would indeed appear to be the case, as Chambon et al. (2018) reported a reduction in 

the number of MLH1 and HEI10 foci compared to WT.  

The reduction in chiasma number was confirmed independently by both myself at 

Birmingham, and the Grelon group. Chambon et al. (2018) presented a reduction in 

CO number from 8.9 to 5.9; I report a reduction from 8.6 to 6.5. This discrepancy could 

be explained by the inherent subjectivity involved in scoring chiasma counts, however, 

both groups counted using the conservative MCN method, which should make 

counting more objective (Jahns et al., 2014). There is also a possible environmental 
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effect, given that the plants would have been grown in different places, and potentially, 

at different times of year. Nonetheless, both report a significant reduction in CO 

number, so the conclusion is ultimately the same.  

Conversely to what was published in Chambon et al. (2018), we found evidence of 

connections and fragments at metaphase and anaphase I, which would suggest either 

chromosome shearing due to the connections we observed, or that some DSBs were 

remaining unrepaired. This could therefore be an issue with RAD51, which is in part 

responsible for ensuring repair of NCO intermediates off the sister chromatid (Bishop, 

1994; Doutriaux et al., 1998; Ines et al., 2013; Li et al., 2004). That this phenotype was 

only observed by our group means we should be cautious, however, in how this result 

is interpreted. For example, it is possible that this phenotype is due to the plants being 

grown in the Birmingham glasshouse conditions rather than those at the INRA, 

Versailles. There is also the possibility that since the plants have been propagated at 

Birmingham, they have either accrued mutations, or undergone some form of genetic 

re-arrangement. To support the evidence that the connections at least are a genuine 

phenotype, the asy4-3 hypomorphic line presented by Osman et al. (2018) also 

displayed inter-bivalent connections. To try and solve this problem, we have requested 

a fresh batch of heterozygous asy4-1 from the Grelon group with the view to checking 

if this phenotype still persists.  

To try to describe the nature of these connections, FISH was attempted on metaphase 

I spreads from asy4-1 and asy4-2. As outlined in 3.2.1.2, only a few cells were 

retrieved after treatment. An obvious conclusion from this would be that there was an 

issue with the FISH protocol itself, however, nearly all of the Col-0 cells used as a 

control were identified post-FISH. Therefore, we could speculate that perhaps the 

nature of the chromatin in asy4 is somehow affected, resulting in more ‘fragile’ 
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chromosomes. This could account for why spreads from this line were either degraded 

or washed off the slide. This has also been observed in other axis mutants by other 

lab members, who noted that it is more difficult to retrieve spreads after FISH from 

asy3 and asy1 (K. Osman and E. Sanchez-Moran, University of Birmingham, personal 

communication).  This could potentially suggest, therefore, some issue with 

chromosome condensation in asy4, but further analysis would need to be conducted 

to confirm if this is the case.  

3.3.2 ASY4 is an integral component of the meiotic chromosome axis in 

Arabidopsis thaliana 

Immuno-affinity proteomics with BoASY1 suggested that ASY4 was, directly or 

indirectly, associated with the chromosome axis (Osman et al., 2018). In this study, 

immunolocalisation and investigation of protein-protein interactions via yeast-2-hybrid 

has been used to confirm this suggestion. 

3.3.2.1 Immunolocalisation of ASY4 and ASY4eYFP 

The antibody raised against ASY4 shows that ASY4 loads onto both the chromatin 

and the axis during leptotene, and remains on synapsed and unsynapsed regions 

throughout zygotene and pachytene. Analysis of the asy4:ASY4eYFP line also 

confirms that ASY4 is on the axis during prophase I. ASY4eYFP did not, however, 

seem to show such a strong signal out in the chromatin. Furthermore, the nature of 

the signals are slightly different. Using the antibody, the ASY4 signal appears much 

like that of PCH2: many foci that appear to form linear structures as prophase I 

progresses (Lambing et al., 2015). In asy4:ASY4eYFP, the signal looks less like an 

amalgamation of foci, and more like the linear signal observed with ASY1 (Chambon 

et al., 2018).  
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There are several possible explanations for this. As we were unable to verify the 

antibody due to its giving signal in the mutant background (discussed in 3.2.2.1; 

Appendix Figure A4), it is possible that the antibody could bind to proteins other than 

ASY4. It is also possible that the antibody is sufficiently specific, and that the signal 

observed in the mutant background is simply due to the possible presence of a 

truncated protein. This would appear to be the likely explanation, as the antibody was 

raised against the first 59 amino acid residues of ASY4. Given that the T-DNA 

insertions are downstream of this location, if the truncated mRNA transcript were to 

be translated, it is predicted it would produce a protein that the ASY4 antibody could 

recognise. Data presented in Chapter 5 further supports that the ASY4 antibody is 

sufficiently specific.  

The other possibility is that the asy4:ASY4eYFP signal looks different to the antibody 

signal due to the eYFP tag itself altering the dynamics of the protein, or indeed, its 

regulation. Whilst ASY4eYFP was designed to be under native regulation, ultimately, 

its expression and behaviour in the plant could be different to how we anticipated. This 

idea would be supported by the presence of large ASY4eYFP foci in some cells as 

they enter zygotene. This could be due to eYFP altering the protein’s ability to be post-

translationally modified, or merely due to the physical properties of the tag itself. 

Favouring this latter argument, Day and Davidson (2009) discuss the tendency of 

fluorescent proteins to dimerise and subsequently aggregate, particularly when fused 

to proteins that form oligomeric structures.    

As for the dynamics of ASY4eYFP, its co-localisation with ASY1 may at first suggest 

dynamics similar to that of ASY1. There are some notable differences, however. 

During zygotene and pachytene, where the SC has polymerised, ASY1 is depleted 

from the axis, and appears as foci on the chromatin (Armstrong et al., 2002c; Lambing 
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et al., 2015; Sanchez-Moran et al., 2007). That ASY1 is depleted from the axis as the 

chromosomes synapse is in contrast to ASY4, and so in this respect, the dynamics of 

ASY4 on the axis are more similar to that of ASY3.  

The results from asy3:ASY4eYFP suggests that ASY4 requires ASY3 to load onto the 

axis. The inter-relationship between ASY3 and ASY4 will be discussed in Chapter 6 

in light of later experiments conducted in the CRISPR-Cas9 generated mutant, asy4-

4. 

Perhaps most surprising is the result that the ASY4eYFP signal appears patchier in 

the pch2:ASY4eYFP line in leptotene cells. This is in contrast to what has been 

observed of ASY4eYFP in all other developed ASY4eYFP lines presented in this 

thesis. A notable phenotype of pch2 is the persistence of ASY1 on synapsed 

chromosomes (Lambing et al., 2015). Further to this, ASY1 appears not to load 

normally onto the axis in the first place, appearing significantly dimmer in pch2 than in 

WT (West, 2015). This could suggest a potential early role for PCH2 in axis assembly. 

As such, it could be possible that ASY4eYFP linearisation has been affected due to 

this other role of PCH2. Of course, caveats with the eYFP experiments discussed 

above could also apply here, and it could merely be a consequence of the system 

used. Thus further experiments such as imaging the ASY4 antibody itself in pch2 

would be useful in determining if this is a genuine interplay between PCH2 and ASY4. 

This will be discussed further in Chapter 6.   

3.3.2.2 Protein-Protein Interactions suggest ASY4 physically interacts with the 

axis 

As shown via the yeast-2-hybrid (Y2H) experiments in this chapter, ASY3 and ASY4 

can directly interact. This is a fairly robust interaction, as in four sets of Y2H tests 
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(Osman et al., 2018; Chambon et al., 2018; West et al., 2019; this thesis), the 

interaction has been positive. It has also been shown via BiFC (Chambon et al., 2018). 

Some discrepancies with previous work are presented here, however, as neither 

version of the ASY3 coiled-coil tested were shown to conclusively interact with ASY4 

as is presented by Osman et al. (2018) and in West et al. (2019). This could purely be 

due to the vector systems used: pDEST-22 and pDEST-32 are noted in the literature 

as being perhaps one of the most stringent vectors available, and thus is potentially 

more likely to provide a false-negative result than other vector systems, which are 

more likely to present false-positives (Rajagopala et al., 2009). Therefore, there are 

several explanations for this result. One could be that the expression of the two ASY3 

coiled-coil proteins is too low to present an interaction. This could be confirmed by 

probing for the protein on a western blot with antibodies against the Gal4 DBD or AD 

to see if the proteins are expressed in both vectors. Alternatively, as the amino acid 

linker between the Gal4 DBD or AD and the protein of interest is relatively short (~14 

aa), the yeast component of the fusion protein may cause a topological issue that 

prevents the bait and prey from being able to interact; this could be one of the sources 

of the ‘stringency’ of these vectors, as perhaps only the strongest interactions will 

overcome this issue. Either way, it was not possible to show this interaction in this 

study. The same reasoning could be applied to ASY4 vs NtASY3, and ASY4 H1 vs 

ASY3, of course. West et al. (2019), however, also presented no detectable interaction 

between ASY4 and ASY3 without its coil (residues 2-605). To make the conclusions 

more robust, therefore, other methods would need to be used to test that the 

interactions are not false negatives. This would also be true for the positive interaction 

between ASY4 H2 and ASY3, which could be done in a co-immunoprecipitation 

experiment. This is outside the scope of this thesis, however. 
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4 Generation of an ASY4 mutant using the CRISPR-Cas9 gene 

editing system 

4.1 Introduction: Utilisation of the CRISPR-Cas System as a Gene Editing Tool 

4.1.1 Discovery and History 

CRISPR (Clustered Regularly Inter-Spaced Palindromic Repeats) and the CRISPR-

associated (Cas) proteins form a crucial component of an adaptive immune response 

in many bacteria, and nearly all archaea (reviewed in: Wang et al., 2016).  Work to 

uncover this role, however, spanned over a decade. In 1993, whilst working on the 

halophile Haloferax mediterranei, Mojica et al. noted a section of DNA that contained 

30 bp stretches of highly conserved sequence that appeared to form a repetitive 

pattern, now termed as ‘spacers’; a structure that had also been previously identified 

in bacterial species (Hermans et al., 1991; Ishino et al., 1987). Nine years later, in 

2002, a paper by Jansen et al. appears to be the first to term these repeats as forming 

a CRISPR locus. Jansen et al. also were the first to identify several Cas proteins that 

they proposed interact with products of the CRISPR locus in Streptococcus 

thermophilus. Comparative genomics later showed that the non-repetitive sequences 

between the spacers could be identified in various phage, and extrachromosomal 

elements (Mojica et al., 2005). Based on this, it was proposed that the CRISPR-Cas 

system provided a cellular memory of past invasions, and subsequently, that it would 

target invading foreign DNA. That CRISPR-Cas provided immunity to phage was 

conclusively shown in 2007 by Barrangou et al., who showed that S. thermophilus 

acquired new spacer sequences post phage invasion, and that altering the spacers 

could confer or remove immunity to invaders.  
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4.1.2 CRISPR-Cas: an RNA-directed nuclease 

In short, the function of the CRISPR-Cas system is to identify a specific section of DNA 

(in prokaryote immunity, this will be from an invader such as phage), and to cut it. Its 

ability to recognise specific sequences of DNA is guided by RNA produced from the 

CRISPR locus, where its ‘memory bank’ of past invaders is held. Once the Cas protein 

cuts the invading DNA, the DNA can no longer execute its role, therefore allowing the 

prokaryote to resist infection (reviewed in: Rath et al., 2015).  

Many types of CRISPR-Cas system exist in bacteria and archaea, and are split into 

two main classes: I and II (reviewed in: Koonin et al., 2017). The most simple, and 

therefore the system that has been chosen for modification as a gene-editing (GE) 

tool, is the Class 2 Type II system, CRISPR-Cas9 (reviewed in: Bhaya et al., 2011). In 

contrast to other systems, CRISPR-Cas9 only requires three components: the Cas9 

nuclease and two RNAs. These are the trans-activating RNA (tracrRNA), and an RNA 

transcribed from the CRISPR locus itself, termed the crRNA. In both prokaryotic 

immunity and GE, CRISPR-Cas9 functions thus (Fig. 4.1): 

1. The tracrRNA and a pre-crRNA are transcribed. The pre-crRNA contains the 

sequence homologous to a past invader, with a small section of the repeat 

region. The tracrRNA is transcribed from upstream of the crRNA, and contains 

homology to the repeat region contained within the crRNA. As such, a pre-

crRNA:tracrRNA double stranded RNA hybrid is formed, which can be 

processed by RNase III, resulting in a mature crRNA:tracrRNA molecule with 

only one spacer sequence present.  

2. The crRNA:tracrRNA is recognised by Cas9 to form the CRISPR-Cas9 

ribonucleoprotein (RNP). 
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3. The CRISPR-Cas9 RNP complex then scans DNA for a Protospacer Adjacent 

Motif (PAM): a short stretch of DNA sequence. The sequence recognised is 

specific to the prokaryote species the CRISPR-Cas originates from. This is 

facilitated by amino acid residues within the Cas9’s PAM Interacting (PI) 

domain. 

4. If a PAM is identified, the DNA strand is unwound. If the sequence immediately 

upstream of the PAM can Watson-Crick-Franklin pair with the specific 

sequence provided by the crRNA, a RNA:DNA hybrid termed an ‘R-Loop’ is 

formed.  

5. Cas9 cleaves the DNA. Its HNH domain nicks the strand complementary to the 

crRNA, and its RuvC domain cleaves the non-complementary strand.   
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Figure 4. 1 Summary of how the CRISPR-Cas9 system produces a double strand 

break (DSB) in target DNA. 
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4.1.3 CRISPR-Cas9 in Gene Editing 

As previously discussed, the CRISPR-Cas9 system was chosen to be modified as a 

GE tool as it is the most simplistic of the CRISPR-Cas systems. To simplify the cloning 

processes further, it was demonstrated that the crRNA and tracrRNA could be 

combined to form a chimeric single guide RNA that could still successfully guide Cas9 

(sgRNA) (Jinek et al., 2012).  

The most common CRISPR-Cas9 systems currently come from Streptococcus 

pyogenes (SpCas9) and Staphylococcus aureus (SaCas9). As mentioned, the PAM 

recognised by each CRISPR/Cas9 system is species specific. In SaCas9, the PAM is 

5′-NNGRRT-3′. In SpCas9, it is 5′-NGG-3′. Both SpCas9 and SaCas9 are now used 

with an sgRNA, and have been used to edit DNA in a wide range of organisms, 

including both model and crop plant species (reviewed in: Bortesi and Fischer, 2015). 

For each system, the main caveat appears to be that to ensure proper expression of 

the construct, the codons must first be optimised for the organism they will be editing 

in, as well as addition of a promoter the system would recognise (Dickinson et al., 

2013; Friedland et al., 2013; Shen et al., 2013; for plants reviewed in: Ma et al., 2016). 

CRISPR-Cas9 is now a widely established tool for producing precise, heritable 

mutations, and in contrast to systems such as ZFN and TALENS, with high-throughput 

applications (Fauser et al., 2014; Feng et al., 2014; H. Zhang et al., 2014).  

4.1.4 Using CRISPR-Cas9 to generate a meiotic mutant in A. thaliana 

As outlined above, the CRISPR-Cas9 system has been harnessed as a precise, high-

throughput gene editing tool that can be used in a wide variety of organisms.  

Traditional plant mutagenesis techniques include ethyl methanesulfonate (EMS) and 

T-DNA insertions. EMS is a technique that was initially favoured for forward genetic 
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screens, yet repositories are also available for obtaining a desired mutant. This is also 

the case for T-DNA insertions, which have traditionally been used for reverse genetics. 

There is, however, a caveat with these techniques: the mutagenesis program is 

essentially random. Where a T-DNA is inserted, or where a mutation is induced via 

EMS, is not determined by the user. T-DNAs may insert into the genome several times, 

and EMS is not guaranteed to cause a mutation at only one point in the genome 

(reviewed in: Østergaard and Yanofsky, 2004).  

More precise methods of inducing mutants have since been developed, including 

ZFNs (Zinc Finger Nucleases) and TALENs (Transcription Activator-Like Effector 

Nucleases), and most recently, CRISPR-Cas (Kim et al., 1996; Miller et al., 2011). Due 

to ease of production and comparatively lower cost, CRISPR-Cas9 promises to 

provide precision engineering more cheaply and more quickly, given that the 

technology has been optimised for the organism of interest. So far in plants, CRISPR-

Cas9 has been used in both model and crop systems, including A. thaliana, Nicotiana, 

Barley, Rice, and Wheat (Baltes et al., 2014; Lawrenson et al., 2015; Li et al., 2013; 

Schiml et al., 2016; Shan et al., 2013; Xie and Yang, 2013).  

Here, we use the CRISPR-Cas9 system from Staphylococcus aureus as described by 

Schiml et al. (2016) and provided by the Puchta laboratory (Karlsruhe Institut für 

Technologie, Germany) to generate a full knock-out mutant of ASY4. This is desirable 

as the current asy4 mutants available appear to produce a truncated transcript 

(3.2.1.1; Chambon et al., 2018; Osman et al., 2018). An antibody raised against the 

ASY4 protein also shows signal in the mutant backgrounds, further suggesting 

production of a truncated protein (discussed in 3.2.2.1).   



116 
 

 

We present an overview of the methodology used to screen the plants for mutation, 

culminating in the identification of an asy4 null mutant. 

4.2 Generation and Identification of candidate plant lines 

Cloning and transformation of plants was conducted as outlined in 2.6. Three oligo 

sets were used, termed ASY4 Pair 1, ASY4 Pair 2, and ASY4 Pair 3. The target sites 

of each oligo pair are illustrated below (Fig. 4.2).   
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For each oligo pair, five Col-0 WT plants were transformed via floral dip (as in 2.4), 

resulting in 15 primary dipped plants (T0). These plants were allowed to set seed. After 

the seeds had been dried, seeds from the T0 lines were transferred to MS media with 

30 µg/mL kanamycin added to select for the plants that contained the Cas9 (2.1.1) 

This yielded a total of 19 primary transformant T1 lines. That these T1 lines contained 

Cas9 was also verified by PCR using SS102 and SS42. A representative gel showing 

Cas9 present in T1 transformants is shown in Appendix Figure A7. These lines were 

once more left to set seed, and taken forward to T2.   

To aid clarity, the decision plan of how individual plant lines were selected is presented 

in Figure 4.3. Furthermore, Table 4.1 outlines the origin of each plant line, and the 

resultant plants that established the new CRISPR-generated mutant line for asy4.  
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Figure 4. 3 Flow chart displaying the decisions made to establish the final asy4-

4 mutant line.  
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Table 4.1 Description of origin of the 19 ASY4 CRISPR/Cas9 plant lines 

Primary 

Dipped (T0) 

Oligo Set T1 T2  T3  T4 

1.2 P1 6.16 - - - 

  
6.17 - - - 

  
6.18 Line 12 - - 

  
7.2 Line 15.21-15.40 - - 

  
7.3 Line 15.1-15.20 - - 

  
7.4 NON-SEG - - 

  
7.5 Line 16 - - 

  
10.2 NON-SEG - - 

  
10.3 Line 18 - - 

  
10.9 - - - 

1.4 P1 7.1 NON-SEG - - 

  
10.8 NON-SEG - - 

1.5 P1 10.1 - - - 

1.16 P2 10.4 Line 20 Line 25, 

asy4-4 

asy4-4 

  
10.5 - - - 

  
10.6 - - - 

  
10.7 NON-SEG - - 

1.24 P3 6.14 NON-SEG - - 

  
6.15 - - - 
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4.2.1 Segregation of Cas9 and analysis of the resultant T2 progeny 

Segregation of the Cas9 as determined by kanamycin resistance was used to indicate 

whether the plants were likely to only have one copy of Cas9, or more. Mendelian 

segregation of the kanamycin resistance would suggest that only one copy was 

present in the T1 parent line; this is the ideal situation as it is desirable to breed the 

Cas9 construct out as soon as possible to decrease the likelihood of it repeatedly 

attempting to cut ASY4 (thus potentially generating bi-allelic mutants), or indeed, 

potential off-targets. To do this, T2 plants were screened on MS media with 30 µg/mL 

kanamycin. A total of 44 seeds were plated for each line; for a true Mendelian ratio of 

segregation, around 33 would survive, and around 11 would die.  

Of the 11 lines screened on plates, 5 showed the correct segregation patterns, and so 

were put to soil: Line 15 (from plant 7.3), Line 15 (from plant 7.2), Line 16, Line 18 and 

Line 20. A representative example of correct segregation is shown in Fig. 4.3.  
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From each correctly segregating line, 5 plants were transplanted to soil from MS 

media, and 5 were sown directly to soil. The remaining 8 T1 lines produced very little 

seed; therefore to conserve the seed stock, it was decided to select for these directly 

on soil via PCR for Cas9 if we did not identify correctly segregating lines with a 

potential mutation in the 5 lines identified on plates.  

4.2.2 Fertility analysis 

Seed counts were conducted on the 5 lines showing correct segregation: Line 15 (7.2), 

Line 15 (7.3), Line 16, Line 18, and Line 20. All plants in Line 15 (7.2), Line 15 (7.3), 

and Line 16 showed no significant difference in seed number per silique compared to 

wild-type in a Kruskal-Wallis test (5% level, two tailed, Dunn’s correction for multiple 

comparisons). Graphs illustrating the seed count data are presented in Appendix 

Figure A8. Line 20 is presented separately in 4.3. All plant lines were then screened 

Figure 4.4 Selection for lines presenting Mendelian segregation of the CRISPR-
Cas9 construct via kanamycin resistance. Plates photographed after one week on 
MS media with 30 µg/mL kanamycin. (A) WT seedlings show stunted growth, and 
subsequently die. (B) Seedlings from T1 CRISPR line 10.3 showing correct 
segregation: 32 healthy, 12 stunted. 
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for potential INDELs by looking for a band shift in PCR. The PCR used is explained in 

4.3. 

4.3 CRISPR Line 20 shows a 1.7 kb deletion in the ASY4 locus 

To commence optimisation of the verification process, T2 Line 20 was chosen to be 

taken forward to go through the entirety of my proposed analysis protocol. It was 

chosen as the T1 parent line (10.4) showed an unusual phenotype: on some stems, 

the siliques appeared WT, and on others, they appeared to have reduced fertility. 

When put to kanamycin, this line showed correct segregation, and so seeds were put 

to soil.  

DNA was extracted from leaf tissue as per 2.2.2, and a 1037 bp region of ASY4 

amplified, spanning from the promoter, into the second intron (ASY4 CRISPR Check 

primer set, see 2.6 and Appendix Table A6 for sequences). This primer pair was 

designed to amplify this region as Cas9 is expected to cut around 3 bp upstream of 

the PAM, thus positioning any potential INDEL/SNP in portion of the ASY4 gene that 

is predicted to encode the N-terminus of ASY4 (Jinek et al., 2012). Out of 20 plants, 

10 did not appear to amplify this section of ASY4 (Fig. 4.4 A). Therefore, another set 

of primers was designed to amplify the entirety of ASY4 from the intergenic/promoter 

region, through to the 3′-UTR (A4_WHOLE primer set, see 2.6 and Appendix Table 

A6). The expected product in WT was 3434 bp. The band produced in the ‘mutants’ 

however appeared significantly smaller, at around ~1750 bp. (Fig. 4.4 B). This 

suggested a large deletion in ASY4. Despite several attempts, however, the reaction 

did not work in WT. 
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The PCR products from Line 20 were therefore purified and sequenced to confirm a 

deletion in ASY4. High quality sequence was obtained for plants 20.17 and 20.19. 

Both show the same 1729 bp deletion in ASY4, with a 20 bp region that appears to 

have been mutated during repair (Fig. 4.5).  

A 

B 

Figure 4.5 Verification of a potential deletion in ASY4 via PCR screening with 
two sets of primers. (A) Amplification of a ~1 kb region across the expected break 
site. (B) Amplification of what was expected to be a ~3.4 kb product. Band produced 
from the selected ASY4 CRISPR/Cas9 plants from Line 20 shows a ~1750 bp product.  
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The deletion appears to span the intergenic/promoter region (-903, relative to ATG) 

(whilst not extending into the gene next gene upstream at the 5′ end; Appendix Figure 

A9), through to the middle of the second intron (826, relative to ATG). As all plants are 

from the same parent, it is suggested that the deletion arose through a single event.  
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Figure 4.6 Alignment of genomic ASY4 sequence with intergenic region and sequencing reads from 20.17 and 20.19 showing a ~1.7 kb 
deletion. Identity bar depicts 100% identity in green, decreasing through yellow. Red indicates low identity. Relative to the ATG start codon, the 
deletion is between bases -903 (promoter/intergenic region) and 826 (intron 2) of the presented region. Highlighted area shows mutations at the 
junction between the intergenic region before the deletion and intron 2. Aligned within Geneious R9.   
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As a product could not be obtained for WT using the A4_WHOLE primer sets, the 

P1/P4 primers designed for tagging of the ASY4 protein with eYFP were used to 

amplify from the promoter through to the 3′ end of ASY4 (Chambon et al., 2018). This 

was tested on DNA from plant 20.1, and WT. The gel shows a clear band shift of 

approximately 1.7 kb (Fig. 4.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We also checked the reverse strand sequence to ensure no other genes would be 

interrupted by such a large deletion. That there are no genes in this region on the 

strand antisense to ASY4 is shown in Appendix Figure A9. Therefore, if we anticipate 

no off-targets, any phenotype observed should be due to the mutation in ASY4.  

To determine which plants still contained Cas9, PCR was conducted using the 

SS102/SS42 primers. This revealed that plants 20.13, 20.15, and 20.17 appear to 

Figure 4.7 PCR amplification of full-length ASY4. PCR products from gDNA on an 
ethidium bromide stained agarose gel showing a band shift in 20.1 CRISPR/Cas9 
asy4 plant. WT ASY4 product: 4497 bp. 20.1 ASY4: ~2800 bp.  
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have lost Cas9. Fortuitously, 20.17 appeared both mutated, and had lost the Cas9 

construct (Fig. 4.7).  

 

 

 

 

 

 

 

 

 

 

Finally, seed count data was obtained to determine whether there was a notable 

fertility defect in the plants expected to carry the deletion. Three plants show a 

significant reduction in fertility compared to WT: 20.1, 20.9, and 20.11 (Fig. 4.8). 

Significance was determined in a Kruskal-Wallis test (5% level, two tailed, Dunn’s 

Correction for multiple comparisons), which showed plant 20.11 presents the most 

severe reduction in fertility (x̄ = 21.8, P = 0.0052), followed by 20.1 (x̄ = 25.6, P = 

0.0190). The least significant reduction is seen in 20.9 (x̄ = 28.6, P = 0.0377). Both 

20.1 and 20.11 were predicted to contain the deletion, but 20.9 was not.  

 

Figure 4.8 PCR detection of the ASY4 CRISPR/Cas9 construct in planta. PCR 
products analysed via gel electrophoresis, and stained with ethidium bromide. PCR 
shows a product of the expected size, confirming the ASY4 CRISPR/Cas9 construct 
to have been lost in 3 of the lines. Positive control is gDNA from a T1 plant confirmed 
to contain the construct via kanamycin selection.  
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Thus the final plants selected for propagation to T3 were 20.1, 20.11, 20.17, and 

20.19. These plants were selected as they display a range of fertilities. This is because 

purely selecting for low fertility could lead to inadvertently selecting for plants with other 

undesirable mutations (unfavourable T-DNA insertion locations, genomic 

rearrangements etc).  

  

Figure 4.9 Seed count data for ASY4 CRISPR/Cas9 Line 20. Asterisks indicate a 
significant difference in mean number of seeds per silique compared to Col-0 WT data 
in a two-tailed Kruskal-Wallis test at the 5% level. * = P<0.05. ** = P<0.01. Bars 
represent standard error of the mean. Each bar represents data from 5 siliques.  
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4.4 Finalising the mutant line at T3 and T4 

To further develop a homozygous asy4 mutant with no Cas9, several plants from Line 

20 were chosen to proceed to the T3 generation: 20.1, 20.11, 20.17, and 20.19. The 

resultant T3 plants formed ‘Line 25’. These plants were screened for the deletion via 

PCR using a final, optimised set of primers: an initial screen with the ASY4 CRISPR 

Check set which only produces a product if there is a WT copy of the gene present, 

and the A4 CR set, which amplifies both a WT and mutant band, presenting as a band 

shift on the gel. Primers are described in Appendix Table A6. Plants at T3 and T4 were 

also screened for the presence of Cas9 to ensure only Cas9-negative plants were 

taken forward.  

To determine whether the 1.7 kb deletion in ASY4 conferred an absence of 

expression, RT-PCR was performed on buds from 25.i and 25.iv (from 20.1): two T3 

plants that appear homozygous for the deletion. Two primer sets were used: ‘ASY4 

Short’ which was used to show a truncated ASY4 transcript was present in the asy4-

1 and asy4-2 mutants (Chambon et al., 2018), and a pair that amplified from ASY4 

exon 3 through to the stop codon in exon 8. This was to determine whether a transcript 

could still be expressed from the remainder of the ASY4 gene. As is shown in Figure 

4.9, no strong band is found in the ASY4 CRISPR plants that would suggest 

expression of the remaining half of ASY4, satisfying us that using CRISPR-Cas9, we 

have successfully knocked-out the ASY4 gene. Hereon in, this mutant will be referred 

to as asy4-4.  
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Figure 4.10 Expression of ASY4 in wild-type and asy4-4 mutant buds. Gel 
electrophoresis stained with ethidium bromide. Water control. Wild-type (WT). Two 
asy4-4 T3 mutants: 25i and 25ii. Comparison of the ‘short’ transcript present in asy4-
1 and asy4-2, the full-length ASY4 transcript (long), and any possible transcript from 
the third exon through to the stop codon. No ASY4 transcript detectable in either of 
the asy4-4 T3 mutants tested. 
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4.5 Discussion 

4.5.1 asy4-4 is a knock-out mutant of the ASY4 gene  

Here we present a CRISPR-Cas9 generated ASY4 mutant line with a deletion of ~1.7 

kb in the first half of the gene, and therefore show that we appear to have the S. aureus 

system of CRISPR-Cas9 working in our hands. Generation of this mutant was 

necessary as the asy4-1 and asy4-2 mutants presented in Chambon et al. (2018) are 

likely hypomorphic, possibly producing a truncated version of the ASY4 protein (data 

presented Chapter 3).  

That the deletion present is so large is perhaps little unexpected, though in mouse, 

deletions of up to 9.5 kb have been induced using only a single gRNA (Kosicki et al., 

2018). Schiml et al. (2016) suggest amplification of a region of 1 kb to check for 

deletions; it is therefore possible that larger deletions are under-reported in CRISPR-

Cas9 data simply because the screening process is biased against them. It is also the 

case that due to the novel nature of this protocol, we were unsure what to expect.  

It is possible that the break in asy4-4 was repaired by the alternative non-homologous 

end joining pathway (alt-NHEJ), which could produce the large deletion and 20 bp 

mutated region observed. Alt-NHEJ is distinct in several ways to canonical NHEJ (c-

NHEJ), including that during alt-NHEJ, a strand is resected prior to ligation. 

Furthermore, it may sometimes rely on identification of microhomologies 

(microhomology-mediated end joining, MMEJ) to facilitate repair that could be far away 

from the initial break site. As such, alt-NHEJ is often observed to produce more errors 

than c-NHEJ, and is more likely to cause deletions (Grabarz et al., 2013; Guirouilh-

Barbat et al., 2004; Lee and Lee, 2007; Liang et al., 1996; Rass et al., 2009).  
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4.5.2 CRISPR-Cas9 and Off-targets 

A primary concern with using CRISPR is that of off-target effects: other genes 

becoming mutagenized due to mis-matches still being recognised by the machinery. 

Currently in Arabidopsis, demonstration of off-target sites is relatively rare; the majority 

of the literature where off-targets have been sought out shows no off-targets were 

found, including papers utilising deep sequencing (Feng et al., 2014; Hyun et al., 2015; 

Li et al., 2013; Peterson et al., 2016; Tsai et al., 2015; Z.-P. Wang et al., 2015; Woo 

et al., 2015). One notable paper, however, reports a high level of off-targets, and 

appears to be the only one to date reporting this in Arabidopsis (Zhang et al., 2018). 

To try and minimise the likelihood of off-targets in this experiment, the SaCas9 system 

was used as its PAM sequence is twice the size of the PAM for the Streptococcus 

pyogenes system (SpCas9 PAM: 5'-NGG-3'; SaCas9 PAM: 5'-NNGRRT-3'), which 

should make it more specific. Furthermore, the oligos designed to target ASY4 were 

tested for specificity across free-access tools CCTop, Cas-OFFinder, and 

EnsemblPlants BLAST. Ultimately, however, in silico prediction cannot guarantee 

what will occur in vivo. Thus to be certain any phenotype that is observed in asy4-4 

can be attributed to a lack of ASY4, two further experiments were conducted. First, the 

fertility of the T4 progeny that are wild-type for ASY4 was determined, having come 

from a heterozygous asy4-4 parent. Second, an allelic test was conducted by crossing 

asy4-4 with the published T-DNA insertion mutant asy4-1. This data is presented in 

Chapter 5. 
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5 Characterisation of a null-mutant of asy4 generated by CRISPR-

Cas9 

5.1 Introduction 

As discussed in Chapter 3, the two T-DNA insertion mutants for asy4 appear to be 

hypomorphic; that is, both still appear to express at least the first 3 exons of the gene. 

To create a true, null mutant of ASY4 for analysis, CRISPR-Cas9 gene editing was 

conducted as is outlined in Chapter 4. The result was a plant line with a 1.7 kb deletion 

in ASY4 that was shown to be sufficient to prevent expression of any remaining part 

of the ASY4 gene (see 4.4).  

In this chapter, we present this novel mutant allele of the ASY4 gene, denoted 

hereafter as asy4-4. Using a variety of cytological techniques, including structured 

illumination microscopy (SIM), we confirm that ASY4 is required for normal fertility, 

chromosome axis organisation, and recombination in Arabidopsis thaliana.  

5.2 A 1.7 kb deletion in ASY4 results in a reduction in fertility and 

recombination 

5.2.1 asy4-4 has reduced fertility but normal vegetative growth 

To determine whether any fertility defect observed in the asy4-4 lines could likely be 

attributed to a purely meiotic function, the vegetative growth of the plant line was 

monitored, observing the growth stages as outlined by TAIR. As is evident in Figure 

5.1, the mutant plants appeared to have no obvious defect in vegetative growth at both 

early and late stages.   
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Figure 5.1 Comparison of vegetative growth between WT and asy4-4.  Vegetative 
growth of asy4-4 was observed to be similar to that of WT at both early (B) and late 
(A) stages. (C) Silique lengths appeared to differ, with asy4-4 appearing to have 
smaller siliques than were observed for WT. 

 

There was, however, an observable difference in the length of the siliques produced 

by asy4-4 (Fig. 5.1 C). Thus, seed counts were conducted on asy4-4, asy4-1, and WT 

to determine whether fertility was significantly affected by total loss of ASY4. As is 

presented in Figure 5.2 A, asy4-4 homozygous plants have a significant reduction in 

fertility compared to WT, from a mean seed set of 50.3 per silique in WT (n=10), to 

22.43 in asy4-4 (n=310; P<0.0001, 2-tailed Kruskal-Wallis test, 5% level). This 

amounts to a reduction in average seed set of ~55.4%. This was also associated with 

a significant reduction in the length of the siliques produced, from a mean length of 

14.7 mm in WT (n=10) to 11.18 mm in asy4-4 (n=310; P<0.0001; 2-tailed Kruskal-

Wallis test, 5% level) (Fig. 5.2 B), and gaps between the seeds (Fig. 5.2 D). No 

significant difference was found in the in the number of seeds between asy4-1 and 
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asy4-4 (asy4-1: x̅ = 22.71, n= 28; asy4-4: x̅ = 22.43, n=310; P=0.6626, 2-tailed Mann-

Whitney test, 5% level) (Fig 5.2 C). Thus for asy4-1, we found a reduction in average 

seed set of 54.9% compared to WT.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 Seed count and silique length data for WT (Col-0), asy4-1, and asy4-
4. All graphs depict mean with SEM error bars. (A) Mean number of seeds per silique 
is significantly reduced in asy4-4. (B) Mean silique length (mm) is significantly reduced 
in asy4-4. (C) There is no significant difference in the mean number of seeds per 
silique between asy4-1 and asy4-4. (D) Mutations in ASY4 result in visible gaps in 

siliques, as denoted by asterisks. **** = P 0.0001 in a 2-tailed Kruskal-Wallis test at 
the 5% level. 
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As previously discussed in 4.5, off-target effects are a persistent concern in mutants 

generated via CRISPR-Cas9. To determine whether this decrease in fertility could 

likely be attributed to the deletion in ASY4 rather than an off-target, seed counts were 

also conducted on plants heterozygous for the asy4-4 allele, as well as plants that had 

a WT genotype that had segregated out from the heterozygotes. There was no 

significant difference in seed set between the Het (x̅ = 43.23, n = 30; P>0.9999, 2-

tailed Kruskal-Wallis test, 5% level) and WT (x̅ = 45.7, n = 40; P>0.9999, 2-tailed 

Kruskal-Wallis test, 5% level) compared to the Col-0 WT control (x̅ = 50.3, n=10) (Fig. 

5.3 A). Thus, we can conclude that any phenotype observed in asy4-4 relating to 

fertility is not likely to be due to an off-target effect.  

 

Furthermore, no significant difference was found when comparing the silique length of 

the WT genotype (x̅ = 13.63, n = 40; P = 0.8688, 2-tailed Kruskal-Wallis test, 5% level) 

and the Col-0 WT control (x̅ =14.7, n = 10). A significant difference was discovered 

between the Het (x̅ = 12.77, n = 30; P = 0.0456; two-tailed Kruskal-Wallis test, 5% 

level) and Col-0 WT control, yet the P value obtained would not be significant at the 

1% level, and thus is not a particularly robust conclusion (Fig. 5.3 B).  
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Figure 5.3 Seed count data from Col-0 control and three genotypes of asy4-4. All 
graphs are means plotted with SEM error bars. (A) Comparison of mean seed set per 
silique between the WT control (Col-0), the WT plants segregated from the 
heterozygous plants for asy4-4 (WT), heterozygous (Het) plants for asy4-4, and the 
homozygous (Homo) plants. (B) Comparison of mean silique length (mm) between 
Col-0, the WT plants segregated from the heterozygous plants for asy4-4, 
heterozygous (Het) plants for asy4-4, and the homozygous (Homo) plants. Asterisks 
indicate which plant lines were significantly different to Col-0 in a two-tailed Kruskal-

Wallis test at the 5% level. **** = P 0.0001; * = P 0.05. 
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Previous research in axis-defective mutants such as asy1 and asy3 revealed that they 

often produce aneuploid tetrads at the end of meiosis (Armstrong et al., 2002; Ferdous 

et al., 2012). Thus, it would also be expected that a certain proportion of pollen 

produced from these lines would be inviable as they may have received the incorrect 

complement of chromosomes. The proportions of viable and inviable pollen in WT, 

asy4-1, and asy4-4 was therefore determined via Alexander staining (Alexander, 

1969).  

A significant difference in the number of inviable pollen was recorded for both asy4-1 

(311 viable, 21 inviable; P = 0.0194, 2-tailed Fisher’s exact test, 5% level) and asy4-4 

(285 viable, 35 inviable; P<0.0001; 2-tailed Fisher’s exact test, 5% level) compared to 

WT (208 viable, 4 inviable). There was also a significant difference between the 

number of inviable pollen between asy4-1 and asy4-4 (P=0.0370; 2-tailed Fisher’s 

exact test, 5% level). This corresponded to a rate of inviable pollen at 6.3% in asy4-1 

and 10.9% in asy4-4. Only 1.9% of pollen were inviable in Col-0. This therefore 

confirms that asy4-4 has a significant reduction in fertility, and suggests that the 

phenotype could be related to a defect in male meiosis, as inviable pollen could be the 

result of mis-segregation at anaphase leading to aneuploidy.  

 

 

 

 

 

 

Figure 5.4 Alexander Staining of pollen from WT, asy4-1 and asy4-4. Numbers of 
viable pollen presented in black, and numbers of inviable pollen counted presented in 
grey. Both asy4-1 and asy4-4 show a significant increase in inviable pollen compared 

to WT. Fisher’s Exact test results: * = P 0.05; **** = P 0.0001. 2-tailed, 5% level.  
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5.2.2 An allelic test between asy4-1 and asy4-4 reveals the 4-1 and 4-4 insertion 

and edit affect the same gene  

 

As discussed in 5.5.2, a consistent concern with mutants generated via CRISPR-Cas9 

is the possibility that the observed phenotypes could be due to an off-target effect, 

where the CRISPR-Cas9 construct causes an edit in a different site to what was 

intended. To mitigate concerns, further to the results obtained above showing normal 

fertility in homo and heterozygous plants segregated out from the asy4-4 mutant line, 

an allelic test was conducted by crossing asy4-1 to asy4-4. The expectation was that 

if the mutation is in the same gene, we would see no significant difference in the 

phenotypes between the asy4-1/asy4-4 double mutant, and the single mutants of 

each.  

As is observed in Figure 5.5, no significant difference was observed in the average 

number of seeds per silique when comparing asy4-1/asy4-4 to asy4-1 homozygous 

(Hm) and asy4-4 Hm (asy4-1 (x̅ = 22.71, n = 28) vs asy4-1/asy4-4 (x̅ = 21.21, n = 140), 

P > 0.9999; asy4-4 (x̅ = 21.57, n = 210) vs asy4-1/asy4-4 (x̅ = 21.21, n = 140), P > 

0.9999; two-tailed Kruskal-Wallis with Dunn’s Correction for multiple comparisons, 5% 

level).  
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5.2.3 asy4-4 has a reduction in the number of chiasmata resulting in aneuploid 

tetrads 

Given that asy4-4 presented with a significant reduction in fertility, DAPI spreads of 

PMCs from both WT and asy4-4 were analysed to confirm whether this could be 

attributed to defects in meiosis. In both WT and asy4-4, leptotene cells were visible, 

containing the thin-threads of chromatin characteristic of this stage (Fig. 5.6, A,I). 

Figure 5.5 Seed count data from asy4-1, asy4-4, and asy4-1/asy4-4. Mean plotted 
with SEM. No significant difference was found in a two-tailed Kruskal-Wallis test at the 
5% level comparing the means number of seeds per silique between the asy4-1/asy4-
4 double mutant and the two single mutants for the asy4-1 T-DNA insertion and the 
asy4-4 deletion (n.s. = P > 0.9999).   
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During mid-prophase I, however, defects become apparent in asy4-4. In WT, cells 

enter zygotene as the SC begins to form between homologues, holding them in close 

apposition. As such, the chromatin begins to appear thicker, progressing through until 

pachytene where the full-length of the homologues are synapsed. This is concurrent 

with an overall condensation of the chromatin (reviewed in: Mercier et al., 2015). In 

asy4-4, the chromatin appears to commence condensation, and pairing of 

centromeres and some stretches of chromatin is visible, however no nuclei at the 

pachytene stage were observed in asy4-4 (Fig. 5.6, B,J). As the cells reached 

diakinesis and metaphase I, in WT, 5 bivalents became visible (Fig. 5.6, K,L). In asy4-

4, however, it is clear at metaphase I that some chromosomes have failed to form 

chiasmata, with univalents appearing in 46.3% of MI nuclei (25 out of 54 cells), thus 

confirming loss of crossover assurance in this mutant (Fig. 5.6, C,D). This was not 

significantly different to the proportions of cells with univalents in asy4-1 (P = 0.72; 2-

tailed Fisher’s Exact test, 5% level). Connections and fragments as discussed in 

3.2.1.2 were not observed in asy4-4. At anaphase I, bridging and laggards were also 

observed (Fig. 5.6, E). These defects resulted in mis-segregation (Fig. 5.6, F,G) and 

aneuploidy in the resultant tetrads (Fig. 5.6, H).  
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Figure 5.6 Comparison of the meiotic stages between asy4-4 and WT. DAPI 
stained PMCs from A. thaliana. Spreads from WT (A-H) and asy4-4 (I-P). (A, I) 
Leptotene. (B,J) asy4-4 shows zygotene-like cell, WT shows pachytene; no pachytene 
cells were observed in asy4-4. (C,K) Diakinesis. (D,L) Metaphase I. Arrows indicate 
univalents. (E,M) Anaphase I. Arrows indicate bridges. (F,N) Metaphase I. Mis-
segregation is observed in asy4-4. (G, O) Anaphase II. 6:4 segregation observed in 

asy4-4, and two possible fragments. (H,P) Tetrad. Scale bar = 5 µm. 
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To determine the severity of the suggested reduction in COs in asy4-4, chiasma 

counts were conducted on metaphase I spreads using the minimum chiasma number 

(MCN) (Jahns et al., 2014). This revealed a significant reduction in CO number, from 

8.6 (n=28) in WT, to 6.3 in asy4-4 (n=52; P<0.0001, 2-tailed Kruskal-Wallis test 5% 

level with Dunn’s Correction) (Fig. 5.7). No significant difference was found between 

the number of chiasmata between asy4-4 and asy4-1 (asy4-1: x̄ = 6.5, n = 67; P = 

0.9179, 2-tailed Kruskal-Wallis test 5% level with Dunn’s Correction).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Chiasma counts in PMCs from WT, asy4-1 and asy4-4. Comparison of 
chiasma number between Col-0 WT control and two mutant alleles of ASY4. Each 
data point represents the number of chiasmata in a single nucleus. Mean plotted with 

SEM error bars. **** = P 0.0001. n.s. = P > 0.05. 
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5.3 Axis organisation is compromised in asy4-4 

Previous experiments using the two T-DNA insertion mutants for asy4 suggested that 

ASY4 is required for the normal organisation and remodelling of the chromosome axis, 

and subsequently, polymerisation of the SC (Chambon et al., 2018; this thesis).   

To determine whether these phenotypes are also present in asy4-4, 

immunolocalisation was conducted on prophase I PMCs, and subsequently imaged 

via structured-illumination microscopy to gain a more detailed insight into the axis 

structure in this mutant.  

5.3.1 Sister cohesion appears unaffected in asy4-4 

The cohesins, comprised in meiosis in A. thaliana of SMC1, SMC3, SCC3 and the 

kleisin SYN1, are loaded onto sister chromatids after DNA synthesis in the pre-meiotic 

S-phase (Bai et al., 1999; Cai et al., 2003; Chelysheva et al., 2005; Lam et al., 2005). 

SYN1 has been shown to be required for ASY3 to successfully localise on the axis 

(Ferdous et al., 2012). Antibodies against both SMC3 and SYN1 were used to 

determine whether any defect in axis organisation in asy4-4 correlated with issues in 

sister cohesion. As is presented in Fig. 5.8, there was no observable difference in the 

appearance of the cohesins; both SMC3 and SYN1 signals progress as in WT, from a 

foci-like stage during early prophase I (Fig. 5.8, A,B), through to a more linear signal 

by the time the cells reach mid-prophase I (Fig. 5.8, C,D). 
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5.3.2 ASY4 is required for normal ASY1 and ASY3 localisation  

As no obvious defect was observed in sister cohesion, antibodies raised against ASY1 

and ASY3 were used to determine if, as was suggested in asy4-1, that ASY4 is 

required for proper loading and organisation of ASY1 and ASY3. In WT, during early-

mid prophase I, the ASY1 and ASY3 signals appear linear along the chromosome axis 

(Fig. 5.9 A, C). In asy4-4, whilst ASY1 and ASY3 do indeed appear to load, the signals 

do not appear to linearise as evenly as in WT, instead appearing patchy and diffuse. 

Some linear stretches of the ASY1 and ASY3 signals are visible when a single slice 

Figure 5.8 Immunolocalisation of SMC3 and SYN1 during prophase I in WT and 
asy4-4. Cells imaged via structured illumination microscopy. SYN1 imaged in 594. 
SMC3 imaged in 488. (A) and (B) early prophase I. (C) and (D) mid-prophase I. (A,C) 
WT. (B,D) asy4-4. Bar, 5 µm. 
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through the Z-stack is examined (Fig. 5.9, B1,D1), however, maximum intensity 

projections of the cells suggest an overall disorganised structure, where this linear 

signal is not evenly observed throughout the nucleus (Fig. 5.9, B, D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9 Immunolocalisation of ASY1 and ASY3 during prophase I in WT and 
asy4-4. Structured illumination microscopy images of PMCs. ASY1 (rows A,B) and 
ASY3 (rows C,D) imaged in 594. Chromatin stained with DAPI imaged in 350. Rows 
A,C = WT. Rows B,D = asy4-4. (A,B,C,D) Maximum intensity projection image. 
(A1,B1,C1,D1) Single slice from a Z-stack. (A2,B2,C2,D2) DAPI to determine 
approximate stage of cell. All cells in early-mid prophase I. Bar, 5 µm. 
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As the cells enter mid-prophase I, there is evidence of chromosome alignment, visible 

with antibodies against the cohesin SMC3 (Fig. 5.10). In WT, where SMC3 displays a 

dual signal of the two homologues in alignment, ASY3 also follows this pattern, thus 

appearing to co-localise with SMC3 (Fig. 5.10, A-F). This is most apparent in cells late 

in prophase I (Fig. 5.10, A-C), but also in those just entering zygotene (Fig. 5.10, D-

F). In asy4-4, however, this relationship was not observed, with the ASY3 signal 

continuing to appear as either short, thin stretches, or as a dotty, patchy signal (Fig. 

5.10, G-I). This further suggests that the chromosome axis structure is compromised 

in asy4-4, supporting previous conclusions that ASY4 is necessary for normal axis 

organisation, but also revealing that its loss does not necessarily affect chromosome 

alignment.  

 

Interestingly, we also noted the potential presence of inter-axis bridges. These 

structures form between two aligned chromosome axes, and are thought to be 

comprised of axis proteins, DNA, as well as other proteins involved in recombination 

and SC initiation (Dubois et al., 2019).  They were first observed in Alium cepa, and 

later in Homo sapiens, Mus musculus, Brassica oleracea, and most recently, in 

Sordaria macrospora (Dubois et al., 2019; Albini and Jones, 1987; Moens et al., 2007; 

Oliver-Bonet et al., 2007; Holloway et al., 2010; Osman and Franklin, unpublished). In 

the zoomed panels for SMC3 from both WT (Fig. 5.10, B1 and E1) and asy4-4 (Fig. 

5.10, E1), clear bridges are apparent, suggesting loss of ASY4 does not obviously 

affect the formation of these structures. To our knowledge, this is the first time inter-

axis bridges have been reported in A. thaliana.  
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Figure 5.10 Immunolocalisation of the chromosome axis during prophase I in PMCs from WT and asy4-4. Structured 
illumination microscopy images. All images represent a single slice from a Z-stack. ASY3 imaged in 594. SMC3 imaged in 488. (A-
F) WT. (G,H,I) asy4-4. (A,B,C) late prophase I. (D-I) mid-prophase I. Numbered panels = zoomed sections. Arrows indicate potential 
inter-axis bridges. Bar, 5 µm.   
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5.3.3 Extension of the synaptonemal complex is reduced in asy4-4 

As in other meiotic chromosome axis mutants studied, asy4-1 had a reduced level of 

synapsis compared to WT, resulting in a lack of a recognisable pachytene stage 

(Armstrong et al., 2002; Ferdous et al., 2012; Chambon et al., 2018; this thesis). To 

confirm whether this was also the case in asy4-4, immunolocalisation of the axis and 

SC was conducted using the ASY1 and ZYP1 antibodies. This revealed that, as 

suggested by the DAPI spreads presented in Figure 5.6, asy4-4 is also partially 

asynaptic, with the ZYP1 signal never appearing to extend along the full length of the 

homologues (Fig. 5.11, rows C,D) One cell also displayed what appeared to be an 

unusually thick SC signal, but as this was only observed in 1 out of 12 cells captured 

by SIM, it was not possible to determine if this was a statistically significant (or indeed, 

prevalent) phenotype (Fig. 5.11, row D). To quantify any significance in the difference 

in length of SC extension between WT and asy4-4, the total SC lengths of cells at late 

prophase I were measured (as in: 2.8.5) (Fig. 5.12). For WT, the mean total SC length 

at late prophase I was 190.4 µm, with values ranging between 79.4 µm and 340.2 µm 

(n=8). In asy4-4, mean total SC length in late prophase-like cells was 74.4 µm, with a 

range between 16.48 µm and 156.8 µm (n=9). This was found to be significantly 

different in a 2-tailed Mann-Whitney test at the 5% level (P = 0.0037) (Fig. 5.12, E). 

Data available in Appendix Table A11.   

5.3.4 ASY1 appears to be depleted from synapsed regions in asy4-4 

A notable phenotype of the asy4-1 mutant observed by the Grelon group was that, as 

in pch2, the ASY1 signal does not appear to be depleted from the axis as the SC signal 

extends through the cell (Lambing et al., 2015; Chambon et al., 2018). 

Immunolocalisation conducted on PMCs from asy4-4 revealed that, conversely to what 

has been reported in asy4-1, ASY1 does indeed appear to be depleted from the axis 
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in asy4-4 (Fig. 5.11, A and C). This is, therefore, a key difference between the mutants, 

and may also contribute to the evidence suggesting that the asy4-1 mutant, and likely 

asy4-2, are possibly still producing a truncated protein. It also suggests that, 

conversely to pch2 and asy4-1, the reduction in polymerisation of the SC observed in 

asy4-4 may not be due to the axis being unable to be remodelled.   
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Figure 5.11 Immunolocalisation of the chromosome axis and synaptonemal 
complex in PMCs from WT and asy4-4. Structured illumination microscopy. All 
images are maximum intensity projections. ASY1 captured in 594. ZYP1 in 488. (A-
B) WT. (C-D) asy4-4. (A,C,D) mid-prophase I. (B) Pachytene. Zoomed panels for rows 
A and C show depletion of ASY1 from synapsed regions. Zoomed panels for rows B 

and D show width of sections of the SC. Bar = 5 µm. 
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5.3.5 PCH2 appears to localise normally in asy4-4 

Given that ASY1 appears to be successfully depleted from the axis in asy4-4, we were 

curious to see if the axis remodeller PCH2 was therefore localising normally in this 

mutant. In WT, the PCH2 signal is seen as diffuse and ‘dotty’ through early prophase 

I, before finally localising as a more linear signal along sites where the SC has 

extended (Lambing et al., 2015) (Fig. 5.13, row A). In asy4-4, PCH2 also seems to co-

localise with where the SC has successfully extended (Fig. 5.13, row B). This therefore 

suggests that PCH2 function, at least in the respect of axis remodelling, and PCH2 

localisation, is unaffected by loss of ASY4.  

 

 

 

 

Figure 5.12 Total SC length measurements in WT and asy4-4. (A-D) 3D-rendering 
of ZYP1 signal in prophase I PMCs. (A,B) WT. (C,D) asy4-4. (A,C) Front view. (B,D) 
Side view showing cell depth. (E) Comparison of total SC lengths between WT and 
asy4-4. Each point denotes the total SC length in µm for an individual cell. Means 

plotted with SEM error bars. ** = P  0.01.   
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5.4 Reduction in chiasmata in asy4-4 may be due to problems with CO 

maturation 

5.4.1 Early recombination events appear to progress normally in asy4-4 

Converse to what has been discovered in experiments examining mutants of the yeast 

HORMAD Hop1, ASY1 in A. thaliana does not appear to be required for production of 

WT levels of DSBs (Sanchez-Moran et al., 2007; Armstrong et al., 2002; Woltering et 

al., 2000; Mao-Draayer et al., 1996). Instead, in A. thaliana, it appears that ASY3 is 

required for WT-levels of DSB formation (Ferdous et al., 2012). Research conducted 

by the Grelon group on the asy4-1 mutant suggested that ASY4 is, like ASY1, also 

non-essential for DSB production, with WT-levels of DMC1 foci observable during 

early prophase I (Chambon et al., 2018). Given that the resultant ssDNA either side of 

a DSB is loaded with the RPA homologues DMC1 and RAD51, DMC1 is considered 

a proxy for the number of DSBs produced (Ferdous et al., 2012b; Pradillo et al., 2012; 

Sanchez-Moran et al., 2007). As such, the number of DMC1 foci was counted in early 

prophase I in WT and asy4-4 (Fig. 5.14, A-D). In WT, the mean number of DMC1 foci 

was 185.3 (n = 23), and in asy4-4, the mean was 187.5 (n = 27). As in asy4-1, no 

significant difference was detected in the number of DMC1 foci at early prophase I (P 

= 0.8356; 2-tailed Mann-Whitney test, 5% level), corroborating the result that ASY4 is 

dispensable for DSB production in A. thaliana (Fig. 5.14 E). Data available in Appendix 

Table A12.  
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Following the loading of DMC1/RAD51 onto resected DNA at the break site, the 

resultant nucleoprotein filament can commence the search for its homologue (Pradillo 

et al., 2012). As previously discussed, some of these early recombination 

intermediates will progress to form a double Holliday junction (dHj), which, in A. 

thaliana, is stabilised by MutS homologs MSH4 and MSH5 (Higgins et al., 2008b, 

2004). Immunolocalisation using the MSH4 antibody revealed an average of 155 

(n=15) in WT, and 151.7 (n = 18) in asy4-4 (Fig. 5.15). There was no significant 

difference in the number of foci between WT and asy4-4 (P = 0.5142; 2-tailed Mann-

Whitney test, 5% level), suggesting that recombination proceeds normally at least as 

far as stable proto-dHjs (Fig. 5.15, E). Data available in Appendix Table A13. 

 

 

 

Figure 5.14 Immunolocalisation of DMC1 and comparison of the number of foci. 
Early prophase I PMCs. (A,B) WT. (C,D) asy4-4. DMC1 in Texas Red. ASY1 in FITC. 
Chromatin stained with DAPI. Texas Red channel processed using Mexican Hat to 
improve clarity of foci. Bar = 5 µm. (E) Each data point = total DMC1 foci in one cell. 
Means plotted with SEM. n.s. = P > 0.05. 
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5.4.2 The number of HEI10 foci is significantly reduced in asy4-4 

As early recombination events appeared to be unaffected in asy4-4, we next sought 

to determine if the reduction in crossover number could be attributed to issues arising 

later in the process. The E3 ligase HEI10 is a component of the ZMMs in A. thaliana, 

and is homologous to Zip3 in yeast (Chelysheva et al., 2012). It is known cytologically 

to denote many recombination intermediates during early-mid prophase, and 

eventually, reduces in number, at which point it is thought to mark only the Class I 

COs. These larger foci appear to co-localise with both the SC, and MLH1: a homolog 

of Escherichia coli MutL that is also proposed to label Class I CO sites (Chelysheva et 

al., 2012; Dion et al., 2007; Lhuissier et al., 2007).  

At mid-late prophase I in WT, an average of 11.11 (n = 19) HEI10 foci were observed. 

In asy4-4, there was an average of 8.27 (n = 22) HEI10 foci per nucleus (Fig. 5.16, A-

D). Therefore, there is a significant difference in the number of HEI10 foci at mid-late 

Figure 5.15 Immunolocalisation of MSH4 and comparison of the number of foci. 
Early prophase I PMCs. (A,B) WT. (C,D) asy4-4. MSH4 in Texas Red. ASY1 in FITC. 
Chromatin stained with DAPI. Texas Red channel processed using Mexican Hat to 
improve clarity of foci. Bar = 5 µm. (E) Each data point = total MSH4 foci in one cell. 

Means plotted with SEM. n.s. = P > 0.05. 
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prophase I between WT and asy4-4 (P = 0.0002, 2-tailed Mann-Whitney test, 5% 

level). Combined with the data from DMC1 and MSH4, this suggests that, as in asy4-

1, there is a potential issue later in recombination in asy4-4, confirming that ASY4 is 

necessary for normal maturation of COs in A. thaliana. Data available in Appendix 

Table A14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5 An antibody raised against ASY4 gives no proper axis-associated signal in 

an asy4-null mutant  

 

As was discussed in 3.2.2.2, the antibody raised against ASY4 could not be verified in 

the asy4-1 and asy4-2 mutants as they still gave a strong, axis-associated signal (Kim 

Osman, University of Birmingham, personal communication; Appendix Figure A4). 

Thus to attempt to verify this antibody, immunolocalisation with anti-ASY4 and anti-

SYN1 was conducted on PMCs from both WT and asy4-4. In WT, an axis associated 

Figure 5.16 Immunolocalisation of HEI10 and comparison of the number of foci. 
Early prophase I PMCs. (A,B) WT. (C,D) asy4-4. ZYP1 in Texas Red. HEI10 in FITC. 
Chromatin stained with DAPI. Minimum-IP subtracted from the Maximum-IP in FITC 
channel to improve clarity of foci. Bar = 5 µm. (E) Each data point = total HEI10 foci in 

one cell. Means plotted with SEM. *** = P  0.001.   
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signal, as previously described in 3.2.2.1, is observed during mid-prophase I (Fig. 

5.17, A-B). As was observed in the epi-fluorescence images presented in Figure 3.10, 

the ASY4 antibody appears as stretches of foci along the axis, rather than the bright, 

linear signal we usually observe for ASY1. In asy4-4, whilst foci are visible, they do 

not appear to form any regular axis-associated signal (Fig. 5.17, C-D). We would 

therefore suggest that these foci are most likely background. Thus, we may conclude 

that the strong, axis-associated signal detected in asy4-1 and asy4-2 by Kim Osman 

(University of Birmingham) was likely due to the presence of the truncated protein. 

Furthermore, we conclude that the ASY4 antibody raised is indeed recognising ASY4, 

as it does not give a discernible axis-associated signal in the null-mutant presented in 

this chapter.  
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Figure 5.17  Immunolocalisation of the chromosome axis with SYN1 and ASY4 
in WT and asy4-4. Early-mid prophase I PMCs. (A,B) WT. (C,D) asy4-4. SYN1 in 
Texas Red. ASY4 in FITC. FITC channels captured at the same exposure between 
cells. Chromatin stained with DAPI. Bar = 5 µm. 
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5.6 Discussion  

In this chapter, we describe asy4-4: a novel, null mutant of ASY4 in A. thaliana, 

generated via CRISPR-Cas9 gene editing. We show that the 1.7 kb deletion as 

described in Chapter 4 is sufficient to prevent ASY4 expression, and that total 

absence of ASY4 results in a significant reduction in fertility and crossovers, disruption 

of the chromosome axis structure, and a reduction in synapsis. In contrast to asy4-1 

and asy4-2 presented by Chambon et al. (2018) and in Chapter 3, asy4-4 is not 

hypomorphic, and therefore can be used in future studies on the roles and dynamics 

of the chromosome axis during meiosis. We also show that the phenotypes observed 

in asy4-4 are unlikely to be due to an off-target effect, given that WT plants descended 

from asy4-4 heterozygous lines did not have fertility defects, and that the asy4-1/asy4-

4 double mutant is indistinguishable from the single mutants.  

We also present an antibody raised against ASY4 that successfully recognises ASY4 

in immunolocalization, and along with work conducted in Chapter 3, confirms that 

ASY4 is an essential component of the chromosome axis in Arabidopsis thaliana.  

Here, we will directly compare the asy4-1, asy4-2 and asy4-4 mutants to begin to 

explore whether the presence of a truncated protein can shed insight on possible roles 

for ASY4. A full discussion combining all results presented in this thesis can be found 

in Chapter 6.  

5.6.1 ASY4 is required for normal fertility 

As in asy4-1 and asy4-2, fertility is significantly reduced in asy4-4. That no significant 

difference was found between the fertility levels of asy4-1 and asy4-4 suggests that 

the probable truncated protein present in the T-DNA insertion lines is not, at the level 

of fertility, causing any problems specific to having a non- or partly functional version 



163 
 

 

of the protein still present. This same conclusion may not have been reached if data 

only from the Grelon group (as presented in Chambon et al., 2018) for asy4-1 fertility 

had been used; the Grelon group reported asy4-1 to have only a 42% reduction in 

fertility. Thus, we must not rule out the possibility of these phenotypes becoming more 

pronounced in different environmental conditions; it is well documented that 

temperature has a variety of effects on meiosis (Dion et al., 2007).  

The only significant difference was in the number of viable pollen, with asy4-4 seeming 

to produce slightly more inviable pollen than asy4-1. This was only significant at the 

5% level, however, so is possibly not a robust conclusion to make. 

5.6.2 Crossover number is reduced in all asy4 mutants 

Between the three asy4 mutants, CO number is relatively consistent; no significant 

difference in CO number was detected between asy4-1 and asy4-4. Once again, this 

would suggest that the truncated protein does not disrupt recombination in a 

detectably different way compared to having no ASY4 at all.  

Comparing DAPI spreads of PMCs from the three mutants did reveal a key difference, 

however. In the T-DNA insertion mutants asy4-1 and asy4-2, a key phenotype was the 

presence of connections and fragments, but neither of these were observed in asy4-

4 at metaphase I. Fragments at metaphase I would suggest that some DSBs remain 

unrepaired in the T-DNA lines, which does not appear to be the case in asy4-4. We 

were not able to attribute an origin to the connections observed in the T-DNA lines due 

to technical issues with the FISH experiments, yet given that most of them appear to 

be thin threads of chromatin, perhaps the simplest explanation is that they are likely 

entangled chromosomes. This could fit with a theory of a disorganised axis structure 

in asy4, as perhaps the chromatin loops are more prone to becoming caught in each 
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other. However, if this were true, it would then stand to reason that in asy4-4, we 

should also see connections, as it also has a disorganised axis. The connections could 

therefore be attributed to an issue with the T-DNA itself (FISH could reveal if the same 

chromosomes were the ones entangled, with particular focus on chromosome 2 as 

this is where the T-DNA is carried), or that the truncated protein itself has another 

adverse effect on the axis that prevents these entanglements from being resolved. For 

example, axis component TOPII is required for resolution of interlocks and 

entanglements (Martinez-Garcia et al., 2018). With the current information available, 

however, we cannot currently conclude the origins of the connections, and how their 

formation/persistence may have been impacted by the presence of a partial ASY4 

protein.  

It is also worth noting that these phenotypes were not reported by the Grelon group in 

Chambon et al. (2018). Yet, as discussed in Chapter 3, we believe that at least the 

connections are likely genuine, given that connections were also observed in the third 

T-DNA allele, asy4-3 (Osman et al., 2018). Thus, to determine if this is a genuine 

phenotype or not, we would need to analyse plants grown fresh seed-stocks of asy4-

1 and asy4-2. Ideally, these would also be grown in a constant temperature growth 

cabinet to mitigate the possibility of environmental effects. Nonetheless, in terms of 

fertility and CO number, the T-DNA insertion mutants asy4-1 and asy4-2 appear to be 

as affected as the true null-mutant.  

5.6.3 ASY4 and the chromosome axis  

Both asy4-1 and asy4-4 have no obvious defect in sister cohesion; perhaps based on 

this, we would expect that in asy4-4, like in asy4-1, a normal, underlying axis structure 

would be present. This was shown in Chambon et al. (2018) via silver staining. 

However, the other axis proteins, ASY1 and ASY3, are affected by a lack of ASY4; 
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both appear patchy and diffuse in both asy4 mutants. This was highlighted in the SIM 

images, where the co-localisation of SMC3 and ASY3 was disrupted in asy4-4. 

Therefore, to conclude if asy4-1 is similarly affected, SIM would need to be conducted 

on this line. These experiments were not conducted as part of this thesis due to 

questions presented in Chapter 3 about whether the asy4-1 line had accrued 

mutations and re-arrangements since its propagation here at Birmingham, given the 

discrepancies in the severity of particular phenotypes. Once a fresh batch of seed is 

obtained, however, the experiments performed in asy4-4 can be repeated in asy4-1 to 

continue to determine if this truncated protein causes any unique phenotypes.  

Another shared phenotype between the mutants is that both asy4-1 and asy4-4 fail to 

reach pachytene. For asy4-4, the maximum SC length observed was still only 46% of 

that of the maximum SC length observed for WT. This data is not available for asy4-

1, though in the future, it would be interesting to determine whether asy4-1 is more or 

less severely impacted in terms of synapsis than asy4-4. This would be of particular 

interest due to the similarity of asy4-1 to pch2 in that neither successfully deplete ASY1 

from the axis at sites where the ZYP1 signal has polymerised (Lambing et al., 2015; 

Chambon et al., 2018). However, asy4-4 that lacks this truncated protein, shows 

evidence of axis remodelling. In asy4-4, we show that PCH2 localisation is unaffected, 

with the antibody co-localising with the ZYP1 signal as in WT. It would therefore be 

interesting to see whether this is also the case for asy4-1 to determine whether the 

truncated protein causes a noticeable effect on PCH2 localisation and loading itself, 

or if it is more likely related to an effect on PCH2 function. Given that we have now 

verified the ASY4 antibody, it would also be worthwhile looking at the ASY4 signal in 

the pch2 mutant, and whether it corroborates what we have observed of ASY4eYFP 

in the pch2 background. This difference in remodelling is perhaps the most crucial 
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difference between the alleles, and its implications, as well as potential relationships 

with PCH2, will be discussed in Chapter 6 for clarity.  

5.6.4 ASY4 is required for CO maturation  

In this chapter, we also explored whether the reduction in CO number could be 

attributed to defects in the recombination pathway itself. Thus, as for asy4-1, 

immunolocalisation was conducted using antibodies to DMC1, MSH4, and HEI10, to 

investigate at which point the recombination process might be encountering problems. 

From this data, it also appears that asy4-1 and asy4-4 are similarly affected. DMC1 

foci counts in asy4-1 and asy4-4 both show no significant difference compared to WT, 

and therefore we can conclude that ASY4 is dispensable for DSB production. The data 

could not be compared for significance between asy4-1 and asy4-4, however, as the 

Grelon group use a different DMC1 antibody, and appear to observe a higher number 

of DMC1 foci than we do at Birmingham (Grelon asy4-1 DMC1: x̄ = 222; WT x̄ = 240).  

Similarly, we conclude that proto-dHJs are likely being produced, as no difference was 

detected between the number of MSH4 foci in either asy4-1 or asy4-4 compared to 

WT. As a significance test comparing the WT values obtained for the number of MSH4 

foci revealed that the Col-0 controls were significantly different, it was not possible to 

compare the values obtained for asy4-1 and asy4-4 to each other (Grelon asy4-1 

MSH4: x̄ = 121; WT x̄ = 110) (Chambon et al., 2018). Nonetheless, between both 

experiments, the conclusion is the same: asy4 does not affect the number of Holliday 

junctions forming.  

For both alleles, a reduction in the number of HEI10 foci was observed at late prophase 

I. Data for HEI10 was not presented by the Grelon lab in Chambon et al. (2018), and 

thus once again, we cannot compare it to our data. They did, however, present the 
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number of MLH1 foci: another component of the Class I CO complex known to mark 

Class I COs during late prophase I, overlapping with HEI10 on the SC (Chambon et 

al., 2018; Chelysheva et al., 2010; Higgins et al., 2005; Lhuissier et al., 2007; Lloyd et 

al., 2018). Based on this, we see very similar results when comparing the number of 

HEI10 foci in asy4-4 to the number of MLH1 foci in asy4-1 (Grelon MLH1: asy4-1 x̄ = 

8.6; WT x̄ = 11). Thus we conclude that in both mutants, the later stages of 

recombination are similarly affected. Therefore, a lack of functional ASY4 results in 

failure of a proportion of later-stage recombination intermediates to resolve into COs.  

Given that the remaining HEI10 foci in asy4 are all SC associated, perhaps the 

reduction in CO number could be attributed to the SC (or at least, ZYP1) itself being 

required for successful resolution of dHJs into CO products. As such, the remainder 

of CO-designated intermediates in asy4 could be in the regions where the SC had not 

extended, and thus end up being processed as an NCO. The co-localisation of HEI10 

foci and ZYP1 was also noted for asy4-1, and in Atasy3, the residual MSH4 and MLH1 

also co-localised with the ZYP1 signal, so this observation is not unexpected 

(Chambon et al., 2018; Ferdous et al., 2012a).  

It has been noted in other organisms including budding yeast and S. macrospora, that 

COs are ‘embedded’ in the SC, which could suggest that it is necessary for the CO to 

be SC associated during its repair (Dubois et al., 2019; Voelkel-Meiman et al., 2019). 

Recent work in S. macrospora reveals that this transition of COs from axis association 

to SC association may be facilitated by the formation of inter-axis bridges, evidence 

for which in A. thaliana are presented in this thesis (Dubois et al., 2019). Furthermore, 

evidence from budding yeast shows that the ZMMs are needed for the stabilisation of 

recombination intermediates, with particular emphasis on the SC TF protein Zip1  

which has since been suggested to physically connect to both factors that promote 
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synapsis initiation, as well as those in the recombination machinery (Voelkel-Meiman 

et al., 2019, 2015). This is in light of separation of function mutants developed for Zip1. 

Knocking out the Zip1 gene entirely resulted in asynapsis and an inability to produce 

MutSγ-dependent COs (Börner et al., 2004). Deleting residues 21-163 resulted in no 

SC assembly, but the persistence of MutSγ COs. Deleting only residues 2-9 or 2-14, 

however, resulted in assembly of the SC, but a reduction in the number of MutSγ COs. 

Thus it was concluded Zip1 likely has a role in promoting COs before, and independent 

of, its role in SC assembly (Voelkel-Meiman et al., 2019). It was also suggested that 

this was related to a potential interaction between Zip1 and the SUMO E3 ligase Zip3, 

which is required for formation of MutSγ-dependent COs in yeast, and is related to 

Arabidopsis HEI10 (Chelysheva et al., 2012; Voelkel-Meiman et al., 2019).  

In contrast to these other organisms, however, in A. thaliana, evidence may suggest 

that ZYP1 is not absolutely required for CO maturation. Higgins et al. (2005) generated 

a zyp1 mutant line where the duplicate copies of ZYP1a/ZYP1b had been knocked-

out by a T-DNA insertion and by RNAi, respectively. It was found that CO frequency 

in this line was ~80% of that of WT despite it having no synapsis. Furthermore, there 

was a mild reduction in the number of MLH1 foci at late prophase I, again suggesting 

that ZYP1 was largely expendable for the later stages of recombination (Higgins et al., 

2005b). It is nonetheless possible that given the positioning of the T-DNA in the 

seventh exon of ZYP1a, and that it cannot be absolutely guaranteed that the RNAi 

targeting of ZYP1b completely silenced the gene, that a low level of ZYP1 protein was 

still produced in these lines, confounding analysis.  

Nonetheless, it could be suggested that we see MLH1 and HEI10 foci associated with 

the ZYP1 signal as perhaps COs are merely more readily processed within a CO-

specific environment. This may fit with observations in C. elegans, where it has been 
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suggested that COs are repaired in a ‘CO-specific environment’, where recombination 

intermediates are encased in a SC ‘bubble’, and that this is required for these 

intermediates to repair as a CO (Woglar and Villeneuve, 2018). This work therefore 

suggests that further exploration of the potential function of ZYP1 in CO maturation in 

Arabidopsis is worthwhile.  

A final interesting point is that both the CO number and number of HEI10 foci in asy4-

4 were significantly reduced compared to WT, yet the number of HEI10 foci observed 

in both WT and asy4-4 were slightly higher than the ultimate CO number. If HEI10 

indeed only denotes Class I CO sites, then this is somewhat surprising. It is possible, 

of course, that the cells merely were not counted late enough in prophase I, and thus 

a few of the foci observed were not late-stage CO sites. However, another explanation 

is that perhaps HEI10 also marks something else, such as other recombination 

intermediates that may not necessary end up as a CO. This would fit with data 

obtained in wheat and other Arabidopsis lines, where consistently, the HEI10 signal 

appears to outweigh the final number of COs observed (K. Osman, University of 

Birmingham, personal communication; C. Nibau, University of Aberystwyth, personal 

communication).  

As the number of HE10 foci is significantly reduced compared to WT, we can also 

conclude that, if indeed HEI10 only marks Class I COs, that the formation of 

interference sensitive COs has been affected by a loss of ASY4. Given that the number 

of HEI10 foci observed would fully account for the final number of COs observed at 

metaphase I, it is of course also possible that the residual COs in asy4-4 could all be 

interference sensitive, and the Class II pathway has also been affected. It is also true 

that as we counted using the MCN, our estimate of CO number is a little conservative. 

Thus, were we to attempt FISH once more and potentially identify more than two COs 
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per ring bivalent, it is possible the numbers would be higher, and thus match the 

number of HEI10 foci.  

For future studies, therefore, it would be interesting to investigate whether Class II 

COs have been affected in any way. Crossing asy4-4 to a ZMM needed for the Class 

I CO pathway such as msh5 would help clarify this point; if the asy4-4/msh5 double 

mutant had a CO number reduced beyond that of the single msh5 mutant, then we 

could conclude that both interference sensitive and insensitive pathways are affected 

by loss of asy4-4. 
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6 General Discussion  

In this thesis, we describe the novel chromosome axis protein, ASY4. This initially 

encompassed cytological analysis of two hypomorphic T-DNA insertion lines, and 

later, development and characterisation of a true ASY4-null mutant, generated by 

CRISPR-Cas9. This allowed for a thorough investigation into its potential roles at the 

chromosome axis during meiosis in A. thaliana. In this chapter, the results obtained 

from the three mutants are fully discussed, as well as future lines of investigation, and 

how this research may contribute toward our goal of improving the plant breeding 

process.  

6.1 ASY4 as a chromosome axis component  

6.1.1 ASY4 and axis organisation 

Experiments in all three asy4 mutants suggest that ASY4 is essential for normal axis 

structure; immunolocalisation studies show that axis morphology in asy4 is abnormal, 

with patchy and apparently disorganised ASY1 and ASY3 signals. ASY4 does not 

appear to be required for loading of the proteins, however. 

It is therefore possible that, whilst ASY1 and ASY3 can indeed localise to the axis, 

their positioning is incorrect; perhaps in the absence of ASY4, they are less regularly 

spaced within the axis-meshwork, or that their positioning may have changed in 

relation to the loop bases. The best evidence we have that this may be a plausible 

explanation is found in the SIM images of the axis in asy4-4, presented in Chapter 5. 

In WT, we observe near co-localisation of ASY3 and SMC3 along the axis (Fig. 5.10, 

D1), with this relationship appearing more pronounced in later cells, perhaps due to 

the overall condensation that occurs as chromosomes synapse (Fig. 5.10, A1). This 

is in-keeping with data presented in yeast where the cohesins also co-localise with the 
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axis protein Red1 (Sun et al., 2015).  In asy4-4, overall, there appears to be more 

ASY3 that is not co-localising with SMC3; much of it appears further out from the 

cohesin signal (Fig. 5.10, G1). Perhaps, therefore, ASY3 is farther out into the loop 

than in WT, rather than localised more completely at the loop base with SMC3. This 

could explain why ASY3 has an overall ‘fuzzy’ appearance in asy4. Given that ASY1 

requires ASY3 for normal loading and extension along the axis, perhaps this is also 

the case for ASY1. Indeed, it is possible that the altered appearance of ASY1 in asy4 

is a consequence of the improper organisation of ASY3 on the axis, rather than a direct 

effect of the lack of ASY4 itself. Y2H results from Osman et al. (2018) and Chambon 

et al. (2018) show no interaction between ASY1 and ASY4; thus it is perhaps more 

likely that issues with ASY3 are more likely to cause an effect on ASY1 (Ferdous et 

al., 2012; Chambon et al., 2018).  

It may also be interesting to determine their relative intensities to WT, as it is also 

possible that they appear patchy simply because the proteins are less abundant; in 

this case, ASY4 could be necessary for maintenance of the normal stoichiometry of 

the axis proteins. That ASY1 is perhaps less abundant is thought to possibly be the 

case for pch2, where the axis appears unaffected, until the relative intensity of ASY1 

at leptotene in pch2 was compared to WT. This fits with observations in yeast 

suggesting that Pch2 is required for organisation of Hop1 into hyper-abundant 

domains (West, A., 2015; Lambing et al., 2015; Börner et al., 2008). 

This fuzzy appearance of ASY1 and ASY3 was also reported in asy4-1 (Chambon et 

al., 2018). In asy4-1, we believe a truncated protein is present, given data presented 

showing there is still expression of some ASY4 transcript, and also, given that the 

antibody gives a strong axis-associated signal in both T-DNA mutants. Based on the 

Y2H results presented in Chapter 3, we would expect that this truncated protein could 
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no longer interact with ASY3. Nonetheless, it appears on the chromosome axis in 

asy4-1. These data together would suggest that ASY4 does not need ASY3 to localise 

onto the chromosome axis, as in theory, this truncated protein would not be able to 

interact with ASY3.  

In asy3:ASY4eYFP, however, we do not see any extension of the ASY4eYFP signal, 

with it instead appearing as foci. These foci do not, however, appear to be associated 

with the axis, instead appearing out into the chromatin. This confirms that ASY4 

requires ASY3 for its localisation on the axis, but that this relationship is not equally 

interdependent, with ASY3 able to assemble onto the axis in absence of functional 

ASY4. As previously discussed, however, the Y2H system is prone to both false 

negatives and false positives, and the result provided by the system can change due 

to many factors; it has been observed that merely changing the brand of media can 

alter the result obtained, for example (Liu et al., 2011). Thus to be certain of these 

interactions, other, more robust PPI methodologies would need to be used, such as 

pull-down experiments. Therefore, it is more likely that ASY4 does indeed require 

ASY3 to localise onto the axis, and that the truncated protein present in asy4-1 can 

perhaps still recognise ASY3, given that we cannot exclude the possibility of the result 

obtained from Y2H being a false negative.  

6.1.2 ASY3 and ASY4 as functional homologues of mammalian SYCP2 and 

SYCP3 

Since ASY3 was first described by Ferdous et al. (2012), it has been considered the 

functional homolog of the yeast coiled-coil containing protein, Red1. BLAST searches 

with the sequence of ASY4 did not find any homologues in yeast. Similarly, in 

mammals, the core axis protein SYCP2 has been considered a functional homolog of 

yeast Red1, and therefore, also potentially of ASY3 (Ferdous et al., 2012a; Yang et 
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al., 2006). Mammals, like plants, also possess a second coiled-coil containing axis 

component, namely, SYCP3 (Kouznetsova et al., 2005). Furthermore, like ASY4, 

SYCP3 also appears to have no obvious homologues in S. cerevisiae (Offenberg et 

al., 1998).  

In Mus musculus, the axial element proteins SYCP2 and SYCP3 also appear to be 

analogous to ASY3 and ASY4 respectively in terms of size and structure. SYCP2 is 

comprised of 1500 amino acid residues, and SYCP3 contains just 254 (West et al., 

2019). ASY3 is comprised of 793 amino acid residues, and ASY4 of 212 (Ferdous et 

al., 2012; Chambon et al., 2018; Osman et al., 2018). In both systems, ASY3/ASY4 

and SYCP2/SYCP3 have homology to each other, with ASY4 and SYCP3 both having 

homology to the C-terminal ends of ASY3 and SYCP2 respectively (Ferdous et al., 

2012; Chambon et al., 2018; West et al., 2019).  

SYCP2 and SYCP3 also appear to require each other for localisation onto the axis, 

but more obviously so than ASY3 and ASY4; both sycp2-/- and sycp3-/-  mutants fail to 

form the axial element and SC (Pelttari et al., 2001; Yang et al., 2006; Yuan et al., 

2000). Furthermore, it has been demonstrated that merely removing the coiled-coil 

domain of SYCP2 is sufficient to prevent SYPC3 loading onto the axis (Yang et al., 

2006). In A. thaliana, it appears that ASY3 is absolutely required for ASY4 extension 

on the axis, but ASY3 can still linearise to some extent along the axis in absence of 

ASY4 (Chambon et al., 2018; this thesis).  

West et al. (2019) show that the coiled-coil protein SYCP3 is capable of self-

assembling into a homotetramer in the absence of SYCP2, but that its structure is 

much less stable. SYCP3 is also required for normal bundling of the SYCP2:SYCP3 

filaments. Given that ASY3 is also a coiled-coil protein shown to assemble with ASY4 
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into heterotetramers, perhaps it is possible that in asy4-4, ASY3 can self-polymerise, 

but its structure is unstable and inadequately organised. Furthermore, SYCP3 is 

known to act as a ‘molecular spacer’ required for regular patterning of the axis proteins 

(Syrjänen et al., 2014). Thus, with the data obtained from the SIM presented in this 

thesis, we would suggest ASY4 to be acting in a manner akin to SYCP3, functioning 

as a key organisational component of the chromosome axis.  

Thus, both in this thesis and in Chambon et al. (2018), we propose that it is possible 

that plants and mammals have analogous axis systems, more closely related to each 

other than is obvious in S. cerevisiae.  

6.2 ASY4 and CO maturation 

Lack of ASY4 results in an inability to assure the obligate CO, as is demonstrated by 

the presence of univalents in this mutant. There are two possible explanations for this. 

As discussed in 1.3.3.2.2, the Beam-Film (BF) model of CO patterning stipulates that 

mechanical stress builds along the meiotic chromosomes, and that for this stress to 

be relieved, a CO must be designated.  Thus, a mechanical explanation fitting with the 

BF model could be that due to the disorganised axis structure in asy4, the mechanical 

stress required to designate the obligate CO was not sufficiently strong on all 

chromosomes. Another may relate to the SC itself potentially being required for CO 

maturation, and thus these chromosomes could have remained asynaptic. However, 

there is evidence suggesting that the SC may not absolutely be required for normal 

CO levels, and that COs may not be required for its initiation in A. thaliana. This comes 

from both the previously discussed zyp1aT-DNA/zyp1bRNAi lines showing near WT levels 

of COs, and that Arabidopsis ZMM mutants still have normal SC extension, despite a 

lack of Class I COs (Chelysheva et al., 2007; Higgins et al., 2008b, 2005a, 2004a; 

Macaisne et al., 2011, 2008; Wijeratne et al., 2006). Thus, the SC in of itself may not 
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be required for normal CO maturation, but merely provides a stable scaffold for the 

recombinases. The recombination complexes we see associated with the SC signal in 

asy4 and other mutants perhaps were CO-designated sites that were more stable, and 

thus resolved more efficiently than any that may have been generated in asynaptic 

regions.  

It is of course possible, given data presented by Kurzbauer et al. (2018) on fancd2 

mutants, that some class II COs are required to maintain the obligate CO. Thus, if 

ASY4, like PCH2, is required for normal levels of both CI and CII COs, it could be that 

these univalents arise due to CII CO issues. To clarify this, we could cross asy4-4 and 

asy4-1 to a ZMM mutant such as msh5; if the CO level is reduced beyond that of the 

msh5 single mutant, then ASY4 influences both the CI and CII pathways.  

6.3 ASY4 and PCH2 

As shown in both this thesis and in Chambon et al. (2018), absence/defective ASY4 

results in a partially asynaptic phenotype and an abnormal axis structure. Perhaps the 

most striking thing about the asy4 mutants is their apparent similarity to pch2, rather 

than to mutants of the other structural axis components, asy1 and asy3. A table 

illustrating this point is presented in Table 6.1. 
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A defining characteristic of the pch2 mutant is the persistence of ASY1 on the lateral 

element of the SC; this led to the conclusion that in in WT, ASY1 is depleted from the 

axis as the SC extends by the ATP-catalysed action of PCH2 (Lambing et al., 2015). 

This was supported by evidence from other organisms showing that PCH2 

homologues (and other proteins such as p31comet) are required for opening of the 

HORMAD closure motif, allowing for dissociation of HORMADs from their interactors 

(Brulotte et al., 2017; Rosenberg and Corbett, 2015; Ye et al., 2017, 2015).  

As is evident in Table 6.1, in terms of a lack of effects on early steps in recombination, 

CO number, fertility, and SC extension, asy4 and pch2 are indeed very similar. When 

comparing asy4-1 and pch2, this is more pronounced, given that a defining feature of 

both mutants is that ASY1 is not depleted from the axis where the SC has extended. 

This is not the case in asy4-4, however. Possible explanations for this include that the 

truncated protein present in asy4-1 and asy4-2 cannot be regulated normally; perhaps 

ASY4 itself needs to be remodelled or post-translationally modified in some way to 

accommodate SC extension. Indeed, in mammalian systems, axis protein SYCP3 has 

Table 6. 1 Comparison of several axis mutants in Arabidopsis thaliana.  
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been found to be phosphorylated, SUMOylated, and associates with Ubc9: an 

ubiquitin-conjugation enzyme (Eichinger and Jentsch, 2010; Fukuda et al., 2012; Rao 

et al., 2017; Tarsounas et al., 1997). Furthermore, disruption of the SUMO-ubiquitin 

relay has been shown to result in aggregations of SYCP3 in mouse spermatocytes, 

thus suggesting that these modifications are essential for its regulation (Rao et al., 

2017).  

That ASY4 has some role during synapsis initiation could be suggested by the cells 

presented in 3.2.2.4 where a bright ASY4eYFP signal is seen flanking synapsis 

initiation sites. Whilst it could be argued that this is merely due to some issue with the 

eYFP tag, it is also possible that, potentially due to a delay in SC extension or an over-

aggregation of ASY4eYFP, we see this in a more pronounced manner than we might 

do with the ASY4 antibody. Indeed, getting many cells with these foci of ZYP1 are 

comparatively rare, which may be due to this process proceeding quickly.  

However, if ASY4 were necessary for axis remodelling itself, we would expect to see 

ASY1 persisting on the axis in asy4-4. Taken with the fact that the chromosome axis 

organisation prior to synapsis is unaffected in pch2, but significantly impacted in asy4, 

it is clear these proteins, despite their similarities, are conducting distinct roles. They 

are possibly, however, either functionally or temporally related in some way. We would 

therefore propose that ASY4 is likely dispensable for axis remodelling, but that having 

a truncated version of ASY4 present disrupts this process. That is, ASY4 is also not 

required for normal PCH2 function, given that PCH2 both localises to the SC 

successfully in asy4-4, and that it appears to be able to remodel ASY1 from the axis 

as zygotene progresses. West et al. (2019) propose that ASY3 and ASY4 form 

antiparallel heterotetramers along the axis, and that ASY3 recruits ASY1 via a closure 

motif. Later, it is thought that PCH2 opens up the closure motif, thus allowing removal 
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of ASY1 from the lateral elements. Based on this, it is possible that the truncated ASY4 

protein causes some topological issue that may prevent normal dissociation of the 

ASY3 closure motif from ASY1, thus enabling ASY1 to persist on the axis.  

This work also gives insight into whether it is the presence of ASY1 itself in asy4-1 

and pch2 that prevents normal SC extension. If this were the case, then we would 

expect to see an obvious difference in the level of SC extension between asy4-1 and 

asy4-4, given that in asy4-4, ASY1 is successfully depleted from the axis. As this was 

not observed, perhaps not the persistence of ASY1 on the axis per se that prevents 

SC extension, put potentially a wider issue with axis organisation or signalling in these 

mutants.  

To try and pick apart any potential relationship between ASY4 and PCH2, crosses 

between pch2 and both asy4-1 and asy4-4 would be useful. It would also be interesting 

to explore the dynamics of PCH2 in asy4-1, as we do not yet know if the protein is able 

to localise to the SC in asy4-1 as it does in WT and asy4-4. In the reverse, we also 

need to confirm whether a lack of PCH2 influences the amount or organisation of ASY4 

on the axis, given that in the pch2:ASY4eYFP, ASY4eYFP is co-localising with the 

axis, but presents an abnormal structure of many high intensity foci, with some short 

linear stretches. 

6.4 CRISPR-Cas9 is an effective way to produce novel mutations in meiotic 

genes 

One aim of this thesis was to successfully generate an asy4 null mutant, given that 

other available mutants were determined to be hypomorphic (Chambon et al., 2018; 

Osman et al., 2018; this thesis). CRISPR-Cas9 has already been widely used in many 

systems to integrate targeted mutations in genes of interest, and in this thesis, we 
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present a novel mutant with a 1.7 kb deletion in ASY4, proving CRISPR-Cas9 to be 

an effective way of quickly producing mutants to overcome limitations with T-DNA 

insertions: the main manner in which A. thaliana mutants are generated. We also 

present evidence that the phenotype observed in asy4-4 is likely not due to an off-

target effect. Of course, we cannot unequivocally determine whether or not our 

construct did cause edits in other parts of the genome, but given that the phenotypes 

of asy4-1/asy4-4 and the respective single mutants are so similar, it would seem these 

would be meiotically neutral and therefore inconsequential in this study. Therefore, 

asy4-4 can be established as a useful mutant line available to the community for future 

research. To our knowledge, asy4-4 is also the first fully described CRISPR-Cas9-

generated meiotic mutant in A. thaliana.  

6.5 Future Research and Applications 

Future interesting lines of research could include determining the precise PPIs 

between the axis-associated proteins including PCH2, and ZYP1. In mouse, it has 

been demonstrated that the axis protein SYCP2, but not SYCP3, can interact with 

SYCP1, thus directly linking the axis to the SC (Syrjänen et al., 2014). To our 

knowledge, thus far, only ASY1 has been tested for an interaction with ZYP1, which 

proved to be negative (Osman et al., 2018). Therefore, it would be interesting to 

determine whether ASY3 or ASY4 has the capability to interact with ZYP1, further 

enlightening us on the direct relationships between these key SC components. Given 

the interesting similarities between PCH2 and ASY4 in terms of their mutant 

phenotypes, it may also be worthwhile determining if these proteins can interact. 

Though, it is worth noting that this interaction would potentially be biochemically 

complex, given that Pch2 in yeast is only seen to interact with other proteins in the 

presence of ATPγS (Chen et al., 2014). This is because ATPγS cannot be turned over, 
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and thus the transient interactions between Pch2 and its targets are sustained for 

longer, and thus at detectable levels.  

Indeed, for future research prospects, it would also be interesting to follow on from the 

research conducted by West et al. (2019) and investigate how tightly these proteins 

interact with each other. This could give us some indication about the importance of 

axis stoichiometry, and how tensile strengths could vary across the axis in different 

mutants, and at different temperatures: a key area of research given the global impacts 

of climate change. Topics for translatable research into crops could, therefore, focus 

on influencing the stoichiometry of the axis and thus its mechanical properties, which 

may allow for redistribution of COs. This could include, for example, knocking-down 

levels of protein, rather than knocking them out which could be both transiently 

administered (i.e., within one generation), and potentially minimise any fertility defect.  

As ASY1 and ZYP1 homologues have already been identified in several crop species 

including barley and wheat, it would also be interesting to explore whether ASY4 is 

also a key player in these systems, and whether there is any functional divergence. 

Functional divergence of meiotic proteins across plant species has already been 

observed; for example, mutants of the rice AtPCH2 homologue Oscrc1 revealed that, 

contrary to what is observed for Arabidopsis, OsCRC1 is required for DSB formation 

and recruitment of PAIR2, a rice HORMAD, to the axis (Miao et al., 2013). Though, it 

is interesting to note that rice repeatedly appears to differ even from other monocots, 

a notable example being the function of OsZEP1 vs HvZYP1, where Oszep1 mutants 

show an increase in CO number, and Hvzyp1 mutants show a decrease (Barakate et 

al., 2014; Wang et al., 2010). Thus investigating the axis further in individual species 

of interest is crucial if we are to successfully manipulate meiosis in crops.  
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6.6 Summary 

Combined, the work in this thesis characterises a previously unknown component of 

the chromosome axis in plants. It suggests that ASY4 is an essential organisational 

unit of the chromosome axis in Arabidopsis thaliana, and that disrupting it results in 

defects in axis organisation, SC extension, and CO maturation, culminating in an 

overall reduction in fertility less severe than is observed for asy1, asy3, and syn1. We 

also describe a novel, CRISPR-Cas9 generated mutant of asy4 that will be available 

for use by other groups, and suggest further avenues of research to continue to 

deepen our understanding of the meiotic chromosome axis.   

A diagrammatic summary of the results described in this thesis is presented in Figure 

6.1.  
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Figure 6. 1 Chromosome axis assembly and remodelling in WT and two asy4 
mutants. In WT, the chromosome axis is organised with ASY3/ASY4 arranged into 
antiparallel heterotetramers which are closely associated with the cohesins. ASY1 is 
recruited to the axis by the ASY3 closure motif. As the axis is remodelled by PCH2, 
the ASY1 HORMA domain is successfully opened, allowing for ASY1 depletion. In 
both asy4 mutants, ASY3 appears disorganised and farther away from the loop bases, 
but is still able to recruit ASY1 to the axis.  In asy4-1, the truncated asy4 protein may 
prevent normal dissociation of the ASY1 HORMA domain from the ASY3 closure motif, 
and thus ASY1 persists on the axis. In asy4-4, ASY1 is depleted form the axis as in 
WT. Adapted from Rosenberg and Corbett, 2015; West et al., 2019; and Morgan, 
2016.  
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Appendix  

Appendix for Chapter 2: Materials and Methods 

Table A 1. T-DNA insertion lines used in this study 

Gene AGI Code T-DNA Line Allele(s) Reference 

ASY1 AT1G67370 SALK_046272 asy1-4 Crismani et al., 2013 

ASY3 AT2G46980 SALK_143676 asy3-1 Ferdous et al., 2012 

ASY4 AT2G33973 SK22114 asy4-1  This thesis, and Chambon 

et.al, (2018) 
65433 (Koncz 

Collection) 

asy4-2 

PCH2 AT4G24710 SAIL_1187_C06 pch2-1 Lambing et al., 2015 

SYN1 AT5G05490 SALK_091193 syn1 (Cai et al., 2003) 

 

Table A 2. List of primers used for genotyping T-DNA lines 

Allele Primer Name Sequence (5′-3′) 

asy1-4 ASY1-4-F CTATGGACGCTGAATCTCGC 

ASY1-4-R GAACCATTTTGCAAGCTGAACTCC 

asy3-1 ASY3-1-F1 AGGAGATGCTTCTGGAGAAC 

ASY3-1-R1 CTGGTGCCAACTTAGGTCGC 

asy4-1 ASY4-1F CTATGGACGCTGAATCTCGC 

ASY4-1R GAACCATTTTGCAAGCTGAACTCC 

asy4-2 At2g33793-P7R TCCTCATCAGAAGCCTCGTT 

At2g33793-P4R TCCACTGAGGTGAAGTCAAA 
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pch2-1 PCH2-1 Fv CAGTGCAAATAGCCGTCGCTGAG 

PCH2-1 Rv CTCACATGGTCCTTCTTCAATGAGC 

syn1 SYN1F CTTCTTAAGGATGGCCGCTAC 

SYN1R CCACTTTTATGGGCAATGAAG 

 

T-DNA 

GABIKat ATATTGACCATCATACTCATTGC 

LB2 (SAIL) GCTTCCTATTATATCTTCCCAAATTACCAATACA 

LBb1.3  (SALK) ATTTTGCCGATTTCGGAAC 

RBSKI015 AGATCCGAAACTATCAGTG 

 

 

Table A 3. Primers used in RT-PCR 

Gene Target Primer Name Sequence (5′-3′) 

Actin 2 RTPCR Actin2 F CGTACAACCGGTATTGTGCTG 

RTPCR Actin2 R AGGTTTCCATCTCCTGCTCGT 

ASY3 RTPCR ASY3 F ACATCAGCCCCGAAGAAAGAG 

RTPCR ASY3 R ATCTCCTCGGAGACTGATGCT 

ASY4 ASY4 RTPCR F ACACCGAAAGCAAAACTCCC 

ASY4 RTPCR R CAAGTTTTGACTTCAGCTCGTC 

ASY4 FL F1 ATGTCGTCTACCAGAAGAGGC 

ASY4 Y2H R1 TCACTCATCAGGTGGGAATTC 
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Table A 4. Primers used in the Yeast-2-Hybrid experiments 

Gene Target Primer Name Sequence (5′-3′) 

ASY1 ASY1 Y2H F1 CACCATGGTGATGGCTCAGAAGCT 

ASY1 Y2H R1 TCAATTAGCTTGAGATTTCTGACG 

ASY3 ASY3 Y2H F1 CACCATGAGCGACTATAGAAGCTTCGG 

ASY3 Y2H R1 TCAATCATCCCTCAAACATTCTG 

ASY3 N-TERM F CACCATGAGCGACTATAGAAGCT 

ASY3 N-TERM R TTCATCCTCATCCATCTCTGAA 

ASY3 COIL Y2H F1 (OUT 

OF FRAME) 

CACCATGAAGGCTTGGGAAGGG 

ASY3COIL IN-FRAME Y2H CACCGATGAAGGCTTGGGAAGGG 

ASY3 HALF1 COIL R1 CATTCTCATTTTCTCTTCTTGCTCTT 

ASY3 HALF 2 COIL F1 CACCATCCATGAAAAGTTCAAGGACG 

ASY4 ASY4 Y2H F1 CACCATGTCGTCTACCAGAAGAGGC 

ASY4 Y2H R1 TCACTCATCAGGTGGGAATTC 

ASY4 HALF 1 R1 CTCCTTTGAACTCTTTGAAAGTGC 

ASY4 HALF 2 F1 CACCTGTGAGAATATTTTGAAGGATGAAG 

pENTR/D-TOPO™ M13(-20)F (Invitrogen) GTAAAACGACGGCCAG 

M13 R (Invitrogen) CAGGAAACAGCTATGAC 

pDEST-22/pDEST-32 pDEST22-F1 TATAACGCGTTTGGAATCACT 
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Table A 5. Concentrations for antibodies used in Western Blotting 

Antibody Raised in Concentration Reference 

α-ASY1 Rat 1:500 (Armstrong et al., 2002a) 

α-GAL4 AD 

[14-7E10G10] 

Mouse 1:5000 AbCam, Catalogue No. 

ab135398 

α-GAL4 DBD 

(RK5C1) 

Mouse 1:1000 Santa Cruz Biotechnology, 

Catalogue No. sc-510 
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Figure A 1 Vector maps for pEn-Sa-Chimera (A) and pDe-Sa-Cas9 (B). Maps 
produced within Geneious R9. Sequence data available at: 
http://www.botanik.kit.edu/molbio/983.php  

 

http://www.botanik.kit.edu/molbio/983.php
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Table A 6. Oligonucleotide pairs and primers used in CRISPR/Cas9 

Primer Name Sequence (5′-3′) 

ASY4Pair1F ATTGACCGAAAGCAAAACTCCCGG 

ASY4Pair1R AAACCCGGGAGTTTTGCTTTCGGT 

ASY4Pair2F ATTGAGCGATTGCGGCGGCTCTGG 

ASY4Pair2R AAACCCAGAGCCGCCGCAATCGCT 

ASY4Pair3F ATTGCATCTTCGTGCGCTTTCTCT 

ASY4Pair3R AAACAGAGAAAGCGCACGAAGATG 

SS129 CACAGGAAACAGCTATGAC 

SS42 TCCCAGGATTAGAATGATTAGG 

SS102 CACCATGTTATCACATCAATCC 

SS61 GAGCTCCAGGCCTCCCAGCTTTCG 

ASY4 CRISPR CHECK F2 CCATGAGGCCCAATGATGTT 

ASY4 CRISPR CHECK R2 AAGCGATACATGAGCATACCA 

A4_WHOLE_F1 ATTAGTGCATGAGTTTTCATTCATGT 

A4_WHOLE_R2 CTTTCTAGCGTCAAGTGAAAAAGAC 

A4 CR F2 TGCGGCTTCAACACATTACA 

A4 CR R1 TGGACACACTGCCAGAAAGA 
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Table A 7. Concentrations for antibodies used in immunolocalisation  

Antibody Raised in Concentration Reference 

α-ASY1 Rabbit and Rat 1:5000 (Armstrong et al., 2002a) 

α-ASY3 Rabbit 1:200 Ferdous et al., 2012 

α-ASY4 Rat 1:200-1:500 This thesis, and Osman 

and Franklin, unpublished. 

α-MSH4 Rabbit 1:200 (Higgins et al., 2004b)  

α-MSH5 Rabbit 1:200 Higgins et al., 2008 

α-SYN1 Rabbit 1:500 Tiang, 2011 

α-PCH2 Rabbit 1:200 Lambing et al., 2015 

α-ZYP1 Rabbit and Rat 1:500 Higgins et al., 2005 

α-GFP (Living 

Colours A.v. Peptide 

Antibody) 

Rabbit 1:500 Clontech, Catalogue No. 

632376. 

α-GFP Goat 1:2000 AbCam, Catalogue No. 

ab5450 

  

Table A 8.. Primers used to PCR screen for ASY4 over-expression lines 

Primer Name Sequence (5′-3′) 

pLH9000 F1 TGTGTGAGTAGTTCCCAGATAAGG 

ASY4 Promoter R1 AACATCATTGGGCCTCATGG 
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Appendix for Chapter 3: ASYNAPTIC 4 is a novel component of the meiotic 

chromosome axis in Arabidopsis thaliana  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A 2 DAPI stained metaphase 
I cells from asy4-1 and asy4-2 
displaying connections. Arrows 
indicate the suspected connections. All 
scale bars = 5 µm. 
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Figure A 4 Immunolocalisation with ASY4 antibody in two T-DNA insertion 

mutants for asy4 gives a strong axis-associated signal. Image provided by Dr Kim 

Osman (University of Birmingham). ASY4 in Texas Red. ZYP1 in FITC. Chromatin in 

DAPI.  

 

 

Figure A 3 DAPI stained metaphase I cells from asy4-1 displaying chromosome 
fragments. Arrows indicate the fragments. All scale bars = 5 µm. 
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Table A 9. Counts of MSH4/MSH5 foci on asy4-1. Counts were performed using 
the NIS Elements software.  

Col-0 
MSH5 

asy4-1 
MSH5 

Col-0 
MSH4 

asy4-1 
MSH4 

74 73 111 96 

107 108 142 105 

99 72 142 79 

164 123 106 94 

161 158 96 108 

85 158 117 141 

145 165 92 126 

202 136 132 82 

65 157 116 103 

87 98 154 97 

141 123 152 97 

70 106 88 119 

110 103 124 117 

66 124 121 152 

109 113 112 121 
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Figure A 3 Locations of Y2H primer sets for the ASY3 coiled-coil domain. (A) C2 
is the ‘in-frame’ protein used in this thesis. (B) C1 ASY3 is the proposed ‘out-of-frame’ 
protein as designed and used in Ferdous et al., 2012. In colour under each sequence 
is the proposed amino acid sequence, showing that the coiled-coil described in 
Ferdous et al., (2012) is predicted to produce a short nonsense protein. Translation 
completed within Geneious R9.  
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Figure A4 
Replicate plates 
from the Y2H 
experiments.  

(A) ASY4 vs 
ASY3. 

(B) H1ASY4 vs 
ASY3. 

(C) H2ASY4 vs 
ASY3  

(D) NtASY3 vs 
ASY4 

(E) C1ASY3 vs 
ASY4  

(F) C2ASY3 vs 
ASY4. 
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Appendix for Chapter 4: Generation of ASY4 mutant lines using the 

CRISPR/Cas9 gene editing system 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A 5 Detection of the CRISPR/Cas9 construct in planta via PCR. PCR 
products imaged on an ethidium bromide agarose gel. T1 plant was selected as a 
transformant on MS media with kanamycin, and the presence of the plasmid confirmed 
by PCR. CRISPR/Cas9 is absent in the WT control. Positive plasmid control confirms 
the band obtained from T1 PCR is of the correct size.  
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Figure A 6 Seed count data from T2 ASY4 CRISPR-Cas9 lines. (A) Seed count 
data from Line 15 (7.2). (B) Seed count data from Line 15 (7.3). (C) Seed count data 
from Line 16. (D) Seed count data from Line 18. Each column represents average data 
from 5 siliques. Bars represent SEM. All plants were compared in a Kruskal-Wallis test 
at the 5% level (with Dunn’s correction) to WT (Col-0). All plants were not significantly 
different compared to WT.   
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Appendix for Chapter 5: Characterisation of a null-mutant of asy4 generated by 

CRISPR-Cas9 

 

Table A 10. Total SC length data for Col-0 (WT) and asy4-4  

 

 

 

 

 

 

 

 

 

 

 

 

Table A 11. DMC1 foci data for Col-0 (WT) and asy4-4  

 

Col-0 asy4-4 

220 242 

206 163 

227 202 

221 214 

151 207 

202 183 

163 170 

146 221 

Col-0 asy4-4 

133.0349 156.7809 

126.9668 88.8819 

268.4133 114.5217 

340.2426 54.4345 

208.6795 16.4815 

141.0573 96.5421 

79.4107 43.8093 

225.6380 57.6943 

 40.5149 
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177 232 

189 204 

182 224 

190 150 

220 227 

200 143 

172 146 

182 155 

197 227 

157 212 

183 154 

163 209 

175 215 

163 160 

176 135 

 171 

 144 

 159 

 204 
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Table A 12. MSH4 foci data for Col-0 (WT) and asy4-4  

 

Col-0 asy4-4 

133 158 

157 139 

174 137 

160 128 

158 140 

163 176 

146 148 

155 150 

119 163 

143 170 

177 145 

161 180 

161 138 

147 158 

171 166 

 137 

 170 

 127 
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Table A 13. HEI10 foci data for Col-0 (WT) and asy4-4  

 

Col-0 asy4-4 

10 7 

12 5 

12 5 

11 8 

12 10 

13 7 

18 9 

9 15 

10 8 

12 5 

14 10 

10 8 

8 9 

9 6 

8 8 

9 7 

13 8 

11 8 

10 7 

 7 

 13 

 12 
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General Appendix: Presentations, Publications, Outreach, Teaching, and 

Awards 

List of Oral Presentations 

Darbyshire A., Franklin F.C.H., Sanchez-Moran E. Investigating the roles of the 

chromosome axis during meiosis using gene editing. University of Bristol, March 2019. 

Invited Speaker by Prof. Keith Edwards. 

 

Darbyshire A., West A., Osman K., Lambing C., Grelon M., Franklin F.C.H., Sanchez-

Moran E. ASY4: A novel axis protein essential for meiotic recombination 

in Arabidopsis thaliana. British Meiosis Meeting, University of Sussex. May 2018.  

 

Darbyshire A., West A., Osman K., Franklin F.C.H., Sanchez-Moran E. The 

Chromosome Axis and its role in Meiosis in Arabidopsis thaliana. MIBTP Symposium, 

University of Leicester, April 2018.  

 

Darbyshire A., West A., Osman K., Franklin F.C.H., Sanchez-Moran E. The 

Chromosome Axis and its role in Meiosis in Arabidopsis thaliana. MIBTP Symposium, 

University of Leicester, April 2017.  

 

List of Poster Presentations 

Darbyshire A., Osman K., Franklin F.C.H., Sanchez-Moran E. Analysis of a null allele 

of the chromosome axis protein ASY1 generated by CRISPR-Cas9 using super-

resolution microscopy. British Meiosis Meeting, University of Aberystwyth. April 2019.  

 

Darbyshire A., West A., Osman K., Lambing C., Grelon M., Franklin F.C.H., Sanchez-

Moran E. ASY4: A novel axis protein essential for meiotic recombination 

in Arabidopsis thaliana. Biosciences Graduate Research School Symposium, 

University of Birmingham. June 2018. Awarded 1st Prize for Best Poster.   

 

Darbyshire A., West A., Osman K., Lambing C., Franklin F.C.H., Sanchez-Moran E. 

Characterisation of a Novel Chromosome Axis Associated Protein in Arabidopsis 

thaliana. Spanish Meiosis Meeting, Complutense University of Madrid. June 2017.  
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List of Publications  

Martinez-Garcia, M., Schubert, V., Osman, K., Darbyshire, A., Sanchez-Moran, E., 

Franklin, F.C.H., 2018. TOPII and chromosome movement help remove interlocks 

between entangled chromosomes during meiosis. Journal of Cell Biology 217, 

4070–4079.  

I provided RT-PCR data and conducted some cytology to analyse the prevalence of 

bridging in these mutants.  

 

Chambon, A., West, A., Vezon, D., Horlow, C., Muyt, A.D., Chelysheva, L., Ronceret, 

A., Darbyshire, A., Osman, K., Heckmann, S., Franklin, F.C.H., Grelon, M., 2018. 

Identification of ASYNAPTIC4, a Component of the Meiotic Chromosome Axis. Plant 

Physiology 178, 233–246.  

I independently analysed the asy4-1 and asy4-2 lines, and analysed the ASY4eYFP 

lines. This paper is presented at the end of this thesis.  

 

In Preparation:  

Darbyshire A., Osman K., Price S., Franklin F.C.H., Sanchez-Moran E. Working title: 

Analysis of a null-allele of ASY4 generated by CRISPR-Cas9.   

 

Aloufi S., Darbyshire A., Sanchez-Moran E. Working title: Manipulating the meiotic 

pathway with CRISPR/Cas9.  

 

List of Teaching Experience  

2015-2019 

Laboratory Demonstrator to second year undergraduates: Molecular Biology and its 

Applications: Cloning the XylE gene.  

Roles included demonstrating protocols and marking submissions.  

 

2018 

Laboratory Demonstrator to second year undergraduates: Genetics II: Genetic 

Mapping.  
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Demonstrating protocols. 

List of Outreach Actions 

2019, 2017 & 2015 

‘Meet the Scientist’ 

Think Tank, Millennium Point, Birmingham, UK.  

 2015: Event organised with the Brownies highlighting some of the important 
contributions of women in STEM.  

 2017: Co-ordinated two events with fellow lab members, focused on introducing 
children to meiosis, food security, and genetically modified foods.  

 2019: Assisted in demonstrations to the public on the topic of DNA in plants, as 
part of a wider event organised by COMREC on meiosis in food security.  

 

2017 

‘The Joy of Plant Sex: Meiosis and Food Security’ 

University of the Third Age, Birmingham Science Branch, UK.  

Organised a talk at the U3A local meeting to discuss how our research at Birmingham 

hopes to alleviate present and future food security issues. Made meiosis-themed 

biscuits. 

 

A-Level Science Resources: ‘Laboratory Confessions’.  

University of Birmingham, UK.  

Approached by the University to conduct a series of podcasts as a resource for A-

Level students and teachers to better understand various topics in biology from a 

researcher’s perspective.  

 

2016 

‘Meiosis and Food Security’ 

University of Birmingham School, Birmingham, UK.  

Presented my thesis research topic to A-Level students, highlighting the importance 

of research in plants.  

 

2015 
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‘Improving the Sex Lives of Plants… and saving the world!’ 

Biosciences PhD Forum (https://biosciencephdforum.wordpress.com)  

Invited to write a blog post on my research topic, explaining the importance of 

understanding meiosis to improving plant breeding.  

 

Awards 

2019 

Postgraduate Certificate in Advanced Research Methods & Skills (PGCARMs) 

For my extra-PhD activities, I qualified for the PGCARMs certificate, which has taken 
into account my outreach and teaching work, along with other academic activities such 
as successfully completing a computer programming, statistics, and maths course.  
 
2017 
 
Pass Certificate for completing Module 1 of SysMIC: Quantitative Skills for Bioscience. 
 
Included programming in MATLAB and R.  
  

https://biosciencephdforum.wordpress.com/
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