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PERSPECTIVE
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S U M M A R Y

TB is one of the top 10 causes of death worldwide and

the leading cause of death from a single infectious

agent. Decreasing the length of time for TB treatment is

an important step towards the goal of reducing

mortality. Mechanistic in silico modelling can provide

us with the tools to explore gaps in our knowledge,

with the opportunity to model the complicated within-

host dynamics of the infection, and simulate new

treatment strategies. Significant insight has been gained

using this form of modelling when applied to other

diseases – much can be learned in infection research

from these advances.
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TB IS AN INFECTIOUS disease that accounts for

over one million deaths globally each year.1 This high

mortality rate occurs despite the fact that effective

treatments for TB have existed for decades. One

factor underpinning this mortality burden is thought

to be to be due to latent TB: the bacteria can exist in a

variety of cell states, and slowly growing or non-

replicating cells appear harder to kill.2 It is also a

reason why treatment is so long: the standard regimen

for drug-susceptible TB (DR-TB) requires adminis-

tration of multiple antibiotics for at least six months.

This duration is difficult for patients to manage, with

non-adherence leading to relapse and increasing the

risk of emergent antibiotic resistance.3 Given the

growing global threat of DR-TB, there is a critical

need to devise new treatment strategies of shorter

duration to improve patient adherence and thus

reduce the number of relapse cases and emergence

of antibiotic resistance.3

Licensing a new regimen is difficult and expensive.

With several new drugs now available many new

approaches exist,4 but it would be impossible to

perform clinical trials to explore all of them with no

guarantee of a successful result. The number of

possible combinations has been estimated to be 9.9 3

10 by Cicchese et al.5 The risk of an unsuccessful trial

can be mitigated by the predictive power of model-

ling—if we can use existing patient and biological

data to predict the novel regimens most likely to

succeed, we could prioritise investment for these
specific clinical trials.

Here we highlight the advances in mechanistic in
silico TB modelling. We outline the use and impact of
statistical modelling of trials data, and show how
mechanistic models can supplement these modelling
efforts. Mechanistic models that accurately reflect the
pathological and pharmacological conditions within
a patient during infection could make a significant
contribution to our understanding of TB.

MODELLING OF TB CLINICAL TRIAL DATA

The TB drug development process involves numerous
stages. Preclinical in vitro and animal experiments
form the traditional cornerstone of this process; the
bacteriological effect of single or combined antibiot-
ics is measured by the reduction in bacterial load
within in vitro models or harvested organs. Mathe-
matical analyses relating drug exposure to bacterio-
cidal effect are taken from these data and used to
estimate optimal pharmacokinetic-pharmacodynam-
ic parameters for each antibiotic. This work is key to
identifying potentially useful agents prior to use in
humans.

The main statistical approaches used to predict
outcome from Phase II TB treatment studies are based
on modelling bacterial clearance of Mycobacterium
tuberculosis, the causative agent of human TB, from
the sputum of patients with pulmonary disease. There
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is a strong rationale for this: surrogate markers of
treatment response should be biologically plausible
and killing of the infecting pathogen fulfils this
condition. Biomarkers should also have measurable
statistical properties, which can be achieved through
three methods: a comparison of methods describing
bacterial clearance in patients is presented in the
Table. Statistical approaches such as these are crucial
tools to directly chart patient responses to TB
treatment.

Limitations of current statistical models used for TB

When modelling bacterial load decline in sputum
samples, there are obvious limitations to using
statistical approaches. For example, it is possible that
the M. tuberculosis cells which are critical for
defining patient relapse are not be present in the
sputum. They may be sequestered to isolated sites
within the lung, such as the closed lesions described
by Canetti,12 and thus be undetectable in sputum
samples. Understanding the location of bacteria is
important: recent work has suggested that heteroge-
neous penetration by components of drug regimens
into pathological TB granulomas can result in
insufficient concentrations of some drugs for bacte-
rial elimination.13–15 This may have contributed to
relapse in the experimental arms of the REMoxTB
trial (a global Phase 3 clinical trial using a moxi-
floxacin-containing TB treatment regimen).16 For
non-sputum based markers (such as positron emis-
sion tomography/computed tomography scans), or
possible blood-based markers, statistical modelling
may help to provide insight to overcome these
limitations.

M. tuberculosis can exist in a state where many of
its metabolic processes are down-regulated, which is

often associated with the presence of a lipid body in
the mycobacterial cell.2 These cells are postulated to
be a cause of relapse in treated patients,17 as the
presence of lipid inclusions is associated with a
significant increase in the minimum inhibitory
concentration for all antibiotics. These bacteria are
thus more likely to survive treatment and cause future
relapse.2 Many possible influencing factors have been
postulated as the driving force behind this switch to a
slower or non-replicating state,18 but the exact
determinants are uncertain. As current TB statistical
models are typically based only on standard drug
susceptibility tests that measure lipid-poor cells
(which are phenotypically more susceptible to anti-
biotics), they do not account for the whole spectrum
of bacterial phenotypes.

Statistical models that are fitted to data are often
derived without reference to the underlying disease
mechanisms or biology of the infecting organism.
Thus, using these methods, less can be learned about
the pathological interactions of the disease. This is the
most important limitation of this modelling approach
as predictions will be limited by the data the model is
derived from. If we are to understand more about TB
disease dynamics we will need to build more effective
mechanistic within-host models, which capture the
spectrum of biological processes, to supplement
statistical models.

Mechanistic modelling can provide valuable insight

Mechanistic modelling allows us to model events as
they occur in vivo, through mathematical or compu-
tational means. The overall system is broken down
into constituent parts, each of which can be
simulated: overall system dynamics emerge as a result
of the combination of interactions of individual

Table A comparison of methods of describing bacterial clearance in patients used to test different regimens in Phase II trials

Method Description Examples

Culture conversion Patient sputum is tested using a TB detection
assay and the proportion of patients converting
from positive to negative is reported, with
greater conversion at 2 or 3 months intended
to indicate a more favourable treatment
outcome

� Smear microscopy
� Culture on a range of media
� Molecular bacterial load assay techniques6

Time to culture conversion Serial sputum collections are analysed through
laboratory detection techniques to indicate the
time until assay conversion for each patient

The cumulative probability of conversion on
different treatment regimens is calculated and
regimens with relatively higher probability of
clearing M. tuberculosis during a given time
interval can be prioritised

� Kaplan-Meier method7

� Cox proportional hazard regression8

� Parametric models such as Weibull regression9

Calculation of bacterial
elimination rates

Quantitative microbiology is performed on serial
sputum samples. Regimens with greater drop in
bacterial load in the first 8 weeks have been
proposed to carry the greatest treatment
shortening potential10

� Counting of CFUs on solid media
� Recording time to positivity of liquid culture
� Estimating CFU counts from the cycle threshold

of molecular tests
� Mathematical modelling, where linear or non-

linear equations are fit to longitudinal bacterial
load datasets11

CFU¼ colony-forming unit.
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components. It has been shown that even simple
dynamics can lead to complex behaviours and that
many processes found in nature can be approximated
by simple models of this type.19 Mechanistic models
represent a conceptual view of the complex real-
world systems they simulate, but can still provide
insight into those events and the parameters that
influence important outcomes. This abstract ap-
proach affords us the power to describe events even
in cases where laboratory diagnostic tools or treat-
ment monitoring tools are not available.

Developing mechanistic models can be a lengthy
process, but they are inexpensive to produce com-
pared to a clinical trial or in vitro experiment. They
can also produce results in hours rather than weeks or
years, can be run repeatedly (at no extra cost) and are
easily adapted to account for new data, which is one
of the major advantages over statistical modelling
techniques. Mechanistic models can also help us
improve our understanding of the mechanisms of
disease. Each parameter of the model must have a
biological basis and, thus, we can identify knowledge
gaps.

Challenges in mechanistic modelling

Systems biology approaches are built upon current
understanding of the disease, which raises an
important question: ‘‘What if current knowledge is
wrong? Will the models not be inherently flawed?’’ It
actually presents an additional opportunity for
mechanistic models: they can help to shed light on
aspects that are not understood fully and also allow
us to challenge current dogma. In this sense,
modelling allows us to gain insight into disease and
treatment dynamics, and provides evidence in sup-
port (or in opposition) of our beliefs about disease
mechanics. Close collaboration with experimentalists
and trialists is essential as model outcomes must be
viewed through the lens of clinical disease to test the
plausibility of predictions.

The relative paucity of knowledge regarding the
processes of a disease such as TB presents a challenge
when developing mechanistic models: if we don’t
know how the disease develops in the body, how do
we determine realistic parameter values for the
model? All parameters used within the model will
be based on biological or clinical experiments that are
inherently variable and can have wide confidence
intervals. It is therefore challenging to understand the
impact of different experimental definitions and
methods on the results produced. This can make it
hard to assign reliable parameter values, which
further highlights the importance of working closely
with experimentalist collaborators.

One way to mitigate this difficulty is through
sensitivity analysis, where multiple simulations are
run using a range of values across the parameter
space, and metrics can be used to determine how

uncertainty in the model parameters impacts on the
model outputs. A useful review on sensitivity analyses
is by Marino et al.20

Mechanistic modelling of in-host dynamics and
applications to TB

Mechanistic in silico models have long been applied
to the study of TB, but have predominantly focused
on the spread of TB epidemics.21 These models are
essential in determining effective intervention strate-
gies,22 but if we wish to reduce TB mortality,
mechanistic modelling that focuses on the in-host
dynamics must also be utilised to a greater extent so
that we make the gains seen within other fields. For
example, within-host mechanistic models in cancer
research have led to important insights into how the
spatial structure of cancer cells impacts the progres-
sion of the disease: it has been shown that a low
oxygen concentration in some regions can result in
cancer cells in those locations becoming more
resistant to chemotherapy. This is a relatively new
concept for TB, in comparison to other diseases, and
has only recently started to gain momentum (review
articles of in-host TB modelling have been recently
published23,24).

Mechanistic models can be applied to TB at
different scales of the disease. Lesional level models
simulate the interactions between host and bacteria
on a cellular scale, looking at the individual factors
that impact the development and progression of a
single lesion of infection. At a larger scale, whole-
organ or whole-body models can explore how
variance of biology within and between hosts can
impact both the disease and its treatment. Finally, at a
clinical trial level, entire simulated populations of
patients could be modelled and ‘virtual’ clinical trials
could be run to determine how likely the success of a
new regimen would be. These models could incorpo-
rate national-level data (such as HIV co-infection
rates and social influences) to create realistic popu-
lations. The Figure shows the various levels of in-host
TB simulation.

Over the past 15 years, Kirschner et al. have
created an Agent Based Model, called GranSim,
which describes the formation of a granuloma arising
from a TB infection.25 This initial model has been
expanded upon subsequently, introducing multiple
scales of modelling,26-28 including other organs.29

These models exploit the power of mechanistic
modelling to make predictions about the outcome
of infection and the impact of different dosing
strategies.30 Simulations from this model have
provided insights to aid understanding of the disease.
For example, they have shown that the anti-inflam-
matory cytokine interleukin-10 is a key determinant
of infection outcome, and experiments demonstrated
potential to harness it for immunotherapy.28

Data from in vitro experiments on lipid-body
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accumulation during TB infection has been integrated
into an individual-based model to investigate the
relative importance of bacterial cell state and location
of bacterial load in disease outcome.31 GranSim has
been extended, and recent models have begun to
investigate the disease process over the whole lung
and associated lymphatics.32 TB disease affects
various parts of the lung, with the initial primary
disease typically occurring at the basal regions of the
lung, whilst post-primary disease occurs at the
apices.33 The environment within the lung is hetero-
geneous, with differential oxygen tensions and blood
perfusion rates between the apex and the base.
Understanding how this impacts TB progression will
be important in understanding where bacteria reside
during infection and how to target bacteria in occult
locations. Pitcher et al.34 have developed a complex
network-based metapopulation model of the whole
lung to demonstrate how environmental differentials
can impact disease. This shows that even modest
heterogeneity within the lung can dramatically
impact bacterial load when latency is established.

These findings show the power of this modelling
approach. By incorporating the spatial locations of
cells within the lesions and across the lung, practical
clinical questions can be addressed and valuable
insight provided into the inner workings of TB
infection. These models could allow theories of
relapse causation to be explored, or to test potential
therapies aimed at preventing this unfavourable
outcome. As modelling capacity is developed, run-
ning virtual clinical trials to test drug regimens
becomes a more realistic option.

CONCLUSION

TB is an ancient disease requiring modern solutions.
Although greater amounts of data on the disease are
being produced, there remains a significant lack of
understanding into how the data correlates with the
underlying mechanics. If new, shorter treatment
regimens are to be developed, this knowledge gap
presents a major hurdle, which must be overcome.
Statistical modelling, such as modelling of clinical
trial data, is essential to determine the efficacy of a
trialled treatment regimen for TB, but may be limited
by some essential data that is not available with
current technology. Mechanistic models can reflect
the within-host dynamics that occur during infection
to bring new insight: these models can supplement
current statistical models to further understanding of
the disease and aid the development of new treatment
regimens.

The development of within-host mechanistic mod-
els of TB are invaluable tools alongside statistical
modelling as they allow us to investigate the factors
within the body that lead to phenomena such as
cavitation and disease transmission. Increased under-
standing resulting from these models will aid the
creation of treatment regimens that target these
important disease mechanisms. Within-host mecha-
nistic models for TB are making increasingly signif-
icant contributions to the field. Novel mathematical
and computational models have allowed the study of
spatial dimensions of infection and better under-
standing of how the environment within the body
impacts the progression of disease. These models

Figure The different biological scales of in silico modelling of in-host dynamics and their applications.
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enable multiple simulations to be run in a fraction of
the time it would take to test comparable scenarios in
the real world.

Currently, most work has focused on a lesional
scale and provided valuable insight into the factors
that contribute to individual lesions. However, during
an infection, many lesions can develop in a variety of
spatial locations within the lung. Therefore, larger
scale models to evaluate the whole lung and whole
body are needed, investigating how individual lesions
coalesce to form cavities for bacterial dissemination
between people. New work in this area is emerg-
ing.34,35 These models can then be expanded into the
simulated populations needed for a virtual clinical
trial. Doing so would create an invaluable tool for TB
research: the ability to de-risk large, expensive clinical
trials by excluding regimens that are unlikely to
succeed based on the model predictions. Greater use
of mechanistic models can provide us with better data
that will supplement our existing statistical models;
using these two complimentary fields to their full
potential could empower us with the tools we need to
finally eradicate TB.

The important findings that these models are
capable of producing has been highlighted but it
must be stressed that this can only be achieved with
close and continued collaboration between model-
lers, clinicians and experimentalists.
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R É S U M É

TB est l’une des 10 premières causes de mortalité dans le

monde et la cause principale de mortalité liée à un agent

infectieux unique. Raccourcir le traitement de la TB est

une étape importante vers l’objectif de réduire la

mortalité due à la maladie. Une modélisation

mécaniste in silico peut nous fournir les outils

permettant d’explorer les failles de nos connaissances,

avec l’opportunité de modéliser les dynamiques

complexes de l’infection à l’intérieur de l’hôte et

simuler de nouvelles stratégies de traitement. Nous

avons beaucoup appris de cette forme de modélisation

quand elle est appliquée aux autres maladies ; nous

avons beaucoup à apprendre en matière de recherche sur

l’infection grâce à ces avances.

R E S U M E N

La TB es una de las primeras 10 causas de muerte en

todo el mundo y la principal causa muerte por un

agente infeccioso único. Acortar el tratamiento de la

TB constituye un paso importante hacia la meta de

reducir la mortalidad por esta enfermedad. La

modelización mecanicista por computadora aporta

herramientas para examinar las lagunas del

conocimiento y ofrece la oportunidad de modelizar

las complejas dinámicas de la infección en el huésped y

simular nuevas estrategias terapéuticas. Se ha logrado

un progreso considerable en la comprensión de otras

enfermedades al aplicar este tipo de simulación; la

investigación de las infecciones podrı́a aprender mucho

con estos avances.
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