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ABSTRACT 

The Nonlinear Mixed Effect Viral Dynamic Model can easily handle unbalanced repeated 

and continuous measures data for individuals and is also popular in many other research 

areas such as biology and pharmacokinetics. Wu et al. (2004) [13] described a Nonlinear 

Mixed Effects Biphasic Model to estimate short-term population and individual viral 

decay rates in their study. Perelson et al. (1999) [43] and Ding et al. (1999) [15] reported 

that initial viral decay estimated for viral decay models would be good markers of the 

potency of antiretroviral regimens. The aim of this study was to model viral decay rates, 

and check the validity of the model for the set of data provided and investigate whether the 

relationships found with baseline covariates and long-term response are consistent with 

Wu et al.’s (2004) findings [13]. 

 

The Nonlinear Mixed Effect Single and Biphasic Viral Dynamic Models were fitted, and 

their respective initial viral decay rates were derived. In this study, analyses and reports 

are focused on the first-phase viral decay rates of the models. The study found that the 

actual treatment groups were more potent than the control group. It was found that actual 

treatment effect and the number of multi-PI mutations at baseline had impacts on the 

initial viral decay rates for both models. Besides, baseline HIV-1 RNA levels had an 

impact on the initial viral decay rates for the biphasic model. There were no significant 

differences in the initial viral decay rates for different ages, ethnicities, and gender groups. 

 

The study also shows that the initial viral decay rates were somewhat negatively correlated 

with the baseline HIV-1 RNA levels. A strong correlation between the initial viral decay 

rates and week 1 virus load reduction from baseline was observed. It was also observed 

that individuals with the higher initial viral decay rates were more likely to have 
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suppressed virus load at week 24. Also, individuals with higher week 1 virus load 

reduction, i.e. early viral dynamics, were more likely to have suppressed virus load at 

week 24. These findings suggest that the antiviral potency or the initial viral decay rates 

are predictive of long-term viral load response [13]. 
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SECTION 1:   INTRODUCTION 

1.1 Study Background  

In HIV clinical trials, one important measure of the effectiveness of an antiviral treatment 

is the extent to which it suppresses the viral load in the patient’s plasma. Once therapy has 

been initiated, achieving and maintaining an undetectable HIV viral load is an important 

treatment goal. Most current tri-therapy regimens achieve reasonably good viral 

suppression over the short-term.  An outstanding challenge is to find regimens that sustain 

viral load suppression over the long-term, which is made difficult by the mutating aspects 

of the virus [30]. 

 

The viral load will drop within a few weeks and remain low long-term when patients are 

taking an efficacious therapy and their virus is sensitive to this therapy.  The development 

of resistance from the virus to the drugs (through mutations) means that the viral load 

might eventually rebound [30]. 

 

The data is often summarized by calculating the change from baseline in viral load at each 

visit and also, by categorizing subjects as responders or non-responders at an acceptable 

long-term time-point (e.g. 48 weeks) according to a Time to Loss of Virological Response 

(TLOVR). From this, subjects will be classified as non-responders if they discontinue 

their treatment, or their viral load never falls below a certain threshold (either 400 or 50 

copies/mL), or their viral load rebounds above the threshold [30]. 

 

Wu et al. (2004) [13] described a nonlinear mixed effects biphasic model to estimate 

short-term population and individual viral decay rates. They then investigated the 
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relationship between the individual early viral decay rates and subjects’ characteristics, 

and also investigate whether the early viral decay rate could predict the subjects’ long-

term responses [30]. Perelson et al. (1999) [43] and Ding et al. (1999) reported that initial 

viral decay estimated for viral decay models would be good markers of the potency of 

antiretroviral regimens. 

 

In Wu et al.’s (2004) study [13], viral dynamics in HIV-1–infected individuals aged 12–22 

years were similar to those of HIV-1–infected adults over 22 years and infants. Also, the 

3TC/ZDV/EFV regimen may be more potent than 3TC/ZDV/NFV or other regimens. In 

addition, early viral dynamics or week 1 virus load reduction measurements may be useful 

in evaluating the potency of antiretroviral regimens. The first-phase viral decay rates were 

positively correlated with baseline RNA levels and week 1 virus load reductions [13]. 

 

1.2 Initial Issues  

Assumptions with regards to independence, constant variance and normality are crucial for 

modeling to obtain valid results. Most standard statistical techniques such as the unpaired 

t-test, linear regression and the chi-square test for association, assume that each of the 

primary observations are independent of all of the others [1-3].  

 

If repeated observations are taken within subjects [1-7], the independence assumption can 

be unsuitable because observations within an individual tend to be correlated with one 

another. If we take two observations at random from the same individual, they are likely to 

be more similar or correlated in value than two random observations from two different 

individuals which cause the correlations in the errors [1, 4, 6-9]. This means that each 
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repeated observation in an individual may provide less additional information than a new 

observation in a new individual [1] and can be affect inferences.  

 

In this case, assuming the correlation structure is crucial rather than assuming that the 

errors are independent of one another incorrectly. If the independence is not to be satisfied, 

the estimates from the result will not be reasonable. In specific, the test statistic and test of 

significance will be incorrect which can impact in a model selection process or any 

inferences.  

 

There are alternative modeling approaches or estimation procedures which offer the 

possibility of analysing non-independent error structure such as Mixed Models, 

Generalized Estimating Equations (GEEs). Also, Generalized Additive Models (GAMs) or 

many other regression methods are when it is used in a Mixed Models or GEE estimation. 

Of the aforementioned, GEEs approach is only going to work for a linear problem, (i.e. 

linear in its parameters); however, an appropriate linearizing transformation is not always 

possible.  

 

The Nonlinear mixed effect model is an alternative methodology that deals with this 

problem. Observations are assumed to be independent across all the individuals in the 

model, but it allows for the existence of within-subject covariance thanks to repeated data 

gathering on the same subject.  It is suitable for repeat measuring data. 
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1.3 Objectives 

The main objective of this research is to model viral decay rates and check the validity of 

the model for the set of data provided and investigate if the relationships found with 

baseline covariates and long-term response are consistent with Wu et al.’s (2004) findings 

[13]. This will be done as per what is outlined below: 

 

       1.  Deriving initial viral decay rates for each subject. 

       2.  Identifying baseline characteristics which are correlated with the viral decay rates.              

       3.  Examining whether the initial viral decay rates predict long-term response. 

       4.  Examining whether the relationship of the initial viral decay rates with baseline 

             covariates and long-term response are consistent with Wu et al.’s (2004) findings.               

       5.  Examining other methods that could be used for analysis. 

       6.  Discussion and suggestions. 
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SECTION 2:   LTERATURE REVIEW 

2.1 Nonlinear Models 

How do we determine whether we should fit our model to our data using linear or 

nonlinear regression? If the relationship between the response variable, y, and the 

explanatory variable, x, appears to be roughly linear then linear regression may be a fairly 

reasonable thing to do. However, even if the plotted relationship appears to be distinctly 

nonlinear, this does not necessarily mean that a linear regression model cannot be used 

[12]. 

 

Even if the plotted relationship does not appear to be linear, with a careful choice of the 

form of the model, we may wish to fit to the data if it is still possible to use ordinary linear 

least squares regression, also, it is much easier than using nonlinear least squares which 

use an iterative search method in general. If we can express the relationship between the 

response variable ,Y  the explanatory variables ix  and the parameters in the form 

 += XY  (linear in their parameters), we can fit the model to the data using a least 

ordinary squares fitting approach. Sometimes it may be necessary to perform simple 

transformations on the variables to allow the model to be expressed in a linear form [12].  

 

Nevertheless, this is not always the most appropriate solution because once we transform 

the variables, important assumptions about the errors associated with the data which are 

normally distributed may no longer hold1 and the inference on confidence and prediction 

intervals should be treated cautiously [12]. 

 

 
1 A basic assumption such as normality is crucial for obtaining valid results. 
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Then, we can use a Generalized Linear Model (GLM) as an alternative method. Models 

that are based on a particular subset of nonlinear relationships can be fitted using the GLM 

framework. The subset of models that are allowed are those that have a linearizing 

transformation. Within this GLM framework, any class of non-normal error distributions2 

can be expressed as a member of the exponential family can be specified [12].   

 

However, if the model does not possess an appropriate linearizing transformation, and also 

if we are fairly confident that the error distribution consists of normal errors with zero 

mean and constant variance, then nonlinear regression using nonlinear least squares is a 

viable alternative [12].  

 

In summary, we are interested in specifying an appropriate model for the relationship 

between the response variable and the explanatory variable. If a linear regression model 

using linear least squares cannot explain the relationships very well, i.e. if we can’t 

transform the form to be linear in its parameters, then, nonlinear regression using 

nonlinear least squares is one of the alternatives to fit the proper model which can 

explain/predict our data well.  

 

2.2 Nonlinear Mixed Effect Models 

Nonlinear mixed effects models, also referred to as hierarchical nonlinear models3, are 

considered as a popular form for analysis for the repeated and continuous measures data 

on each of the individuals when interest focuses on individual-specific characteristics [18]. 

 
2 GLM is an extension of standard linear models and we can relax the linearity, non-normality and even 

constant variance assumptions. 

 
3 This structure of the nonlinear mixed effects model makes it a natural candidate for Bayesian inference 

[18]. 
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Mixed effects models have some advantages for example, they can easily handle 

unbalanced repeated measures data that occur in many areas such as pharmacokinetics, 

economics, biology, and many others, and the flexible variance-covariance structures of 

the response vector which allows for the nonconstant correlation among observations [17]. 

It is intuitively appealing because the notion that individuals’ responses all follow a 

similar functional form with parameters that vary among individuals seems to be 

appropriate in many situations [16]. 

 

Nonlinear mixed effects models are mixed effects models in which the intrasubject model 

relating to the response variable to covariate (time typically) is nonlinear in the parameters 

[17] and may involve both fixed effects and random effects. Model building for nonlinear 

mixed effects models is considered as the process of determining the characteristics of 

both the fixed and the random effects so as to give an adequate but parsimonious model 

[19]. 

 

Several different nonlinear mixed effects models have been proposed by many scholars 

such as Sheiner and Beal (1980) [38], Mallet, Mentre, Steimer and Lokiek (1988) [39], 

author and author4 [17]. In this dissertation, a slightly modified form of the model 

proposed in Lindstrom and Bates (1990) [35] was considered. This model can be 

presented as a two-stage hierarchy model which in some ways generalizes both the linear 

mixed effects model of Laird and Ware (1982) [36] and the usual nonlinear model for 

independent data of Bates and Watts (1988) [37] [16]. In the first stage the i th observation 

on the j th individual is modelled as in the following formula: 

 
4 Lindstrom and Bates (1990) [35], Vonesh and Carter (1992) [46], Davidian and Gallant (1992) [34], 

Wakefield, Smith, Racine-Poon and Gelfand (1994) [47]. 
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                        ijijijij xfy  += ),( ,       ,,,1 Mi =          inj ,,1 =                           (1) 

 

where f is a nonlinear function governing within-individual behaviour of an individual-

specific parameter vector ij and ijy is j th response on the i th individual. ijx is the 

predictor vector, ij  is a normally distributed noise term, M is the total number of 

individuals, and in is the number of observations on the i th individual [19].  

 

In the second stage, the individual-specific parameter vector ij is modelled as: 

 

                           ,iijijij bBA +=       ib ~ ),0( 2DN                                                    (2) 

 

where ijA and ijB are design matrices for the fixed and random effects respectively and 

 is a p - dimensional vector of fixed population parameters, ib is a q - dimensional 

random effects vector associated with the i th individual (not varying with j ). D2  is a 

(general) variance-covariance matrix. Also, it is further assumed that observations made 

on different subjects are independent and that the ij are iid ),0( 2DN   and independent of 

the ib  [16, 18]. 

 

Different methods can be used to estimate the parameters in model (1). In this study, 

maximum likelihood and restricted maximum likelihood estimation was considered. 

Maximum likelihood estimation in (1) is based on the marginal density of y :  
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                         = dbbpDbypDyp )(),,,|(),,|( 22                                            (3)  

 

In general, this integral does not have a closed-form expression when the model function 

f  is nonlinear in ib , thus different approximations have been proposed for estimating it. 

Some of these methods consist of taking a first-order Taylor expansion of the model 

function f around the expected value of the random effects in Sheiner et al. [32] and 

Vonesh et al. [33]. Others have proposed the use of Gaussian quadrature rules (in 

Davidian and Gallant (1992) [34]) [17].  

 

Nonlinear mixed effects models can be operated using the NLMIXED procedure in SAS. 

In this dissertation, the NLMIXED procedure will be applied to fit the specified nonlinear 

mixed model by maximizing an approximation to the likelihood integrated over random 

effects5 .  

 

The NLMIXED procedure assumes that we have an observed data vector iy  for each of i  

subjects, Mi ,,1= . The iy  are assumed to be independent across ,i  but it allows the 

existence of within-subject covariance since iy , each of the elements, are measured on the 

same subject. As a statistical mechanism for modeling this within-subject covariance, 

assume that there exist latent random-effect vectors of small dimensions which are also 

independent across i [11]. 

 

 

 
5 PROC NLMIXED only implements maximum likelihood, whereas PROC MIXED can perform both 

maximum likelihood and restricted maximum likelihood (REML) estimation [11]. 
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PROC NLMIXED fits nonlinear mixed models by maximizing an approximation to the 

likelihood integrated over the random effects. Different integral approximations are 

available such as the principal ones being adaptive Gaussian quadrature and a first-order 

Taylor series approximation. However, a variety of alternative optimization techniques are 

also available to carry out the maximization and the default is a dual quasi-Newton 

algorithm [11].  

 

We are able to use the estimated model to construct predictions of arbitrary functions by 

using the parameter estimates and the empirical Bayes estimates6 of the random effects in 

PROC NLMIXED [24]. 

 

 

2.3 Nonlinear Mixed Effect Multi-phase Viral Dynamic Models 

Wu and Ding (1999) [14] introduced an application of hierarchical nonlinear mixed effect 

models to HIV dynamics. They illustrated various phases of HIV-1 dynamics (Figure 1).  

 

 

 
6 Estimates of the individual parameters by modes (or mean) of their posterior distributions given the data, 

i.e. estimates of the unobservable covariance parameters instead of specifying a full prior distribution [27]. 
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Figure 1:  Illustration of the different phases of plasma viral dynamics following antiviral 

drug treatment in Wu et al. (1999) [14].  In the phase of intracellular and pharmacological 

delay, the dotted line denotes non-steady-state case before treatment [14]. 

 

According to the illustration, if the data on the transition phase and rapid decay phase are 

available, the model ctt
etPPePPtV p −−

+++= )()( 3210


is suggested. If the data on the rapid 

decay phase and slow decay phase are available, the model tt
ePePPtV p  −−

++= 210)( is 

suggested. Also, if the data on the slow decay phase and leveling off phase are available, 

the suggested model is tePPtV −+= 20)( , where Parameter iP  represents the initial viral 

production rate, and parameter   is a possibly confounded clearance rate of long-lived 

and latently infected cells [21, 14]. Also, 1 =p , 5=c  and t  is time [14].  
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They also have developed a nonlinear mixed effects biphasic viral decay model to 

estimate population and individual viral decay rates [14, 26] where the antiretroviral drugs 

are not assumed to be perfect [27]. Before that, Perelson et al. [25] developed a two-phase 

plasma viral decay model which assumes that there are two major HIV-infected cell 

compartments which are productively infected cells and long-lived infected cells. 

 

According to their model, the viral dynamic model after initiation of antiviral therapy, i.e. 

including treatment effects, can be written as [15]: 

 

                      111111 )1( TkTVT
dt

d
 −−=    

                      221222 )1( TkTVT
dt

d
 −−=  

                      II cVTNTNV
dt

d
−−+−−= ])1()1)[(1( 111122220                               (4) 

                      .))1(())1(( 111100222200 NINI cVTNTNV
dt

d
−−++−+=   

 

where IV  and NIV denote the concentration of infectious virions and non-infectious virions 

respectively, and 1T  and 2T denote the concentration of two infected cell compartments, 

productively infected cells and long-lived/latently infected cells, respectively [27]. 

Parameters 1  and 2  represent the protease inhibitor drug efficacy in the two infected cell 

compartments and 1 and 2 represent the protease inhibitor drug efficacy in the two 

corresponding compartments. Thus, the overall combination treatment potency in the two 

infected cell compartments can be defined by )1)(1(1 111  −−−=e and 

)1)(1(1 222  −−−=e , respectively [27].   
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Wu and Ding (1999) [15] have also shown that the total virus observation, 

)()()( tVtVtV NII += , in this model can be approximated by: 

 

                                   tdtd
ePePtV 21

21)(
−−

+= ,   ctt  ,                                                 (5) 

 

where ct is the time that the “shoulder” disappears (usually 2 or 3 days) [15]. Parameters, 

1P  and 2P , are reparametrized parameters from the solution of (4). Figure 2 shows the 

observed data and model-fitting result using model (5) for four selected patients from the 

above application [27]. 

 

 

Figure 2:  The Population nonlinear mixed effect model of model (5) fitted individual curves 

from four patients (one from each cohort) in Wu and Ding (1999). The dots are observed viral 

loads [27]. 



 

  

20 

In addition, they showed that parameter 1d  and 2d  are the decay rates of the two phases of 

plasma virus and can be approximated by: 

 

                                      1111 )1(1 eRd −−=  

                                     2

1

2
22

1
1 







 −
−=

e

e
Rd                                                              (6) 

 

where ckTNR /)1( 1101 −= and ckTNR /)1( 2202 −=  are the baseline reproduction/ 

clearance ratios of the virus from the two infected cell compartments. Three factors, loss 

rates of infected cell ( 1 and 2 ), baseline reproduction/clearance ratios ( 1R and 2R ) and 

treatment effects ( 1e and 2e ), determine the decay rates. Hence we can use viral decay rates 

to compare the potencies of antiviral therapies if other factors ( 1R , 2R , 1 and 2 ) are 

homogeneous between treatment arms (ideally using a randomized design) [27]. 

         

Based on model (5), to estimate population and individual viral decay rates, Wu et al. 

(2004) [13] used a nonlinear mixed effect biphasic viral dynamic model as follows [13,14, 

27]:  

 

               ),()]exp()exp()exp()[exp(log)]([log 22111010 ttdPtdPtV iiiiii +−+−=                (7) 

 

where )(ti  is a HIV-1 RNA measurement error (on the 10log  scale) with mean zero, and  

)(tVi is HIV-1 RNA copies/mL plasma at treatment time t for the i th subject. The viral 

decay rates for the i th subject are ii bdd 111 +=  and ii bdd 222 += , where the fixed-effect 

parameters, i.e. 1d  and 2d , are the population decay rates for the two viral decay phases. 

ib1  and ib2  are random effect parameters assumed to be iid ),0( 2
1bN  and iid ),0( 2

2bN   
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respectively, that quantify the between-subject variation of viral decay rates. Parameters 

ii bPP 311 +=  and ii bPP 422 += are “macroparameters”, with )exp()exp( 21 ii PP + being baseline 

virus load at time 0=t  (the day of starting treatment) [13, 14, 20, 26, 27]. 

 

The fitted virus load trajectories from 6 selected subjects using the model (7) are shown in 

figure 3 in Wu et al. (2004) [13]. 

 

 

Figure 3:  HIV-1 RNA data (dots) from 6 selected individuals and corresponding fitted 

trajectories using the NLME modeling approach in Wu et al. (2004) [13]. 
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Wu et al. (2004) [13] only included HIV-1 RNA data from day 0 to week 4, i.e. with a 2-

week window, during treatment to fit the biphasic viral dynamic model. This decision was 

made for several reasons to eliminate the possibility of falling below the lower limit of 

detection, i.e. 400 copies/mL, or viral rebound may occur after 4 weeks in the data and 

also, the viral dynamic model is valid only for the early stage of treatment [13, 14, 28].  

 

They also excluded the rebounded data, an increase from the previous virus load 

measurement within 4 weeks for a patient [13]. If the HIV-1 RNA level fell below the 

limit of detection within 4 weeks, they only included the first limit of detection value to 

prevent an artificial effect. Their analysis and report focused on the first-phase viral decay 

rates; the second-phase viral decay rates for individual subjects may not be reliable 

because 60% of the total number of subjects did not have the data on the second-phase (no 

viral decay data after weeks 2) in the study [13].   

 

In another study by Wu et al. (2003) [20], to fit the biphasic viral dynamic model, the 

HIV-1 RNA data from 0 to week 8 on treatment was only included because weeks 8 was 

the time when subjects might change their treatment. They also excluded the rebounded 

data if there was a viral rebound within 8 weeks and if the HIV-1 RNA level fell below the 

limit of detection within 8 weeks; they only included the first limit of detection value.  

 

Anthony et al. [23] suggested a simple and flexible nonlinear mixed effects model for the 

trajectory of HIV-1 RNA until rebound. They were interested in the relationship between 

the lowest level of plasma HIV attained after initiation of therapy and the time until 

rebound [23]. In the study, they modelled the initial 2-week follow-up. The first-phase 

was modelled by a linear slope in the 10log HIV-1 RNA as follows: 
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                       )();( 010 tttf iii −−=  ,               0=t (2 days7) < t < 0t                    (9) 

 

where the parameter i1  is the rate of decline during this phase, and ),( 00 tf ii  = , the 

expected 10log  viral load for subject i  at time 0t  [23].  

 

After the initial phase, viral load is assumed for 0tt  to be the sum of two distinct 

components which is the one that declines in response to therapy, and the other of which 

may either decline or increase: 

 

                  )}(exp{)}(exp{(log);( 030210 ttBttAtf iiiii −−+−−=  ,       0t < t          (10) 

 

where iA  and iB are the levels of the two components of RNA at the start of the second 

phase (at 0tt = ); i2 0  and i3 are the rate of decay of first component and the rate of  

change either growth or decay of the second component respectively. The first exponential 

term in (10) implies that a component of the HIV-1 RNA continues to fall log-linearly. 

For some subjects (with i3 > 0), the second component may increase log-linearly, perhaps 

reflecting resistance; in others ( i3 < 0), it will continue to decline. This model guarantees 

a smooth transition from RNA decline to RNA increase. The two phases (9) and (10) are 

combined by imposing the constraint that the two mean equations agree for 0tt = : 

 

                                          iii BA 010 )(log =+                                                            (11) 

  

 
7 They do not include the day 0 values in the analysis and start instead with day 2 since no measurements are 

taken during the first two days. 
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For subjects with viral rebound; i3 > 0 a turning point iT  can be defined, as the time from 

baseline to reaching the minimum expected viral load. This is given by: 

 

                  )}/()}/ln()/{ln(;max{ 323200 iiiiiii BAttT  +++=                               (12) 

 

For subjects whose HIV-1 RNA continues to decline throughout the second phase; i3 < 0, 

the turning point is not defined [23]. 

 

They fit the equations (10) and (11) jointly using a nonlinear mixed effect model, where 

the subject-specific parameters are treated as random effects. For the subject ,i  the 

response is )( ijiij tyy = , inj ,1= . The values )100(log2 10=ijy  are censored. And they 

assume independent normal errors: ijijiij tfy  += ),( ,  ij  are iid ),0( 2DN   [23]. Also, to 

impose the condition i2 0 , they reparameterize iei
 =2 . The condition (11) and the 

restrictions iA , iB > 0 are modelled by taking )1/(10 0 ii eAi


+= ,  )1/(10 0 iii eeBi


+= . 

And the random effects vectors = ),,,,( 310 iiiiii  are assumed independent 

multivariate normal with unspecified covariance matrix are i are iid ),0( GN , where G  is 

an arbitrary positive-definite matrix [23].  

 

Although this model is not intended to describe the long-term behaviour of HIV-1 RNA in 

response, it seems to appropriate for an analysis that only considers progression up to the 

first reading after reaching the nadir value [23].  
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SECTION 3:   METHODS  

 

3.1 Data Available for Analysis 

3.1.1 Data Description 

The HIV dataset was provided by GLAXOSMITHKLINE (GSK) Research and 

Development for the proposed project. Dataset 1 contains the main information for the 

study such as demographic information, information related to treatment and assessment, 

and viral load results. Dataset 2 contains subjects’ characteristics at baseline and 

Intention–To–Treat8 (ITT) exposed population information, and dataset 3 contains 

classification of type of failure or success information at week 24.                       

 

After selecting variables for analysis, these datasets were combined into one. The original 

data sets given are as follows: 

  

 

 

 

 

 

 

 

 

 
8 “Intention to treat” is a strategy for the analysis of randomised controlled trials that compares patients in 

the groups to which they were originally randomly assigned. This is generally interpreted as including all 

patients, regardless of whether they actually satisfied the entry criteria, the treatment actually received, and 

subsequent withdrawal or deviation from the protocol [49]. 
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Table 1.1: List of variables and Attributes of dataset 1:  

 
Categories Variable Name Description 

Subject and Demographic information 
(PI resistant is classifying subject 
according to whether their virus is 
resistant to Protease Inhibitor (PI) which 
is the class that the study drug belongs 
to): 

SUBJID Subject ID 

AGE Age in years 

SEX Sex 

RACECD Race code 

RACE Race 

ATRTCD Actual treatment code 

atrtgrp Actual treatment group 

Visit name and code, number of days 
since treatment start date and date for 
each assessment 

AVISIT Actual visit description 

AVISNUM Actual visit sequence number 

LBACTDY Actual study day of collection 

LBDT Actual date of collection 

Whether the assessment prior to 
treatment start date or post treatment 
stop date 

ATTYPECD Time in relation to treatment - code 

ATTYPE Time in relation to treatment 

Viral Load results (with units, logs and 
change from BL and assay information) 

LBORUNIT Original unit 

LBORRES Original text result 

LBORRESN Original numeric result 

LBORCHBL Change from baseline - original unites 

LBORRLG Original numeric result - 
10log  

LBORRLGC Change from baseline - 
10log  

ASSAYV Assay version 

ASSAYVCD Assay version code 

LLOD Lower level of detection 

ULOD Upper level of detection 

KEEPLOD Retained <or> LOD valid value flag 

Viral load results in the situation where 
there are several values for the same 
visit window with the appropriate flag 

LBEVFLG Evaluable flag 

LBORRSNW Windowed original numeric result 

LBORRLGW Windowed 
10log original numeric result 

LBORLGCW Windowed change from baseline - 
10log  

 

 

Table 1.2: List of variables and Attributes of dataset 2:  

 
Attribute Variable Name Label 

Subject characteristics at 
baseline and ITT exposed 
population 

SUBJID Subject ID 

ACT20GCD Actual introduction of a dose of T20 (yes/no) code 

ACT20GRP Actual introduction of a dose of T20 (yes/no) 

BLVLGCD Baseline viral load subgroup code 

BLVLGRP Baseline viral load subgroup 

CD4CG2CD CD4+ cells/cu mm group 2 code 

CD4CGRP2 CD4+ cells/cu mm group 2 

MULPICD2 Number of multi-PI mutations code 

MULPIG2 Number of multi-PI mutations group 

REGION Region of recruitment 

PNITTE Intent-to-Treat Exposed population 

CD4__BLC Baseline CD4+ cell count 

CD4__BLQ Baseline CD4+ cell percentage 

CD8__BLC Baseline CD8+ cell count 

CD8__BLQ Baseline CD8+ cell percentage 
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Table 1.3: List of variables and Attributes of dataset 3:  

 
Attribute Variable Name Label 

Subject number and visit name and 
code 

SUBJID Subject ID 

AVISIT Actual visit description 

AVISNUM Actual visit sequence number 

Response at week 24 (has the subject 
managed to get below 400 copies/mL) 
according to 2 algorithms: “Observed” 
and “Time to Loss of Virological 
Response” 

P400_OBS <400 copies/mL 

P400_TLO <400 copies/mL, TLOVR 

Detailed classification of type of failure 
at week 24 

r400_tlc Reason for failure code 

r400_tl Reason for failure 

 

 

3.1.2 Data Processing 

Some values such as negative study days, i.e. AVISIT= “Screening”, and the repeated first 

day measurement, i.e. AVISIT= “Day 1”, and also re-test measurement on the same day, 

i.e. LBEVFLG9 = “0” and KEEPLOD10 = “0”, were eliminated for presenting summary 

statistics which means it allows us to select one observation per subject per visit. In 

addition, all the missing cases of LBEVFLG and KEEPLOD are also excluded. Also, to 

model viral decay, using ATTYPE, all the measurements where the value does not equal 

“Treatment” were excluded, e.g. drop pre-treatment measurements.  

 

Some patient’s Plasma HIV-1 RNA was repeatedly quantified beyond 24 weeks, i.e. by 32 

or 40 weeks, and the values by 24 weeks are only used for the analysis. 

 
9 This flag allows our group to select 1 observation per subject per visit for presenting summary statistics.  In 

particular, if there are 2 assessments for the same visit “window”, they will take the closest to the target date 

or if they are equidistant, the average value. When selecting observations based on this flag, i.e. LBEVFLG, 

for summary statistics, the “windowed type variables”, i.e. LBORLGCW, LBORRLGW, and LBORRSNW, 

need to be used because these variables include the correct observation or the averaged value when 

applicable. However, for the model part of this project, all assessments need to be used i.e. if several tests 

were carried out for the same visit window, so this aspect can be omitted [31].   

 
10 This flag selects a re-test (on the same day) if the first test reached the limit of detection of the assay, this 

aspect needs to be used for this project (both for summaries and the model part). (Sometimes a test reached 

the limit of detection e.g. <50 and can not be re-tested so this value needs to be kept, hence the reason why 

selection can not be done on LBORRES only). These flags only apply to viral load [31]. 
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Original viral load results, such as 10log (original numeric result), i.e. LBORRLG or 

original numeric result, i.e. LBORRESN, are considered as response variables. Also, 

variables for the baseline characteristics, such as variable number of mutations at baseline, 

i.e. MULPICD2; baseline CD4+ cell count, i.e. CD4_BLC; and introduction of T20 

(enfuvirtide, background HIV medication), i.e. ACT20GCD, were considered as 

covariates. Because they are considered as an important part of the description of the study 

population, and ones that are likely to have an impact on the effect of the drug [31]. 

 

Also, to investigate whether the early viral decay rates had an impact on long-term 

response (week 24), the binary response variable indicating viral load measurements 

below the 400 copies/mL threshold at week 24 according to TLOVR, i.e. P400_TLO, was 

used.  

 

3.2 Statistical Methodologies 

Using the NLMIXED procedure in SAS, nonlinear mixed effect models (which have both 

fixed and random effects) were fitted.  

 

Spearman’s rank tests (using the CORR procedure in SAS) performed for the correlation 

of estimated the first-phase viral decay rates11, i.e. 1d , with ‘ 10log (baseline RNA)’ and the 

correlation of 1d with respective ‘week 1, week 20 and week 24 10log  (RNA) change from 

baseline’. The correlation of 1d with ‘baseline CD4+ cell count’ and the correlations of 

‘week 1 10log  (RNA) change from baseline’, i.e. early viral dynamics or week 1 virus load 

reduction, with ‘weeks 20 and 24 10log  (RNA) change from baseline’, i.e. week 20 and 24 

virus load reduction, were performed respectively. 

 
11 In this study, analysis and report focused on the first-phase decay rates for initial viral decay rates. 
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The ANOVA procedure in SAS was performed for age, ethnicity, gender, and the actual 

treatment group effects on the first-phase viral decay rates, respectively. Tukey's 

Studentized Range (HSD) test in GLM was also performed for the actual treatment group 

effects on estimated 1d  viral decay rates. 

 

The Wilcoxon rank sum and Kruskal-Wallis tests (using the NPAR1WAY procedure in 

SAS) was performed for examining properties of actual treatment group on the first-phase 

viral decay rates.  

 

In addition, Univariate Regression Models (GLM) were fitted (using the GLM procedure 

in SAS) to identify baseline characteristics which are correlated with the estimated first-

phase viral decay rates.  

 

The Wilcoxon rank sum and Kruskal-Wallis tests was applied to examine if the early viral 

decay rates can predict the long-term response (24 weeks) and Univariate logistic 

regression analyses (using the CATMOD procedure in SAS) was used to examine if the 

actual treatment group is a significant predictor for the long-term response. 

 

3.3 Software used 

All analyses were conducted in SAS v9.1 (SAS Institute Inc., 2003). The NLMIXED 

procedure and relevant command statements were conducted in SAS, and statistical 

software-R v2.6.2 and SPSS v14.0 (SPSS Institute Inc., 1989-2005) were also used to 

produce graphs and tables.  
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SECTION 4:   RESULTS 

4.1 Complete Dataset Results 

4.1.1 Data Summary 

A total of 116 subjects’ Plasma HIV-1 RNAs were repeatedly quantified and their 

demographic information was provided for the study (dataset 1). This number came from 

an original dataset 2 of 288 subjects. There were 17 (14.7%) females and 99 (85.3%) 

males. Their median age was 43 years (range: 16-65 years). The median baseline CD4 cell 

count was 152 (cells/mm 3 ) and median 10log  (pre-treatment Plasma HIV-1 RNA) was 

4.55. 87 HIV infected patients (75%) were treated with three potent antiviral drugs; does 1 

(30; 25.9%), dose 2 (28; 24.1%) and dose 3 (29; 25.0%) and 29 patients (25%) were in the 

control group.  

 

Plasma HIV-1 RNA was repeatedly quantified on days 1, 2, 3, 8, 10, 15, and weeks 4, 8, 

12, 16, 20, 24, 32 and 40 after initiation of treatment. However, for various reasons such 

as Plasma HIV-1 RNA rebound, never achieved VL suppression by weeks 24, 40 patients 

(34.5%) completed their treatments before 24 weeks as follows: 

 

• 1 patient (0.9%) on 10 days 

• 3 patients (2.6%) on 4 weeks  

• 2 patients (1.7%) on 8 weeks  

• 6 patients (5.2%) on 12 weeks 

• 19 patients (16.4%) on 16 weeks 

• 9 patients (7.8%) on 20 weeks 
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76 patients (65.5%) completed their treatments beyond 24 weeks: 

 

• 41 patients (35.3%) on 24 weeks  

• 29 patients (25.0%) on 32 weeks  

• 6 patients (5.2%) on 40 weeks    

 

Of the 116 subjects, 107 were used for the viral dynamic analysis, including the model 

fitting; because 9 subjects had no initial viral decline at all after starting treatment, they are 

ineligible for viral dynamic analysis.  

 

4.1.2 Subjects’ Viral Decay Patterns 
 

Before fitting a model, subjects’ viral decay patterns were examined through plotting the 

data. Primarily, some randomly selected subjects’ viral decay patterns through time after 

they started their treatments were examined. The next fitted plots (figure 4), for 

“windowed” 10log  (original numeric result) through day after starting treatment for each 

randomly selected 7 people show diverse viral decay or rebound patterns, respectively. 

Overall, after the early rapid decay term before approximately 10 days ( 7=t , week 1), 

some subjects’ plasma virus seems to have increased/rebounded (and maintained in that 

way or slowly declined again) and some of them declined slowly.     
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Figure 4:  The fitted curves of each 7 randomly selected patients. The first reference vertical 

dotted line indicates 2 weeks (16 days) and the second reference vertical dotted line indicates 

4 weeks (30 days) which is the end of period Wu et al. (2004) [13] derived viral decay rates. 

 

The subjects were classified as responders or non-responders at a long-term time point (24 

weeks) according to a Time to Loss of Virological Response (P400_TLO) algorithm. 

According to this rule, subjects who discontinued their treatments or viral load never fell 

below 400 copies/mL, i.e. never achieved VL suppression by week 24, or viral load 

rebounded above the threshold, i.e. Plasma HIV-1 RNA rebounded, were classified as 

non-responders. Some subjects of insufficient viral load response, or Protocol mandated 

switch from 150mg BCV/r were also classified as non-responders.  
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Specifically, 34 subjects (29.3%) never achieved VL suppression by week 24, 21 subjects’ 

(18.1%) Plasma HIV-1 RNA rebounded, 15 subjects (12.9%) had insufficient viral load 

responses and 18 subjects (15.6%) failed to get below 400 copies/mL at week 24. 10 

subjects’ (8.6%) Protocol mandated switch from 150mg Brecanavir12/ritonavir13 (BCV/r) 

and only 18 subjects (15.5%) were classified as responders at visit and censored thereafter 

[Appendix 1, Chart 2.1-2.3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
12 Brecanavir, a novel protease inhibitor (PI), has sub-nM in vitro antiviral activity against multi-PI-resistant 

HIV-1 and in vitro is >100-fold more potent than previously marketed PIs and approx. 10-fold more potent 

than the recently marketed PI, darunavir [29]. 

 
13 Ritonavir, also known as Norvir, is a type of medicine called a protease inhibitor (PI). PIs act by blocking 

protease, a protein that HIV needs to make more copies of itself [48]. 
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The following plots (figure 5) present classification types of response at week 24. 
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Figure 5:  Plots of patients demonstrating (A) responder at visit and censored thereafter, (B) 

Protocol mandated switch from 150mg BCV/r, (C) never achieved VL suppression by week 

24, (D) Plasma HIV-1 RNA rebounded and (E) insufficient viral load response, clockwise 

from top left. The first reference vertical dotted line indicates 2 weeks (16 days) and the 

second reference vertical dotted line indicates 4 weeks (30 days) which is the end of period 

Wu et al. (2004) [13] derived viral decay rates. 
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Detailed classification types of each individual plot are presented in figure 6.1- 6.5. 

 

 

Figure 6.1:  The fitted curves from 6 randomly selected patients who were responder at visit 

and censored thereafter. The dots are the observations, and the solid lines are Friedman’s 

super smoother. 
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Figure 6.2:  The fitted curves from 6 randomly selected patients who were Protocol 

mandated switch from 150mg BCV/r. The dots are the observations, and the solid lines are 

Friedman’s super smoother. 
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Figure 6.3:  The fitted curves from 6 randomly selected patients who never achieved VL 

suppression by week 24. The dots are the observations, and the solid lines are Friedman’s 

super smoother. 
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Figure 6.4:  The fitted curves from 6 randomly selected patients whose plasma HIV-1 RNA 

rebounded. The dots are the observations, and the solid lines are Friedman’s super smoother. 



 

  

39 

 

Figure 6.5: The fitted curves from 6 randomly selected patients demonstrating insufficient 

viral load response. The dots are the observations, and the solid lines are Friedman’s super 

smoother. 

 

 

The following plots (in figure 7) are for “windowed” 10log  (original numeric result) 

through the day after starting treatment, by treatment with three potent antiviral drug 

groups and a control group.  
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Figure 7:  The fitted curves from 30, 28, 29 and 29 patients by actual treatment (A) dose 1, 

(B) dose 2, (C) dose 3 and (D) control group, clockwise from top left. The first reference 

vertical dotted line indicates 2 weeks (16 days) and the second reference vertical dotted line 

indicates 4 weeks (30 days) which is the end of period Wu et al. (2004) [13] derived viral 

decay rates. 

 

 

 

4.2 Fitting Nonlinear Mixed Effect Models  

 

4.2.1 Fitting Nonlinear Mixed Effect Single-phase Viral Dynamic Models 

At first, since most of the data show rapid decay patterns from the day of starting 

treatment to approximately 10 days, a nonlinear mixed effect single-phase viral dynamic 

model based on (7) was considered to drive viral decay rates using HIV-1 RNA data from 



 

  

41 

day 2 ( 0=t , the day of starting treatment) to day 16 ( 14=t , 2 weeks) for the next 

model14: 

 

                                   )()]exp()[exp(log)]([log 111010 ttdPtV iii +−=                             (8) 

 

where )(ti  is a HIV-1 RNA measurement error (on the 10log  scale) with a mean of zero, 

and )(tVi is HIV-1 RNA copies/mL plasma at treatment time t  for the i th subject. The 

viral decay rates for the i th subject is ii bdd 111 += , where the fixed-effect parameter, i.e. 

1d  is the population decay rates for the first viral decay phases and ib1  is a random effect 

parameter assumed to be iid ),0( 2
bN  , that quantify the between-subject variation of viral 

decay rates. Parameter ii bPP 211 +=  is a macroparameter, with )exp( 1iP being baseline virus 

load at time 0=t  [13, 14, 20, 26, 27]. 

 

To get starting values for the model, a simple nonlinear regression model using the NLIN 

procedure was used: without fitting random factor, the NLIN procedure was used to 

generate appropriate values because the NLMIXED procedure is sensitive to starting 

values.  

 

The model had converged by Gauss-Newton iterative Method, i.e. the residual sum of 

squares decreased until there was no improvement in model fit [Appendix 1, table 2.1]. 

 

 
14 HIV-1 RNA data from day 2 ( ,0=t  the day of starting treatment) to day 10 ( ,7=t  1 week) and day 2 to 

day 30 ( ,28=t  4 weeks) were also considered and fitted to the models (result not shown, the main results 

are consistent with the result of this study). However, 2 weeks dataset were used to derive viral decay rates 

for the adequateness based on the viral decay patterns, because viral rebound occurred after 2 weeks and the 

viral dynamic model is valid only for the early stage of treatment [14, 21]. 
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In the ANOVA table 2.1, the value of the residual sum of squares presents the value that 

the iterative fitting process converged to. The mean square error of the model fit is the 

estimate of variability in the data when adjusted for the non-linear logistic model trend we 

have assumed. The ANOVA table 2.2 is then followed by a table of parameter estimates. 

(In this case, there were 1P  10.488 and 1d  0.169 want to estimate, standard error and an 

asymptotic 95% confidence interval.)  

 

Table 2.1: ANOVA table 

 

Source DF 
Sum of 
Squares 

Mean 
Square 

F Value 
Approx 
Pr > F 

Model 2 8094.9 4047.5 3715.43 <.0001 

Error 501 545.8 1.0894   

Uncorrected Total 503 8640.7    

 

 
 
 

Table 2.2: Parameter estimates table 

 

Parameter Estimate 
Approx 

Std Error 
Approximate 95% 
Confidence Limits 

P1 10.4882 0.2001 10.0951 10.8814 

d1 0.1691 0.0222 0.1255 0.2127 

 

 

A nonlinear mixed effect single-phase viral dynamic model with one random effect 

parameter, i.e. ib1 , was fitted after applying the estimated fixed-effect parameter estimates, 

i.e. ,1d 1P , and the mean squared error as starting values (using PROC NLMIXED 

statements) for the 107 subjects. For the Optimization Technique, Dual Quasi-Newton was 

used, and Adaptive Gaussian Quadrature was used as the Integration Method [Appendix 1, 

table 2.2].    

 

The algorithm has converged successfully and the fitting information (table 2.3) lists the 

final maximized value of the log likelihood, i.e. -2 log likelihood 1083.5 as well as the 
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information criteria of Akaike and corrected Akaike (for small sample sizes) in two 

different forms, i.e. AIC and AICC: 1091.5 and 1091.6, respectively. These statistics can 

be used to compare different nonlinear mixed models. Also, the “Parameter Estimates” 

(table 2.4) lists the maximum likelihood estimates of the four parameters and their 

approximate standard errors computed using the final Hessian matrix [24]. 

 

Table 2.3: Fit Statistics table 

 

Fit Statistics 

-2 Log Likelihood 1083.5 

AIC (smaller is better) 1091.5 

AICC (smaller is better) 1091.6 

BIC (smaller is better) 1102.2 

 

 

 

 
Table 2.4: Parameter Estimates table 

 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient 

P1 10.4761 0.1041 106 100.65 <.0001 0.05 10.2698 10.6825 5.608E-6 

d1 0.1662 0.02473 106 6.72 <.0001 0.05 0.1171 0.2152 2.06E-6 

Error 0.5406 0.01918 106 28.19 <.0001 0.05 0.5025 0.5786 -0.00002 

varcomp11 0.05043 0.007476 106 6.75 <.0001 0.05 0.03561 0.06526 0.000044 

 

 

 

Using the fixed-effect parameter estimates, i.e. ,1d 1P , the mean squared error, and 

variance component of ib1  as starting values, a nonlinear mixed effect single-phase viral 

dynamic model with two random effect parameters, i.e. ib1 , iP1 , was fitted (using PROC 

NLMIXED statements) for the same subjects.    

 

The algorithm has converged successfully and the final maximized value of the log 

likelihood, i.e. -2 log likelihood, was 768.3, AIC and AICC were 780.3 and 780.5, 

respectively (table 2.8). The maximum likelihood estimates of the six parameters, i.e. 1d , 
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1P , the mean squared error, covariance of ib1 and ib2  (which is not significant in the result), 

and variance of ib1 , ib2  respectively, and also their approximate standard errors are listed 

in the “Parameter Estimates” (table 2.5). 

 

 
 

Table 2.5: Parameter Estimates table 
 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error 
DF t Value Pr > |t| Alpha Lower Upper Gradient 

P1 10.4925 0.1756 105 59.76 <.0001 0.05 10.1443 10.8406 0.001018 

d1 0.1684 0.01524 105 11.05 <.0001 0.05 0.1382 0.1986 0.006712 

error 0.3007 0.01252 105 24.02 <.0001 0.05 0.2759 0.3255 0.002293 

varcomp11 0.02003 0.003425 105 5.85 <.0001 0.05 0.01323 0.02682 -0.00064 

varcomp12 -0.03959 0.02775 105 -1.43 0.1568 0.05 -0.09462 0.01545 -0.00134 

varcomp22 2.9176 0.4497 105 6.49 <.0001 0.05 2.0259 3.8092 0.000512 

 
 

 

 

4.2.2 Fitting Nonlinear Mixed Effect Biphasic Viral Dynamic Models 

Rapid decay pattern (from the day of starting treatment to approximately 10 days) and 

slow decay pattern are observed in the same dataset, i.e. HIV-1 RNA data from day 2 

( 0=t , the day of starting treatment) to day 16 ( 14=t , 2 weeks). With the data, a nonlinear 

mixed effect biphasic viral dynamic model (7) was fitted next.  

 

Also, to get starting values for the model, a simple nonlinear regression model for the 

biphasic of model (using PROC NLIN statement) was used with the arbitrary initial values 

for fixed effect parameters without fitting random factors. Then, a biphasic model with 

two random effect parameters; 1d , 1P  was fitted using the estimated fixed-effect parameter 

estimates; 1d , 1P , 2d , 2P  and the mean squared error. The algorithm has converged 

successfully and the estimated of the eight parameters, i.e. 1d , 1P , 2d , 2P , the mean squared 
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error, covariance of ib1 and ib3  (which is not significant in the result), variance of ib1 and 

ib3 , are given the “Parameter Estimates” table 2.6. 

 

 
Table 2.6: Parameter Estimates table 

 

Parameter Estimates 

Parameter Estimate 
Standard 

Error 
DF t Value Pr > |t| Alpha Lower Upper Gradient 

P1 10.1026 0.2630 83 38.41 <.0001 0.05 9.5795 10.6257 -1.76E-6 

P2 9.6232 0.6032 83 15.95 <.0001 0.05 8.4235 10.8230 -5.09E-6 

d1 0.1691 0.01812 83 9.33 <.0001 0.05 0.1330 0.2051 0.000557 

d2 0.8850 0.2497 83 3.54 0.0006 0.05 0.3884 1.3816 0.000027 

error 0.2868 0.01340 83 21.40 <.0001 0.05 0.2602 0.3135 -0.00024 

varcomp11 0.01885 0.003801 83 4.96 <.0001 0.05 0.01129 0.02641 -0.00166 

varcomp13 0.05282 0.04726 83 1.12 0.2669 0.05 -0.04117 0.1468 0.000028 

varcomp33 4.7793 0.9722 83 4.92 <.0001 0.05 2.8457 6.7130 8.273E-6 

 
 

 

Using approximate values of estimated fixed and random effect parameters from the 

previous model, a biphasic model with three random effects was fitted next with zero 

covariance components. (For the variance of 2d , parameter value searching function in 

NLMIXED was used.) The algorithm has converged successfully, and the fitting 

information table lists the final maximized value of the log likelihood, i.e. -2 log 

likelihood 735.0, AIC and AICC: 751.0 and 751.3, respectively [Appendix 1, table 2.3]. 

Also, the “Parameter Estimates” table 2.7 lists the maximum likelihood estimates of the 

eight parameters; 1d , 1P , 2d , 2P , the mean squared error, variance of ib1 , ib2 and ib3  

respectively, and their approximate standard.  
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Table 2.7: Parameter Estimates table 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error 
DF t Value Pr > |t| Alpha Lower Upper Gradient 

P1 10.1761 0.2129 104 47.80 <.0001 0.05 9.7539 10.5982 0.000668 

P2 11.2454 0.5086 104 22.11 <.0001 0.05 10.2369 12.2539 -0.00147 

d1 0.1423 0.01511 104 9.42 <.0001 0.05 0.1124 0.1723 -0.0029 

d2 1.7727 0.2487 104 7.13 <.0001 0.05 1.2796 2.2658 0.003581 

error 0.2776 0.01178 104 23.57 <.0001 0.05 0.2542 0.3009 0.006208 

varcomp11 0.01928 0.003195 104 6.04 <.0001 0.05 0.01295 0.02562 0.071378 

varcomp22 0.1934 0.06813 104 2.84 0.0055 0.05 0.05826 0.3285 -0.00593 

varcomp33 4.3740 0.6899 104 6.34 <.0001 0.05 3.0058 5.7422 -0.00021 

 

 

Since the biphasic model with three random effects and zero covariance components was 

successfully converged, using previous estimated initial parameter values, the same model 

with covariance components was fitted next. (For the variance of 2d , parameter value 

searching function in NLMIXED was used also.) The algorithm has converged 

successfully and the fitting information table lists the final maximized value of the log 

likelihood, i.e. -2 log likelihood 702.8, AIC and AICC: 724.8 and 725.3, respectively 

which are slightly better than the previous model (table 2.8). (Model diagnoses support 

this result [Appendix 1, table 2.4- 2.5]). Also, the “Parameter Estimates” (table 2.9) lists 

the maximum likelihood estimates of the eleven parameters; 1d , 1P , 2d , 2P , the mean 

squared error, variance of ib1 , ib2 and ib3  respectively, covariance of ib1 and ib2 (which is not 

significant in the result), ib2 and ib3 , ib1 and ib3  respectively and their approximate standard. 

 

 

 
Table 2.8: Fit Statistics for both models 

 

Fit Statistics 

 The single-phase model The biphasic model 

-2 Log Likelihood 768.3 702.8 

AIC (smaller is better) 780.3 724.8 

AICC (smaller is better) 780.5 725.3 

BIC (smaller is better) 796.3 754.2 
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Table 2.9: Parameter Estimates table 
 

Parameter Estimates 

Parameter Estimate 
Standard 

Error DF t Value Pr > |t| Alpha Lower Upper Gradient 

P1 9.5657 0.2278 104 41.98 <.0001 0.05 9.1139 10.0176 0.000304 

P2 13.3343 0.2344 104 56.89 <.0001 0.05 12.8695 13.7992 0.00027 

d1 0.09568 0.01432 104 6.68 <.0001 0.05 0.06729 0.1241 0.001695 

d2 1.7545 0.1488 104 11.79 <.0001 0.05 1.4594 2.0496 0.000999 

error 0.2615 0.01443 104 18.11 <.0001 0.05 0.2328 0.2901 0.003725 

varcomp11 0.01090 0.003285 104 3.32 0.0012 0.05 0.004389 0.01742 0.015094 

varcomp22 0.7450 0.1586 104 4.70 <.0001 0.05 0.4306 1.0595 -0.00055 

varcomp33 2.7611 0.4880 104 5.66 <.0001 0.05 1.7933 3.7288 0.000469 

varcomp13 -0.09803 0.03071 104 -3.19 0.0019 0.05 -0.1589 -0.03713 0.006636 

varcomp23 -1.0988 0.2269 104 -4.84 <.0001 0.05 -1.5487 -0.6488 0.000382 

varcomp12 0.01134 0.01517 104 0.75 0.4566 0.05 -0.01875 0.04142 0.008288 

 
 
 
 

The biphasic model with four random effects which contains ib4  had not successfully 

converged15.  

 

 

4.3 Analysis Results from the Models 

4.3.1 Initial Viral Decay Rates 

The estimated first-phase decay rates, i.e. 1d  from individual subjects (the empirical 

Bayesian estimates) of the nonlinear mixed effect single-phase and biphasic viral dynamic 

models are summarized for different ages, ethnicities and actual treatment groups in the 

table 4.1 and 4.2.  

    

 

 

 
15 It had not converged using alterative methods for the convergence. However, since we are interested in the 

first-phase viral decay rates rather than the other phase viral decay rates (for the multi-phase model), and we 

obtained the values with other main random effects of the biphasic model, it seems that it is not a principle 

problem in this study. 
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Table 4.1: Summary of estimated viral decay rates of the nonlinear mixed effect single-phase viral 

dynamic model.                                 

 

Characteristic Label 

Decay rate,  

Mean d1  SD 

Phase1 

Total (n=107) 0.168  0.129 

Treatment regimen 

dose1 (n=28) 0.182  0.127 

dose2 (n=28) 0.212  0.124 

dose3 (n=29) 0.193  0.126 

control (n=22) 0.063  0.085 

Age range, years 

Less than 20 (n=7) 0.180  0.123 

30-34 (n=5) 0.184  0.129 

35-39 (n=22) 0.181  0.122 

40-44 (n=31) 0.162  0.149 

45-49 (n=18) 0.185  0.125 

50-59 (n=20) 0.119  0.112 

Over 60 (n=4) 0.287  0.067 

Race/Ethnicity 

White – 
White/Caucasian/European 
Heritage and Arabic/North 
African Heritage (n=87) 

0.161  0.126 

African American/African 
Heritage (n=20) 

0.202  0.143 

 

 

 

 

Table 4.2: Summary of estimated viral decay rates of the nonlinear mixed effect biphasic viral dynamic 

model.                                 

 

Characteristic Label 

Decay rate,  

Mean d1  SD 

Phase1 Phase2 

Total (n=107)  0.097  0.095 1.681  0.810 

Treatment regimen 

dose1 (n=28) 0.114  0.096 1.872  0.915 

dose2 (n=28) 0.128  0.091 1.690  0.841 

dose3 (n=29)  0.109  0.089 1.412  0.520 

control (n=22) 0.022  0.072 1.779  0.90 

Age range, years 

Less than 20 (n=7) 0.112  0.101 1.920  1.155 

30-34 (n=5) 0.119  0.109 2.252  1.336 

35-39 (n=22) 0.103  0.092 1.540  0.805 

40-44 (n=31) 0.092  0.109 1.660  0.718 

45-49 (n=18) 0.109  0.093 1.545  0.827 

50-59 (n=20) 0.062  0.073 1.729  0.717 

Over 60 (n=4) 0.183  0.035 1.856  0.590 

Race/Ethnicity 

White – 
White/Caucasian/European 
Heritage and Arabic/North 
African Heritage (n=87) 

0.093  0.095 1.710  0.856 

African American/African 
Heritage (n=20) 

0.115  0.098 1.552 0.571 
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4.3.2 Baseline Characteristics 

Baseline characteristics of study participants are summarized by actual treatment group in 

table 5. 

 

 

Table 5: Baseline characteristics of study participants by actual treatment group for the completed dataset.    

                              

Characteristic Label 
Total 

(n=116) 

Actual treatment group 

control 
(n=29) 

dose 1 
(n=30) 

dose 2 
(n=28) 

dose 3 
(n=29) 

Sex, no.(%) 
Female 17 (14.7) 3 9 4 1 

Male 99 (85.3) 26 21 24 28 

Age range, years, no.(%) 

Less than 20 7 (6.0) 1 2 2 2 

30-34 5 (4.3) 2 2 1 0 

35-39 22 (19.0) 2 5 7 8 

40-44 36 (31.0) 13 7 5 11 

45-49 20 (17.2) 3 8 5 4 

50-59 22 (19.0) 8 6 5 3 

Over 60 4 (3.4) 0 0 3 1 

Race/Ethnicity, no.(%) 

African American/African 
Heritage 

20 (17.2) 6 4 2 8 

White – 
White/Caucasian/European 
Heritage and Arabic/North 
African Heritage 

96 (82.8) 23 26 26 21 

HIV-1 RNA, 
10log  

copies/mL 

25th percentile 3.89 4.17 3.49 3.67 4.36 

Median 4.55 4.36 4.57 4.31 4.63 

75th percentile 5.17 5.45 5.09 5.18 5.00 

CD4 cell count, 
cells/mm3 

25th percentile 53.5 23 62 60.5 101 

Median 152 69 180.5 190.0 155 

75th percentile 281.5 175 337 325.5 280 

CD4 cells, % 

25th percentile 6.5 5 9 8 10 

Median 13 7 16.5 13 13 

75th percentile 19 13 25 22 17 

 

ANOVA (1-way analysis of variance) analysis showed the effects of  “age”, “gender” 

and “ethnicity” on the first-phase viral decay rates of both models were not 

significant: p=0.733, p=0.257 and p=0.420  respectively for the single-phase model, 

and p=0.812,  p=0.192 and p=0.593 respectively for the biphasic. (This result was 

marginally confirmed by Univariate Regression Analyses treating age, gender, and 

ethnicity as continuous covariates). However, there was a marginally significant 

difference among “actual treatment groups” for both models (p=0.0001 and 

p=0.0003) [Appendix 1, table 3.1.1- 3.4.2].  
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Results of the Wilcoxon rank sum and Kruskal-Wallis tests indicated that the first-phase 

viral decay rate in the control group (mean SDd 1 , 0.063 0.085 and 0.022 0.072 for 

the single and biphasic model, respectively) is significantly lower than in other treatment 

groups, i.e. dose 2 (mean SDd 1 , 0.212  0.124 and 0.128  0.091 for the single and 

biphasic model, respectively), dose 1 (mean SDd 1 , 0.182 0.127 and  0.114 0.096, 

respectively), and dose 3 (mean SDd 1 , 0.193 0.126 and 0.109 0.089, respectively), 

for both models (p=0.0002 and p=0.0005, respectively) [Appendix 1, table 3.5.1- 3.6.8]. 

The first-phase decay rates in dose 2 was higher than other groups, but there were no 

significant differences among three treatment groups according to Tukey's Studentized 

Range (HSD) in GLM for the both models [Appendix 1, table 3.7.1- 3.7.2].  In addition, 

the regression analysis confirmed that treatment assignment was a significant predictor for 

the first-phase viral decay rates, i.e. 1d  in both models (p=0.002 and p=0.001 respectively). 

 

Multiple (Covariate) Regression Analyses (GLM), including the covariates baseline HIV-

1 RNA levels, baseline CD4+ counts, age, ethnicity and gender of patients, number of 

mutations at baseline, introduction of T20 and treatment assignment, indicated that 

‘treatment assignment’, and ‘number of mutations at baseline’ were significant predictors 

(p=0.014 and p=0.0023, respectively) of the first-phase viral decay rates for the single-

phase model. In addition, ‘baseline HIV-1 RNA levels’, ‘treatment assignment’ and 

‘number of mutations at baseline’ were significant predictors of 1d  (p=0.005, p=0.02 and 

p=0.002, respectively) for the biphasic model [Appendix 1, table 3.8.1- 3.8.2].  
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Figure 8.1:  The correlation between the first-phase viral decay rates and baseline HIV-1 

RNA levels at t=0 for the nonlinear mixed effect single-phase viral dynamic model. The 

correlation coefficient and P value from Spearman’s rank tests are given.  
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Figure 8.2:  The correlation between the first-phase viral decay rates and baseline HIV-1 

RNA levels at t=0 for the nonlinear mixed effect biphasic viral dynamic model. The 

correlation coefficient and P value from Spearman’s rank tests are given.  

 

 

 

Figure 8.1- 8.2 show the correlation of the first-phase viral decay rates, i.e. 1d  with 

baseline HIV-1 RNA levels for the two models. 1d  were somewhat negatively correlated 

with baseline virus load (r = -0.292, p=0.002) and (r = -0.414, p<0.0001) for the both 

models respectively [Appendix 1, table 3.9.1- 3.9.2] and positively correlated with 

baseline CD4+ cell counts (r = 0.428, p<0.001) and (r = 0.482, p<0.001) for the both 

models [Appendix 1, table 3.10.1- 3.10.2].  
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Figure 9.1:  The correlation between the first-phase viral decay rates and week 1 virus load 

reduction from baseline for the single-phase viral dynamic model (for instance, 3 indicates 

10log viral load reduction from baseline whereas, -1 indicates 
10log viral load increase from 

baseline.). The correlation coefficient and P value from Spearman’s rank tests are given.  
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Figure 9.2:  The correlation between the first-phase viral decay rates and week 1 virus load 

reduction from baseline for the single-phase viral dynamic model (for instance, 3 indicates 

10log viral load reduction from baseline whereas, -1 indicates 
10log viral load increase from 

baseline.). The correlation coefficient and P value from Spearman’s rank tests are given. 

 

 

Also, the strong positive correlations (r = 0.867, p<0.0001 and r = 0.852, p<0.0001) 

between week 1 virus load reduction, i.e. early virus dynamics, and the first-phase viral 

decay rates for both models were observed (figure 9.1- 9.2) [Appendix 1, table 3.11.1- 

3.11.2].  

 

In addition, there were positive correlations (r = 0.415, p=0.0003 and r = 0.432, p=0.002, 

respectively) between week 20 and 24 virus load reduction and the first-phase viral decay 

rates for the single-phase model. Also, there were positive correlations (r = 0.346, p=0.003 

and r = 0.394, p=0.006, respectively) between week 20 and 24 virus load reduction and the 

first-phase viral decay rates for the biphasic model. However, their correlations were less 
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than those of week 1 virus load reduction [Appendix 1, table 3.12.1- 3.12.4]. Also, week 

1 virus load reduction, i.e. early viral dynamics, and week 20 and 24 virus load reduction 

have positive correlations (r = 0.445, p<0.0001 and r = 0.420, p=0.003, respectively) for 

both models [Appendix 1, table 3.13.1- 3.13.4]. Similarly, it is observed that the 

individuals with higher first-phase viral decay rates, i.e. subjects with 1d  > 0.168 (mean of 

1d  for the single-phase model), were more likely to have suppressed virus load at week 20 

(mean SDd 1 , 2.7431.172) and at week 24 (2.560.996) than the other subjects with 

1d   0.168 (3.701 1.164 at week 20 and 3.510 1.313 at week 24, respectively) for the 

single-phase model. Consistently, the individuals with higher first-phase viral decay rates, 

i.e. subjects with 1d  > 0.097 (mean of 1d  for the biphasic model), were also more likely to 

have suppressed virus load at week 20 (2.722 1.166) and at week 24 (2.503 0.987)  than 

the other subjects with 1d   0.097 (3.818  1.102 at week 20 and 3.692  1.234 at 24 

week) for the biphasic model [Appendix 1, table 3.14.1- 3.14.8].  

 

The subjects with higher first-phase viral decay rates were also more likely to show a 

smaller number of mutations at baseline than the other subjects in both models [Chart 1.1-

1.2]. 

Number of multi-PI mutations at baseline

for the single-phase model 

35.5%

22.4%

11.2%

30.8%

0% 20% 40%

Num. of multi-PI

mutations <= 4

Num. of multi-PI

mutations >= 5

Lower viral decay rates subjects

Higher viral decay rates subjects

 

Chart 1.1:  Number of multi-PI mutations at baseline by the first-phase viral decay rates for 

the single-phase model. 
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Number of multi-PI mutations at baseline

for the biphasic model 
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Chart 1.2:  Number of multi-PI mutations at baseline by the first-phase viral decay rates for 

the biphasic model. 

 

 

 

4.3.3 Initial Viral Decay Rates and Long-Term Response 

Among the 107 subjects tested for in this study, 81 were classified as virological non-

responders, and 26 were classified as responders (P400_TLO). The viral decay rates 

between the virological responders and non-responders using the Wilcoxon rank sum and 

Kruskal-Wallis tests (using the NPAR1WAY procedure in SAS) was performed 

[Appendix 1, table 3.15.1- 3.15.6]. It was found that the first-phase viral decay rates in 

responders (mean SDd 1 , 0.267  0.103) were significantly higher (both p<0.001 

respectively) than those in non-responders (mean SDd 1 , 0.137  0.121) in the single-

phase model. Also, the first-phase viral decay rates in responders (mean SDd 1 , 

0.171  0.073) were significantly higher (both p<0.001 respectively) than those in non-

responders (mean SDd 1 , 0.0740.09) in the biphasic model.  

 

The subjects with higher first-phase viral decay rates were more likely to be responders. 

For example, if 1d > 0.168 (mean of 1d for the single-phase model), 20 (40.0%) of 50 were 

responders and only 1d   0.168, 6 (10.53%) of 57 were responders for the single-phase 
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model. Also, if 1d > 0.097 (mean of 1d for the biphasic model), 21 (39.62%) of 53 were 

responders and 1d   0.097, only 5 (9.30%) of 54 were responders) for the biphasic model 

[Appendix 1, table 3.16.1- 3.16.2]. 

 

The week 1 virus load reduction in the responder group was also higher (mean SDd 1 , 

1.3230.689) than that in the non-responder group (mean SDd 1 , 0.6140.675) for both 

models identically. The differences were statistically significant (p<0.0001) for the 

Wilcoxon rank sum and Kruskal-Wallis tests for both models [Appendix 1, table 3.17.1- 

3.17.6].  

 

In addition, Univariate Logistic Regression analyses (using the CATMOD procedure in 

SAS) showed that the control group was a significant predictor for 24 weeks virological 

response for both the models (both p = 0.22) [Appendix 1, table 3.18.1- 3.18.4]. 
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SECTION 5:   DISCUSSION  

The purpose of this project was to model viral decay rates, and check the validity of the 

model for the set of data and investigate if the relationships found with baseline covariates 

and long-term response were consistent with Wu et al.’s (2004) findings [13]. 

 

The Nonlinear Mixed Effect Single and Biphasic Viral Dynamic Models for the HIV data 

were fitted using PROC NLMIXED statement in SAS. And the first-phase viral decay 

rates for each subject for both models were derived. Baseline characteristics which were 

correlated with the viral decay rates were identified, and whether the initial, i.e. the first-

phase, viral decay rates can predict long-term response was examined along with other 

relevant analyses.  

 

5.1 Actual Treatment Group for the Viral Decay Rates 

The results indicate that the actual treatment groups were more potent, i.e. higher first-

phase viral decay rates than control group. However, there were no significant differences 

among treatment groups, dose 1, 2 and 3. (This was consistent with the result without 

control group in the data.)  

 

There were no significant differences in the first-phase viral decay rates for different ages, 

ethnicities, and gender groups. The actual treatment effect and the number of multi-PI 

mutations at baseline had impact on the first-phase viral decay rates for the single-phase 

model. Also, the actual treatment effect, baseline HIV-1 RNA levels and the number of 

multi-PI mutations at baseline had impact on the first-phase viral decay rates for the 
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biphasic model. Besides, the first-phase viral decay rates were somewhat positively 

correlated with baseline CD4+ cell counts in both models.  

 

5.2 Initial Viral Decay Rates and Viral Load Reduction 

The first-phase viral decay rates were somewhat negatively correlated with the baseline 

HIV-1 RNA levels for both models (r = -0.292, p=0.002 and r = -0.414, p<0.0001, 

respectively). These negative correlations confirm the results of Wu et al. [41, 42, 20, 13], 

but differs from the results of Wu et al. (2004) [13] (r = 0.44, p<0.001). Based on the 

equations (6), three possible explanations for this negative correlation between the first-

phase viral decay rates and baseline viral load were derived by Wu et al. (2003) [20]. 

However, the biological mechanisms behind these correlations are considered still unclear 

[13]. Wu et al. (2004) [13] guessed that the direction of the correlation may depend on 

many factors such as the potency of treatment regimens, pretreatment virus production: 

clearance ratio, and turnover rate of infected cells [44, 13].  

 

In addition, strong correlations between the first-phase viral decay rates and week 1 virus 

load reduction from baseline were observed from both models (r = 0.867, p<0.0001 and r 

= 0.852, p<0.0001, respectively). This result consists with the findings of Wu et al. (2004) 

[13] (r = 0.89, p<0.001). There was positive correlation between week 20 and 24 virus 

load reduction and the first-phase viral decay rates for both models. However, their 

correlations were less than those of week 1 virus load reduction. It seems that the week 1 

virus load reduction could be used to replace more complex viral decay rates for the 

assessment of the potency of antiretroviral regimens [13]. Wu et al. (2004) [13] suggested 

this simplification can avoid complicated viral dynamic model fitting and frequent clinical 

visits for HIV-1 RNA measurements. However, to compensate for the power loss using 
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the week 1 virus load reduction, a larger number of subjects (sample size) may be required 

[13, 40]. 

 

Individuals with higher viral decay rates were likely to show long-term viral load 

suppression (week 20 and 24 virus load reduction). Also, individuals with higher week 1 

virus load reduction, i.e. early viral dynamics, were more likely to have suppressed virus 

load at week 24, which suggests that the antiviral potency or the initial viral decay rates 

are predictive of long-term viral load response [13]. 

 

5.3 Approaching NLMIXED Models  

The Nonlinear Mixed Effect Viral Dynamic Model can easily handle unbalanced repeated 

and continuous measurements data on each of individuals when interest focuses on 

individual-specific characteristics and allows for flexible variance-covariance and non-

independent error structures of the response vector, whereas GEEs are only feasible for the 

linear in their parameters.  

 

However, the model fitting with the fixed and random effects entering nonlinearly is not 

easy to implement frequently, since standard likelihood approaches are considered much 

more difficult to implement than the linear mixed models16. Also, it seems to be very 

sensitive for initial values. This is not a surprising thing when we consider the data 

repeatedly and continuously measured from various among individuals, and individuals’ 

responses all follow a similar functional form in the model (although it has parameters that 

vary among individuals). Changing the initial values or sectional iteration searching 

method for the initial values can be used, the work is sometimes not trivial and even after 

 
16 Pseudo-Data calculation can be implemented by modifying a standard nonlinear least squares estimation 

routine [16]. 



 

  

61 

finding the adequate values, and quite a lot of time is required for the complex models 

which contain many parameters or a large dataset.  

 

In general, there are some suggestions for the difficulties or filatures in converging. They 

are as follows: Rescale the data and model so that all parameters are of the same order of 

magnitude for the stability of the algorithm. Otherwise, use boundary constraints to avoid 

the region where overflows may happen, or delete outlying observations which are 

reasonable. Also, if the convergence criterion appears to be descending favourably, it 

might be needed to increase the maximum number of iterations using MAXITER=option 

in SAS NLINMIX procedure. Changing starting values by using a grid search 

specification or changing the optimization technique using TECH=option in SAS 

NLINMIX, and skipping RANDOM before getting accurate starting values can also be 

useful17 [11]. For the long run times, it is important to check whether the model is 

specified correctly. The scaled parameters with same order of magnitude, and the data 

reasonably match the model are required because ill-posed or miss-specified models can 

cause the algorithms to use more extensive calculations designed to achieve convergence 

[11].  

  

5.4 Conclusions and Suggestions 

 

The Nonlinear Mixed Effect Single and Biphasic Viral Dynamic Models for the HIV data 

were fitted using the NLMIXED procedure in SAS. The main findings with the initial 

viral decay rates, i.e. the first-phase viral decay rates, from the models were almost 

identical. For the model comparison aspect, the biphasic viral dynamic model seems 

 
17 Besides, for SAS NLINMIX macro procedure, using of OPTION=SKIPNLIN, TOL= options, trying 

RIDGE=option instead of PROC MIXED itself, and using EXPAND=ZERO option but when 

EXPAND=EBLUP option, also trying GAUSS=, MAXSUBIT=, FRACTION=, and SUBCONV=options 

which request to take extra Gauss-Newton steps within each iteration can be recommended [22]. 
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slightly better in terms of the Akaike information criterion (AIC) and the Bayesian 

information criterion (BIC) in this study. 

 

Further studies could focus on model fitting using Generalised additive models (GAMs) 

with splines which consist of individual segments that are joined smoothly. A GAM is 

defined as a Generalized Linear Model (GLM) with a linear predictor involving a sum of 

smooth functions of covariates. It consists of a random component, an additive component 

and a link function relating the two [45]. Compare than traditional parametric modeling 

tools such as linear or nonlinear regression, the methodology behind the GAM procedure 

has greater flexibility. It relaxes the usual parametric assumption and enables us to 

uncover structure in the relationship between the independent variables and the dependent 

variable [50]. However, this increased flexibility can reduce the interpretability of the 

modeling output [45]. 
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Chart 2.1: Column chart for classification of type of failure/success at week 24 by sex. 
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Never achieved VL suppression by Week 24 (n=34)

Plasma HIV-1 RNA rebound (n=21)

Insufficient viral load response (n=15)

Others (failure)  (n=18)

Responder at visit,censored thereafter (n=18)

Protocol mandated switch from 150mg BCV/r (n=10)

Total    (n=116)

M (n=99)

F (n=17)

 

 
 
 

Chart 2.2: Column chart for classification of type of failure/success at week 24 by ethnic origin. 
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Chart 2.3: Column chart for classification of type of failure/success at week 24 by age group. 
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Table 2.1: Iterative Phase table 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Table 2.2: Specifications table 
 

 

Specifications 

Data Set WORK.DATA16DAYS 

Dependent Variable LBORRLG 

Distribution for Dependent Variable Normal 

Random Effects b1 

Distribution for Random Effects Normal 

Subject Variable SUBJID 

Optimization Technique Dual Quasi-Newton 

Integration Method Adaptive Gaussian Quadrature 

 

 
 
 
 
 

Iterative Phase 

Iter P1 d1 
Sum of 

Squares 

0 1.0000 1.0000 25802.7 

1 10.4882 0.1691 545.8 

NOTE: Convergence criterion met. 
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Table 2.3: Fit Statistics table 

 
 

Fit Statistics 

-2 Log Likelihood 735.0 

AIC (smaller is better) 751.0 

AICC (smaller is better) 751.3 

BIC (smaller is better) 772.4 

 
 
 
 
 
 
 
 

Table 2.4: Fit Diagnostics for the single-phase model 
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Table 2.5: Fit Diagnostics for the biphasic model 

 

 
 
 
 
 

Table 3.1.1: ANOVA table of age variable for the single-phase model 
 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 31 0.44641255 0.01440040 0.82 0.7326 

Error 75 1.32453849 0.01766051   

Corrected Total 106 1.77095104    

 
 
 

Table 3.1.2: ANOVA table of age variable for the biphasic model 
 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 31 0.22688636 0.00731891 0.75 0.8115 

Error 75 0.73122736 0.00974970   

Corrected Total 106 0.95811372    

 
 

 
Table 3.2.1: ANOVA table of sex variable for the single-phase model 

 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 1 0.02164941 0.02164941 1.30 0.2569 

Error 105 1.74930163 0.01666002   

Corrected Total 106 1.77095104    
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Table 3.2.2: ANOVA table of sex variable for the biphasic model 
 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 1 0.01547787 0.01547787 1.72 0.1920 

Error 105 0.94263586 0.00897748   

Corrected Total 106 0.95811372    

 
 

 
 

Table 3.3.1: ANOVA table of ethnicity variable for the single-phase model 
 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 2 0.02932355 0.01466178 0.88 0.4197 

Error 104 1.74162748 0.01674642   

Corrected Total 106 1.77095104    

 
 

 
 

Table 3.3.2: ANOVA table of ethnicity variable for the biphasic model 
 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 2 0.00958037 0.00479019 0.53 0.5930 

Error 104 0.94853335 0.00912051   

Corrected Total 106 0.95811372    

 
 

 
 

Table 3.4.1: ANOVA table of actual treatment group variable for the single-phase model 
 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 3 0.32256405 0.10752135 7.65 0.0001 

Error 103 1.44838699 0.01406201   

Corrected Total 106 1.77095104    

 
 
 

 
Table 3.4.2: ANOVA table of actual treatment group variable for the biphasic model 

 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 3 0.16197366 0.05399122 6.99 0.0003 

Error 103 0.79614007 0.00772952   

Corrected Total 106 0.95811372    
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Table 3.5.1: Wilcoxon Scores (Rank Sums) table for the single-phase model 
 

Wilcoxon Scores (Rank Sums) for Variable Pred 
Classified by Variable atrtgrp1 

atrtgrp1 N 
Sum of 
Scores 

Expected 
Under H0 

Std Dev 
Under H0 

Mean 
Score 

2 28 1815.0 1512.0 141.095712 64.821429 

1 28 1596.0 1512.0 141.095712 57.000000 

3 29 1734.0 1566.0 142.681463 59.793103 

4 22 633.0 1188.0 129.730490 28.772727 

 
 
 
 

Table 3.5.2: Wilcoxon Scores (Rank Sums) table for the biphasic model 
 

Wilcoxon Scores (Rank Sums) for Variable Pred 
Classified by Variable atrtgrp1 

atrtgrp1 N 
Sum of 
Scores 

Expected 
Under H0 

Std Dev 
Under H0 

Mean 
Score 

2 28 1775.0 1512.0 141.095712 63.392857 

1 28 1661.0 1512.0 141.095712 59.321429 

3 29 1695.0 1566.0 142.681463 58.448276 

4 22 647.0 1188.0 129.730490 29.409091 

 
 
 
 

Table 3.5.3: Kruskal-Wallis Test for the single-phase model 
 

Kruskal-Wallis Test 

Chi-Square 19.2163 

DF 3 

Asymptotic Pr >  Chi-Square 0.0002 

Exact      Pr >= Chi-Square . 

 
 
 

 
Table 3.5.4: Kruskal-Wallis Test for the biphasic model 

 
 

Kruskal-Wallis Test 

Chi-Square 17.7993 

DF 3 

Asymptotic Pr >  Chi-Square 0.0005 

Exact      Pr >= Chi-Square . 
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Table 3.6.1: Mean of first-phase viral decay rates of dose 1 group for the single-phase model 
 
 

Basic Statistical Measures 

Location Variability 

Mean 0.182450 Std Deviation 0.12727 

Median 0.215252 Variance 0.01620 

Mode . Range 0.39265 

  Interquartile Range 0.22878 

 
 
 
 

Table 3.6.2: Mean of first-phase viral decay rates of dose 2 group for the single-phase model 
 
 

Basic Statistical Measures 

Location Variability 

Mean 0.212025 Std Deviation 0.12417 

Median 0.258296 Variance 0.01542 

Mode . Range 0.48697 

  Interquartile Range 0.19672 

 
 
 

 
Table 3.6.3: Mean of first-phase viral decay rates of dose 3 group for the single-phase model 

 
 

Basic Statistical Measures 

Location Variability 

Mean 0.193033 Std Deviation 0.12603 

Median 0.195224 Variance 0.01588 

Mode . Range 0.44519 

  Interquartile Range 0.19377 

 
 
 
 

Table 3.6.4: Mean of first-phase viral decay rates of dose 4 group for the single-phase model 
 
 

Basic Statistical Measures 

Location Variability 

Mean 0.062623 Std Deviation 0.08451 

Median 0.047161 Variance 0.00714 

Mode . Range 0.34973 

  Interquartile Range 0.10569 
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Table 3.6.5: Mean of first-phase viral decay rates of dose 1 group for the biphasic model 
 
 

Basic Statistical Measures 

Location Variability 

Mean 0.113850 Std Deviation 0.09562 

Median 0.127144 Variance 0.00914 

Mode . Range 0.28513 

  Interquartile Range 0.16380 

 
 
 
 
 

Table 3.6.6: Mean of first-phase viral decay rates of dose 2 group for the biphasic model 
 
 

Basic Statistical Measures 

Location Variability 

Mean 0.127813 Std Deviation 0.09049 

Median 0.163327 Variance 0.00819 

Mode . Range 0.35659 

  Interquartile Range 0.14152 

 
 
 
 
 

Table 3.6.7: Mean of first-phase viral decay rates of dose 3 group for the biphasic model 
 
 

Basic Statistical Measures 

Location Variability 

Mean 0.109193 Std Deviation 0.08857 

Median 0.113465 Variance 0.00784 

Mode . Range 0.28308 

  Interquartile Range 0.14345 

 
 
 
 
 

Table 3.6.8: Mean of first-phase viral decay rates of dose 4 group for the biphasic model 
 
 

Basic Statistical Measures 

Location Variability 

Mean 0.022183 Std Deviation 0.07190 

Median 0.019937 Variance 0.00517 

Mode . Range 0.30368 

  Interquartile Range 0.05714 
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Table 3.7.1: Tukey's Studentized Range (HSD) Test for the actual treatment group in the single-phase model 
 
 

Comparisons significant at the 0.05 level are indicated by ***. 

atrtgrp 
Comparison 

Difference 
Between 

Means 
Simultaneous 95% 
Confidence Limits  

dose 2 - dose 3 0.01995 -0.01690 0.05681  

dose 2 - dose 1 0.03075 -0.00637 0.06788  

dose 2 - contro 0.15171 0.11133 0.19208 *** 

dose 3 - dose 2 -0.01995 -0.05681 0.01690  

dose 3 - dose 1 0.01080 -0.02598 0.04759  

dose 3 - contro 0.13175 0.09168 0.17182 *** 

dose 1 - dose 2 -0.03075 -0.06788 0.00637  

dose 1 - dose 3 -0.01080 -0.04759 0.02598  

dose 1 - contro 0.12095 0.08064 0.16127 *** 

contro - dose 2 -0.15171 -0.19208 -0.11133 *** 

contro - dose 3 -0.13175 -0.17182 -0.09168 *** 

contro - dose 1 -0.12095 -0.16127 -0.08064 *** 

 
 
 
 
 
 

Table 3.7.2: Tukey's Studentized Range (HSD) Test for the actual treatment group in the biphasic model 
 

Comparisons significant at the 0.05 level are indicated by ***. 

atrtgrp 
Comparison 

Difference 
Between 

Means 
Simultaneous 95% 
Confidence Limits  

dose 2 - dose 1 0.01547 -0.01296 0.04391  

dose 2 - dose 3 0.01999 -0.00824 0.04822  

dose 2 - contro 0.10704 0.07611 0.13797 *** 

dose 1 - dose 2 -0.01547 -0.04391 0.01296  

dose 1 - dose 3 0.00452 -0.02365 0.03269  

dose 1 - contro 0.09157 0.06069 0.12245 *** 

dose 3 - dose 2 -0.01999 -0.04822 0.00824  

dose 3 - dose 1 -0.00452 -0.03269 0.02365  

dose 3 - contro 0.08705 0.05636 0.11774 *** 

contro - dose 2 -0.10704 -0.13797 -0.07611 *** 

contro - dose 1 -0.09157 -0.12245 -0.06069 *** 

contro - dose 3 -0.08705 -0.11774 -0.05636 *** 
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Table 3.8.1: Type III sums of squares table from GLM analysis for the single-phase model 
 
 

Source DF Type III SS Mean Square F Value Pr > F 

AGE 31 0.21076183 0.00679877 0.59 0.9463 

SEX 1 0.00224574 0.00224574 0.19 0.6606 

RACE 2 0.02524211 0.01262105 1.09 0.3412 

CD4__BLC 1 0.02114137 0.02114137 1.83 0.1806 

LBORRLG 1 0.02894062 0.02894062 2.51 0.1182 

atrtgrp 3 0.13199133 0.04399711 3.81 0.0140 

MULPICD2 1 0.11675334 0.11675334 10.11 0.0023 

ACT20GCD 1 0.01048424 0.01048424 0.91 0.3441 

 
 
 
 
 

Table 3.8.2: Type III sums of squares table from GLM analysis for the biphasic model 
 
 

Source DF Type III SS Mean Square F Value Pr > F 

AGE 31 0.09743283 0.00314299 0.56 0.9624 

SEX 1 0.00065033 0.00065033 0.12 0.7355 

RACE 2 0.00933769 0.00466885 0.83 0.4421 

CD4__BLC 1 0.01232009 0.01232009 2.18 0.1445 

LBORRLG 1 0.04677750 0.04677750 8.28 0.0054 

atrtgrp 3 0.06022835 0.02007612 3.55 0.0190 

MULPICD2 1 0.05811690 0.05811690 10.29 0.0021 

ACT20GCD 1 0.00364671 0.00364671 0.65 0.4246 

 
 

 

 

 

 
Table 3.9.1: Spearman Correlation Coefficients table of first-phase viral decay rates  

and log10 baseline RNA for the single-phase model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Spearman Correlation Coefficients, N = 107 
Prob > |r| under H0: Rho=0 

 Pred LBORRLG 

Pred 
 

1.00000 
 

-0.29217 
0.0023 

LBORRLG 
 

-0.29217 
0.0023 

1.00000 
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Table 3.9.2: Spearman Correlation Coefficients table of first-phase viral decay rates  
and log10 baseline RNA for the biphasic model 

 
 

Spearman Correlation Coefficients, N = 107 
Prob > |r| under H0: Rho=0 

 Pred LBORRLG 

Pred 
 

1.00000 
 

-0.41440 
<.0001 

LBORRLG 
 

-0.41440 
<.0001 

1.00000 
 

 
 
 
 
 
 

Table 3.10.1: Spearman Correlation Coefficients table of first-phase viral decay rates  
and CD4__BLC for the single-phase model 

 
 

Spearman Correlation Coefficients, N = 107 
Prob > |r| under H0: Rho=0 

 Pred CD4__BLC 

Pred 
 

1.00000 
 

0.42794 
<.0001 

CD4__BLC 
 

0.42794 
<.0001 

1.00000 
 

 
 
 
 
 
 

Table 3.10.2: Spearman Correlation Coefficients table of first-phase viral decay rates  
and CD4__BLC for the biphasic model 

 
 

Spearman Correlation Coefficients, N = 107 
Prob > |r| under H0: Rho=0 

 Pred CD4__BLC 

Pred 
 

1.00000 
 

0.48238 
<.0001 

CD4__BLC 
 

0.48238 
<.0001 

1.00000 
 

 
 
 
 
 
 

Table 3.11.1: Spearman Correlation Coefficients table of first-phase viral decay rates  
                            and week 1 log10 RNA change from baseline for the single-phase model 

 
 

Spearman Correlation Coefficients, N = 94 
Prob > |r| under H0: Rho=0 

 Pred LBORLGCW 

Pred 
 

1.00000 
 

0.86714 
<.0001 

LBORLGCW 
 

0.86714 
<.0001 

1.00000 
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Table 3.11.2: Spearman Correlation Coefficients table of first-phase viral decay rates 
                     and week 1 log10 RNA change from baseline for the biphasic model 

 

Spearman Correlation Coefficients, N = 94 
Prob > |r| under H0: Rho=0 

 Pred LBORLGCW 

Pred 
 

1.00000 
 

0.85162 
<.0001 

LBORLGCW 
 

0.85162 
<.0001 

1.00000 
 

 
 
 
 
 
 

Table 3.12.1: Spearman Correlation Coefficients table for the single-phase model 
 

Spearman Correlation Coefficients 
Prob > |r| under H0: Rho=0 
Number of Observations 

 Pred LBORLGCW1_S 

Pred 
 

1.00000 
 

94 

0.41533 
0.0003 

72 

LBORLGCW1_S 
 

0.41533 
0.0003 

72 

1.00000 
 

80 

 
 
 
 
 

Table 3.12.2: Spearman Correlation Coefficients table for the biphasic model 
 

Spearman Correlation Coefficients 
Prob > |r| under H0: Rho=0 
Number of Observations 

 Pred LBORLGCW1_S 

Pred 
 

1.00000 
 

94 

0.34594 
0.0029 

72 

LBORLGCW1_S 
 

0.34594 
0.0029 

72 

1.00000 
 

80 

 
 
 
 
 

Table 3.12.3: Spearman Correlation Coefficients table for the single-phase model 
 

Spearman Correlation Coefficients 
Prob > |r| under H0: Rho=0 
Number of Observations 

 Pred LBORLGCW1_S 

Pred 
 

1.00000 
 

94 

0.43161 
0.0022 

48 

LBORLGCW1_S 
 

0.43161 
0.0022 

48 

1.00000 
 

51 

 



 

  

82 

 
Table 3.12.4: Spearman Correlation Coefficients table for the biphasic model 

 

Spearman Correlation Coefficients 
Prob > |r| under H0: Rho=0 
Number of Observations 

 Pred LBORLGCW1_S 

Pred 
 

1.00000 
 

94 

0.39416 
0.0056 

48 

LBORLGCW1_S 
 

0.39416 
0.0056 

48 

1.00000 
 

51 

 
 

 
 
 

Table 3.13.1: Spearman Correlation Coefficients table for the single-phase model 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Table 3.13.2: Spearman Correlation Coefficients table for the biphasic model 
 

Spearman Correlation Coefficients 
Prob > |r| under H0: Rho=0 
Number of Observations 

 LBORLGCW_S LBORLGCW1_S 

LBORLGCW_S 
 

1.00000 
 

94 

0.44488 
<.0001 

72 

LBORLGCW1_S 
 

0.44488 
<.0001 

72 

1.00000 
 

80 

 
 
 
 

Table 3.13.3: Spearman Correlation Coefficients table for the single-phase model 
 

Spearman Correlation Coefficients 
Prob > |r| under H0: Rho=0 
Number of Observations 

 LBORLGCW_S LBORLGCW1_S 

LBORLGCW_S 
 

1.00000 
 

94 

0.41967 
0.0030 

48 

LBORLGCW1_S 
 

0.41967 
0.0030 

48 

1.00000 
 

51 

 

Spearman Correlation Coefficients 
Prob > |r| under H0: Rho=0 
Number of Observations 

 LBORLGCW_S LBORLGCW1_S 

LBORLGCW_S 
 

1.00000 
 

94 

0.44488 
<.0001 

72 

LBORLGCW1_S 
 

0.44488 
<.0001 

72 

1.00000 
 

80 
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Table 3.13.4: Spearman Correlation Coefficients table for the biphasic model 
 

Spearman Correlation Coefficients 
Prob > |r| under H0: Rho=0 
Number of Observations 

 LBORLGCW_S LBORLGCW1_S 

LBORLGCW_S 
 

1.00000 
 

94 

0.41967 
0.0030 

48 

LBORLGCW1_S 
 

0.41967 
0.0030 

48 

1.00000 
 

51 

 
 
 
 

Table 3.14.1: Mean of viral load at 20 week – higher first-phase viral decay group  
for the single-model 

 

Moments 

N 44 Sum Weights 44 

Mean 2.74250455 Sum Observations 120.6702 

Std Deviation 1.17205848 Variance 1.37372108 

Skewness 0.86309756 Kurtosis -0.0578427 

Uncorrected SS 390.008578 Corrected SS 59.0700063 

Coeff Variation 42.7367926 Std Error Mean 0.17669446 

 
 
 
 
 

Table 3.14.2: Mean of viral load at 20 week – lower first-phase viral decay group  
for the single-model 

 

Moments 

N 36 Sum Weights 36 

Mean 3.70135 Sum Observations 133.2486 

Std Deviation 1.16427539 Variance 1.35553719 

Skewness -0.3718013 Kurtosis -0.6894897 

Uncorrected SS 540.643507 Corrected SS 47.4438016 

Coeff Variation 31.4554255 Std Error Mean 0.1940459 

 
 
 

 
Table 3.14.3: Mean of viral load at 24 week – higher first-phase viral decay group  

for the single-model 
 

Moments 

N 29 Sum Weights 29 

Mean 2.55901034 Sum Observations 74.2113 

Std Deviation 0.99615883 Variance 0.99233242 

Skewness 0.71551408 Kurtosis -0.8477826 

Uncorrected SS 217.692792 Corrected SS 27.7853077 

Coeff Variation 38.9275031 Std Error Mean 0.18498205 



 

  

84 

 
 
 

Table 3.14.4: Mean of viral load at 24 week – lower first-phase viral decay group  
for the single-model 

 

Moments 

N 22 Sum Weights 22 

Mean 3.51029091 Sum Observations 77.2264 

Std Deviation 1.31322081 Variance 1.72454888 

Skewness -0.2112281 Kurtosis -1.4838382 

Uncorrected SS 307.302656 Corrected SS 36.2155265 

Coeff Variation 37.4105976 Std Error Mean 0.27997962 

 
 
 
 
 

Table 3.14.5: Mean of viral load at 20 week – higher first-phase viral decay group  
for the biphasic model 

 

Basic Statistical Measures 

Location Variability 

Mean 2.721598 Std Deviation 1.16585 

Median 2.152300 Variance 1.35920 

Mode 1.690200 Range 4.51390 

  Interquartile Range 2.17430 

 
 
 
 
 

Table 3.14.6: Mean of viral load at 20 week – lower first-phase viral decay group  
for the biphasic model 

 

Basic Statistical Measures 

Location Variability 

Mean 3.818294 Std Deviation 1.10222 

Median 3.944500 Variance 1.21489 

Mode 1.690200 Range 3.98470 

  Interquartile Range 1.30390 

 
 
 
 

Table 3.14.7: Mean of viral load at 24 week – higher first-phase viral decay group  
for the biphasic model 

 

Basic Statistical Measures 

Location Variability 

Mean 2.502958 Std Deviation 0.98654 

Median 1.690200 Variance 0.97325 

Mode 1.690200 Range 3.00260 

  Interquartile Range 1.57930 
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Table 3.14.8: Mean of viral load at 24 week – lower first-phase viral decay group  
for the biphasic model 

 

Basic Statistical Measures 

Location Variability 

Mean 3.692300 Std Deviation 1.23390 

Median 4.039300 Variance 1.52250 

Mode 1.690200 Range 3.67340 

  Interquartile Range 2.00860 

 
 
 

 
 

Table 3.15.1: Wilcoxon Scores (Rank Sums) table for viral decay rates and long-term response  
for the single-model 

 

Wilcoxon Scores (Rank Sums) for Variable Pred 
Classified by Variable P400_TLO 

P400_TLO N 
Sum of 
Scores 

Expected 
Under H0 

Std Dev 
Under H0 

Mean 
Score 

0 81 3762.0 4374.0 137.673527 46.444444 

1 26 2016.0 1404.0 137.673527 77.538462 

 
 
 
 
 

Table 3.15.2: Wilcoxon Scores (Rank Sums) test for viral decay rates and long-term response  
table for the single-phase model 

 

Wilcoxon Two-Sample Test 

Statistic (S) 2016.0000 

  

Normal Approximation  

Z 4.4417 

One-Sided Pr >  Z <.0001 

Two-Sided Pr > |Z| <.0001 

  

t Approximation  

One-Sided Pr >  Z <.0001 

Two-Sided Pr > |Z| <.0001 

  

Exact Test  

One-Sided Pr >=  S 1.863E-06 

Two-Sided Pr >= |S - Mean| 3.726E-06 

Z includes a continuity correction of 0.5. 
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Table 3.15.3: Kruskal-Wallis test for viral decay rates and long-term response  

for the single-phase model 
 

Kruskal-Wallis Test 

Chi-Square 19.7607 

DF 1 

Pr > Chi-Square <.0001 

 
 
 
 

Table 3.15.4: Wilcoxon Scores (Rank Sums) test for viral decay rates and long-term response  
for the biphasic model 

 

Wilcoxon Scores (Rank Sums) for Variable Pred 
Classified by Variable P400_TLO 

P400_TLO N 
Sum of 
Scores 

Expected 
Under H0 

Std Dev 
Under H0 

Mean 
Score 

0 81 3729.0 4374.0 137.673527 46.037037 

1 26 2049.0 1404.0 137.673527 78.807692 

 
 
 
 
 

Table 3.15.5: Wilcoxon Scores (Rank Sums) test for viral decay rates and long-term response  
for the biphasic model 

 

Wilcoxon Two-Sample Test 

Statistic (S) 2049.0000 

  

Normal Approximation  

Z 4.6814 

One-Sided Pr >  Z <.0001 

Two-Sided Pr > |Z| <.0001 

  

t Approximation  

One-Sided Pr >  Z <.0001 

Two-Sided Pr > |Z| <.0001 

  

Exact Test  

One-Sided Pr >=  S 4.639E-07 

Two-Sided Pr >= |S - Mean| 9.278E-07 

Z includes a continuity correction of 0.5. 

 
 
 
 

Table 3.15.6: Kruskal-Wallis test for viral decay rates and long-term response  
for the biphasic model 

 

Kruskal-Wallis Test 

Chi-Square 21.9492 

DF 1 

Pr > Chi-Square <.0001 
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Table 3.16.1: Confusion Matrix for the single-phase model 

 
 Responder Non-responder Total 

Correct 20 51 71 

False 30 6 36 

Total 50 57 107 

 

 
Table 3.16.2: Confusion Matrix for the biphasic model 

 
 Responder Non-responder Total 

Correct 21 49 70 

False 32 5 37 

Total 53 54 107 

 
 

 
 

Table 3.17.1: Wilcoxon Scores (Rank Sums) table for week 1 virus load reduction and long-term response  
for the single-phase model 

 

Wilcoxon Scores (Rank Sums) for Variable LBORLGCW_S 
Classified by Variable P400_TLO 

P400_TLO N 
Sum of 
Scores 

Expected 
Under H0 

Std Dev 
Under H0 

Mean 
Score 

0 70 2864.0 3325.0 115.325626 40.914286 

1 24 1601.0 1140.0 115.325626 66.708333 

 
 
 
 

Table 3.17.2: Wilcoxon Scores (Rank Sums) test for week 1 virus load reduction and long-term response  
for the single-phase model 

 

Wilcoxon Two-Sample Test 

Statistic (S) 1601.0000 

  

Normal Approximation  

Z 3.9930 

One-Sided Pr >  Z <.0001 

Two-Sided Pr > |Z| <.0001 

  

t Approximation  

One-Sided Pr >  Z <.0001 

Two-Sided Pr > |Z| 0.0001 

  

Exact Test  

One-Sided Pr >=  S 1.813E-05 

Two-Sided Pr >= |S - Mean| 3.626E-05 

Z includes a continuity correction of 0.5. 
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Table 3.17.3: Kruskal-Wallis test for week 1 virus load reduction and long-term response  
for the single-phase model 

 

Kruskal-Wallis Test 

Chi-Square 15.9790 

DF 1 

Pr > Chi-Square <.0001 

 
 
 
 

Table 3.17.4: Wilcoxon Scores (Rank Sums) table for week 1 virus load reduction and long-term response  
for the biphasic model 

 

Wilcoxon Scores (Rank Sums) for Variable LBORLGCW_S 
Classified by Variable P400_TLO 

P400_TLO N 
Sum of 
Scores 

Expected 
Under H0 

Std Dev 
Under H0 

Mean 
Score 

0 70 2864.0 3325.0 115.325626 40.914286 

1 24 1601.0 1140.0 115.325626 66.708333 

 
 

 
 

Table 3.17.5: Wilcoxon Scores (Rank Sums) test for week 1 virus load reduction and long-term response  
for the biphasic model 

 

Wilcoxon Two-Sample Test 

Statistic (S) 1601.0000 

  

Normal Approximation  

Z 3.9930 

One-Sided Pr >  Z <.0001 

Two-Sided Pr > |Z| <.0001 

  

t Approximation  

One-Sided Pr >  Z <.0001 

Two-Sided Pr > |Z| 0.0001 

  

Exact Test  

One-Sided Pr >=  S 1.813E-05 

Two-Sided Pr >= |S - Mean| 3.626E-05 

Z includes a continuity correction of 0.5. 

 
 
 
 

Table 3.17.6: Kruskal-Wallis test for week 1 virus load reduction and long-term response  
for the biphasic model 

 

Kruskal-Wallis Test 

Chi-Square 15.9790 

DF 1 

Pr > Chi-Square <.0001 
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Table 3.18.1: Maximum Likelihood Analysis of Variance table for the single-phase model 
 

Maximum Likelihood Analysis of Variance 

Source DF Chi-Square Pr > ChiSq 

Intercept 1 20.64 <.0001 

atrtgrp 3 4.42 0.2192 

    Likelihood Ratio 0 . . 

 
 
 
 

Table 3.18.2: Analysis of Maximum Likelihood Estimates for the single-phase model 
 

Analysis of Maximum Likelihood Estimates 

Parameter  Estimate 
Standard 

Error 
Chi- 

Square Pr > ChiSq 

Intercept  1.4183 0.3121 20.64 <.0001 

atrtgrp contro 1.6262 0.7882 4.26 0.0391 

dose 1 -0.5020 0.4300 1.36 0.2431 

dose 2 -0.6711 0.4234 2.51 0.1130 

 
 
 
 

Table 3.18.3: Maximum Likelihood Analysis of Variance table for the biphasic model 
 

Maximum Likelihood Analysis of Variance 

Source DF Chi-Square Pr > ChiSq 

Intercept 1 20.64 <.0001 

atrtgrp 3 4.42 0.2192 

    Likelihood Ratio 0 . . 

 
 
 
 

Table 3.18.4: Analysis of Maximum Likelihood Estimates for the biphasic model 
 

Analysis of Maximum Likelihood Estimates 

Parameter  Estimate 
Standard 

Error 
Chi- 

Square Pr > ChiSq 

Intercept  1.4183 0.3121 20.64 <.0001 

atrtgrp contro 1.6262 0.7882 4.26 0.0391 

dose 1 -0.5020 0.4300 1.36 0.2431 

dose 2 -0.6711 0.4234 2.51 0.1130 
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APPENDIX 2 

 
< SAS code for the analyses > 

/* Dataset1 Importing */ 

Proc IMPORT OUT= viral 

            DataFILE= "C:\thesis\viral.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="viral$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

 

/* Dataset2 Importing */ 

Proc IMPORT OUT= base_cov 

            DataFILE= "C:\thesis\base_cov.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="base_cov$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

 

/* Dataset3 Importing */ 

Proc IMPORT OUT= prop 

            DataFILE= "C:\thesis\prop.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="prop$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

 

/* Making merged dataset replicating subject observations*/ 

Data test;                                                                                                                               

Merge  base_cov(keep= MULPICD2 CD4__BLC CD4__BLQ ACT20GCD subjid)  

       prop(keep= P400_OBS P400_TLO r400_tlc subjid)  

       viral;                                                               

by subjid;                                                                                                                               

Run;                                                                                                                                     

 

/* Age grouping */ 

Data test; 

Set test; 

If (AGE < 20) then AGE1 = 1;  

If (AGE >= 30 AND AGE =< 34) then AGE1 = 2;  

If (AGE >= 35 AND AGE =< 39) then AGE1 = 3;  

If (AGE >= 40 AND AGE =< 44) then AGE1 = 4;  

If (AGE >= 45 AND AGE =< 49) then AGE1 = 5;  

If (AGE >= 50 AND AGE =< 59) then AGE1 = 6;  

If (AGE >= 60) then AGE1 = 7;  

Run; 

 

 

/* Data manipulation for excluding missing cases of response variable  

   and dropping pre-treatment measurements */ 

Data test1; 

Set test; 

If (LBACTDY < 0) then delete;  

If (KEEPLOD < 1) then delete;  

If (LBEVFLG < 1) then delete; 

Where ATTYPE= 'Treatment';  

Run; 
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/* Data manipulation for excluding observations over 24 weeks */ 

Data Data24weeks; 

Set test1; 

If LBACTDY > 170 then delete;  

Run; 

 

 

/* Data excluding who had no initial viral decline (seriously) */ 

Data test2; 

Set Data24weeks; 

If (SUBJID=61) then delete;  

If (SUBJID=72) then delete;  

If (SUBJID=223) then delete;  

If (SUBJID=512) then delete;  

If (SUBJID=1249) then delete;  

If (SUBJID=1300) then delete;  

If (SUBJID=1530) then delete;  

If (SUBJID=1665) then delete;  

If (SUBJID=1817) then delete;  

Run; 

 

 

/* Data manipulation including Data by 16 days(2 weeks) */ 

Data Data16days; 

Set test2; 

If LBACTDY > 16 then delete;  

Run; 

 

 

ods rtf; 

/* A single-phase nonlinear decay Model using nlmixed 

   to drive viral decay rates for 16 days (2 weeks)*/ 

/* Getting the initial values without fitting random effects using nlin */ 

Proc nlin Data=data16days; 

Parms P1=1 d1=1; 

Model LBORRLG = log10(exp(p1)*exp(-d1*LBACTDY)); 

Run; 

 

/* Fitting nlmixed with one random effect to get the initial parameter values */ 

Proc nlmixed Data=data16days; 

Parms P1=10.488 d1=0.169 error=1.089 varcomp11=1;  

u1=d1+b1; 

expected = log10(exp(P1)*exp(-u1*LBACTDY)); 

Model LBORRLG ~ normal(expected, error**2);  

      Random b1 ~normal([0], [varcomp11]) subject=SUBJID; 

      Predict u1 out= ratepredic1_1_0; 

Run; 

 

/* Fitting nlmixed with full random effect of a single-phase model using the initial 

values */ 

 Proc nlmixed Data=Data16days; 

 Parms P1=10.476  

       d1=0.167 

       error=0.541 

       varcomp11=0.05  

       varcomp12=0.01 to 1 by 0.01 

       varcomp22=0.01 to 1 by 0.01;  

u1=d1+b1; 

u2=P1+b2; 

expected = log10(exp(u2)*exp(-u1*LBACTDY)); 

Model LBORRLG ~ normal(expected, error**2);  

      Random b1 b2 ~normal([0,0], [varcomp11,varcomp12,varcomp22]) subject=SUBJID; 

      Predict u1 out= ratepredic1_1; 

      Predict u2 out= ratepredic1_2; 

Run;  

ods rtf close; 

 

 

/* A bi-phasic nonlinear decay Model using nlmixed 

   to drive viral decay rates by 16 days (2 weeks) */ 

/* Getting the initial values without fitting random effects using nlin */ 

Proc nlin Data=data16days; 

Parms P1=10.476 P2=1 d1=0.169 d2=1; 

Model LBORRLG = log10(exp(P1)*exp(-d1*LBACTDY)+exp(P2)*exp(-d2*LBACTDY)); 

Run;  
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/* Data manipulation to get initial values for nlmixed model */ 

data Data16days1; 

set Data16days; 

where atrtgrp='dose 1' or atrtgrp='dose 2' or atrtgrp='dose 3'; 

run; 

/* Fitting nlmixed with two random effects of biphasic model using the initial values from 

nlin */ 

ods rtf; 

Proc nlmixed Data=Data16days1; 

Parms P1=9.024 P2=11.153 d1=0.054 d2=1 error=0.509 varcomp11=1.08 varcomp13=1 

varcomp33=1;  

u1=d1+b1; 

u3=P1+b3; 

expected = log10(exp(u3)*exp(-u1*LBACTDY)+exp(P2)*exp(-d2*LBACTDY)); 

Model LBORRLG ~ normal(expected, error**2);  

      Random b1 b3 ~normal([0,0],  

      [varcomp11,varcomp13,varcomp33]) subject=SUBJID; 

      Predict u1 out= ratepredic2_1_0; 

   Predict u3 out= ratepredic2_3_0; 

Run;  

ods rtf close; 

/* Fitting nlmixed with three random effects but without covariance of biphasic model  

   using the estimated values from the previous nlmixed model */ 

ods rtf; 

Proc nlmixed Data=data16days;   

Parms P1=10.1 P2=9.62 d1=0.169 d2=0.885 error=0.2868 

      varcomp11=0.019  

      varcomp22=0.01 to 1 by 0.01 

      varcomp33=4.77; 

u1=d1+b1; 

u2=d2+b2; 

u3=P1+b3; 

expected = log10(exp(u3)*exp(-u1*LBACTDY)+exp(P2)*exp(-u2*LBACTDY)); 

Model LBORRLG ~ normal(expected, error**2);  

      Random b1 b2 b3 ~normal([0,0,0],  

      [varcomp11,0 ,varcomp22 ,0 ,0 ,varcomp33]) subject=SUBJID; 

      Predict u1 out= ratepredic2_1_1_0; 

   Predict u2 out= ratepredic2_2_1_0; 

      Predict u3 out= ratepredic2_3_3_0; 

Run;  

ods rtf close; 

/* Fitting nlmixed with three random effect and covariances of biphasic model  

   using the estimated values from the previous nlmixed model */ 

ods rtf; 

Proc nlmixed Data=data16days;   

Parms P1=10.1 P2=9.62 d1=0.169 d2=0.885 error=0.2868 

      varcomp11=0.019 

      varcomp22=0.01 to 1 by 0.01 

      varcomp33=4.77 

      varcomp13=0.000001 

      varcomp23=0.000001 

      varcomp12=0.000001; 

u1=d1+b1; 

u2=d2+b2; 

u3=P1+b3; 

expected = log10(exp(u3)*exp(-u1*LBACTDY)+exp(P2)*exp(-u2*LBACTDY)); 

Model LBORRLG ~ normal(expected, error**2);  

      Random b1 b2 b3 ~normal([0,0,0],  

      [varcomp11,varcomp12,varcomp22,varcomp13,varcomp23,varcomp33]) subject=SUBJID; 

      Predict u1 out= ratepredic2_1_1; 

   Predict u2 out= ratepredic2_2_2; 

      Predict u3 out= ratepredic2_3_3; 

Run;  

ods rtf close; 

 

 

/* Changing into a numeric value */ 

Data RatePredic1_11; 

Set RatePredic1_1; 

If SEX='M' then SEX1=1;  

If SEX='F' then SEX1=2;  

If RACE='White - White/Caucasian/European Heritage' then RACE1=1; 

If RACE='White - Arabic/North African Heritage' then RACE1=1; 

If RACE='African American/African Heritage' then RACE1=2; 

If atrtgrp='dose 1' then atrtgrp1=1; 

If atrtgrp='dose 2' then atrtgrp1=2; 

If atrtgrp='dose 3' then atrtgrp1=3; 



 

  

93 

If atrtgrp='contro' then atrtgrp1=4; 

Run;   

 

/* Changing into a numeric value */ 

Data RatePredic2_11; 

Set RatePredic2_1_1; 

If SEX='M' then SEX1=1;  

If SEX='F' then SEX1=2;  

If RACE='White - White/Caucasian/European Heritage' then RACE1=1; 

If RACE='White - Arabic/North African Heritage' then RACE1=1; 

If RACE='African American/African Heritage' then RACE1=2; 

If atrtgrp='dose 1' then atrtgrp1=1; 

If atrtgrp='dose 2' then atrtgrp1=2; 

If atrtgrp='dose 3' then atrtgrp1=3; 

If atrtgrp='contro' then atrtgrp1=4; 

Run;   

 

 

/* Changing into a numeric value */ 

Data RatePredic2_22; 

Set RatePredic2_2_2; 

If SEX='M' then SEX1=1;  

If SEX='F' then SEX1=2;  

If RACE='White - White/Caucasian/European Heritage' then RACE1=1; 

If RACE='White - Arabic/North African Heritage' then RACE1=1; 

If RACE='African American/African Heritage' then RACE1=2; 

If atrtgrp='dose 1' then atrtgrp1=1; 

If atrtgrp='dose 2' then atrtgrp1=2; 

If atrtgrp='dose 3' then atrtgrp1=3; 

If atrtgrp='contro' then atrtgrp1=4; 

Run;   

 

 

/* Dataset4 Importing contains results of predicted d1,baseline RNA  

   for each subject from the single-phase model */ 

Proc IMPORT OUT= pred11 

            DataFILE= "C:\thesis2\pred11.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="Sheet1$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

 

 

/* Dataset5 Importing contains results of predicted d1,baseline RNA  

   for each subject from the biphasic model */ 

Proc IMPORT OUT= pred2_11 

            DataFILE= "C:\thesis2\pred2_11.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="Sheet1$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

 

/* Dataset6 Importing contains results of predicted d2,baseline RNA  

   for each subject from the biphasic model */ 

Proc IMPORT OUT= pred2_22 

            DataFILE= "C:\thesis2\pred2_22.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="Sheet1$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 
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/* Spearman's rank tests for initial viral decay rates(d1) and log10 baseline RNA  */ 

ods rtf; 

Proc corr data=Pred11 spearman plots; 

      var Pred LBORRLG; 

   run; 

Proc corr data=Pred2_11 spearman plots; 

      var Pred LBORRLG; 

   run; 

ods rtf close; 

 

 

/* Plot of initial viral decay rates(d1) and log10 baseline RNA  

   by actual treatment groups for the single-phase model */ 

ods rtf; 

TITLE height=10pt "r=-0.292, p<.0001"; 

Proc gplot Data=Pred11;  

      symbol v=dot h=0.5; 

      LABEL Pred='RNA decay rate,d1'; 

      LABEL LBORRLG='Log10 baseline RNA, copies/mL';  

      plot Pred * LBORRLG=ATRTGRP;  

   Run;  

/* Plot of initial viral decay rates(d1) and log10 baseline RNA  

   by actual treatment groups for the biphasic model */ 

TITLE height=10pt "r=-0.414, p<.0001"; 

Proc gplot Data=Pred2_11;  

      symbol v=dot h=0.5; 

      LABEL Pred='RNA decay rate,d1'; 

      LABEL LBORRLG='Log10 baseline RNA, copies/mL';  

      plot Pred * LBORRLG=ATRTGRP;  

   Run;  

ods rtf close; 

 

 

/* Dataset7 Importing contains results of predicted d1, week 1 log10 RNA change from 

baseline for each subject from the single-phase model */ 

Proc IMPORT OUT= pred11_change 

            DataFILE= "C:\thesis2\pred11_change.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="sheet1$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

 

/* Dataset8 Importing contains results of predicted d1, week 1 log10 RNA change from 

baseline for each subject from the biphasic model */ 

Proc IMPORT OUT= pred2_11_change 

            DataFILE= "C:\thesis2\pred2_11_change.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="sheet1$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

 

 

/* Spearman's rank tests for initial viral decay rates(d1) and week 1 log10 RNA change 

from baseline  */ 

ods rtf; 

Proc corr data=Pred11_change spearman plots; 

      var Pred LBORLGCW_S; 

   run; 

Proc corr data=Pred2_11_change spearman plots; 

      var Pred LBORLGCW_S; 

   run; 

ods rtf close; 

 

 

/* Dataset9 Importing contains results of week 20 log10 RNA change from baseline */ 

Proc IMPORT OUT= d20week 

            DataFILE= "C:\thesis2\d20week.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="sheet1$";  
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     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

 

/* Making merged dataset replicating subject observations */ 

Data Pred11_change_1;                                                                                                                               

Merge  d20week(keep= LBORLGCW1_S subjid)  

       Pred11_change;                                                               

by subjid;                                                                                                                               

Run;  

Data Pred2_11_change_1;                                                                                                                               

Merge  d20week(keep= LBORLGCW1_S subjid)  

       Pred2_11_change;                                                               

by subjid;                                                                                                                               

Run;  

 

/* Spearman's rank tests for week 1 log10 RNA change from baseline and week 20 log10 RNA 

change from baseline */ 

ods rtf; 

Proc corr data=Pred11_change_1 spearman plots; 

      var LBORLGCW_S LBORLGCW1_S; 

   run; 

Proc corr data=Pred2_11_change_1 spearman plots; 

      var LBORLGCW_S LBORLGCW1_S; 

   run; 

ods rtf close; 

 

 

/* Spearman's rank tests for initial viral decay rates and week 20 log10 RNA change from 

baseline */ 

ods rtf; 

Proc corr data=Pred11_change_1 spearman plots; 

      var pred LBORLGCW1_S; 

   run; 

Proc corr data=Pred2_11_change_1 spearman plots; 

      var Pred LBORLGCW1_S; 

   run; 

ods rtf close; 

 

/* Dataset10 Importing contains results of week 24 log10 RNA change from baseline */ 

Proc IMPORT OUT= d24week 

            DataFILE= "C:\thesis2\d24week.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="sheet1$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

 

/* Making merged dataset replicating subject observations */ 

Data Pred11_change_11;                                                                                                                               

Merge  d24week(keep= LBORLGCW1_S subjid)  

       Pred11_change;                                                               

by subjid;                                                                                                                               

Run;  

Data Pred2_11_change_11;                                                                                                                               

Merge  d24week(keep= LBORLGCW1_S subjid)  

       Pred2_11_change;                                                               

by subjid;                                                                                                                               

Run;  

 

/* Spearman's rank tests for week 1 log10 RNA change from baseline and week 24 log10 RNA 

change from baseline */ 

ods rtf; 

Proc corr data=Pred11_change_11 spearman plots; 

      var LBORLGCW_S LBORLGCW1_S; 

   run; 

Proc corr data=Pred2_11_change_11 spearman plots; 

      var LBORLGCW_S LBORLGCW1_S; 

   run; 

ods rtf close; 
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/* Spearman's rank tests for initial viral decay rates and week 24 log10 RNA change from 

baseline */ 

ods rtf; 

Proc corr data=Pred11_change_11 spearman plots; 

      var pred LBORLGCW1_S; 

   run; 

Proc corr data=Pred2_11_change_11 spearman plots; 

      var Pred LBORLGCW1_S; 

   run; 

ods rtf close; 

 

 

 

/* Plot of initial viral decay rates(d1) and week 1 log10 RNA change from baseline  

   by actual treatment groups for the single-phase model */ 

ods rtf; 

TITLE height=10pt "r=0.867, p<.0001"; 

Proc gplot Data=Pred11_change;  

      symbol v=dot h=0.5; 

      LABEL Pred='RNA decay rate,d1'; 

      LABEL LBORLGCW_S='Week 1 Log10 RNA change from baseline, copies/mL';  

      plot Pred * LBORLGCW_S=ATRTGRP;  

   Run;  

/* Plot of initial viral decay rates(d1) and week 1 log10 RNA change from baseline  

   by actual treatment groups for the biphasic model */ 

TITLE height=10pt "r=0.852, p<.0001"; 

Proc gplot Data=Pred2_11_change;  

      symbol v=dot h=0.5; 

      LABEL Pred='RNA decay rate,d1'; 

      LABEL LBORLGCW_S='Week 1 Log10 RNA change from baseline, copies/mL';  

      plot Pred * LBORLGCW_S=ATRTGRP;  

   Run;  

ods rtf close; 

 

 

 

/* Spearman's rank tests for the initial viral decay rates(d1) and CD4__BLC */ 

ods rtf; 

Proc corr data=Pred11 spearman plots; 

      var Pred CD4__BLC; 

   run; 

Proc corr data=Pred2_11 spearman plots; 

      var Pred CD4__BLC; 

   run; 

ods rtf close; 

 

 

ods rtf; 

/* ANOVA for age effect on d1 decay rates */ 

Proc anova data=pred11; 

class age; 

model pred=age; 

run; 

Proc anova data=pred2_11; 

class age; 

model pred=age; 

run; 

/* ANOVA for gender effect on d1 decay rates */ 

Proc anova data=pred11; 

class sex; 

model pred=sex; 

run; 

Proc anova data=pred2_11; 

class sex; 

model pred=sex; 

/* ANOVA for ethnicity effect on d1 decay rates */ 

Proc anova data=pred11; 

class race; 

model pred=race; 

run; 

Proc anova data=pred2_11; 

class race; 

model pred=race; 

run; 

/* ANOVA for actual treatment group effect on d1 decay rates */ 

Proc anova data=pred11; 

class atrtgrp; 
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model pred=atrtgrp; 

run; 

Proc anova data=pred2_11; 

class atrtgrp; 

model pred=atrtgrp; 

run; 

ods rtf close; 

 

 

 

/* A univariate regression analysis for actual treatment, age, gender, and ethnicity 

groups */ 

Proc reg data=pred11; 

model pred=atrtgrp1; run; 

Proc reg data=pred2_11; 

model pred=atrtgrp1; run; 

Proc reg data=pred11; 

model pred=AGE; run; 

Proc reg data=pred2_11; 

model pred=AGE; run; 

Proc reg data=pred11; 

model pred=SEX1; run; 

Proc reg data=pred2_11; 

model pred=SEX1; run; 

Proc reg data=pred11; 

model pred=RACE1; run; 

Proc reg data=pred2_11; 

model pred=RACE1; run; 

 

 

/* Npar1way for examining relationship between the initial decay rates and actual 

treatment group */ 

ods rtf;  

Proc npar1way wilcoxon data=Pred11; 

      class atrtgrp1 ; 

      var Pred; /* response variable */ 

   run; 

Proc npar1way wilcoxon data=Pred2_11; 

      class  atrtgrp1; 

      var Pred; /* response variable */ 

   run; 

ods rtf close;  

 

/* Mean of each actual treatment group */ 

Proc sort data=pred11; 

by atrtgrp1; run; 

ods rtf;  

Proc univariate data=pred11;  

var pred; 

by atrtgrp1; run; 

ods rtf close;  

 

Proc sort data=pred2_11; 

by atrtgrp1; run; 

ods rtf;  

Proc univariate data=pred2_11;  

var pred; 

by atrtgrp1; run; 

ods rtf close;  

 

 

/* GLM for examining relationship between the initial decay rates and actual treatment 

group */ 

ods rtf;  

Proc glm Data=Ratepredic1_11;  

      class SUBJID ATRTGRP;  

      Model Pred= ATRTGRP;  

      manova h=_all_ / /* printe printh */;  

      means ATRTGRP/CLDIfF bon tukey; 

   run;  

Proc glm Data=Ratepredic2_11;  

      class SUBJID ATRTGRP;  

      Model Pred= ATRTGRP;  

      manova h=_all_ / /* printe printh */;  

      means ATRTGRP/CLDIfF bon tukey; 

   Run; 

ods rtf close;  
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/* GLM for identifying baseline characteristics which are correlated with decay rates */ 

ods rtf;  

Proc glm Data=Pred11;  

      class SUBJID AGE SEX RACE ATRTGRP ACT20GCD MULPICD2 ;  

      Model Pred= AGE SEX RACE CD4__BLC LBORRLG ATRTGRP MULPICD2 ACT20GCD ;  

      manova h=_all_ / /* printe printh */;  

      means AGE SEX RACE ATRTGRP MULPICD2 ACT20GCD/CLDIfF tukey; 

   Run; 

Proc glm Data=Pred2_11;  

      class SUBJID AGE SEX RACE ATRTGRP ACT20GCD MULPICD2 ;  

      Model Pred= AGE SEX RACE CD4__BLC LBORRLG ATRTGRP MULPICD2 ACT20GCD ;  

      manova h=_all_ / /* printe printh */;  

      means AGE SEX RACE ATRTGRP MULPICD2 ACT20GCD/CLDIfF tukey; 

   Run; 

ods rtf close;  

 

 

/* Npar1way for examining whether the initial decay rates Predict long term response */ 

ods rtf;  

Proc npar1way wilcoxon data=Pred11; 

      class  P400_TLO; 

      var Pred; /* response variable */ 

      exact; 

   run; 

Proc npar1way wilcoxon data=Pred2_11; 

      class  P400_TLO; 

      var Pred; /* response variable */ 

      exact; 

   run; 

ods rtf close;  

 

Proc insight data=Pred11; run; 

Proc insight data=Pred2_11; run; 

Proc insight data=Pred2_22; run; 

 

 

/* Making merged dataset with the variable of week 20 viral load */ 

data pred11_a;                                                                                                                               

Merge  d20week(keep= LBORRLG1 subjid)  

       pred11;                                                               

by subjid;                                                                                                                               

Run;  

/* Subjects who have higher decay rates for the single-phase model */ 

Data Pred11_aa; 

set Pred11_a; 

if pred < 0.168 then delete; run; 

/* Subjects who have lower decay rates for the single-phase model */ 

Data Pred11_aaa; 

set Pred11_a; 

if pred >= 0.168 then delete; run; 

 

Proc insight data=Pred11_aa; run; 

Proc insight data=Pred11_aaa; run; 

 

/* Making merged dataset with the variable of week 24 viral load */ 

data pred11_b;                                                                                                                               

Merge  d24week(keep= LBORRLG1 subjid)  

       pred11;                                                               

by subjid;                                                                                                                               

Run;  

/* Subjects who have higher decay rates for the single-phase model */ 

Data Pred11_bb; 

set Pred11_b; 

if pred < 0.168 then delete; run; 

/* Subjects who have lower decay rates for the single-phase model */ 

Data Pred11_bbb; 

set Pred11_b; 

if pred >= 0.168 then delete; run; 

 

Proc insight data=Pred11_bb; run; 

Proc insight data=Pred11_bbb; run; 
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/* Making merged dataset with the variable of week 20 viral load */ 

data pred2_11_a;                                                                                                                               

Merge  d20week(keep= LBORRLG1 subjid)  

       pred2_11;                                                               

by subjid;                                                                                                                               

Run; 

/* Subjects who have higher decay rates for the biphasic model */ 

Data Pred2_11_aa; 

set Pred2_11_a; 

if pred < 0.097 then delete; run; 

/* Subjects who have lower decay rates for the biphasic model */ 

Data Pred2_11_aaa; 

set Pred2_11_a; 

if pred >= 0.097 then delete; run; 

 

Proc insight data=Pred2_11_aa; run; 

Proc insight data=Pred2_11_aaa; run; 

 

/* Making merged dataset with the variable of week 24 viral load */ 

data pred2_11_b;                                                                                                                               

Merge  d24week(keep= LBORRLG1 subjid)  

       pred2_11;                                                               

by subjid;                                                                                                                               

Run;  

/* Subjects who have higher decay rates for the biphasic model */ 

Data Pred2_11_bb; 

set Pred2_11_b; 

if pred < 0.097 then delete; run; 

/* Subjects who have lower decay rates for the biphasic model */ 

Data Pred2_11_bbb; 

set Pred2_11_b; 

if pred >= 0.097 then delete; run; 

 

Proc insight data=Pred2_11_bb; run; 

Proc insight data=Pred2_11_bbb; run; 

 

 

/* Mean of week 20/24 viral load */  

ods rtf;  

Proc univariate data=Pred11_aa; 

var LBORRLG1; run; 

Proc univariate data=Pred11_aaa; 

var LBORRLG1; run; 

Proc univariate data=Pred11_bb; 

var LBORRLG1; run; 

Proc univariate data=Pred11_bbb; 

var LBORRLG1; run; 

Proc univariate data=Pred2_11_aa; 

var LBORRLG1; run; 

Proc univariate data=Pred2_11_aaa; 

var LBORRLG1; run; 

Proc univariate data=Pred2_11_bb; 

var LBORRLG1; run; 

Proc univariate data=Pred2_11_bbb; 

var LBORRLG1; run; 

ods rtf close;  

 

/* Dataset11 Importing contains results of week 24 log10 RNA change from baseline */ 

Proc IMPORT OUT= Pred11_test222 

            DataFILE= "C:\thesis2\Pred11_test222.xls" 

            DBMS=EXCEL REPLACE; 

     SHEET="Pred11_test222$";  

     GETNAMES=YES; 

     MIXED=NO; 

     SCANTEXT=YES; 

     USEDATE=YES; 

     SCANTIME=YES; 

Run; 

/* Making merged dataset replicating subject observations */ 

data pred11_test2222;                                                                                                                               

Merge  pred11_test222(keep= LBORRLG2 subjid)  

       pred11_test333;                                                               

by subjid;                                                                                                                               

Run;  
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/* Confusion matrix for the initial decay rates and long-term response variable  

   for the single-phase model */ 

data Pred11_test; 

set pred11; 

predicted=0; 

if pred>=0.168 then predicted=1; 

run; 

data compare1; 

set pred11_test; 

correctnonresp=0; 

correctresp=0; 

falsenonresp=0; 

falseresp=0; 

if predicted=1 AND P400_TLO=1 then correctresp=1; 

if predicted=0 AND P400_TLO=0 then correctnonresp=1; 

if predicted=1 AND P400_TLO=0 then falseresp=1; 

if predicted=0 AND P400_TLO=1 then falsenonresp=1; 

run; 

Proc insight data=compare1; 

run; 

Proc freq data=compare1; 

tables correctresp correctnonresp falseresp falsenonresp/out=FreqCnt; 

run; 

 

 

/* Confusion matrix for the initial decay rates and long-term response variable  

   for the biphasic model */ 

data Pred2_11_test; 

set pred2_11; 

predicted=0; 

if pred>=0.097 then predicted=1; 

run; 

data compare2; 

set pred2_11_test; 

correctnonresp=0; 

correctresp=0; 

falsenonresp=0; 

falseresp=0; 

if predicted=1 AND P400_TLO=1 then correctresp=1; 

if predicted=0 AND P400_TLO=0 then correctnonresp=1; 

if predicted=1 AND P400_TLO=0 then falseresp=1; 

if predicted=0 AND P400_TLO=1 then falsenonresp=1; 

run; 

Proc insight data=compare2; 

run; 

Proc freq data=compare2; 

tables correctresp correctnonresp falseresp falsenonresp/out=FreqCnt; 

run; 

 

ods rtf;  

 

 

/* Npar1way for examining relationship between week 1 virus load reduction and long-term 

response  */ 

Proc npar1way wilcoxon data=Pred11_change; 

      class  P400_TLO; 

      var LBORLGCW_S; /* response variable */ 

      exact; 

   run; 

Proc npar1way wilcoxon data=Pred2_11_change; 

      class  P400_TLO; 

      var LBORLGCW_S; /* response variable */ 

      exact; 

   run; 

ods rtf close;  

 

 

/* The univariate logistic regression analyses for the long-term response  

   and actual treatment group */  

ods rtf;  

Proc catmod data=pred11; 

model P400_TLO=atrtgrp; 

run; 

Proc catmod data=pred2_11; 

model P400_TLO=atrtgrp; 

run; 

ods rtf close;  
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Proc insight data=Ratepredic1_11; run; 

Proc insight data=pred11; run; 

Proc insight data=pred2_11; run; 

Proc insight data=pred2_22; run; 

Proc insight data=Pred11_change; run; 

Proc insight data=Pred2_11_change; run; 

 

 

 

 

/* Graph Section */ 

ods rtf;  

/* Gplots 1-1 of viral load result for 7 randomly selected individual */ 

DATA data24weeks_1_1; /* New SAS data file name */ 

SET data24weeks; 

IF (SUBJID < 251) THEN DELETE;  

IF (SUBJID > 355) THEN DELETE;  

run; 

/* TITLE "Plot of Windowed original numeric result" */  

/* Proc gplot data=data24weeks_1;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRSNW='Windowed original N/R'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRSNW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run; */ 

/* TITLE "Plot of Windowed log10 original numeric result" */ 

Proc gplot data=data24weeks_1_1;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

/* TITLE "Plot of Windowed change from baseline log 10" */ 

/* Proc gplot data= data24weeks_1;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORLGCW='W/C from baseline log 10'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORLGCW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run; */ 

 

/* Gplots 1-2 of viral load result for 7 randomly selected individual */ 

DATA data24weeks_1_2; /* New SAS data file name */ 

SET data24weeks; 

IF (SUBJID < 565) THEN DELETE;  

IF (SUBJID > 574) THEN DELETE;  

run; 

/* TITLE "Plot of Windowed log10 original numeric result" */ 

Proc gplot data=data24weeks_1_2;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

 

/* Gplots 1-3 of viral load result for 7 randomly selected individual */ 

DATA data24weeks_1_3; /* New SAS data file name */ 

SET data24weeks; 

IF (SUBJID < 831) THEN DELETE;  

IF (SUBJID > 1250) THEN DELETE;  

run; 

/* TITLE "Plot of Windowed log10 original numeric result" */ 

Proc gplot data=data24weeks_1_3;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

 

 

/* Gplots 1-4 of viral load result for 7 randomly selected individual */ 

DATA data24weeks_1_4; /* New SAS data file name */ 

SET data24weeks; 

IF (SUBJID < 1570) THEN DELETE;  

IF (SUBJID > 1661) THEN DELETE;  

run; 
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/* TITLE "Plot of Windowed log10 original numeric result" */ 

Proc gplot data=data24weeks_1_4;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

 

/* Gplots 1-5 of viral load result for 7 randomly selected individual */ 

DATA data24weeks_1_5; /* New SAS data file name */ 

SET data24weeks; 

IF (SUBJID < 1701) THEN DELETE;  

IF (SUBJID > 1832) THEN DELETE;  

run; 

/* TITLE "Plot of Windowed log10 original numeric result" */ 

Proc gplot data=data24weeks_1_5;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

 

/* Gplots 1-6 of viral load result for 7 randomly selected individual */ 

DATA data24weeks_1_6; /* New SAS data file name */ 

SET data24weeks; 

IF (SUBJID < 1890) THEN DELETE;  

IF (SUBJID > 2020) THEN DELETE;  

run; 

/* TITLE "Plot of Windowed log10 original numeric result" */ 

Proc gplot data=data24weeks_1_6;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

ods rtf close;  

 

 

/* Gplots 2 by responder/non responders */ 

ods rtf;  

DATA data24weeks_1_7; 

SET data24weeks; 

WHERE r400_tlc = '6'; 

run; 

TITLE height=12pt font=regular "(A) Responder at visit and censored thereafter";  

Proc gplot data=data24weeks_1_7;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

ods rtf close; 

DATA data24weeks_1_8; 

SET data24weeks; 

WHERE r400_tlc = '2.27'; 

run; 

TITLE height=12pt font=regular "(B) Protocol mandated switch from 150mg BCV/r";  

Proc gplot data=data24weeks_1_8;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

 

DATA data24weeks_1_9; 

SET data24weeks; 

WHERE r400_tlc = '3'; 

run; 

TITLE height=12pt font=regular "(C) Never achieved VL suppression by Week 24"; 

Proc gplot data=data24weeks_1_9;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  
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DATA data24weeks_1_10; 

SET data24weeks; 

WHERE r400_tlc = '5'; 

run; 

TITLE height=12pt font=regular "(D) Plasma HIV-1 RNA rebound"; 

Proc gplot data=data24weeks_1_10;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

 

DATA data24weeks_1_11; 

SET data24weeks; 

WHERE r400_tlc = '2.10'; 

run; 

TITLE height=12pt font=regular "(E) Insufficient viral load response"; 

Proc gplot data=data24weeks_1_11;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

ods rtf close; 

 

 

/* Gplots 3 for treatment group*/ 

ods rtf;  

DATA data24weeks_1_12; 

SET data24weeks; 

WHERE ATRTGRP = 'dose 1'; 

run; 

TITLE height=12pt font=regular "(A) dose 1 group"; 

Proc gplot data=data24weeks_1_12;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

 

DATA data24weeks_1_13; 

SET data24weeks; 

WHERE ATRTGRP = 'dose 2'; 

run; 

TITLE height=12pt font=regular "(B) dose 2 group"; 

Proc gplot data=data24weeks_1_13;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

 

DATA data24weeks_1_14; 

SET data24weeks; 

WHERE ATRTGRP = 'dose 3'; 

run; 

TITLE height=12pt font=regular "(C) dose 3 group"; 

Proc gplot data=data24weeks_1_14;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

 

DATA data24weeks_1_15; 

SET data24weeks; 

WHERE ATRTGRP = 'contro'; 

run; 

TITLE height=12pt font=regular "(D) control group"; 

Proc gplot data=data24weeks_1_15;  

      symbol i=line v=dot h=0.5;  

      LABEL LBORRLGW='log10 RNA'; 

      LABEL LBACTDY='Time(days) since start of treatment';  

      plot LBORRLGW * LBACTDY=SUBJID/NOLEGEND href=16 href=30 lhref=2;  

   run;  

ods rtf close;  

 


