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Abstract: A simple yet efficient instrument-model refinement method for X-ray 

diffraction data is presented and discussed. The method is based on least-squares 

minimisation of differences between respective normalised (i.e. unit length) reciprocal 

vectors computed for adjacent frames. The approach was primarily designed to work with 

synchrotron X-ray Laue diffraction data collected for small-molecule single-crystal samples. 

We have shown the method works well on both simulated and experimental data. Tests 

performed on simulated data sets for small-molecule and protein crystals confirmed the 

validity of the proposed instrument-model refinement approach. Finally, examination of 

exemplary data sets collected at both BioCARS 14-ID-B (Advanced Photon Source) and ID09 

(European Synchrotron Radiation Facility) beamlines indicated that our approach is capable 

of retrieving goniometer parameters (e.g. detector distance or primary X-ray beam centre) 

reliably, even when their initial estimates are rather inaccurate. 

 

Synopsis: Diffractometer instrument-model refinement method for X-ray Laue data is 

presented and tested. It is shown the approach works well even when the initial geometrical 

parameters deviate significantly from the target values. 

 

Keywords: data processing, Laue diffraction, instrument model, refinement, X-ray 

diffraction 

  



2 

 

Table of Contents Graphic 

 

  



3 

 

1. Introduction 

Studies of short-lived light-induced excited states in crystals of small molecules are 

currently feasible almost exclusively at high-intensity X-ray sources, such as synchrotrons 

(Hatcher & Raithby, 2014, Coppens, 2011, Coppens et al., 2010). In this regard, the time-

resolved (TR) X-ray diffraction Laue method, applied originally for macromolecular samples 

(Ren et al., 1999, Hajdu et al., 1987), constitutes the most efficient approach, as it allows 

effectively single-pulse diffraction experiments thanks to a superb X-ray flux. However, it 

should be noted that data processing in the case of a polychromatic X-ray beam is 

considerably more difficult when compared to the monochromatic approach (Coppens & 

Fournier, 2015). Among other factors, this is caused by a number of wavelength-dependent 

corrections which have to be applied. Such problems can be significantly reduced by 

employing the so-called RATIO method (Coppens et al., 2009), in which the Laue experiment 

provides only light-ON to light-OFF reflection intensity ratios (𝐼ON/𝐼OFF). These in turn are 

further analysed so as to achieve electron-density photodifference maps and later structural 

models of transient species (Trzop et al., 2014, Jarzembska et al., 2014, Makal et al., 2012, 

Benedict et al., 2011, Jarzembska et al., 2019, Coppens et al., 2017, Vorontsov et al., 2010). 

Consequently, the data processing pipeline concentrates here on the integration of diffraction 

spots (Kalinowski et al., 2012, Szarejko et al., 2020) and crystal orientation-matrix 

determination. For small-molecule crystals the latter step is most efficiently achieved with the 

algorithm proposed by Kalinowski et al. (Kalinowski et al., 2011) and implemented in the 

LAUEUTIL software. Nevertheless, the success of this approach depends heavily on a proper 

description of the used goniometer geometry, described with a mathematical instrument 

model (IM) including parameters of the experimental setup (e.g. detector distance, detector 

size and position, goniostat zeros etc.) (Paciorek et al., 1999). Therefore, in more difficult 

cases, where sufficiently accurate instrument-model parameters are not available (an 

inaccurate IM is quite common on a busy, user-operated synchrotron beamline, where 

equipment is regularly moved or exchanged depending on different user requirements etc.), 

the entire data processing is significantly hampered (if it is possible at all), since the 

LAUEUTIL suite does not have capabilities either to determine or to refine the IM. Such option 

is provided, for example, in the PRECOGNITION suite (Šrajer et al., 2000) which, however, is 

not open-source and is not fully optimised for small-molecule crystals where sparse 

diffraction patterns are observed. In such cases it requires the collection of a reference data 

set on a known protein crystal standard (e.g. photoactive yellow protein, PYP (Borgstahl et al., 

1995)) prior to actual experiments. In cases where such reference data is not available the 
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data processing is much more problematic. Hence, to fill-in this gap, in the current short 

contribution a simple yet efficient ab initio method to refine instrument-model parameters is 

reported. Importantly, the algorithm relies only on diffraction spot positions, and does not 

require an orientation-matrix, wavelength spectrum, etc. 

 

2. Results and discussion 

A typical Laue X-ray diffraction experiment performed for a single-crystal sample is 

depicted schematically in Figure 1a. Diffraction images (i.e. frames) are usually collected for a 

sample being kept still (i.e. not rotated during the exposure), since it is possible to record full 

reflections using a polychromatic X-ray beam. This feature of the method allows to employ it 

efficiently for time-resolved X-ray diffraction studies. In this contribution we assume the 

simplest case of a Laue experiment, in which a total of 𝑁 frames (e.g. 90 or 180 frames) are 

collected during sample rotation along single-spindle axis, each at different sample 

orientation separated from the adjacent one by some angular interval, ∆𝜑 (e.g. 1° or 2°). 

Figure 1b shows how the selected diffraction spots change positions on the detector surface 

when the crystal is rotated along horizontal axis. Furthermore, we assume that the sample is 

firmly attached to the holder (e.g. it is glued), thus no irregular sample movements are 

present. 

 

 

 

(a) (b) 

 

Figure 1. (a) Schematic representation of a typical Laue data set consisting of diffraction 

frames measured at various goniometer setting angles (i.e. each frame is collected with the 

sample rotated by a certain increment, ∆𝜑; single 𝜑-angle spindle axis is assumed for 
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simplicity; this example data set consists of 𝑁 frames; cross indicates the frame’s centre). (b) 

Overlay of two exemplary adjacent frames showing changes in positions of selected spots due 

to the horizontal sample rotation (Δ𝜑 = 1°): green solid spots – frame No. 1, red empty spots – 

frame No. 2 (for overlay of two frames see the Supporting Information; displacements, spot 

sizes and shapes are exaggerated). 

Since in the Laue method a polychromatic X-ray beam is diffracted by a single-crystal 

sample, assigning a specific wavelength to a given recorded single diffraction spot is not 

initially straightforward. Thus, before the orientation-matrix and indexing data processing 

steps, reconstruction of the reciprocal space is not feasible. (We note that such procedures are 

much easier when the unit cell parameters are a priori known, but become more cumbersome 

in the case of sparse diffraction patterns.) Nonetheless, it is possible to compute normalised 

(i.e. unit-length) reciprocal-space vectors, 𝐡
~

, as proposed by Kalinowski et al. (Kalinowski et 

al., 2011): 

𝐡
~

=
𝐬 − 𝐬0

‖𝐬 − 𝐬0‖
 (1) 

where 𝐬 and 𝐬0 are the diffracted and primary beams unit-length vectors, respectively. The 𝐡
~

 

vectors are subsequently appropriately rotated (using goniometer setting angles known for 

each frame) to a common goniometer-head-fixed coordinate system (with all goniometer 

angles equal zero), yielding a unit-sphere-projected set of vectors (denoted here as 𝐡
~

0 for 

convenience) for the entire data set (for visualisation see, for example, Figure 1b in ref. 

(Kalinowski et al., 2011)). Computation of the 𝐡
~

0 vectors from spot positions on the detector 

surface requires knowledge of the instrument-model parameters, thus each vector of this kind 

is the function of those parameters (for details see the Supporting Information). 

During the analysis of the available TR Laue data sets it appeared that, despite using an 

approximate IM parameters (e.g. detector distance is off by several millimetres), most of the 

𝐡
~

0 vectors computed for the reflection with the same ℎ𝑘𝑙 indices present in the adjacent 

frames are very similar one to another in terms of direction. For ideal IM parameters such 

derived 𝐡
~

0 vectors should overlap (this is schematically shown in Figure 2, in which two 

selected pairs of 𝐡
~

0 vectors computed for the adjacent frames are presented). This fact 

constitutes the basis for our refinement procedure. The 𝐡
~

0 vectors computed for the adjacent 

frames are first paired using a simple geometrical criterion (i.e. the angular separation). The 

sum of difference vectors’ lengths in these pairs, 
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𝑆 = ∑ ∑ ‖𝐡
~

0,𝑘,𝑗 − 𝐡
~

0,𝑘,𝑗+1‖
2

𝑘(𝑗)

𝑁−1

𝑗=1

 (2) 

is then least-squares minimised with respect to the chosen instrument-model parameters (𝑗 

and 𝑘 denote frames and vector pairs found for two adjacent frames, respectively; 𝑗 index 

runs from 1 to 𝑁 − 1, for data set with 𝑁 frames; note that the number of determined 

reflection pairs is different for various pairs of adjacent frames), starting from some initial 

estimated values (e.g. an approximate detector distance). 

 

 

  

Figure 2. Schematic representation of two selected adjacent-frames’ pairs of normalised 

reciprocal vectors 𝐡
~

0 with the same ℎ𝑘𝑙 indices (for example see Figure 1b) reconstructed 

from spot positions, goniometer setting angles and other instrument model parameters (e.g. 

detector distance, primary beam position etc.). Left panel: imperfect IM parameters (the 

respective vectors do not overlap), right panel: ideal IM parameters (the reconstructed 

vectors overlap perfectly after the least-squares minimisation of vector differences with 

respect to IM parameters). 

In our simple IM only three parameters are considered crucial for further data analysis 

with the RATIO method, namely the detector distance, the horizontal and vertical primary 

beam position on the detector surface: 𝑑, 𝑥0 and 𝑦0, respectively. It is assumed that the 

detector is placed ideally perpendicularly at 2𝜃 = 0° with respect to the primary beam and 

there are no further goniometer misalignments. More details on the instrument model, used 
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definitions, equations, and implementation comments are available in the Supporting 

Information. 

The algorithm was tested on a couple of model simulated and experimental data sets. The 

refinement of the instrument model on simulated X-ray Laue diffraction data sets for two 

crystal structures, i.e. of a small-molecule compound, Ag2Cu2L4 (L = 2-diphenylphosphino-3-

methylindole) (Koshevoy et al., 2011), and a pea lectin protein (Einspahr et al., 1986) 

constituted the primary benchmark. The silver(I)-copper(I) tetranuclear complex was studied 

by us using both TR Laue diffraction and high-pressure crystallography (triclinic space group 

𝑃1̅) (Jarzembska et al., 2018, Jarzembska et al., 2014). In turn, the second simulated data set 

was generated for the pea lectin protein crystal structure, which was studied extensively with 

Laue diffraction by Helliwell and co-workers (orthorhombic space group 𝑃212121) 

(Cruickshank et al., 1991, Helliwell et al., 1989, Cruickshank et al., 1987, Machin, 1985). It 

should be noted that the simulated models account only for the diffraction geometry and not 

diffraction spot intensities (for details see the Supporting Information). Instead, experimental 

data sets of excellent quality collected for two copper(I) complexes are used as two further 

test cases. The first one, Cu(dppe)(dmp)PF6 (dppe = 1,2-bis(diphenylphosphino)ethane, dmp 

= 2,9-dimethyl-1,10-phenanthroline) (monoclinic space group 𝑃21/𝑐), was studied previously 

by Voronstsov et al. (Vorontsov et al., 2009) using the monochromatic TR technique and later 

by us using both Laue and in-house TR diffraction methods (Trzop et al., 2014, Coppens et al., 

2016, Kaminski et al., 2014). The data set used here was measured at the 14-ID-B BioCARS 

beamline (Graber et al., 2011) at the Advanced Photon Source (APS). The data for the second 

compound, Cu(dppe)(dmdpp)PF6 (dmdpp = 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) 

(monoclinic space group 𝑃21/𝑛), were collected at the ID09 beamline (Wulff et al., 2002) at 

the European Synchrotron Radiation Facility (ESRF). It should be noted that both data sets 

were initially integrated using our new 1-dimentional seed-skewness method (Szarejko et al., 

2020), which resulted in a set of reflection intensities and positions. All data sets examined in 

this study are summarised in Table 1, including their abbreviations used hereafter. Exemplary 

simulated and experimental frames are shown in the Supporting Information. 
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Table 1. Selected parameters for simulated and experimental data sets used in this study. 

 

Parameter Simulated data Experimental data 

Compound Ag2Cu2L4 complex Pea lectin protein Cu(dppe)(dmp)

PF6 complex 

Cu(dppe)(dmdpp)

PF6 complex 

Data set abbreviation simAgCu simPeaL expCuDppe expCuDmdpp 

X-ray source − − 14-ID-B at APS ID09 at ESRF 

Space group 𝑃1̅ (No. 2) 𝑃212121 (No. 19) £ 𝑃21/𝑐 (No. 14) 𝑃21/𝑛 (No. 14) 

𝑎 / Å 12.6106(2) 50.73(2) 20.2099(4) 14.1511(6) 

𝑏 / Å 14.1988(3) 61.16(2) 13.6740(3) 14.2212(5) 

𝑐 / Å 22.0662(4) 136.59(8) 26.5809(5) 27.3870(10) 

𝛼 / ° 76.3912(3) 90 90 90 

𝛽 / ° 81.5811(3) 90 95.5178(2) 98.373(3) 

𝛾 / ° 66.8814(3) 90 90 90 

Detector distance, 𝑑 / mm 65.0 ¶ 95.0 ¶ 100.0 # 50.0 # 

Beam position, 

𝑥0 / pix 

𝑦0 / pix 

 

1954.0 ¶ 

1973.0 ¶ 

 

1215.0 ¶ 

1286.0 ¶ 

 

1986.0 $ 

1964.0 $ 

 

1910.0 & 

1924.0 & 

Detector shape square square square † square ‡ 

Detector dimensions ¥ / mm 340.0 120.0 § 340.0 † 170.0 ‡ 

Frame dimensions ¥ / pix 3840 2400 § 3840 † 3840 ‡ 

Pixel size ¥ / μm 89.0 20.0 § 89.0 † 44.0 ‡ 

Wavelength range 

𝜆min / Å 

𝜆max / Å 

 

0.8 

1.1 

 

0.5 

2.6 

 

0.8 € 

1.1 € 

 

0.75 € 

1.1 € 

Number of frames 91 91 91 91 

Angular increment, Δ𝜙 / ° 1.0 1.0 1.0 1.0 

Angular coverage, 𝜙tot / ° 91.0 91.0 91.0 91.0 
¥ Both dimensions (vertical and horizontal) are the same. £ For simplicity systematic absences’ conditions are 
omitted in this contribution. ¶ Values used in the simulation. § Parameters as close as possible to mimic the CEA 
reflex emulsion films (Helliwell et al., 1989). # As assumed to be correct in the data collection software.                
$ Primary beam position measured with the ADXV program (Arvai, 2019) from the reference frame with direct 
beam image (appropriate filters were used to maximally attenuate the beam). & Primary beam position was 
assumed to be close to the beamstop shadow centre. † Rayonix MX340-HS detector mounted at the 14-ID-B 
BioCARS beamline at APS (Graber et al., 2011). ‡ Rayonix MX170-HS detector mounted at the ID09 beamline at 
ESRF (Wulff et al., 2002). € Limiting values estimated from the 𝜆-curve plots. 

 

Results of the instrument-model refinement are shown in Table 2. In the case of simulated 

data, simAgCu and simPeaL, the refinements converge very well to the values used in the 

simulation with estimated standard deviations (e.s.d.s) in the order of 10−5 or better (in mm 

or pix), indicating a nearly perfect fit. It should be stressed that the correct results are 

obtained even if the detector distance deviates from the real value by more than 1 cm. 

Therefore, the achieved accuracy is far more than sufficient for real applications, as the initial 

detector distance can easily be determined to at least 1 mm precision with mechanical tools. 

In turn, regarding the data collected at the 14-ID-B beamline at APS, expCuDppe, the 

instrument geometry was tested with the PYP crystal and PRECOGNITION software. The 

primary beam position was determined by collecting its direct image by attenuating X-rays, 
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therefore this data set can be used to test the accuracy of our software at reproducing these 

known parameters. In our software, refinement of the instrument parameters from different 

starting points (including the detector distance set to as much as 120 mm) yielded essentially 

identical results, i.e. 𝑑 = 100.80(7) mm instead of the assumed exact value of 100 mm. We 

believe this is well within experimental error, thus such difference is perfectly acceptable. The 

beam position refined to values that are almost identical to those we measured when the 

detector was directly exposed to the attenuated primary beam. 

In the second case of the expCuDmdpp data set, collected at the ID09 beamline of the 

ESRF, we encountered some problems when indexing the measured data using the method of 

Kalinowski et al. without any IM refinement. As such, this data set presented a challenge for 

our software. The final step of the indexing method is to cluster the points in the Euler-angle 

space, each representing a single determined orientation matrix (the method is based on 

testing multiple orientation matrices). The final orientation matrix is considered to be an 

average of all matrices belonging to a single cluster. For the ESRF data, the detector distance 

was initially set and calibrated to 50 mm. The detector centre was not directly measured, but 

instead it was assumed to be very close to the centre of the X-ray beamstop shadow area (𝑥0 = 

1910 pix, 𝑦0 = 1924 pix; see the Supporting Information). However, starting from these values 

the procedure yielded only 10 clusters for expCuDmdpp. This rather poor determination of 

the orientation matrix hampered considerably further data processing. We ascribe these 

difficulties to imperfect instrument-model parameters, which tend to drift from their starting 

positions (properly calibrated initially) over the very long experiment time (ca. 5 days of 

constant data collection). The refinement of the IM parameters (final values: 𝑑 = 47.25(2) mm, 

𝑥0 = 1904.1507(9) pix, 𝑦0 = 1923.046(1) pix) with our new approach enabled us to find the 

orientation matrix readily and reliably. The total number of determined clusters increased 

considerably (to 268), which indicated correct determination of the crystal orientation. It is 

also worth noting the refined beam centre stayed in the beamstop shadow area, which 

constituted additional confirmation of the IM refinement method’s validity. 

It appears that there are essentially no correlations between the refined parameters. The 

largest correlation coefficients, which reach only up to 20 %, are found for the simulated data 

sets (ca. 20% for 𝑥0-𝑦0 parameter pair and ca. 18% for 𝑑-𝑥0, for simAgCu and simPeaL, 

respectively). In turn, correlation coefficients’ values calculated for the experimental data sets 

do not exceed 6%. Such results can be expected, since in our method changes in the 𝑑, 𝑥0 and 

𝑦0 parameters have significantly different effect on the reflections’ positions and thus on the 

computed normalised vectors (change in 𝑑 results in the radial movement of reflections  – all 
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inwards or outwards, whereas changes in 𝑥0 and 𝑦0 lead to the reflections’ vertical or 

horizontal shifts, respectively). We believe that larger correlations might be found when more 

elaborate and complex instrument models are implemented (e.g. incorporating goniometer 

angles’ zeros, detector pitch-roll-yaw misalignment angles, etc.), or when other physical 

factors cannot be neglected during the data collection (e.g. laser-pulse-induced thermal 

expansion of a crystal may have somewhat similar effect on the diffraction pattern as the 

distance change). These, however, are not considered in this contribution. 

 

Table 2. Refinement of selected parameters for the studied Laue data sets. Note 𝑑 is 

expressed in mm, whereas 𝑥0 and 𝑦0 in native detector pixel coordinates (see the Supporting 

Information). In certain cases the errors are so small that a non-standard notation for values 

and their e.s.d.s are used. 

 

Data set 
Initial values Final values 

𝑑 𝑥0 𝑦0 𝑑 𝑥0 𝑦0 

simAgCu¶ 70.0 1954.0 1973.0 65.00 ± 8·10−5 1954.00 ± 1·10−5 1973.00 ± 2·10−5 

 65.0 1920.0 1973.0 65.00 ± 8·10−5 1954.00 ± 1·10−5 1973.00 ± 2·10−5 

 80.0 1920.0 1985.0 65.00 ± 8·10−5 1954.00 ± 1·10−5 1973.00 ± 1·10−5 

simPeaL $ 105.0 1215.0 1286.0 95.00 ± 3·10−5 1215.00 ± 1·10−6 1286.00 ± 1·10−6 

 95.0 1240.0 1286.0 95.00 ± 3·10−5 1215.00 ± 1·10−6 1286.00 ± 1·10−6 

 100.0 1240.0 1250.0 95.00 ± 3·10−5 1215.00 ± 1·10−6 1286.00 ± 1·10−6 

expCuDppe ¥ 120.0 1986.0 1964.0 100.80(7) 1986.174(5) 1965.013(7) 

 100.0 1950.0 1964.0 100.80(7) 1986.174(5) 1965.013(7) 

 120.0 1950.0 1950.0 100.80(7) 1986.177(5) 1965.020(7) 

expCuDmdpp 50 1910 1924 47.25(2) 1904.1507(9) 1923.046(1) 

 55 1900 1900 47.25(2) 1904.1497(9) 1923.044(1) 

 70 1920 1950 47.25(2) 1904.1504(9) 1923.047(1) 
¶ Target values for simAgCu: 𝑑 = 65.0 mm, 𝑥0 = 1954.0 pix, 𝑦0 = 1973.0 pix (Table 1). $ Target 
values for simPeaL: 𝑑 = 95.0 mm, 𝑥0 = 1215.0 pix, 𝑦0 = 1286.0 pix (Table 1). ¥ Target values for 
expCuDppe: 𝑑 = 100.0 mm, 𝑥0 = 1986.0 pix, 𝑦0 = 1964.0 pix (Table 1). 

 

Finally, it should be stressed that the main assumption of the method is that the crystal 

remains fixed during the entire experiment, thus any irregular movements during the data 

collection are eliminated. This is most efficiently realised by gluing the crystal to the capillary, 

which constitutes a standard practice for crystals of small molecules. Such sample handling is 

especially important during the time-resolved experiments where the high-power laser hits 

the sample and thus may change the crystal orientation. For small molecules, where the 

highest possible accuracy and precision is necessary, it is a crucial issue of the further data 

processing utilising the RATIO method. On the other hand, in the case of protein samples 

gluing of the crystal to a capillary is often impractical (it has not been done even in the case of 



11 

 

PYP which was successfully analysed with the modified RATIO method (Schotte et al., 2012)). 

In consequence, here the crystal can move more significantly, which predominates slight 

goniometer misalignments. Taking into account the differences in the data processing 

techniques (protein diffraction patterns are much less sparse), these misalignments are 

overall less important than the crystal movements. Furthermore, in the limiting case of serial 

microcrystallography every crystal yields single diffraction frame with essentially random 

orientation. To resolve such cases different approaches have been developed (Campbell, 

1995, Helliwell et al., 1989, Ren et al., 1999, Gevorkov et al., 2020, Gevorkov et al., 2019, 

Beyerlein et al., 2017, Ginn et al., 2016), whereas our method is not applicable. 

 

3. Conclusions and summary 

A new algorithm to refine the diffractometer instrument model using normalised 

reciprocal space vectors has been developed and tested for use in the analysis of synchrotron-

generated X-ray Laue diffraction data. The method is applicable for data sets in which 

multiple consecutive frames are recorded for different crystal orientations and no irregular 

sample movements are present. The method does not need any data other than the diffraction 

spot positions and frame angular setting angles. As it has been proved for both model 

simulated and experimental data sets, the method provides very good results. The refinement 

readily converges even when the initial deviations from the target values are rather large. 

Most importantly, the method allows for determination of the IM parameters which had been 

previously unknown or had been known with low accuracy (which significantly hampered the 

orientation matrix determination). This constitutes a major improvement in the small-

molecule X-ray Laue diffraction processing pipeline. The algorithm is implemented in our new 

Laue data processing software (Szarejko et al., 2020, Jarzembska et al., 2019). The current 

version of the program (including the source code), interfaced also with the LAUEUTIL suite 

(Kalinowski et al., 2011, Kalinowski et al., 2012), is available from the authors upon request 

(the program code will be available publicly open-source shortly). 
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1S. Instrument model and refinement details 

Matrix notation for vectors is used; 𝐚T stands for a transpose of the matrix 𝐚; scalar 

product in Cartesian basis is 𝐚 ∙ 𝐛 = 𝐚T𝐛; for clarity in the text column vectors are written as 

rows, i.e. [𝑎1 𝑎2 …]T. When needed the coordinate system is added in the subscript (i.e. [∙]𝑆 

is matrix of vector components in coordinate system 𝑆). Laboratory coordinate system 𝐿 =

(𝐞𝑥, 𝐞𝑦, 𝐞𝑧) is placed in the ideal goniometer centre (𝑋 axis along X-ray beam, 𝑍 vertical to the 

top). Primary X-ray beam position is assumed to be fixed along the X axis (i.e. along the 𝐞𝑥 

vector): 𝐬0 = 𝐞𝑥 = [1 0 0]𝐿
T. Detector coordinate system 𝐷0 = (𝐝𝑥, 𝐝𝑦, 𝐝𝑧) is anchored in 

the detector centre (𝑋 axis horizontal, 𝑌 vertical). Spot position expressed in 𝐷0 is described 

as vector 𝐫 = [𝑥 𝑦 0]𝐷0

T , whereas the position of the point where the primary beam hits the 

detector is 𝐫0 = [𝑥0 𝑦0 0]𝐷0

T . Position of the spot in respect to the primary beam position is 

∆𝐫 = 𝐫 − 𝐫0 = [𝑥 − 𝑥0 𝑦 − 𝑦0 0]𝐷0

T . Calculation of normalised 𝐡
~

 in 𝐿 is obtained by the 

following formulas: 

𝐱 = 𝑑 ∙ 𝐬0 + ∆𝐫 = [
𝑑

−(𝑥 − 𝑥0)
𝑦 − 𝑦0

]

𝐿

 (S1) 

𝐬 =
𝐱

‖𝐱‖
 , 𝐲 = 𝐬 − 𝐬0 , 𝐡

~
=

𝐲

‖𝐲‖
 

 

(S2) 
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where ‖∙‖ is the vector norm. See Figure 1S for visualisation of respective vectors and 

coordinate systems. Finally, vector 𝐡
~

 rotated to the goniometer-head-fixed coordinate system 

𝐺 = (𝐠𝑥, 𝐠𝑦, 𝐠𝑧) is obtained by application of the rotation matrix 𝐑, different for each frame: 

𝐡
~

0 = 𝐑T𝐡
~

 (where 𝐑−1 = 𝐑T). Note that 𝐺 and 𝐿 coordinate systems overlay for all goniometer 

angles set to zero. 

 

 

 

Figure 1S. Detector and laboratory coordinate systems, 𝐷0 = (𝐝𝑥, 𝐝𝑦, 𝐝𝑧) and 𝐿 = (𝐞𝑥, 𝐞𝑦, 𝐞𝑧), 

and vectors needed in the calculations. 

 

Native (‘raw’) spot position on the detector is expressed in 𝐷2 = (𝐢, 𝐣, 𝐤) pixel-based 

coordinate system anchored in the centre of the top left detector pixel (right-handed, 𝐢 points 

down, 𝐣 right); this is a basic definition used in majority of image processing applications. We 

introduce real-valued coordinate system 𝐷1 = (𝛅𝑥 , 𝛅𝑦, 𝛅𝑧) centred on top left detector corner 

(orientation the same as for 𝐷2). Relations of spot coordinates in 𝐷0 and these two coordinate 

systems are expressed by the following formulas: 

[
𝑥
𝑦
0
]

𝐷0

=

[
 
 
 
 𝑥δ −

1

2
𝑝h𝑛h

1

2
𝑝v𝑛v − 𝑦δ

0 ]
 
 
 
 

𝐷1

=

[
 
 
 
 𝑗 +

1

2
𝑝h(1 − 𝑛h)

1

2
𝑝v(𝑛v − 1) − 𝑖

0 ]
 
 
 
 

𝐷2

 (S3) 

where 𝑛h and 𝑛v are number of detector pixels, and 𝑝h and 𝑝v are pixel sizes, for horizontal 

and vertical directions, respectively. 
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To perform a least-squares minimisation the derivatives of the norm of the difference of 

two computed 𝐡
~

0 vectors for the same spot appearing for two consecutive frames (i.e. 

∆𝐡
~

0,𝑘,𝑗 = 𝐡
~

0,𝑘,𝑗 − 𝐡
~

0,𝑘,𝑗+1) are needed. The derivatives are computed as follows: 

𝜕

𝜕𝑝
‖∆𝐡

~
0,𝑘,𝑗‖ =

∆𝐡
~

0,𝑘,𝑗
𝑇

‖∆𝐡
~

0,𝑘,𝑗‖
(

𝜕

𝜕𝑝
𝐡
~

0,𝑘,𝑗 −
𝜕

𝜕𝑝
𝐡
~

0,𝑘,𝑗+1) (S4) 

where 𝐡
~

0,𝑘,𝑗  is vector for the 𝑘-pair of 𝐡
~

0 vectors matched for frames 𝑗 and 𝑗 + 1; 𝑝 is selected 

refined parameter. Accordingly (for clarity we drop indexes 𝑘 and 𝑗; note matrices 𝐑 depend 

on frame index 𝑗): 

𝜕

𝜕𝑝
𝐡
~

0 = 𝐑T (
1

‖𝐲‖
(
𝜕𝐲

𝜕𝑝
) −

𝐲

‖𝐲‖3
[𝐲T (

𝜕𝐲

𝜕𝑝
)]) (S5) 

𝜕𝐲

𝜕𝑝
=

1

‖𝐱‖
(
𝜕𝐱

𝜕𝑝
) −

𝐱

‖𝐱‖3
[𝐱T (

𝜕𝐱

𝜕𝑝
)] (S6) 

Since 𝐱 = [𝑑 −(𝑥 − 𝑥0) 𝑦 − 𝑦0]𝐿
T its derivatives simply equal to: 

𝜕𝐱

𝜕𝑑
= [

1
0
0
]

𝐿

 , 
𝜕𝐱

𝜕𝑥0
= [

0
1
0
]

𝐿

 , 
𝜕𝐱

𝜕𝑦0
= [

0
0

−1
]

𝐿

 (S7) 

Please note the actual implementation of the procedure works in native detector pixel 

coordinates, as denoted above in the equation S3. Therefore, inside the program source code 

the last component of the third derivative in S7 (i.e. 𝜕𝐱/𝜕𝑦0) is in fact positive. 

Reflections from two consecutive frames 𝑗 and 𝑗 + 1 are considered to form a pair 𝑘 when 

the simple geometrical criterion, 

arccos (𝐡
~

0,𝑘,𝑗
T 𝐡

~
0,𝑘,𝑗+1) = 𝜃 ≤ 𝜃0 (S8) 

is fulfilled, where 𝜃0 is the specified threshold (note here both vectors are of unit length, thus 

obviously ‖𝐡
~

0,𝑘,𝑗‖ ∙ ‖𝐡
~

0,𝑘,𝑗+1‖ = 1). 

 

2S. Simulation of X-ray Laue patterns 

Instrument model used in simulations is more general, which provides more flexibility for 

future applications. In addition to coordinate systems 𝐿 and 𝐺, presented in the previous 

section, we define also extra coordinate systems 𝐾∗ = (𝐚∗, 𝐛∗, 𝐜∗) (non-Cartesian reciprocal 

crystal coordinate system) and 𝐶 = (𝐜𝑥, 𝐜𝑦, 𝐜𝑧) (introduced to easily decompose the 

orientation matrix into ‘orientation’ and ‘unit-cell shape’ parts). The transformation between 

𝐾∗ and 𝐶 systems is defined with the following matrix 𝐁 (expressed in reciprocal lattice unit 

cell parameters): 
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𝐁 =

[
 
 
 

𝑎∗ 0 0
𝑏∗ cos(𝛾∗) 𝑏∗ sin(𝛾∗) 0

𝑐∗ cos(𝛽∗) 𝑐∗
cos(𝛼∗) − cos(𝛾∗) cos(𝛽∗)

sin(𝛾∗)
𝑐∗ [1 − cos(𝛽∗) −

cos(𝛼∗) − cos(𝛾∗) cos(𝛽∗)

sin(𝛾∗)
]
]
 
 
 

 (S9) 

where the transformation takes the form: 

𝐡𝐶 = 𝐁T ∙ 𝐡𝐾∗  (S10) 

in which 𝐡 = ℎ𝐚∗ + 𝑘𝐛∗ + 𝑙𝐜∗ = 𝑥c𝐜𝑥 + 𝑦c𝐜𝑦 + 𝑧c𝐜𝑧. The relationship between 𝐾∗ and 𝐶 

frames is depicted in Figure 2S. 

 

 

 

Figure 2S. Relationship between 𝐶 = (𝐜𝑥, 𝐜𝑦, 𝐜𝑧) and 𝐾∗ = (𝐚∗, 𝐛∗, 𝐜∗) coordinate systems. 

Vector 𝐚∗ is along 𝐜𝑥, and 𝐛∗ lies in the plane formed by 𝐜𝑥 and 𝐜𝑦 vectors. 

 

For computational purposes the matrix 𝐁 is expressed in direct lattice unit-cell parameters 

using the very well-known formulas: 

𝑎∗ =
𝑏𝑐 sin 𝛼

𝑉
 𝑏∗ =

𝑎𝑐 sin 𝛽

𝑉
 𝑐∗ =

𝑎𝑏 sin 𝛾

𝑉
 

(S11) cos(𝛼∗) =
cos𝛽 cos 𝛾 − cos 𝛼

sin 𝛽 sin 𝛾
 cos(𝛽∗) =

cos𝛼 cos 𝛾 − cos𝛽

sin 𝛼 sin 𝛾
 cos(𝛾∗) =

cos𝛼 cos 𝛽 − cos 𝛾

sin 𝛼 sin 𝛽
 

sin(𝛾∗) =
𝑉

𝑎𝑏𝑐 sin 𝛼 sin 𝛽
 𝑉 = 𝑎𝑏𝑐√1 − cos2 𝛼 − cos2 𝛽 − cos2 𝛾 + 2 cos 𝛼 cos 𝛽 cos 𝛾 

Orientation matrix 𝐔 describes how the crystal reciprocal axes are related to the 

goniometer-head-fixed coordinate system (i.e. relation between 𝐾∗ and 𝐺 coordinate 

systems). We define the matrix 𝐔 as follows: 

𝐡𝐺 = 𝐔 ∙ 𝐡𝐾∗  (S12) 

where for any vector we have 𝐡 = ℎ𝐚∗ + 𝑘𝐛∗ + 𝑙𝐜∗ = 𝑥g𝐠𝑥 + 𝑦g𝐠𝑦 + 𝑧g𝐠𝑧. This definition is 

identical to the one used by Kalinowski et al. (Kalinowski et al., 2011) and closely related to 

the definitions used in the seminal paper by Busing & Levy (Busing & Levy, 1967). The 

relation between 𝐺 and 𝐶 coordinate systems (both are Cartesian) is then expressed with 

matrix 𝐂 as follows: 
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𝐡𝐺 = 𝐂T ∙ 𝐡𝐶  (S13) 

From this definition it follows that 𝐡𝐺 = 𝐂T𝐁T ∙ 𝐡𝐾∗ = (𝐁𝐂)T ∙ 𝐡𝐾∗ . Rotation matrix 𝐂 is 

expressed via Euler angles (𝜃1, 𝜃2 and 𝜃3) in the following way: 

𝐂 = 𝐑1(𝜃1) ∙ 𝐑2(𝜃2) ∙ 𝐑3(𝜃3) (S14) 

where 

𝐑1(𝜃1) =

= [
cos(𝜃1) − sin(𝜃1) 0

sin(𝜃1) cos(𝜃1) 0
0 0 1

] 

𝐑2(𝜃2) =

= [

1 0 0
0 cos(𝜃2) − sin(𝜃2)

0 sin(𝜃2) cos(𝜃2)
] 

𝐑3(𝜃3) =

= [
cos(𝜃3) − sin(𝜃3) 0

sin(𝜃3) cos(𝜃3) 0
0 0 1

] 
(S15) 

Finally, every crystal is appropriately rotated on the goniometer. We assume all rotations of 

the goniometer are defined as counter-clockwise. When the goniometer angles are rotated, 

the selected 𝐡 vector is rotated alongside with the goniometer-head-fixed coordinate system 

𝐺 (i.e. vector 𝐡 coordinates in 𝐺 remain constant). General scheme of the Euler-type 

goniometer is presented in Figure 3S. We introduce two other Cartesian coordinate systems 

associated with 𝜔 and 𝜒 circles: 𝑂 = (𝐨𝑥, 𝐨𝑦, 𝐨𝑧) and 𝑀 = (𝐦𝑥, 𝐦𝑦,𝐦𝑧). We note when all 

seting angles are zero the 𝐺, 𝑂 and 𝑀 coordinate systems overlay with 𝐿. We now 

systematically define all counter-clockwise rotations along 𝜔, 𝜒 and 𝜙 axes (the same symbols 

are used for respective angles) as: 

𝐡𝐿 = 𝐑𝑧(𝜔) ∙ 𝐡𝑂  (S16) 

𝐡𝑂 = 𝐑𝑥(𝜒) ∙ 𝐡𝑀 (S17) 

𝐡𝑀 = 𝐑𝑧(𝜙) ∙ 𝐡𝐺  (S18) 

This, finally, yields a total rotation as: 

𝐡𝐿 = 𝐑 ∙ 𝐡𝐺  (S19) 

where the matrix 𝐑 takes the form: 

𝐑 = 𝐑𝑧(𝜔) ∙ 𝐑𝑥(𝜒) ∙ 𝐑𝑧(𝜙) (S20) 

and 

𝐑𝑧(𝜔) =

= [
cos𝜔 − sin𝜔 0
sin𝜔 cos𝜔 0

0 0 1
] 

𝐑𝑥(𝜒) =

=      [
1 0 0
0 cos 𝜒 − sin 𝜒
0 sin 𝜒 cos 𝜒

] 

𝐑𝑧(𝜙) =

= [
cos𝜙 − sin𝜙 0
sin𝜙 cos𝜙 0

0 0 1

] 
(S21) 
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(a) (b) 

 

Figure 3S. Schematic representation of the 4-circle Euler-type goniometer. (a) The 

instrument with all angles set to zero. (b) Instrument with all angles departed from zero 

position (all rotations are defined as positive then counter-clockwise; for clarity of the figure 

the 𝜔 is shown as negative). 

 

Finally, the equation allowing to compute the coordinates of vector 𝐡 in laboratory frame 𝐿 

given all the matrices and transformation is as follows: 

𝐡𝐿 = 𝐑 ∙ 𝐡𝐺 = 𝐑 ∙ (𝐁𝐂)T ∙ 𝐡𝐾∗  (S22) 

Where we introduced vector 𝐡0 = 𝐡𝐺 = (𝐁𝐂)T𝐡𝐾∗  (i.e. vector 𝐡 before goniometer rotation 

angles applied, as in the previous section; notation 𝐡0 is used in the main text for 

convenience). 

For Laue diffraction every spot falling into the region between two extreme Ewald 

spheres is recorded. For each 𝐡 vector its wavelength is calculated using a well-known 

formula: 

𝜆 = −2
𝐡 ∙ 𝐬0

‖𝐡‖2
= −2

𝐡 ∙ 𝐬0

𝐡 ∙ 𝐡
 (S23) 

The implemented algorithm follows then a simple path: 

(i) Generation of the allowed 𝐡𝐾∗  vector indices (i.e. ℎ, 𝑘 and 𝑙) in reciprocal crystal basis 

𝐾∗. Limiting values are estimated from the larger Ewald sphere radius (1/𝜆min). Additional 

sin 𝜃 /𝜆 cut-off can be taken into account. At this point the systematic absences can also 

omitted (not implemented yet). 

(ii) Generated 𝐡𝐾∗  vectors are transformed to the goniometer-head-fixed Cartesian 

reference frame of 𝐺 using the 𝐡𝐺 = (𝐁𝐂)T𝐡𝐾∗. This set is used in the next steps. 
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(iii) For every frame (with known frame rotation angles) all 𝐡𝐺  are rotated to the 

laboratory frame 𝐿: 𝐡𝐿 = 𝐑 ∙ 𝐡0. 

(iv) For each 𝐡𝐿 the wavelength at which the diffraction would occur for this particular 

vector is computed. At this step we check whether the computed values falls into the region 

between two limiting Ewald spheres, i.e. if 𝜆min ≤ 𝜆 ≤ 𝜆max. If this is fulfilled the algorithm 

proceeds further, otherwise the vector is rejected. 

(v) Diffraction equation is used to compute the scattering vector 𝐬 = 𝐬0 + 𝜆 ∙ 𝐡𝐿 , and it is 

checked whether the detector surface intersects the line along this vector (i.e. we check if the 

spot lies in the detector area). If the last is true, the coordinates of the spot on the detector are 

computed and saved into the HDF5 file. 

(vi) Steps (iii)-(v) are repeated for all frames (a number specified by the user). 

 

 

 

Figure 4S. Overlay of two adjacent frames (angular interval ∆𝜙 = 1°) shown for simulated 

data (silver(I)-copper(I) complex quoted in the main text) – green spots: frame for 𝜙 = 0°, red 

spots: frame for 𝜙 = 1° (crystal horizontal rotation). Large dots represent selected reflections 

shown in Figure 1b.  
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(a) (b) 
 

Figure 5S. Example simulated frames. (a) Single frame generated for the simAgCu test 

sample. (b) Single frame generated for the simPeaL test sample. For simulation details see 

Table 1 in the manuscript text. 
 

  

(a) (b) 
 

Figure 6S. Example experimental frames. (a) Single frame recorded at the 14-ID-B beamline 

at APS for the expCuDppe sample (15 keV ‘pink’ X-ray beam, detector: Rayonix MX340-HS, 

detector distance: 100 mm, note some unusable detector areas not used in processing). (b) 

Single frame recorded at the ID09 beamline at ESRF for the expCuDmdpp sample (15 keV 

‘pink’ X-ray beam, detector: Rayonix MX170-HS, detector distance: 50 mm, note two 

beamstops are present: the top one – smaller and closer to the detector centre – is for X-rays, 

and bottom is for the laser beam used in TR experiments). 


