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1. Introduction

It is well known that sp2-bonded carbon nanoparticles (CNP), in
particular graphene (GP) flakes and carbon nanotubes (CNT),
exhibit excellent mechanical properties,[1–3] high specific surface
area,[4,5] good thermal properties,[6,7] and high electrical

conductivity.[8,9] These outstanding proper-
ties make graphene a suitable candidate to
act as catalyst support for metals and non-
metals in electrocatalytic applications such
as use in fuel cells and batteries.[10–13] Since
the discovery of graphene, there has been a
significant amount of research on using
platinum-decorated graphene sheets as
new catalysts in low-temperature fuel cells
because of their high stability and electro-
catalytic ability and more importantly their
high catalyst-loading capabilities.[14–20]

Stability of metal nanoclusters on
carbon-based catalysts is one major issue
in catalytic applications. Due to the sp2 car-
bon bonds, pristine graphene is relatively
inert. Metal nanoparticles adsorbed onto
graphene are found to be fairly mobile on

the surface, indicating weak bonding.[21–24] Using dispersion-
corrected density functional theory (DFT) methods, Schneider
et al.[22] showed that for nanoclusters larger than about 1 nm,
the interaction between platinum and graphene is purely of
van der Waals type. As the weak bonding affects the mechanical
stability of the catalyst, methods have been sought to cause stron-
ger attachment of the Pt clusters to the graphene sheets. Such
methods include heat treatment,[25] defect engineering,[22,26,27]

as well as chemical surface modification of graphene.[28–30]

An alternative approach toward enhancing the attachment
between Pt nanoparticles and graphene support is to create sand-
wich structures in which Pt nanoparticles are anchored between
the two adjacent graphene sheets. Such structures were found to
exhibit higher activity for methanol electro-oxidation and a higher
stability than that of Pt–graphene.[19] Somewhat paradoxically,
although mutually adhering graphene sheets have been argued
to hold Pt nanoparticles in place, it has also been argued
that discrete metal nanoclusters on graphene sheets can act as
geometrical nanospacers to reduce or prevent graphene agglom-
eration.[31–34] For instance, it has been demonstrated that decora-
tion of exfoliated graphene sheets with Pt nanoclusters can prevent
face-to-face aggregation of the sheets.[35] These apparently contra-
dictory applications—Pt nanoclusters reduce graphene–graphene
adhesion and prevent graphene agglomeration, mutually adhering
graphene sheets hold Pt nanoclusters in place—indicate a need
for a systematic investigation. The aim is to establish, for Pt nano-
clusters of different sizes and densities embedded between gra-
phene sheets, the mechanical stability and energetic properties
of the resulting multilayer structures to decide whether they are
promising for use in catalytic applications.
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Multiscale simulation study results of multilayer structures consisting of gra-
phene sheets with embedded Pt nanoparticles is reported. Density functional
theory is used to understand the energetics of Pt–graphene interfaces and
provide reference data for the parameterization of a Pt–graphene interaction
potential. Molecular dynamics simulations then provide the conformation and
energetics of graphene sheets with embedded Pt nanoparticles of varying density,
form, and size. These results are interpreted using a continuum mechanical
model of sheet deformation, and serve to parameterize a meso-scale Monte Carlo
model to investigate the question under which conditions the free volume around
the Pt nanoparticles forms a percolating cluster, such that the structures can be
used in catalytic applications. This article is concluded with a discussion of
potential applications of such multilayer structures.
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In the present work, we report results of a multiscale
simulation study of bilayers of graphene with embedded Pt nano-
particles. We first performDFT calculations to establish the ener-
getics of Pt–graphene interfaces and to obtain reference data for
parameterizing interaction potentials for the van der Waals—
such as Pt–graphene interactions. We then use these potentials
in a molecular mechanics (MM) and molecular dynamics (MD)
study to establish sheet conformations of graphene bilayers with
embedded Pt clusters of varying size. These simulations are ana-
lyzed using a continuum model to establish analytical relations
between the density and the size of embedded Pt nanoparticles
and the effective adhesion properties of the bilayers. This analy-
sis is complemented by aMonte Carlo model to investigate under
which conditions the free volume surrounding the nanoparticles
in such structures forms a percolating cluster as required for
their catalytic use.

2. Atomic-Scale Simulations

On the atomic scale, we first perform DFT calculations of planar
graphene–Pt interfaces to gain data for parameterizing empirical
potentials that are then used, in larger-scale MD simulations, to
describe the van der Waals-like interaction between graphene
sheets and Pt nanoparticles.

2.1. DFT Calculations: Methods and Results

To calculate the Pt–graphene interaction using DFT, we consider
five-layer Pt(111) slabs adhering to monolayer graphene. Both Pt
slabs and graphene sheet are oriented parallel to the xy plane of a
Cartesian coordinate system. Periodic boundary conditions are
used in all three spatial directions with a 10 Å vacuum gap
between the periodic replicas in the z direction. Two variants
of this structure (graphene on Pt (111) surface) are constructed
as shown in Figure 1; for model a, a larger supercell consisting
of p (7� 7) graphene and p (6� 6) Pt slabs were used in the
calculations to mimic an incoherent interface. The structure
for model b consists of p (2� 2) graphene and three atoms
per Pt layer and represents a coherent interface as considered

in previous studies.[21,36] For both models, the Pt lattice param-
eters were set to experimental values for bulk Pt.

All the calculations were done by the Quantum Espresso
package version 6.1,[37] using Perdew, Burke, and Ernzerhof-
based projected augmented wave (PAW) potentials.[38]

Previous studies have shown that the optB88-vdw[39] exchange-
correlation functional gives a reasonably accurate prediction of
both interlayer distance and binding energy for graphite,[40] so
here we choose the optB88-vdw functional in all our DFT calcu-
lations. In our calculations, the kinetic energy cutoffs of 40 and
450 Ry were used for wave function and charge density calcula-
tions respectively, and a Methfessel–Paxton smearing of 0.01 Ry
was used for the electronic convergence. The convergence for
self-consistency calculations was less than 0.0001 Ry. In the
calculations of model a, only the gamma k-point was used due
to the large system we chose, whereas an 8� 8� 1 k-points grid
was used in the calculations of model b.

Since our aim is to obtain data for parameterizing an interac-
tion potential rather than performing an accurate analysis of
the interface structure and energy using DFT, we do not carry
out any structural relaxation. Instead, we simply separate the
graphene sheet rigidly from the Pt(111) slab without geometry
relaxation of either the Pt slab or the graphene. We evaluate
the binding energy per carbon atom as

Eb ¼ ½Etot � ðEpt þ EgrÞ�=n (1)

Etot is the total energy of the graphene–Pt(111) system, Ept
represents the energy of the five-layer Pt(111) slab, and Egr rep-
resents the energy of the free-standing graphene sheet. Results
are shown in Figure 1 for both models.

To obtain an estimate of the stress needed to shear the
graphene–Pt(111) interface, we also evaluate the “interface energy
surface” for model b, which is obtained by sliding the graphene
sheet rigidly on the Pt surface. Results are shown in Figure 2 in
conjunction with energy profiles taken along three typical paths. It
can be seen that the interface energy variations are quite small.
Accordingly, the interface shear stresses (IFSS)—derivatives of
the energy profiles—required to slide the graphene over the Pt
surface are comparatively low, of the order of 20MPa or less.

(e)(a) (c)

(d)(b)

2.46 Å

z

x

Pt, first layer Pt, second layer Pt, third layerC atoms

y

x

Figure 1. (a,b) Top views and (c,d) side views of the geometry for model a and model b, respectively. e) Pt–graphene binding energy for both models
obtained by DFT calculations.
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The same is expected to hold for the typical shear stresses required
to slide a Pt cluster on a graphene sheet.

2.2. Molecular Simulation: Validation of Interaction Potentials

We use the LAMMPS simulation package[41] to perform MM and
MD simulations of binary systems consisting of platinum nano-
particles which are anchored between two layers of graphene
sheets. For describing such a system, we need to define Pt–Pt,
Pt–C, and C–C interaction potentials, where the latter have to
account for both short and long-range interactions between carbon
atoms within the graphene sheets and between both sheets.

In a first step, we examine different sets of interaction potentials
to establish which set of potentials ismost appropriate for the prob-
lem at hand. The first potential we examined is the reactive force
field (ReaxFF) which has been developed by Sanz-Navarro
et al.[42,43] ReaxFF is based on a bond-order model in conjunction
with a charge-equilibration scheme.[44] This potential is in princi-
ple able to describe all the aforementioned interactions in the Pt–C
system; however, it is optimized to correctly represent reactive pro-
cesses rather than mechanical properties. The second potential we
considered is a Brenner force field (BrennerFF) parametrized by
Albe et al.[45] to describe short-range interatomic interactions in the
Pt–C systems, with a Lennard–Jones (LJ) potential added to mimic
the weak van der Waals interaction between the carbon atoms of
the two graphene sheets.[46] A further possibility is to combine
potentials of different type that are separately optimized to describe
the energetics and mechanical properties of covalently bonded
carbon, and of platinum. A similar approach was used by[47,48]

for simulating Ni–graphene interactions: These authors use a stan-
dard adaptive intermolecular reactive bond order (AIREBO) poten-
tial[46,49] for describing covalent C–C interactions in conjunction
with an embedded-atommethod (EAM) potential for Ni, and either
a LJ potential[47] or a Morse potential[48] for Ni–carbon interactions
at the Ni–graphene interface. We emphasize that such addition of
structurally dissimilar potentials is, in general, problematic.
However, in the present context, the approach may be feasible
because the components of the system (metal, graphene) maintain
their structural integrity, and the van der Waals type interaction
between these components can be considered as additive to their
internal (metallic, covalent) interactions. Accordingly, we consider
a hybrid combination comprising the standard AIREBO poten-
tial[46,49] for covalent C–C interactions and the EAM potential
of Zhou et al.[50] for Pt–Pt interactions. Pt–C interactions at the
interface are described using either a LJ potential taken from
the literature;[51] this combination is denoted as HybridFF–LJ.
Alternatively, we consider a Morse potential of the form
EM ¼ Dðexp½�2αðr � r0Þ� � 2 exp½�αðr � r0Þ�Þ where r is the
Pt–C distance, r0 an equilibrium bond distance, D is the well
depth, and α controls the stiffness of the potential (the smaller
α is, the smaller the attractive/repulsive forces). The combination
of AIREBO (C–C) and EAM (Pt–Pt) with this Morse potential,
whose parameters we determine by matching with our own
DFT calculations, is denoted as HybridFF–M.

The performances of the different potentials or combinations
of potentials are compared in view of two main criteria. First, we
ask how well the potentials reproduce theoretical predictions for
the mechanical properties of the system components. Second, we
study how well they describe the adhesion between Pt and gra-
phene. Regarding mechanical properties, the data in Table 1
show that all potentials correctly represent the lattice constant
and cohesive energy of Pt; however, the ReaxFF produces isotro-
pic elastic behavior for Pt, completely disregarding the significant
cubic anisotropy of the material. The other potentials yield
acceptable results regarding the elastic properties of Pt. Lattice
properties of monolayer graphene as well as the interlayer dis-
tance d0 and interlayer adhesion energy γGG of bilayer graphene
are reported in Table 2.

Concerning the binding between Pt and graphene, we use our
DFT results for the interaction between Pt(111) and graphene as
a reference. We consider the same configuration as in the DFT

P1

P1

P2

Eb (mJ/m²)

P2

Figure 2. Top: Interface energy surface obtained by sliding graphene
rigidly on top of a Pt slab, using model b and keeping the distance at
the position of lowest energy; bottom: Interface energy profiles and
IFSS profiles taken along the displacement paths P1 and P2.
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simulations; i.e., we separate the graphene sheet rigidly from the
Pt(111) surface, which allows us to directly compare the MD and
DFT energies. First, we observe that the BrennerFF completely
fails to reproduce the interfacial bonding between graphene and
Pt(111)—the interaction reduces to a short-range repulsion and
the binding energy is thus zero—which renders this potential
unsuitable. The ReaxFF significantly overestimates the bonding
between Pt and graphene while it underestimates the interfacial
separation. Therefore, also in view of its poor performance in
modeling the elastic properties of Pt, this potential is also ruled
out, which leaves us with the two hybrid combinations of poten-
tials (HybridFF–LJ and HybridFF–M).

The two hybrid potentials offer the advantage that the param-
eters of the LJ or Morse potential, which describes Pt�C

interactions at the interface between graphene sheets and Pt, can
be fitted to correctly reproduce the interface separation and
binding energy. At variance with previous studies,[51] we find that
the LJ potential has clear deficiencies as it is too stiff and thus sig-
nificantly overestimates the forces acting across the Pt–graphene
interface (see Figure 3). The Morse potential is the only one that
can be fitted very well to the DFT data because the well depth, well
width, and equilibrium distance parameters can be optimized to
reproduce the quantum mechanical interaction energy curve from
the DFT calculations. The resulting parameters for the Pt–CMorse
potential are D¼ 0.0071 eV, r0¼ 4.18 Å, and α¼ 1.05 Å�1.

We therefore use in the following the HybridFF–M combina-
tion of potentials: The AIREBO potential[46,49] for C–C interac-
tions, the EAM potential of Zhou et al.[50] for Pt�Pt, and the
DFT parameterized Morse potential for C�Pt interactions.

In nanoscale clusters, the configuration of Pt atoms differs
from the planar slab used in our reference DFT calculation
because many atoms have reduced coordination number and/or
local environments of reduced symmetry. To verify that the
HybridFF–M combination of potentials correctly describes
the adhesion of small Pt clusters to graphene, we consider the
extreme case of a very small Pt13 nanocluster adhering to a pris-
tine graphene sheet. DFT calculations for this system were
performed by Fampiou and Ramasubramanian[26] who report
an adhesion energy of �0.84 eV for a minimum energy configu-
ration of nonicosahedral symmetry. Repeating the calculation
with the same structure file but using the HybridFF–M potential
for energy evaluation gives an adhesion energy of �0.94 eV,
i.e., the deviation from the DFT result is only 11%. (We note that
calculations using HybridFF–LJ, Tersoff, and ReaxFF yield dis-
crepancies of over 300% of the DFT adhesion energy.) This gives
us confidence that the HybridFF–M combination used in the
following MM and MD simulations adequately captures the
adhesion of larger Pt clusters on graphene.

Table 1. Lattice properties of platinum.

EAM ReaxFF BrennerFF Experiment[52,53]

α0 [Å] 3.92 3.94 3.92 3.91

E0 [eV] �5.77 �5.72 �5.77 �5.77

C11 [GPa] 357.11 332.02 351.91 373.42

C12 [GPa] 260.13 194.63 248.45 241.74

C44 [GPa] 77.97 194.63 89.94 77.65

Table 2. Lattice properties of graphene.

ReaxFF BrennerFF AIREBO DFT[54]

α0 [Å] 2.46 2.46 2.46 2.45

E0 [eV] �7.46 �7.35 �7.39 �7.46

d0 [Å] 3.29 – 3.41 3.35

γGG [J m�2] �0.42 – �0.29 �0.25 to �0.36

Figure 3. Binding force and energy for interface model a (left) and model b (right); comparison of DFT data with MD results for different interaction
potentials.
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2.3. MM and MD Simulations of Pt–Graphene Structures:
Set-Up and Results

For simulating the energy and geometrical properties of graphene-
encapsulated Pt nanoparticles, we consider two types of particles:
On the one hand, we use Pt particles constructed with cylindrical
geometry (radius Rp, particle height 2h) to produce a prescribed
aspect ratio of qp¼ h/Rp. On the other hand, we consider annealed
particles where an initially cylindrical particle is, before encapsu-
lation, heated above the melting point of Pt and slowly cooled
down to near 0 K using a Nosé–Hoover thermostat to minimize
the particle energy. Such annealed particles generally exhibit a
spheroidal particle shape. To encapsulate the particles, we start
from two graphene sheets distanced significantly beyond the
cut-off radius to avoid van der Waals interaction between the
layers. One platinum particle is positioned on the lower graphene
sheet within the cut-off radius of the Pt–C interaction (Figure 4:
step 1). To prevent edge effects, periodic boundary conditions are
used in all directions. To form a system where the platinum parti-
cle is acting as a spacer between the two graphene sheets, the
upper graphene sheet is rigidly moved right above the platinum
particle (Figure 4: step 2). Then, the outer areas of the two sheets
are brought into contact with each other with 3.4 Å distance
between them. A minimization step brings the system into
mechanical equilibrium, where the platinum particle functions

as a mechanical obstacle that prevents the two graphene sheets
from adhering to each other over a “detachment area” surround-
ing the particle (Figure 4: step 3). In all simulations, we determine
the total energy of the relaxed structure as well as the elastic energy
of the graphene sheet and the energies of graphene–graphene,
Pt�Pt, and graphene�Pt interaction. In addition, we determine
the detachment area Ad as the area over which the spacing
between the graphene layers exceeds the value for pure bilayer gra-
phene by more than 1 Å, and for single encapsulated particles, we
define the detachment radius via Ad ¼ ∶πR2

d.
MM simulations of single embedded Pt nanoparticles of vary-

ing radius but constant aspect ratio indicate that the detachment
radius surrounding a particle is proportional to the particle
radius, i.e., Rd¼ 4.2Rp (Figure 5b). The energy of the graphene
bilayer is raised by embedding a Pt nanoparticle. This energy
increase (GG excess energy) is due to the energy of adhesion
which must be provided to detach the two graphene sheets over
the detachment area (detachment energy: Ed), diminished by the
adhesion between the two graphene sheets and the nanoparticle
(attachment energy: Ea), and due to the elastic distortion of
the sheets (elastic energy: Eel). All three energy contributions,
which we evaluate from the MM/MD simulations, are found to
increase in mutual proportion as the Pt particle radius increases.
A simplified continuum model formulated in Section 3 allows to
understand this behavior.

Figure 4. Modeling the conformation of graphene bilayer around an annealed Pt particle using MM simulation.
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Figure 5. a) Detachment area, energy of GG detachment, energy of PtG attachment, and graphene elastic energy as functions of Pt nanoparticle radius;
data points: numerical values obtained from our MM simulations; solid red line: Ed after Equation (6) with qd¼ 4.0, solid black line: Eel after Equation (7)
with qd¼ 4.0; solid blue line: Ea after Equation (8) with qc¼ 0.87; b) Detachment radius as function of particle radius, solid line: Rd¼ qdRp with qd¼ 4.0;
c) Elastic energy as a function of detachment energy, solid line: Equation (7) with qd¼ 4.0.
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To establish the dependence of the GG excess energy on the
distance between Pt particles, we perform calculations on nano-
particle pairs as shown in Figure 6. To control the interparticle
separation distance d, in these MM simulations, we keep the
coordinates of the Pt atoms fixed during the final relaxation step.
If the detachment areas surrounding two Pt nanoparticles over-
lap, this leads to a reduction in GG excess energy as the overall
detachment area is reduced and also the elastic deformation of
the graphene sheet decreases. The energy reduction becomes
more pronounced as the distance between the two particles
decreases, which leads to an attractive configurational force act-
ing on the particles. Curves showing the GG excess energy of
two-nanoparticle systems (E2p) with different nanoparticle size
versus the nanoparticle separation d are shown in Figure 7.
A data collapse can be obtained when the GG excess energy is
scaled by its value for a single particle (E1p), and the interparticle
separation is measured in units of the detachment radius Rd of
the graphene sheet around that particle. The energy versus dis-
tance curve can be well approximated by a linear dependency,
E2p ¼ E1pð1þ d=dcÞ where d � 2.4Rd is the critical distance

where the particles first interact with each other. Above that
distance, we are dealing with two separate single particles
(see Figure 7 inset).

3. Continuum Mechanical Model

In the following, we use the results of our MM/MD simulations to
parameterize a simplified continuum mechanical model which
transfers the atomic interactions into continuum-level concepts
such as elastic energy, work of adhesion, and interfacial shear
stress acting between continuous bodies. Such a model is neces-
sarily inadequate for very small Pt clusters (an extreme case being
Pt13) where atomic structure is crucial. However, we expect the
continuum model to become more accurate as we move to larger
and larger Pt nanoparticles. In fact, the scaling relations between
energies and geometrical parameters we expect from the contin-
uum model extend down to clusters with a diameter as low as
1 nm. This is shown in Figure 5 by the comparison of the discrete
data points (simulation data) and straight lines (continuum
mechanical scaling relations). A continuummechanical treatment
is useful for several reasons: 1) through simplified calculations, it
provides analytical estimates of energies and interactions in the
system at hand; 2) by their nature, continuummechanical models
are scalable and can be applied to larger nanoparticles without
adding additional computational cost; 3) numerical implementa-
tion of such models (not studied here) can be easily generalized to
more complex multilayer architectures.

3.1. Model of a Single Embedded Particle

To obtain semi-analytical relations between the size of the Pt
nanoparticles encapsulated between the graphene sheets, the
detachment between the two sheets, and the energy of the sys-
tem, we use a simplified continuummodel as shown in Figure 8,
top. The particle is idealized as a cylindrical body with a radius of
Rp and a height of 2h, with its axis perpendicular to the adhering
graphene sheets. Accordingly, a cylindrical coordinate system is
used with its origin in the particle center. The z-axis runs along
the particle axis, and the radial coordinate r and angular coordi-
nate θ denote the position parallel to the the plane z¼ 0, which
corresponds to the plane of adhesion between the two graphene
sheets. The deformation of the graphene sheets is described by

d

w 2Rd

h-  h+
Position in z 

y

x

z

x

Figure 6. MM simulation of a two-nanoparticle system; the coordinates of
the Pt atoms were kept fixed during relaxation of the graphene sheets.

Figure 7. GG excess energy of two-nanoparticle systems as function of
nanoparticle separation distance; red symbols: Rp¼ 2 nm, blue symbols:
Rp¼ 1 nm; inset: normalized excess energy, measured in units of the GG
excess energy around a single particle versus interparticle distance in units
of the single-particle detachment radius.

hb

Rd Rp

2h
2hb uz

*

r

Figure 8. Schematic of the continuum mechanical model (top) and
reference MD model (indentation model) (bottom).
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the displacements ur, uθ, uz. Pt–graphene binding length (h*b )
and graphene–graphene interlayer distance (2hb) are assumed
to be equal. A matching atomistic model is provided by a gra-
phene sheet indented by a cylindrical indenter of radius Rp.
In this model, all atoms within Rp from the center of the bilayer
sheet are displaced rigidly in the respective up and downward
direction by a distance h while the rest of the sheet is allowed
to relax (Figure 8, bottom).

The graphene sheets are modeled as 2D elastic membranes
with a bending stiffness that is negligible compared with their
in-plane stiffness. The latter is characterized by the planar elastic
modulus E2D and Poisson number v. The radius of the detached
area surrounding the particles is denoted as Rd> Rp. Because of
the mirror symmetry of the problem with respect to the plane
z¼ 0, it is sufficient to consider a single membrane deformed
by the half particle; hence, the problem is similar to the problem
of indentation of a 3D membrane of finite thickness as described
by Begley and Mackin,[55] whose treatment we adapt to a 2D
membrane sheet. We thus consider a membrane that is dis-
placed, along the radius r¼ Rp, by uz¼ h, whereas for r≥ Rd,
the displacement is fixed at uz¼ 0. A solution of the elastic prob-
lem with these boundary conditions is sought for Rp≤ r≤ Rd.
The approximate solution of this elastic boundary value problem
is discussed in Supporting Information. Here, we only summa-
rize the main results:

The displacement profile of the membrane is approximately
given by

uzðrÞ ¼ h
qad � ðr=RpÞa

qad � 1
, qd ¼

Rd

Rp
, a � 2=3 (2)

The elastic energy of the system is given by

Eel ¼ πR2
p
2E2D

27

q4p�
q2=3d � 1

�3 (3)

The parameter qp is the aspect ratio of the sandwiched parti-
cle. To determine the parameter qd and hence the radius of the
detached area surrounding the particle, we use a virtual work
argument. The virtual work incurred upon expanding the
detached area consists of the work released by the change in
elastic energy and the work of adhesion that must be expended
to detach the adhering graphene sheets. This detachment
energy is simply given by dEd ¼ 2πðγGG=2ÞRddRd, where γGG

is the adhesion energy per unit area of the graphene bilayer,
and γGG/2 the adhesion energy per sheet. We thus set
dW ¼ dEel þ dEd ¼ 0, which leads to the equation

dEel

dRd
þ πγGGRd ¼ 0 (4)

From this virtual work balance, we derive an implicit relation
connecting qp and qd

qp

q1=3d

�
q2=3d � 1

� ¼
�
27γGG
4E2D

�
1=4

¼ 0.283 (5)

where we used the adhesion energy γGG¼ 0.288 J m�2 for bilayer
graphene and a planar elastic modulus of E2D¼ 300 Nm�1.

Taking the detachment ratio for a given particle aspect ratio from
this relation, we can write the detachment energy as a function of
particle radius

Ed ¼ πR2
dγGG ¼ πγGGq2dR

2
p (6)

From this relation and the detachment energies calculated by
MM simulation in Figure 5, we find qd� 4.0 (red datapoints and
red line in Figure 5a). This is consistent with direct determina-
tion of the detachment area as a function of nanoparticle radius,
which gives qd� 4.2 (Figure 5b). By using Equation (5), elastic
energy of one graphene sheet can be obtained as

Eel ¼ πR2
d
γGG
2

�
1� q�2=3

d

� ¼ πR2
pγGG

q2d
2

�
1� q�2=3

d

�
(7)

which, with qd¼ 4.0, gives us the black lines in Figure 5a,c.
Finally, geometrical similarity requires that, also in case of non-
cylindrical particles, the effective area of contact between the gra-
phene sheet and the Pt nanoparticle is proportional to the square
of the particle radius. This gives us for the Pt–graphene adhesion
energy

Ea ¼ πR2
pγPGq2c (8)

By matching this with MM simulation data, we find the geo-
metrical factor of qc¼ 0.87 for annealed particles (blue data
points and blue line in Figure 5a). Where γPG¼ 0.476 Jm�2 rep-
resents Pt–graphene adhesion energy per unit area. For cylindri-
cal particles, qc¼ 1.

The elastic energy and the detachment radius are shown in
Figure 9 as functions of the nanoparticle aspect ratio. By compar-
ing the continuum results with the results of our simulations of
annealed particles, we can show that, for those particles, the elas-
tic energy amounts to about 0.62Ed, hence qd� 4 according to the
mechanical model. This is in good agreement with the observed
proportionality Rd� 4.0Rp found in the MM simulations in
Figure 5c and Figure 9. These values correspond to an effective
aspect ratio of qp� 0.67.

3.2. Two-Particle Interaction and Mechanical Stability of a
Two-Particle System

As noted in the MD section, if two particles get close and the
respective detachment radii overlap, they experience an attractive
mutual interaction. A semi-quantitative model can be formulated
by approximating the conformation of the graphene sheets
around a pair of interacting particles as two detached semicircles
of radius Rd connected by a detached ribbon of constant width
w� 2Rd and area 2Rdd (see Figure 6). The ribbon forms as soon
as the particles approach below a critical distance dc, and the
interaction energy then changes linearly with distance d.

As the elastic distortion of the graphene sheet over the two
detached semicircles is very similar to that around a single particle,
we approximate the detachment energy in these regions by that of
a single particle. In contrast, across the detached ribbon, the elastic
energy is significantly reduced, and we therefore approximate
the energy per unit area of the ribbon by γGG. The total GG excess
energy of the interacting two-particle system is then
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E2pðd,RdÞ ¼ 1.6πγGGR2
d þ 2γGGdRd (9)

The detached ribbon forms as soon as this energy falls
below the GG excess energy of two noninteracting particles,
2E1p ¼ 2� 1.6πγGGR2

d. Based on this argument, the critical sep-
aration follows via 1.6πRd ¼ 2dc as dc � 2.5Rd, which is in good
agreement with the MD data shown in Figure 7. The GG excess
energy can then be written as

E2pðdÞ � 2γGGR2
d
dc þ d
Rd

(10)

from which the interaction force of the two particles follows as

F2p ¼ ∂E2pðdÞ
∂d

� 2γGGRd (11)

or, expressed in terms of Rp � Rd=4

F2p ¼ ∂E2pðdÞ
∂d

� 8γGGRp (12)

The interaction force is, hence, approximately proportional
to the Pt nanoparticle radius. Two nanoparticles are stable if
this force is unable to overcome the shear resistance at the
Pt–graphene interface. The shear force required to slide a Pt
nanoparticle inside the graphene bilayer can be estimated as
Fc � 2πR2

pτc where τc is the critical shear stress for interface slid-
ing. Equating this to the interparticle force, we find a critical
radius below which the particles will slide toward each other

Rp,c ¼
4γGG
πτc

(13)

With a typical critical shear stress of τc ¼ 15MPa (Figure 3),
we find a critical nanoparticle radius Rp � 24 nm. Particles below
this radius, if closer than dc � 10Rp, are likely to spontaneously
aggregate.

4. Monte Carlo Simulation

In the following, we study the properties of assemblies of
statistically distributed nanoparticles, assuming the nanopar-
ticles are above the critical radius for nanoparticle aggregation
and thus on stable locations within the graphene bilayer.
Assuming the particles are deposited at random locations with
the sole constraint that two particles cannot overlap, we can
then use static Monte Carlo simulation to generate particle
assemblies and investigate their geometrical properties. We
use this approach to address two questions: 1) what is the min-
imum concentration of particles that can generate a connected
pore space as required for catalytic applications, 2) what is the
concentration of particles that yields the smallest overall adhe-
sion of the graphene bilayer?

In the following, nanoparticles are modeled as disks of
radius Rp in a 2D continuum, subject to a hardcore repulsion
pair potential. Their configurations are obtained using the parti-
cle Monte Carlo method, using the rejection-free Geometric
Cluster Algorithm to accelerate simulations.[56] The surface area
occupied by a nanoparticle is quantified by counting the number
of carbon atoms it covers on the underlying graphene sheet.
The same procedure is used to measure detachment areas.
For simplicity, we assume that the detachment area around a
nanoparticle has circular shape with radius Rd¼ qdRp, which pro-
vides a lower bound to the actual detachment area in a given
multi-particle configuration. Upon increasing the number of
nanoparticles, detachment areas form connected components.
Component sizes are evaluated using a standard breadth-first
search algorithm on the lattice.[57]

We first analyze the question at which nanoparticle density a
connected pore space emerges. This is a standard percolation
problem. The critical particle density (the percolation threshold)
is most conveniently identified by investigating the size s1 of
the largest cluster in the system and, more prominently, the
size s2 of the second largest cluster, which is expected to be
the largest at the percolation point Figure 10. Figure 10b shows
that, almost independent from the aspect ratio, percolation
occurs when the particle concentration n, measured in units
of 1=R2

d, where Rd is the detachment radius around a single par-
ticle, reaches a value of n � 0.5R�2

d . The area of the largest

Figure 9. Left: detachment radius and elastic energy of the detached sheet as functions of the particle aspect ratio; right: detachment radius as a function
of particle radius; solid symbols: MD simulation data, solid line: continuum prediction for cylindrical particle of aspect ratio qp¼ 1.
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connected cluster then continues to increase with increasing
particle concentration as remaining areas of direct contact
between the two graphene sheets become detached, see
Figure 10a. The detached area reaches a maximum at a concen-
tration that increases with increasing ratio of detachment radius
to particle radius, but is of the order of n � R�2

d for all radii.
Beyond this maximum, the graphene sheets are completely
detached from each other and adding more Pt particles now
reduces the available pore space.

Looking at the energy of adhesion required to remove one of
the graphene sheets from Pt on one side and separate apart the
mutually adhering GG (going backward from step 3 to step 1 in
Figure 5), we can estimate the corresponding energy per unit
area as Ead ¼ f GGγGG þ f PGγPG � Eel, where fGG is the area frac-
tion of graphene–graphene contacts, and fPG the area fraction of
Pt–graphene contacts, whereas Eel is the energy due to elastic
distortion of the detached graphene. For the respective adhesion
energies, we use the values γGG ¼ 0.288 Jm�2 and, from our
DFT calculation, γPG ¼ 0.476 J m�2. For the energy of elastic dis-
tortion, we consider the two limits f PG � 1 and f GG � 1. In the
first case, we see mainly isolated nanoparticles. In that case, the
elastic energy of the detachment area around a nanoparticle is, as
shown in Section 2.3, about 0.62 times the detachment energy.
The detached area fraction equals ð1� f GG � f PGÞ, and the elas-
tic energy is then Eel � 0.62ð1� f GG � f PGÞγGG. In the second
case, f GG � 1, both graphene sheets are no longer in mutual
contact and the elastic energy is negligible. This gives us the fol-
lowing expressions for the net energy of adhesion between the
two sheets

Ead ¼
(
f GGγGG þ f PGγPG , f GG � 1
f GGγGG þ f PGγPG � 0.62ð1� f GG � f PGÞγGG , f PG � 1

(14)

Here, the first expression provides an upper bound and the
second expression a lower bound to the actual energy of adhe-
sion. Both bounds are shown in Figure 10c as functions of nano-
particle density. We find a minimum of the adhesion energy
which occurs close to the density where the pore space is maxi-
mum. The depth of this maximum and hence the maximum
reduction in adhesion depend on nanoparticle aspect ratio:
pancake-shaped nanoparticles of small aspect ratio provide better
adhesion. As a function of nanoparticle density, we find thus
three regimes: At low density, we find a nonconnected pore space
concomitant with strong adhesion that decreases with increasing
nanoparticle density. At high density, we find a continuous pore
space in between the nanoparticles, and adhesion increases with
nanoparticle density. At an intermediate density, there is a mini-
mum of adhesion where even spontaneous detachment might
occur, in agreement with the experimental finding that decora-
tion with Pt nanoparticles may prevent graphene sheets from
aggregating.

5. Conclusions

We performed a multiscale simulation study of graphene
bilayers containing embedded Pt nanoparticles. Such compos-
ite systems not only have potential application in catalysis but

(a) (b)

(c)

Figure 10. a) Area fraction of the largest connected pore cluster as a function of particle density, for different particle aspect ratios; b) Area fraction of
the second largest cluster, aspect ratios as in plot (a); c) Net adhesion energy (energy per unit area required to detach one graphene sheet) as a
function of particle density, aspect ratios as in plot (a), full line: upper bound given by Equation (14), top, dashed line: lower bound given by
Equation (14), bottom.
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also for the simple purpose of reducing the mutual adhesion
of graphene sheets which is important, for instance, if these
are to be dispersed as fillers in composites. DFT calculations
have provided us with data to parameterize and benchmark
potentials for describing the Pt–graphene interface, and to char-
acterize the resistance of this interface to shear displacements
of Pt on graphene or vice versa. MD calculations were then
performed to determine the energetics and interactions of Pt
nanoparticles embedded into graphene, and the results were
used to validate a mechanical model which envisages the
embedded nanoparticles as rigid cylindrical particles of variable
aspect ratio that are inserted between two adherent elastic
sheets. With an effective aspect ratio of about 0.67, excellent
agreement between the MD results and the predictions of
the mechanical model was obtained, both regarding the ener-
getics of the system and the size of the detachment zone sur-
rounding the embedded nanoparticles. The model was then
extended to describe the interaction of two nanoparticles medi-
ated by the intermediate detachment zone, and it was shown
that this interaction makes embedded nanoparticles below a
critical radius of about Rp,c � 24 nm and separation below about
10 Rp unstable with respect to spontaneous aggregation. Such
aggregation reduces the overall detached area and may push a
system with initially connected pore space below the percolation
threshold.

Regarding the geometrical and energetic properties of sys-
tems of randomly dispersed nanoparticles above the critical
radius, we find that percolation of the detachment areas occurs
above a critical nanoparticle density of approximately 1=R2

d.
Above this concentration, the area fraction of the largest
connected detachment area first continues to increase, then
decreases as the sheets forming the bilayer are completely
detached and the addition of further nanoparticles reduces
the free space between the graphene sheets. At the same time,
the energy of adhesion (the energy needed to separate the
bilayer) first decreases, then increases again. In the context
of catalytic applications, this allows to increase both the catalyt-
ically active nanoparticle surface and the stability of the struc-
ture, and trading this off against a reduction in pore space.
In the context of using Pt nanoparticles as graphene “spacers,”
we find an optimum nanoparticle density where the adhesive
energy of the structure is lowest, and thus the separation of
the graphene sheets most easy.

It remains a task for future investigation to extend the present
modeling approach from bilayer to multilayer structures. The
interaction potentials derived in the present study can serve as
a foundation for such a model. However, on larger scales,
graphene-mediated interactions between Pt particles located in
different layers of a stacked multilayer structure need to be con-
sidered. A systematic investigation of the resulting complex
multi-particle effects and the resulting optimal structures will
be a task for future work.
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