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Toppling and height probabilities in sandpiles

Antal A. Járai Minwei Sun∗

13th June 2019

Abstract

We study Abelian sandpiles numerically, using exact sampling. Our method uses a

combination of Wilson’s algorithm to generate uniformly distributed spanning trees, and

Majumdar and Dhar’s bijection with sandpiles. We study the probability of topplings

of individual vertices in avalanches initiated at the centre of large cubic lattices in

dimensions d = 2, 3 and 5. Based on these, we estimate the values of the toppling

probability exponent in the infinite volume limit in dimensions d = 2, 3, and find good

agreement with theoretical results on the mean-field value of the exponent in d ≥ 5. We

also study the distribution of the number of waves in 2D avalanches. Our simulation

method, combined with a variance reduction idea, lends itself well to studying some

problems even in very high dimensions. We illustrate this with an estimation of the

single site height probability distribution in d = 32, and compare this to the asymptotic

behaviour as d → ∞.

JSTAT Keywords: Sandpile models, Avalanches, Critical exponents, Numerical simulations,
Self-organized criticality
Additional Keywords: Wave, Uniform spanning tree, Wilson’s algorithm, Exact sampling,
Burning algorithm, Avalanche cluster size, Toppling probability

1 Introduction

1.1 Abelian sandpile model

We start with the definition of and some fundamental facts about the Abelian sandpile model
on a finite graph G. Sandpiles are a lattice model of self-organized criticality, introduced by
Bak, Tang and Wiesenfeld [1], and have been studied in both physics and mathematics. We
refer to [2] for an overview. After discovering the Abelian group structure of addition operators
in this model, Dhar [3] generalized it to arbitrary finite graphs and called it the Abelian sandpile
model. He studied the self-organized critical nature of the stationary measure and gave an
algorithmic characterization of recurrent configurations, the so-called “burning algorithm”.
This algorithm gives a one-to-one correspondence between the recurrent configurations of the
Abelian sandpile models and rooted spanning trees [4]. This bijection is essential for our
numerical simulations.
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1.1.1 Basic properties

Let G = (V ∪ {ρ}, E) be a finite, connected graph, where we allow multiple edges between
vertices. V is a finite set of vertices and the distinguished vertex ρ is called the sink. E is
the set of edges and loop-edges are excluded for simplicity. Let degG(x) be the degree of the
vertex x in the graph G and let x ∼ y denote that vertices x and y are connected by at least
one edge.

Two examples we will be concerned with are as follows. Let V ⊂ Z
d be a finite d-

dimensional box: V = VL = [−L, L]d ∩ Z
d. All vertices in V c = Z

d \ V are identified to the
sink, ρ. All loop-edges created at ρ are removed. This is called the wired graph induced by V .
A second example is obtained, if we take V = VL \ {s}, where s = (L, . . . , L), with periodic
boundary conditions. This is called the torus graph.

A sandpile is a collection of indistinguishable grains on the vertices in V . A sandpile is
specified by a map η : V → {0, 1, 2, . . .}. We say that η is stable at x ∈ V , if η(x) < degG(x)
(the latter being = 2d when V ⊂ Z

d). We say that η is stable, if η(x) < degG(x), for all
x ∈ V . Sometimes, especially in physics, a sandpile is specified by a map η∗ : V → {1, 2, . . . }.
A stable sandpile is then defined as having one of the values 1, 2, . . . , degG(x) at all x. This
defines the same model after a trivial shift of coordinates.

If η is unstable (i.e. η(x) ≥ degG(x) for some x ∈ V ), x is allowed to topple which means
that x passes one grain along each edge to its neighbours. When the vertex x topples, the
grains are re-distributed as follows:

η(x) → η(x)− degG(x);

η(y) → η(y) + nxy, y ∈ V, y 6= x.

where nxy is the number of edges between x and y. In the examples we are concerned with,
we have nxy = 1 for all x, y ∈ V . Grains arriving at ρ are lost, so we do not keep track of
them. Toppling a vertex may generate further unstable vertices. Given a sandpile ξ on V, we
define its stabilization

ξ◦ ∈ ΩG := {all stable sandpiles on V} =
∏

x∈V

{0, 1, ..., degG(x)− 1}

by carrying out all possible topplings, in any order, until a stable sandpile is reached. It was
shown by Dhar [3] that the map ξ 7→ ξ◦ is well-defined, that is, the order of topplings does
not matter.

We now define the sandpile Markov chain with inital state η0. The state space is the set
of stable sandpiles, ΩG. Fix a positive probability distribution p on V , i.e.

∑

x∈V p(x) = 1
and p(x) > 0 for all x ∈ V . Starting at η ∈ ΩG, choose a random vertex X ∈ V according to
p, add one grain at X and stabilize. The one step transition of the Markov chain moves from
η to (η + 1X)

◦. Considering the sandpile Markov chain on a finite connect graph G, there is
only one recurrent class [3]. We denote the set of recurrent sandpiles by RG.

1.2 Toppling probability exponent

Consider the stationary sandpile in the box VL = [−L, L]d ∩ Z
d with Dirichlet boundary

conditions. Let us add a grain at the origin o, and carry out the resulting avalanche. We are
going to abbreviate the event ‘when a grain is added at o, vertex x topples in the resulting
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avalanche’ to simply ‘x topples’. Thus let PL[x topples] denote the probability that x topples
in the avalanche initiated at o in volume VL, and let P[x topples] = limL→∞PL[x topples]
be the infinite volume limit of this probability.

It was shown by Dhar [3], [2] that in the stationary sandpile in the box VL = [−L, L]d∩Z
d,

the expected number of topplings at x, when a grain is added at o is given by the Green function
GL(o, x) (the inverse of the graph Laplacian). In dimensions d ≥ 3, this has infinite volume
limit

lim
L→∞

GL(o, x) = G(o, x) ∼ cd|x|
2−d, as |x| → ∞,

where we write |x| for the Euclidean distance of x from o. Due to Markov’s inequality,
we have P[x topples] ≤ G(o, x). It was shown in [5] that in d ≥ 5 it also holds that
P[x topples] ≥ cG(o, x) with some constant c = c(d) > 0, and hence in these dimensions

P[x topples] ≈ |x|2−d. (1.1)

In analogy with other statistical physics models at criticality (such as percolation at the critical
threshold), the authors of [5] conjecture that in all dimensions d ≥ 2 one has the behaviour

P[x topples] ≈ |x|2−d−η (1.2)

with a critical exponent η = η(d) ≥ 0. Then (1.1) shows that the mean-field value of η equals
0 (d > 4), and one expects that η(d) > 0 in dimensions d = 2, 3, and that η(4) = 0 with a
logarithmic correction.

In this paper we carry out a numerical study of the conjecture (1.2) in dimensions d = 2, 3,
and also study the behaviour of PL[x topples]|x|d−2 in d = 5. We also consider the scaling
limit of the toppling probability PL[x topples] in finite volumes when |x|/L is bounded away
from 0.

1.3 Related work

To the best of our knowledge, individual toppling probabilities were not studied numerically
previously in the literature. Manna [6] and Grassberger and Manna [7] studied average ‘cluster
sizes’ related to our findings. In order to explain what these are, let

tL(x; z) = PL[x topples if a grain is added at z],

where PL refers to probabilities in the stationary state in volume [−L, L]d, with Dirichlet
boundary conditions. Let us write n(z, x) for the random variable that is the number of
topplings at x, given a grain is added at z. The above papers considered the average number
of topplings in an avalanche initiated at a randomly chosen site:

〈s〉 =
1

|VL|

∑

z∈VL

EL[
∑

x∈VL

n(z, x)] =
1

|VL|

∑

z∈VL

∑

x∈VL

GL(z, x) ∼ c(d)L2, as L → ∞. (1.3)

They also considered the average number of distinct sites toppled in such avalanches. This is
given by an average over the vertex z ∈ VL where the avalanche is initiated of the expected
number of x ∈ VL that topple at least once, that is, where n(z, x) ≥ 1. Thus

〈sdistinct〉 =
1

|VL|

∑

z∈VL

EL[
∑

x∈VL

1n(z,x)≥1] =
1

|VL|

∑

z∈VL

∑

x∈VL

tL(x; z). (1.4)
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Figure 1: Log-log plot of average cluster size 〈s〉o (black) and average number of distinct
sites toppled 〈sdistinct〉o (red) versus lattice size L with Dirichlet boundary conditions in d = 2,
when considering L = 2n with 6 ≤ n ≤ 13 with sample sizes 107, 107, 107, 107, 107, 2.5×106

and 6× 105,6× 105 respectively. The slope of the black line is 2, and the slope of the red line
is 1.58.

In [7] it was found that this scales as ≈ L1.64 in d = 2. In order to confirm that our
methods give results consistent with earlier work, we checked both of the exponents (1.3)
and (1.4) with our simulation methods for lattice sizes comparable to those in [6] and [7]
(L = 64, 128, 256, 512), and found very close agreement with the above exponents. Another
test we performed was to check that our methods yield the exactly known height probabilities
in 2D [8].

In the present paper we restrict to avalanches started at the origin o, which yield the
somewhat modified average cluster sizes:

〈s〉o = EL[
∑

x∈VL

n(o, x)] =
∑

x∈VL

GL(o, x) ∼ c′(d)L2, as L → ∞. (1.5)

and
〈sdistinct〉o = EL[

∑

x∈VL

1n(o,x)≥1] =
∑

x∈VL

tL(x; o). (1.6)

For the latter, we find an exponent somewhat different from that of (1.4), namely ≈ L1.58 in
d = 2, when considering lattice sizes L = 2n, 6 ≤ n ≤ 13; see Figure 1.

The difference could be due to large avalanches started closer to the boundary having
significantly smaller size than those started at the center of the box.

In 3D, Grassberger and Manna [7] found the behaviour of (1.4) to be very close to L2,
and suggest that the difference from (1.3) could be only a logarithmic correction. When we
restricted to avalanches started at o, we found that (1.6) also differs very little from (1.5);
see Figure 2. However, our analysis of individual toppling probabilities in 3D suggest that
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Figure 2: Average cluster size 〈s〉o and average number of distinct sites toppled 〈sdistinct〉o
rescaled by L2 versus logL with Dirichlet boundary conditions in d = 3. We considered the
values L = 32, 64, 128, 256 (with sample sizes 107, 107, 4× 106 and 4× 105).

η(3) > 0 (≈ 0.09). The reason why this positive exponent does not affect the average
number of topplings could be that the averages are dominated by very large avalanches.

We also collected data on the number of waves in 2D avalanches initiated at the origin.
Let wL(n) be the probability of observing n waves in a box of radius L. It has been pointed
out in [9] that although the expected scaling (in the limit L → ∞) is w(n) ∼ n−2, the data
is better fit with an exponent larger than 2 (about 2.1 in [9]). In Section 3.2, we present
data restricting to avalanches initiated at the middle of the box, and see that there is better
agreement with the theoretically predicted exponent 2 [4, Eqn. (5.11)].

Grassberger and Manna [7] observed that convergence to stationarity is faster, especially
in high dimensions, starting from a uniformly random sandpile compared to an empty sandpile.
As a partial explanation, in the present paper we state an asymptotic formula for the single
site marginals in stationarity (and in the infinite volume limit) that approaches a uniform
distribution as d → ∞. We give the exact asymptotic formula for the probabilities of small
heights given in terms of the Poisson distribution. Our asymptotic formula, whose proof will be
published elsewhere, coincides with the asymptotics of the exact results of Dhar and Majumdar
[10] on regular trees of high degree (see formula (8.2) in [10]).

2 Simulation methods

2.1 Overview

We use an exact sampling method. By this we mean that we use an algorithm that, given
perfectly random numbers as input, will output a recurrent sandpile configuration that is
exactly uniformly distributed (which is the steady-state of the model). First, we generate a
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uniformly distributed spanning tree (or part thereof) on the underlying graph using Wilson’s
algorithm [11]. This is an efficient algorithm, and good estimates on its running time are
available on cubic lattices. Note that since the number of spanning trees grows exponentially
in the number of vertices, it is not a straightforward task to sample one uniformly at random.
However, the algorithm in [11], described below, achieves this in polynomial time. Second, we
convert the spanning tree into a sandpile configuration (or part thereof) based on a version
of Majumdar and Dhar’s burning bijection [4]. The sandpile configuration thus obtained is an
unbiased sample from the stationary distribution of the model. This allows us to avoid any
issues arising from having to estimate mixing properties of the underlying Markovian dynamics.
A grain is added to the sampled configuration, and the resulting avalanche computed. The
above is repeated a large number of times to obtain independent samples of avalanches in the
steady-state. Independence allows us to estimate sampling errors accurately, and avoid issues
arising from unknown effects due to correlated samples.

As random number generator, we used the 32 bit version of the Mersenne Twister [12], that
is known to have a very large period (> 219,000). An additional advantage of this generator is
that it allows one to ’jump ahead’ by a given number of steps in the pseudo-random sequence
[13], which allowed us to run computations in parallel with sequences that were guaranteed to
be disjoint (we used jump-ahead with different multiples of 2100 steps on each node).

In 2D only about 44% of configurations yield an avalanche, and in high dimensions only
about fraction 1/2d. Therefore, in dimensions d = 5 and higher we used an importance
sampling technique that allows us to sample only those configurations that yield an avalanche,
and thereby increase the accuracy of our estimates compared to simple sampling. This is
described in Section 2.3.

2.2 Wilson’s algorithm

Let G = (V ∪ {ρ}, E) be a finite connected graph, where ρ plays the role of the sink for the
sandpile. A loop-erased random walk (LERW) from vertex x ∈ V with target set F ∋ ρ is
defined as follows. Consider a simple random walk on G started from x and stopped at the
first time it hits F . Then erase the loops in the path chronologically, as they are created,
yielding a simple path between x and F . (When x ∈ F , we define this as the trivial path of
zero steps.)

Wilson’s algorithm generates a random spanning tree of G as follows. Enumerate the
vertices in V as V = {x1, . . . , xn}, and set F0 = {ρ}. Run a LERW from x1 with target
set F0, and let γ1 be the path of the LERW. Set F1 = F0 ∪ γ1. Next, run a LERW from x2

with target set F1, and let γ2 be the path of the LERW. Set F2 = F1 ∪ γ2, etc. The union
of the loop-erased walks γ1, . . . , γn form a random spanning tree of G. Wilson proved that
the tree is uniformly distributed over all spanning trees of G [11], regardless of the chosen
enumeration of V . Wilson also showed that the running time of the above algorithm is the
mean commute time between ρ and a randomly chosen vertex that is distributed according to
the stationary distribution of the simple random walk on G. Here the commute time between
vertices x and y of G is defined to be ExTy + EyTx, where Tx is the first hitting time of x,
and Ex is expectation over random walk started at x.

In our 2D simulations we used two different boundary conditions: (i) G is the 2L × 2L
torus with ρ equal one of the vertices (periodic boundary conditions); (ii) G is given by the
box VL = [−L+1, L−1]2, with ρ equal to the entire boundary of this box (Dirichlet boundary
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conditions). In case (i), the mean commute time between ρ and a random vertex of the torus
is of order L2 logL; see [14, Proposition 10.13], and it is of the same order with the boundary
condition (ii); see [14, Proposition 10.6]. Hence the entire spanning tree can be generated in
time O(L2 logL).

In 3D, we only used the Dirichlet boundary condition, and in this case the entire tree can
be generated in time O(L3); see [14, Proposition 10.13].

In 5D and higher, avalanches typically take place on a small subset of the box. (The upper
critical dimension for the model is dc = 4; [15].) Hence on high-dimensional lattices we only
generated those LERWs that were necessary to compute the avalanche; see Sections 2.3 and
2.4 below. The time required to compute a single LERW from the bulk of the lattice to the
boundary is O(L2), as this is the number of random walk steps required. We used hashing
[16, Sections 6.5,6.6] to store the generated random walk steps, and the resulting LERW, so
the memory requirement for a single LERW is also O(L2). This method of simulation allowed
us to investigate the height distribution at the origin in very high dimensions (d = 32), on
lattices of radius up to L = 128, as this only requires running LERWs from the origin and its
neighbours.

2.3 Bijection and importance sampling

We first recall Majumdar and Dhar’s burning bijection [4]. Given a sandpile configuration η in
volume V , first burn the sink vertex ρ. Then at each step t ≥ 1, burn all vertices x such that

η(x) ≥ #{unburnt neighbours after step t− 1}.

Let Bt = {x ∈ V : x burnt at step t}. Connect a vertex in Bt to a neighbour in Bt−1 by
an edge. If there are more than one such neighbours, the choice can be made depending
on the value of η(x), in a bijective fashion. This maps the sandpile η to a spanning tree.
In order to invert the map at a vertex x, it is sufficient to know the length of the paths in
the spanning tree from x and its neighbours to ρ. For this purpose, when we generate our
LERWs, we also record their lengths. Then the tree-distance dist(x, ρ) from any vertex x to
ρ is given by the sum of the length of the LERW γx from x to its endpoint y in its target set
and the tree-distance dist(y, ρ) from y to ρ. (This is already available when γx is generated,
if we record the tree-distance along each LERW after they were generated.) We checked the
one-site marginals obtained with the above method in 2D against the exactly known values
[8], [17], [18], [19] and there was very close agreement.

We will need the following modification of the above burning rule [8]. Let us burn vertices
as above, with the exception that the origin o is not allowed to burn. This way there will be
a set W ⊂ V , such that o ∈ W , and W did not burn yet. Once only W is left unburnt, we
burn o and complete the process by burning W . The following fact will be important. Let

qd(i) = P[degW (o) = i], i = 0, . . . , 2d− 1,

where degW (o) denotes the degree of vertex o in the subgraph of V induced by W , in other
words, degW (o) = #{y ∈ W : y ∼ o}. Then conditioned on the random variable degW (o), we
have that the random variable η(o) is uniformly distributed over the set {degW (o), . . . , 2d−1}
[8]. Then we have

pd(i) = P[η(o) = i] =

i
∑

j=0

qd(j)

2d− j
.
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Let us modify the bijection based on the above burning process, as follows: from vertices in
V \W , we choose an outgoing edge of the spanning tree as in Majumdar and Dhar’s original
bijection. We choose an outgoing edge from o to the set V \ W according to the value of
η(o) ∈ {degW (o), . . . , 2d− 1} in a bijective fashion. Finally, we choose outgoing edges from
vertices in W , again as in the standard burning bijection. In the resulting spanning tree we
have that W equals the set of descendants of o.

For the purposes of simulating degW (o), first note that

{y ∼ o : y ∈ W} ⊂ {y ∼ o : dist(y, ρ) > dist(o, ρ)},

but the containment may be strict: there can exist z ∼ o, z 6∈ W such that dist(z, ρ) >
dist(o, ρ). In order to distinguish the vertices in W , we proceeded as follows. We first
generated the LERW γo from o to ρ. We added a large constant SHIFT to its length, and
set d′(o) = dist(o, ρ) + SHIFT. Then we generated the remaining LERWs, and computed
d′(x) = |γx|+ d′(y), where y is the vertex in the target set of γx where the LERW hits. The
added shift at o ensures that if x 6∈ W , then d′(x) = dist(x, ρ), while for x ∈ W , we have
d′(x) = dist(x, ρ) + SHIFT. Choosing SHIFT sufficiently large ensures that

{y ∈ W : y ∼ o} = {y ∼ o : d′(y) > d′(o)},

and hence degW (o) is readily available from the simulated spanning tree. In d = 2, 3 we chose
SHIFT to be the volume of the box (2L)d, and in d ≥ 5 we chose it to be the size of the
hashtable.

2.3.1 5D variance estimate

In dimension d = 5, in order to only sample configurations where avalanches occur, we
disregard the value of η at o, and set it equal to 2d− 1. This biases the toppling probabilities
in a computable way.

Let Q = degW (o) and P = η(o) be random variables, then, according to the bijection, we
have

PL[P = j|Q = i] =
1

2d− i
, 0 ≤ i ≤ j ≤ 2d− 1. (2.1)

Let the avalanche cluster be Av := {x ∈ V : x topples at least once after adding at o }.
Then we get the toppling probability

PL[x ∈ Av] = PL[x ∈ Av|P = 2d− 1]×PL[P = 2d− 1]

=

2d−1
∑

i=0

PL[x ∈ Av|P = 2d− 1, Q = i]×PL[P = 2d− 1|Q = i]×PL[Q = i].

By (2.1), we have PL[P = 2d − 1|Q = i] = 1/(2d− i). Let pL(i, x) = PL[x ∈ Av|P =
2d − 1, Q = i]. This is estimated as follows. In each sample, we record the value of Q = i,
set η(o) = 2d− 1, add a grain at o, and simulate the avalanche. We check whether x toppled
or not. Summing over all possible values of Q, we compute the toppling probability.

In order to estimate the standard error of the toppling probability estimate, let Zx = I[x ∈
Av] be a random variable, PL[Zx = 1|P = 2d − 1, Q = i] = pL(i, x). Conditioned on
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{Q = i} ∩ {P = 2d − 1}, we define the random variable Yx = 1
2d−i

Zx. Then the adjusted
toppling probability

PL

[

Yx =
1

2d− i

∣

∣

∣
Q = i

]

= pL(i, x)

with the expectation and variance conditioned on Q

EL[Yx|Q] =
pL(Q, x)

2d−Q
and VarL(Yx|Q) =

pL(Q, x)(1− pL(Q, x))

(2d−Q)2
.

The toppling probability PL[x ∈ Av] ≃ 1
n

∑n
k=1 Y

(k)
x , where each Y

(k)
x takes values 0 or

1/(2d − Q). Comparing with Zx, we expect that the variance of Yx is smaller than that of
Zx.

Denote qL(i) = PL[Q = i]. Since EL[Yx] = EL[EL[Yx|Q]] = PL[x ∈ Av] = tL(x; o) =:

tL(x) and tL(x) =
∑2d−1

i=0 qL(i)
pL(i,x)
2d−i

, we have

VarL(EL[Yx|Q]) = EL

[ pL(Q, x)2

(2d−Q)2

]

− tL(x)
2,

EL[VarL(Yx|Q)] = EL

[pL(Q, x)(1 − pL(Q, x))

(2d−Q)2

]

,

VarL(Yx) = EL(VarL(Yx|Q)) +VarL(EL[Yx|Q]) = EL

[ pL(Q, x)

(2d−Q)2

]

− tL(x)
2

=

2d−1
∑

i=0

qL(i)
pL(i, x)

(2d− i)2
− tL(x)

2 ≤ tL(x)− tL(x)
2 = tL(x)(1− tL(x)).

Based on the above, we recorded
∑2d−1

i=0
p̂L(i,x)
(2d−i)2

− t̂L(x)
2, where p̂ and t̂ denote simulation

estimates. This gives an approximation to the variance of the toppling probability estimate at
x.

As a comparison with simple sampling we note the following. Let d = 5, L = 32, and let x
be a neighbour of the origin. Then simple sampling with 1.5× 106 avalanches (on 64 nodes)
took 16, 901 seconds of CPU time per node, resulting in the estimate t̂L(x) = 0.0157±0.0001
With variance reduction, the same precision was obtained with 1.5 × 105 avalanches (on 64
nodes) and took 3455 seconds of CPU time per node, with a time save of a factor 4.89.

2.3.2 Variance of height probability estimates in d = 32

We recorded the estimated probabilities q̂d(i) for i = 0, . . . , 2d−1 while simulating the height
probabilities p̂d(i) in d = 32. Then we can compute the variance of the height probability
estimates as follows. We have

p̂d(i) =

i
∑

j=0

q̂d(j)

2d− j
, i = 0, . . . , 2d− 1.

Since the estimates q̂d(j) are almost independent, except for the constraint
∑2d−1

j=0 q̂d(j) = 1,
the variance of the height probability estimates is

Var(p̂d(i)) ≃
i

∑

j=0

1

(2d− j)2
Var(q̂d(j)) =

i
∑

j=0

1

(2d− j)2
q̂d(j)(1− q̂d(j))

n
,

where i = 0, 1, . . . , 2d− 1 and n is the number of samples generated.
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2.4 Avalanche simulation

Using the Abelian property of the model, Ivashkevich, Ktitarev and Priezzhev [20] introduced
a special order of topplings of non-stable vertices during an avalanche. We use this to generate
the avalanche in d = 2, 3 and 5 as follows. First, adding a grain to o, if o is unstable, we
topple it once and then topple all possible vertices without toppling o a second time. The
toppled vertices form the first wave of topplings in the avalanche. Then, we allow the vertex
o to topple a second time creating a second wave and so on. The process terminates when o
becomes stable. Hence, we obtain the representation of the avalanche as a sequence of waves.
In each wave, no vertex can topple more than once. We made use of this property as follows:
whenever a vertex reached the height 2d, we pushed it onto a stack containing vertices to be
toppled, and popped from this stack until it became empty.

The avalanches are expected to behave differently in dimensions d ≥ 5, compared to
d = 2, 3. Long loops are unlikely, and the loop erased random walk behaves similarly to the
random walk, in particular it scales diffusively [21, Section 7.7]. Also, independent random
walks starting from two neighbouring vertices are likely to either meet after a few steps or
not to meet at all, i.e. they are likely to connect to the sink with disjoint paths. Considering
the Dirichlet boundary conditions, the number of vertices in d dimensions is O(Ld) and the
number of steps that the random walk takes to exit a box is O(L2). In high dimensions, the
order of the number of vertices grows much faster than that of the number of steps of the
random walk. Therefore, it is very inefficient to store the entire box, since we are likely to only
use a small part of the box. The idea is to only generate loop erased random walks when they
are needed. The way to do this is the following.

First, the loop erased random walks starting from o and its neighbours are generated. This
allows the computation of the random variable Q. We then set η(o) = 2d− 1. We compute
the sand heights of the neighbours by running loop erased random walks starting from their
neighbours. This allows the toppling of o to be carried out. We repeat the above steps as
long as there are topplings.

We used hashing [16, Sections 6.5,6.6] to store the steps of the walk in such a way that it
is easy to locate intersections. We used a hash function of the form

f(x) =

2d
∑

i=1

xi ∗m
i−1 (mod HASHSIZE)

for a point x in the box {1, . . . , 2L− 1}d, where L,m and HASHSIZE are powers of 2.
In high dimension, avalanches are 4 dimensional and an avalanche that reaches all the way

to the boundary has about O(L4) vertices. Each of these L4 vertices will have its own random
walk. This means we need at most O(L6) random walk steps to be stored, independently of
the dimension. A sample was discarded when the hashtable was full.

3 2D results

3.1 Toppling probabilities in the bulk

We simulated the toppling probability both with Dirichlet and periodic boundary conditions.
We found similar behaviour in different radial directions; see Figure 3. It appears that asymp-
totically, the toppling probability only depends on the Euclidean distance from the origin (in

10



log P[x topples]

Figure 3: A heat-plot of the logarithm of the toppling probability with Dirichlet boundary
conditions in d = 2 for a system with L = 4096. The values are shown for vertices in the box
[−256, 256]2.

the infinite volume limit). In the case of periodic boundary conditions, with the largest system
size considered L = 4096, we occasionally encountered some extremely long avalanches.

Assuming the behaviour t(x) := P[x topples] ∼ c |x|−η for |x| ≫ 1 (that is, in the infinite
volume limit L → ∞), we want to estimate η = η(2). A log-log plot of the numerical
estimates t̂L(x) are shown in Figure 4.

We have attempted to fit a finite-size scaling form tL(x) ≈ c |x|−a f2(|x|/L
1/ν), with a

scaling function f2, to the data. For this, we minimized the sum of squares of the pairwise
differences between tL(x)|x|

a and tL′(x′)|x′|a, with |x|/L1/ν = |x′|/(L′)1/ν , normalized by
the standard error of the difference. First, this clearly showed that we must have ν = 1.
Second, we obtained a reasonable collapse of the data for a = 0.43, when small |x| values
(|x/L| < 50/512) were excluded from the least squares sum; see Figure 5.

Alternatively, a least squares fit of log t̂L(x) against log |x|, for vertices x along the positive
x-axis with 20 ≤ |x| ≤ 150 gives the estimate η(2) ≈ η̂(2) = 0.42; see Figure 6.

Multiplying t̂L(x) by |x|η̂ we found little deviation from a constant; see Figure 7.
We also simulated the toppling probability with periodic boundary conditions, and this gave

similar results. The agreement with the power law appears to extends to a longer interval, and
the estimated exponent, based on a least squares fit to the log-log data over 20 ≤ |x| ≤ 500,
gave η̂(2) ≈ 0.41. Figure 8 shows the toppling probabilities rescaled by |x|0.41 in systems of
size L = 512, 1024, 2048, 4096. Figure 9 compares the L = 4096 data rescaled with varying
η.

The least squares fit of log t̂L(x) against log |x|, for all vertices x with Euclidean distance
20 ≤ |x| ≤ 100 gives an estimate η̂′(2) ≈ η̂(2), that is, η̂′(2) ≈ 0.42. Multiplying t̂L(x) by
|x|η̂

′

the graph settles to be horizontal for moderate values of |x|; see Figure 10.
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Figure 4: The logarithm of the toppling probabilities against the logarithm of |x|’s with
Dirichlet boundary conditions in d = 2 for systems with L = 512 (blue), 1024 (yellow), 2048
(green), 4096 (red), and 8192 (black) with sample sizes 6× 107, 3× 107, 7.5× 106, 4× 106

and 106 respectively. The probabilities are shown for vertices in the positive x-axis up to L−1.
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Figure 5: The estimates t̂L(x) rescaled by the |x|a, where a = 0.43 is obtained from finite
scaling for 50/512 ≤ |x/L| ≤ 1, when considering Dirichlet boundary conditions in d = 2
for systems with L = 512 (blue), 1024 (yellow), 2048 (green), 4096 (red), and 8192 (black).
Sample sizes are as in Figure 4.
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Figure 6: The logarithm of the toppling probability against the logarithm of |x| with Dirichlet
boundary conditions in d = 2 for a systems with L = 8192 (black dots). The probabilities are
shown for vertices in the positive x-axis up to L − 1. The line of best fit with slope 0.42 is
from the least squares method (red line).
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Figure 7: The toppling probability with Dirichlet boundary conditions in a system with L =
8192, rescaled by |x|η̂ (η̂ = 0.42) against the logarithm of |x|, where x is taken along the
positive x-axis between 1 and L − 1. The error bars show ±2 standard deviations (for every
power of 2 only, for readability). The number of samples taken was 106.
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Figure 8: Rescaled toppling probabilities against the logarithm of |x| with periodic boundary
conditions in d = 2 for systems with L = 512 (yellow), 1024 (green), 2048 (red), and 4096
(black) (with sample sizes 2 × 107, 1.5 × 107, 3 × 106 and 7.5 × 105). The probabilities are
shown for vertices in the positive x-axis up to L.
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(blue), η = 0.38 (red). The probabilities are shown for vertices in the positive x-axis up to L.
Error bars (green) shown for |x| a power of 2.
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Figure 10: The toppling probability with Dirichlet boundary conditions in d = 2 for a system
with L = 4096, rescaled by |x|η̂ (η̂ = 0.42). The probabilities are shown for all vertices in a
disk of radius 100.

Based on the above, we make the following conjecture for the toppling probability in the
infinite volume limit L → ∞:

P[x topples] = |x|−η+o(1),

where η = η(2) = 0.4± 0.03.
Toppling probabilities in the scaling limit. Finally, we comment on the toppling probability

of those vertices x whose distance from the origin is of the same order as L. Rescaling by
|x|â, where â = 0.43 was obtained from the finite-size scaling analysis, and plotting against
|x|/L, yields the graph in Figure 11. The graph suggests that as long as |x|/L is bounded
away from 0, the rescaled quantity tL(x)|x|

a has a scaling limit f2(y), as x/L → y ∈ [−1, 1]2.

3.2 The number of waves in 2D

In this section we present results on the number of waves in avalanches initiated at the origin.
The distribution of the number of waves is the most interesting in 2D, since the average
number of waves diverges logarithmically as L → ∞:

EL[number of waves] = GL(o, o) ∼
1

2π
logL, as L → ∞. (3.1)

Recalling that n(o, o) denotes the number of topplings at o caused by addition of a grain at
o, let us put

wL(n) = PL[n(o, o) = n], w(n) = lim
L→∞

wL(n).
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Figure 11: The rescaled toppling probability with Dirichlet boundary conditions in d = 2 for
systems with L = 512 (yellow), 1024 (green), 2048 (red), and 4096 (black). The probabilities
are shown for points on the positive x-axis with 50/512 ≤ |x/L| ≤ 1.

(The existence of the limit defining w(n) is known rigorously; see [22].) Let us define the
complementary distribution functions

WL(n) = PL[n(o, o) ≥ n] =
∑

m≥n

wL(m) and W (n) = P[n(o, o) ≥ n] =
∑

m≥n

w(m).

Assuming that w(n) decays as a power law: w(n) ≈ n−δ, and from the divergence of the mean
as in (3.1), it has been predicted that W (n) ≈ n−1 (and hence δ = 2); see [4, Eqn. (5.11)].

In Figure 12 we show for L = 8192 the rescaled quantity wL(n)n
2. Error bars are shown

up to n = 200. Beyond this bound, avalanches with particular values of n are too infrequent
to estimate from our data. There is no clear indication of the rescaled values settling down to
a constant for moderate n.

The data is a lot smoother for WL(n), and the errors for the rescaled quantity WL(n)n
are also smaller. In Figure 13 we show for L = 8192 the rescaled quantity WL(n)n against
log n for 1 ≤ n ≤ 2000. It is apparent that the graph does not settle to a constant value
for moderate values of n. Therefore, if W (n) indeed satisfies an asymptotic of the form
W (n) ∼ cn−1, convergence to this asymptotic is reached only for very large values of L and
n. It has been pointed out in [7] that the simulation data in that paper better fits with δ ≈ 2.1.
However, any exponent > 2 can be ruled out, as

∑

n≥1

nw(n) = lim
L→∞

GL(o, o) = ∞. (3.2)

An alternative possibility is that the scaling behaviour ofWL(n) depends in a more complicated
way on L and n. For example, it is consistent with (3.2) to have W (n) ∼ cn−1(log n)−β with
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Figure 12: wL(n)n
2 with Dirichlet boundary conditions in d = 2, when considering L = 8192,

against log n for 1 ≤ n ≤ 2000. Error bars show ±2 standard deviations. The sample size is
106.

some 0 < β < 1. Note that we cannot have WL(n) satisfy this behaviour with a cut-off at
some Lσ, since1

Lσ

∑

n=2

1

n logβ n
∼ c(σ) (logL)1−β

Hence a logarithmic correction of the form above would require that for finite L there is
sufficient weight on very large avalanches (whose size diverges with L) to yield GL(o, o) ∼
(2π)−1 logL. In Figure 14, we show the effect of scaling the data with different powers
(log n)β. Scaling with β = 0.4 describes the data fairly well for moderate values of n.
However, our conclusion from the above is that understanding the scaling of w(n) or W (n)
requires further work.

4 3D results

In 3D we found that with periodic boundary conditions there were some extremely long ava-
lanches. In this paper we only include our data with Dirichlet boundary conditions. Assuming
the behaviour t(x) ∼ c |x|−1−η in the infinite volume limit L → ∞, we want to estimate
η = η(3). A log-log plot of the numerical estimates t̂L(x) are shown in Figure 15.

Fitting a finite size-scaling form tL(x) = |x|−1−af3(|x|/L) yielded a ≈ 0.0, when small
values of x (those with |x|/L < 5/32) were excluded; see Figure 16.

On the other hand, for the largest system size (L = 256), the least squares fit of log t̂L(x)
against log |x|, for vertices x along the positive x-axis with 7 ≤ |x| ≤ 55 gives the somewhat
different estimate η(3) ≈ η̂(3) = 0.09; see Figure 17.

1We thank an anonymous referee for calling our attention to this.
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Figure 13: WL(n)n with Dirichlet boundary conditions in d = 2, when considering L = 8192,
against log n for 1 ≤ n ≤ 2000. Error bars show ±2 standard deviations. The sample size is
106.
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log n for 1 ≤ n ≤ 2000.
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Figure 15: The logarithm of the toppling probabilities against the logarithm of |x|’s with
Dirichlet boundary conditions in d = 3 for systems with L = 32 (yellow), 64 (green), 128
(red), and 256 (black) (with sample sizes 8× 107, 2× 107, 4.5× 106, 4× 106).
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Figure 16: The estimates t̂L(x) rescaled by the |x|1+a, where a = 0.0 is obtained from finite
scaling for 5/32 ≤ |x/L| ≤ 1, when considering Dirichlet boundary conditions in d = 3 for
systems with L = 32 (yellow), 64 (green), 128 (red), and 256 (black).
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Figure 17: The logarithm of the toppling probability against the logarithm of |x| with Dirichlet
boundary conditions in a systems with L = 256 (black dots). The line of best fit with slope
1 + η̂, where η̂ = 0.09, from the least squares method (red line).

The estimate t̂L(x) rescaled by |x|1+η̂ appear to approach a constant with little deviation;
see Figure 18.

Based on the above, we believe that the exponent describing the toppling probability in
the infinite volume limit differs from the one describing it in the scaling limit x/L → y. We
make the following conjecture:

P[x topples] = |x|−1−η+o(1)

with η = η(3) ≈ 0.1.
Toppling probabilities in the scaling limit. We comment on the toppling probability of

those vertices x whose distance from the origin is of the same order as L. Rescaling by |x|1+â,
where â = 0.0 was obtained from the finite-size scaling analysis, and plotting against |x|/L,
yields the graph in Figure 19. The graph suggests that as long as |x|/L is bounded away from
0, the rescaled quantity tL(x)|x|

1+a has a scaling limit f3(y), as x/L → y ∈ [−1, 1]3.
From the assumed scaling form tL(x) = |x|−1−af3(x/L), the difference of logarithms

1

log 2
(log tL(x)− log t2L(2x)) ≈ a.

We show these differences in Figure 20 for L = 128, 64, 32, together with the horizontal line
corresponding to a = 0.0.

The above raises the question: if you rescale with |x|, does the limit exist? In other words:
is there a function f3 : [−1, 1]3 → R such that

|x|PL[x topples] ∼ f3(x/L), as L → ∞?
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Figure 18: The toppling probability with Dirichlet boundary conditions in systems with L = 32
(yellow), 64 (green), 128 (red), and 256 (black), rescaled by |x|1+η̂, where x is taken along the
positive x-axis between 1 and 55, and η̂ ≈ 0.1. The error bars show ±2 standard deviations
of the toppling probability with L = 256 (for every 3-rd point only, for readability). Sample
sizes are same as in Figure 15.
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Figure 19: The rescaled toppling probability tL(x)|x| with Dirichlet boundary conditions in
d = 3 for systems with L = 32 (yellow), 64 (green), 128 (red), and 256 (black). The
probabilities are shown for points on the positive x-axis with 5/32 ≤ |x/L| ≤ 1.
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Figure 20: The difference of logarithms in d = 3 for L = 32 (green), 64 (red), and 128
(black). A horizontal line with y = 1 (black line), corresponding to a = 0.

5 High-dimensional results

5.1 Toppling probability simulations in 5D

In dimensions d ≥ 5, it has been proved [5] that η = η(d) = 0, in the sense that

c|x|2−d ≤ P[x topples] ≤ C|x|2−d.

Based on this we can expect that the toppling probability (in the infinite volume limit L → ∞)
rescaled by |x|d−2 is asymptotic to a constant as |x| → ∞. Figure 21 shows our simulation
results which appear consistent with this conjecture.

5.2 Asymptotic height probabilities

Recall that pd(i) = P[η(o) = i] denotes the height probability in d dimensions (in the infinite
volume limit L → ∞). The following theorem states the asymptotic form of the height
probabilities as d → ∞. The proof of this theorem, that relies on analyzing Wilson’s algorithm
on the infinite graph Z

d, will be published separately from the present paper [23].

Theorem 5.1. (i) For 0 ≤ i ≤ d1/2, we have

pd(i) =

i
∑

j=0

e−1 1
j!

2d− j
+O

( i

d2

)

=
1

2d

i
∑

j=0

e−1 1

j!
+O

( i

d2

)

.

(ii) If d1/2 < i ≤ 2d− 1, we have

pd(i) = pd(d
1/2) +O(d−3/2).

In particular, pd(i) ∼ (2d)−1, if i, d → ∞.
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Figure 21: The toppling probability in the box with radius L = 32 in 5D, rescaled by |x|d−2,
where x is taken along the first coordinate axis. The error bars show ±2 standard deviations.
The number of samples taken was 4× 107, with approximately 400 samples discarded due to
a full hashtable.
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Figure 22: Simulated height probabilities (black dots) in d = 32 for a system with L = 128
(with sample size 4× 106), and the asymptotic formula (red pluses).
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The asymptotic formula appearing in part (i) of the theorem is the same as obtained by
Dhar and Majumdar [10] on the Bethe lattice with large coordination number. Figure 22
compares the formula to simulations in d = 32 in the finite volume L = 128.

Acknowledgements. We thank two anonymous referees for their constructive criticism.
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