

Citation for published version:
Pereira Coutinho, W, Fliege, J & Battarra, M 2019, 'Glider Routing and Trajectory Optimisation in disaster
assessment', European Journal of Operational Research, vol. 274, no. 3, pp. 1138-1154.
https://doi.org/10.1016/j.ejor.2018.10.057

DOI:
10.1016/j.ejor.2018.10.057

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. Nov. 2020

https://doi.org/10.1016/j.ejor.2018.10.057
https://doi.org/10.1016/j.ejor.2018.10.057
https://researchportal.bath.ac.uk/en/publications/glider-routing-and-trajectory-optimisation-in-disaster-assessment(b6c23aff-d6ee-4cfb-bef1-1fd032fe7d4d).html

Glider Routing and Trajectory Optimisation in Disaster Assessment

Walton P. Coutinhoa, Jörg Fliegea, Maria Battarrab

a University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom
{w.p.coutinho, j.fliege}@soton.ac.uk

b University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom
m.battarra@bath.ac.uk

Abstract

In this paper, we introduce the Glider Routing and Trajectory Optimisation Problem (GRTOP), the

problem of finding optimal routes and trajectories for a fleet of gliders with the mission of surveying a set of

locations. We propose a novel MINLP formulation for the GRTOP. In our approach, we consider the gliders’

flight dynamics during the definition of the routes. In order to achieve better convergence, we linearise the

gliders’ dynamics and relax the dynamic constraints of our model, converting the proposed MINLP into a

MISOCP. Several different discretisation techniques and solvers are compared. The formulation is tested on

180 randomly generated instances. In addition, we solve instances inspired by risk maps of flooding-prone

cities across the UK.

Keywords: OR in disaster relief, unmanned gliders, routing, trajectory optimisation

1. Introduction

The Glider Routing and Trajectory Optimisation Problem (GRTOP) consists of finding optimal routes

and trajectories for a fleet of unmanned aerial gliders. Gliders are Unmanned Aerial Vehicles (UAVs)

without on-board propulsion. The gliders are due to visit a set of locations. This problem arises from

disaster assessment applications, in which camera-equipped gliders survey a number of risky locations in

a post-disaster situation. The collected information can be used to assess the severity of the effects in

the aftermath of a disaster. This problem was motivated by discussions with the Royal National Lifeboat

Institution, the UK leading charity providing flood rescue response, among other services.

Controlled powered drones have been used for raising emergency response in several scenarios, see for

example, Chowdhury et al. (2017) and the recent Grenfell Tower disaster (Laville et al., 2017, June 15).

However, these drones are expensive and often require experienced pilots to be operated. In aerial survey

operations, a fleet of low cost ballon-launched autonomous gliders (Crispin, 2016) can be 3D printed (Keane

et al., 2017) and do not require a specialised team to be operated. We believe this solution concept allows

for rapid response to disasters.

In Coutinho et al. (2017), a review on UAV routing and UAV Trajectory Optimisation (TO) problems

is provided. Moreover, the authors introduce a Multi-phase Mixed Integer Optimal Control formulation for

Preprint submitted to European Journal of Operational Research July 28, 2017

the UAV Routing and Trajectory Optimisation Problem (UAVRTOP) and a taxonomy devoted to UAV

routing, task assignment, path planning and trajectory optimisation of UAVs. The authors showed that

there is a lack of research integrating UAV routing and trajectory optimisation.

Many Trajectory Optimisation Problems (TOPs) are non-convex in nature, e.g., most of the aerospace

engineering-related problems (Conway, 2010; Shaw-Cortez & Frew, 2015). Several optimisation techniques

based on Optimal Control (OC) and Non-linear Programming (NLP) have been developed to tackle TOPs.

We refer the interested reader to Betts (2001) for a complete overview of those methods. NLP-based solution

methods are known to be sensitive to initial guesses, i.e., convergence can be only ensured provided a proper

initialisation (Zhao, 2004). Constructing a good set of initial guesses for flying vehicles often requires

expertise on flight dynamics. In order to overcome such difficulties, the non-linear dynamics of UAVs is

often linearised, e.g., Hajiyev et al. (2015), How et al. (2015) and Harris & Acikmese (2013).

In this paper, we propose a single-phase Mixed-Integer Non-linear Programming (MINLP) formulation

for the GRTOP. Mixed-Integer Programming (MIP) has been already applied for solving TOPs and OC

problems, see e.g., Keviczky et al. (2008), Soler et al. (2014), Fügenschuh & Müllenstedt (2015), Yuan et al.

(2015) and Maolaaisha (2015). Our formulation takes into account the flight dynamics of the fleet of gliders

during the definition of the routes. For this, we consider a linearisation of the gliders’ Equations of Motions

(EOMs) under special flight conditions. The resulting constraints are then relaxed and a penalisation term

is added to the objective function. This allows for a more tractable formulation while keeping high quality

solutions, i.e., with small error magnitudes. Next, we study several integration methods for solving the

EOMs and test their performance when embedded in the MINLP formulation for the GRTOP.

We test our formulation with different integration methods. Moreover, we test alternative commercial

Mixed-Integer Second-Order Cone Programming (MISOCP) solvers. In addition, we generate a number of

real-life instances based on flood risk maps of cities in the UK, motivated by our application.

The remainder of this paper is organised as follows. In Section 2, we provide a brief introduction

to flight dynamics and present the glider’s EOMs. A MINLP for the GRTOP is introduced on Section

3. In Section 4, we linearise the glider’s EOMs and present different integration methods for the linear

dynamics. In Section 5, the resulting MISOCP formulation is then tested on several randomly generated

and real-life-based instances. In Section 6, we conclude this work and highlight future research venues.

2. Gliders’ Flight Dynamics

The four basic forces acting on an aircraft during flight are thrust, drag, lift and weight, these are

depicted in Figure 1a. Thrust is the force generated by the on board propulsion of the aircraft itself. Drag

is the air resistance acting upon the airplane’s fuselage. Lift is the force generated by airflow through the

control surfaces (flaps, ailerons, elevators and rudders), allowing the aircraft to fly. The weight models the

2

force pulling the aircraft to the centre of the Earth. For a glider, the thrust is absent, since there is no

engine on board.

An aircraft is said to fly in equilibrium (a.k.a. steady-state flight) when the basic forces balance each

other out. For instance, a powered steady-level flight can be achieved when lift equals weight and thrust

equals drag. In simple terms, two types of equilibrium can be described, static and dynamic. Static

equilibrium is related to the absence of velocity (static position). Dynamic equilibrium is related to

the absence of acceleration (e.g., an object moving at constant velocity). In order to find steady-state

conditions, we assume that gliders fly in dynamic equilibrium.

By activating the control surfaces of the aircraft, one can change its angular orientation. Angular

orientation can be defined in terms of Euler angles, namely pitch, yaw and roll angles (here denoted by

γ, ϕ and µ), with respect to a North-East-Down reference frame. Alternative representations can also be

applied, e.g., quartenions and rotation matrices, but they will not be considered in this paper. Figure 1b

depicts the planes of actuation of each Euler angle.

The control of an aircraft’s horizontal orientation is usually described in terms of the Angle-of-attack

(AoA). The AoA represents the difference between the angle of an aircraft’s velocity vector and its flight

path angle. We assume that the AoA can be written as a function of the lift coefficient (Cl). This is a

common assumption in the flight dynamics literature (Stengel, 2004). In simple terms, the lift coefficient

describes the amount of lift generated by an aircraft’s wings. We refer the interested reader to the books

by Russell (1996) and Stengel (2004) for a more detailed understanding of aircraft flight dynamics.

LIFT

WEIGHT

DRAGTHRUST

(a) Aerodynamic forces.

Pitch

Roll

Yaw

(b) Planes of actuation of the Euler angles.

Figure 1: Relevant forces and angles in an aircraft’s flight

2.1. Gliders’ Equations of Motion

Dynamic soaring is a nature-inspired powerless flight technique that takes advantage of wind gradients.

This technique has been first studied by Rayleigh (1883) as an explanation for the flight of pelicans and

other large birds. With the recent developments in UAV technology, this technique has become popular for

3

autonomous gliding flight. Several studies have acknowledged the use of autonomous gliders for different

purposes, see, e.g., Langelaan (2007), Chakrabarty & Langelaan (2011), and Crispin (2016).

The motion of an aerial glider can be modelled by a set of Ordinary Differential Equations (ODEs).

One popular approach is employing a set of three-dimensional kinematics and dynamics EOMs for rigid

bodies, like the ones presented by Zhao (2004). Their model includes the following assumptions: the

circumference of the earth is negligible compared to the range of flight, the density of the air can be

considered constant, the wind is stationary and the mass of the glider does not change during the flight.

Without loss of generality, one can assume that only the horizontal component of the wind is present and

it can be described by a linear profile as a function of the flight altitude.

Let us define the state of a glider at time τ ∈ R≥0 as a state vector y(τ) = (x(τ), y(τ), h(τ), v(τ),

γ(τ), ϕ(τ))>, where the first three components x(t), y(t) and z(t) of y(τ) are the position of the glider in

an Euclidean space and v(τ) ∈ R≥0 is the relative velocity of the aircraft with respect to the wind velocity

(airspeed). Finally, γ(τ) ∈ R is the pitch angle and ϕ(τ) ∈ R is the yaw angle. The controls (or input)

to the system are represented by the control vector u(τ) = (Cl(τ), µ(τ))>, where Cl(τ) ∈ R is the lift

coefficient and µ(τ) ∈ R the roll angle. All angles are defined over the aerodynamic (a.k.a relative) frame,

.i.e., a system of geographical coordinates commonly used in aviation for representing states, see Fisch

(2011). In the following, the notation “ ˙ ” is used to represent time derivatives of the variables.

The glider model used in this paper is based on the designs proposed by Bower (2010) and Flanzer

(2012). We computed the aerodynamic coefficient by using Equation (1), see Kroo (2001). The Oswald

factor e is computed using the Matlab function available at Sartorius (2013). Finally, b = 2.49 is the

glider’s wing span and S the wing area.

kA =
1

πe b
2

S

(1)

The wind strength coefficient β has been chosen so as to linearly approximate the average wind gradient

profile for the UK, as suggested by Drew et al. (2013), for a reference altitude of ≈ 500 metres. The

remaining model parameters and their meaning are summarised in Table 1.

The EOMs of a glider can be expressed by Equations (2 - 12). For the sake of simplicity of notation,

we have omitted the dependence on time τ from state, control and auxiliary variables.

mg v̇ = −D −mgge sin γ −mU̇ cos γ sinϕ (2)

mgvγ̇ = L cosµ−mgge cos γ +mgU̇ sin γ sinϕ (3)

mgv cos γϕ̇ = L sinµ−mgU̇ cosϕ (4)

ẋ = v cos γ sinϕ+ U(h) (5)

ẏ = v cos γ cosϕ (6)

ḣ = v sin γ, (7)

4

Table 1: Environmental and glider constants

Symbol Value Description Unity (IS)

ρ 1.22543 Density of the air at sea level (kg/m3)

ge 9.80665 Gravity of Earth at sea level (m/s2)

β 0.02500 Wind strength (s−1)

CD0 0.01730 Coefficient of drag at zero-lift (dimensionless)

kA 0.03200 Aerodynamic coefficient (dimensionless)

mg 1.99000 Mass of the glider (kg)

S 0.48500 Glider’s total wing area (m2)

where

D =
1

2
ρSwCDv

2 (8)

L =
1

2
ρSwClv

2 (9)

CD = CD0 + kACl
2 (10)

U(h) = βh (11)

U̇ =
dU(h)

dt
= βv sin γ. (12)

In Equations (2 - 7), the wind’s velocity is U(h). The auxiliary variables D and L (Equations (8) and (9))

represent the drag and lift forces, respectively, acting on the glider.

By re-writing Equations (2 - 7) so that the time derivatives are isolated and by grouping the equations,

one can obtain a compact representation of the system dynamics as follows:

ẏ(τ) = f(y(τ),u(τ), τ), (13)

where f(y(τ),u(τ), τ) corresponds to the right-hand-side of the system of ODEs (2 - 7).

3. Problem Definition

In the GRTOP, a fleet of balloon-lifted gliders is required to survey a number of points of interest, such

as hospitals, schools and residential areas, in order to assess possible damages and people at risk in the

aftermath of a disaster. Gliders are launched and are expected to land in one of the predetermined landing

zones. The position of launch sites can be estimated using the tool “ASTRA High Altitude Balloon Flight

Planner” proposed by Sobester et al. (2013), available at Zapponi (2013).

Each glider is equipped with a remote camera able to survey objects positioned within relative ranges.

An inverted conic shape is adopted in order to model a cameras’ field of view (Figure 2a). This type of

geometry has also been used for UAV-camera systems in Ariyur & Fregene (2008), Roelofsen et al. (2016)

and Nedjati et al. (2016). We assume that cameras are fixed to the body of the gliders, and we enforce the

5

gliders to fly in level-flight (or “flat”) over a waypoint in order to properly photograph the desired object.

For the sake of simplicity, we assume that the fleet of gliders is homogeneous and cameras have the same

specifications. For each waypoint, the cameras’ field of view allows us to define conic-like regions that must

be visited by the gliders.

Figure 2b illustrates the geometric representation of a waypoint. In this picture, the object of interest

corresponds to the blue box. Each waypoint is entirely described by (x̄i, ȳi, r̄i, hi, hi), i ∈ V , where (x̄i, ȳi)

represents the position of the object i in the xy plane. Parameter r̄i > 0 represents the radius of a circle

in the xy plane enclosing the footprint of the object i. Parameters hi and hi denote the minimum and

maximum heights in which object i can be photographed, respectively. The last two components define

and constrain the quality of the pictures. Without loss of generality, we set the cameras’ opening angle α

to 45◦ while the points of interest are assumed to lie in the same xy plane (and therefore, their altitude h̄i

is neglected). Provided these assumptions, a glider flying at an altitude h can visit a waypoint i and take a

good picture if it touches or enters the truncated cone i, i.e., (x− x̄i)2 + (y− ȳi)2 ≤ (h+ r̄i) tanα = h+ r̄i.

Landing zones can be defined in a similar way. The tuple (x̃i, ỹi, r̃i) describes the geometry of a landing

zone i ∈ L. The first three components define position on the xy plane and r̃i the radius of the landing

site. Without loss of generality we will assume that h̃i equals 0 for all i ∈ L. The shape of landing zones

consists of half-spheres with centres in the xy plane.

(a) Camera model.

α = 45◦

h

xr̄

(x̄, ȳ)

h̄max

h̄min

(b) Waypoint geometry.

Figure 2: Relevant forces and angles in an aircraft’s flight

3.1. A Mixed-Integer Non-Linear Programming Formulation

In this section, a mathematical formulation for the GRTOP is proposed. In the following, we assume a

fleet G of gliders is available at a known launching point 0. Let V represent a set of waypoints that have

to be visited and L a set of possible landing sites. We are asked to find optimal routes and trajectories for

the gliders in G such that the total mission time is minimised.

6

The motion of each glider is constrained by the system of ODEs (13). We assume that the initial

position, denoted by xo, of each glider is known in advance, i.e., xg(τ = 0) = xo,∀g ∈ G, where the

subvector xg(τ) = (x, y, h) represents the position of glider g ∈ G at time τ , τ ∈ [τo, τf], τo = 0 is the

initial mission time and τf the maximum final mission time. We refer to the set of EOMs and initial

conditions of each glider as their dynamical system.

The continuous dynamical system of each glider must be discretised in order to be used as constraints

in an finite-dimensional optimisation problem. We define a time index set T by splitting the continuous

time interval [τo, τf] into N − 1 time intervals of size η, where N ∈ Z. Let ygt and ugt approximate the

continuous state and control vectors yg(τ) and ug(τ), respectively, of glider g ∈ G at the time instant t. A

simple method for approximating the continuous dynamic system of glider g at the discrete time instants

t with an associated error ε can be written as in Equation (14), based on Euler’s method,

yg(t+1) = ygt + ηf(ygt,ugt, t), t ∈ T \ {N − 1}. (14)

Other discretisation strategies will be discussed in Section 4. In our formulation, Constraints (14) are

relaxed around the error term ε. Next, ε is added as a penalty to the objective function. This allows for a

more tractable formulation, while maintaining the accuracy of trajectories. In Section 5, we show that the

values of ε are very small, depending on the discretisation method that is employed.

We define the following binary decision variables:

agit =

1, if glider g visits waypoint i at time step t

0, otherwise.

bgit =

1, if glider g lands in the landing site i at time step t

0, otherwise.

The GRTOP can be formally defined by the non-convex MINLP defined by Equations (15-38).

min
∑
g∈G

∑
i∈L

∑
t∈T

tbgit + ε (15)

s.t.
∑
g∈G
g≤i

∑
t∈T

agit ≥ 1,∀i ∈ V (16)

d2
git ≥ (x̄i − xgt)2 + (ȳi − ygt)2,∀g ∈ G,∀i ∈ V,∀t ∈ T (17)

dgit ≤ (hgt + r̄i) +M(1− agit),∀g ∈ G,∀i ∈ V,∀t ∈ T (18)

hgt ≤ h̄iagit + hub(1− agit),∀g ∈ G,∀i ∈ V,∀t ∈ T (19)

hgt̃ ≥ hminagit + hlb(1− agit),∀g ∈ G,∀i ∈ V,∀t ∈ T, ∀t̃ ≤ t (20)

7

γgt ≤ γ̂agit + γub(1− agit),∀g ∈ G,∀i ∈ V,∀t ∈ T (21)

γgt ≥ −γ̂agit + γlb(1− agit),∀g ∈ G,∀i ∈ V,∀t ∈ T (22)

µgt ≤ µ̂agit + µub(1− agit),∀g ∈ G,∀i ∈ V,∀t ∈ T (23)

µgt ≥ −µ̂agit + µlb(1− agit),∀g ∈ G,∀i ∈ V,∀t ∈ T (24)∑
i∈L

∑
t∈T

bgit = 1,∀g ∈ G (25)

∑
t̃∈T
t̃≤t

bgjt̃ ≤ 1− agit,∀g ∈ G, j ∈ L, i ∈ V, t ∈ T (26)

r2
git ≥ (x̃i − xgt)2 + (ỹi − ygt)2 + h2

gt,∀g ∈ G, i ∈ L, t ∈ T (27)

rgit ≤ r̃i +M(1− bgit),∀g ∈ G, i ∈ L, t ∈ T (28)

yg,t+1 ≤ ygt + ηf(ygt,ugt, t) + 1ε, ∀g ∈ G,∀t ∈ T \ {N − 1} (29)

yg,t+1 ≥ ygt + ηf(ygt,ugt, t)− 1ε, ∀g ∈ G,∀t ∈ T \ {N − 1} (30)

xg0 = xo,∀g ∈ G (31)

ylb ≤ ygt ≤ yub,∀g ∈ G,∀t ∈ T (32)

ulb ≤ ugt ≤ uub,∀g ∈ G,∀t ∈ T (33)

agit ∈ {0, 1},∀g ∈ G,∀i ∈ V,∀t ∈ T (34)

bgit ∈ {0, 1},∀g ∈ G,∀i ∈ L,∀t ∈ T (35)

dgit, rgit ∈ R,∀g ∈ G,∀i ∈ V,∀t ∈ T (36)

ygt ∈ R6,ugt ∈ R2,∀g ∈ G,∀t ∈ T (37)

ε ∈ R≥0. (38)

The constants and “big-M” terms in the model have been defined as follows. The M constant has

been computed as the space diagonal of the smallest cuboid containing the waypoints, landing sites and

launching point. This is an upper bound on the distance between a glider and any waypoint and landing

site at any time. The value hmin is defined as the minimum allowed flight altitude before landing, i.e.,

hmin = max
i
{hi |i ∈ V }, assuming that hmin < min

i
{hi |i ∈ V } + C, whith C ∈ R properly chosen. The

values γ̂ > 0 and µ̂ > 0 are small pitch and row values forcing the glider to fly “flat” in the cone covering

an object. Finally, we denote by 1 a vector of ones with the same length as ygt.

The objective function (15) minimises a linear combination of the mission time and the discretisation

error. The minimisation of the mission time forces the gliders to land as soon as possible. The second

term of the objective function minimises the discretisation error that could be increased by landing too

early. Constraints (16) state that every waypoint should be visited at least once. Constraints (17) and

(18) make sure that gliders fly within the cone above each waypoint in order to take pictures. Constraints

8

(19) and (20) ensure that the gliders respect minimum and maximum surveying heights. Constraints (21)

to (24) enforce gliders to be “flat” when taking pictures. Constraints (25) ensure that each glider lands in

exactly one landing site and constraints (26) make sure that gliders do not land before all waypoints are

visited. Constraints (27) and (28) guarantee that gliders land within pre-assigned regions. The dynamics

of each glider are taken into account in Constraints (29) and (30). These constraints can be seen as a

relaxation of the Equations (14). These equations allow for a more tractable optimisation problem and for

a representation of the discretisation errors due to numerical integration methods. Constraints (29) and

(30) are non-convex and therefore they make the model a MINLP formulation.

Equations (31) define the initial positions of each glider and Equations (32) and (33) define bounds on

the state and control variables. Finally, Expressions (34) to (38) define the domain of the variables.

4. Linearisation and Discretisation of the Glider’s Dynamics

The model (15-38) combines routing and trajectory optimisation decisions in a non-convex formulation.

Local optimisation software for non-linear optimisation often requires high quality initial guesses. In order

to avoid this issue, we transform the MINLP into a more tractable convex model by linearising the gliders’

EOMs. This simplification is usually preferred in the literature when the dynamics are very non-linear

(Ahmed et al., 2015; Hajiyev et al., 2015; How et al., 2015). In the following sections, we present the

procedure for linearising the gliders’ flight dynamics and the discretisation methods we applied for solving

the resulting linear system.

4.1. Equilibrium flight and linearisation

A classic approach for linearising a system of ODEs consists of assuming the system operates in a

steady-state condition, a.k.a. in equilibrium conditions. The equivalent linear system is then modelled

assuming perturbations from this steady-state. Alternative techniques involve, for example, sequential and

input-output linearisation. An interested reader can refer the books by Russell (1996) and Stengel (2004)

for more methods of finding steady-state conditions.

We denote by yeq and ueq the steady-states and their respective controls of the glider dynamics. In a

steady flight, the resultant forces and moments acting on the vehicle are zero. In other words, let us define

yeq = [xeq, yeq, zeq, veq, γeq, ϕeq]
> and ueq = [Cleq, µeq]

> be the state and control variables such that

ẏ = f(yeq,ueq, t) = 0. (39)

In order to find an analytic solution to the Equation (39), the following assumptions are made as in

Stengel (2004) and Langelaan (2007):

• Steady gliding flight, i.e., the equilibrium is achieved by matching the wind force with the drag, and

the lift with the weight.

9

• The flight path and roll angles, γ and µ, respectively, are very small. Therefore, sin γ ≈ γ, cos γ ≈ 1,

sinµ ≈ µ and cosµ ≈ 1. It is also assumed that ϕ = 0.

• The air mass is stable and the wind velocity is constant.

• The lift coefficient is constant.

From these assumptions, the EOMs (2-12) can be simplified to the following equations (40 - 42).

v̇ = −D/mg − gγ = 0 (40)

ϕ̇ = −Lµ/mgv = 0 (41)

γ̇ = L/mgv − g/v = 0. (42)

The optimal static lift coefficient is expected to minimise the drag-to-lift (D/L) ratio, therefore:

∂(D/L)

∂Cleq
= −CD0

Cl2eq
+ kA = 0 =⇒ Cleq =

√
CD0

kA
. (43)

From Equations (40 - 42), the expressions of the remaining equilibrium states are found:

veq =

√
2mgg

ρSCleq
, (44)

γeq = −2
√
kCD0. (45)

Let us define the following new variables as perturbations around state and control variables as δy(τ) =

y(τ) − yeq and δu(τ) = u(τ) − ueq, respectively. Applying first order Taylor’s expansion to the system

(13) around the steady-state conditions gives:

T (yeq,ueq, δy, δu, τ) = f(yeq,ueq, τ) +
∂f(yeq,ueq, τ)

∂y
δy(τ) +

∂f(yeq,ueq, τ)

∂u
δu(τ) + (46)

By definition, the first term of equation (46) equals zero for the equilibrium condition. In this work, we

discard the higher order terms of the Taylor’s expansion. Matrices A =
∂f(yeq,ueq,τ)

∂y and B =
∂f(yeq,ueq,τ)

∂u

denote the Jacobians of the dynamics (13) with respect to state and control variables. This linear system

of ODEs can be re-written in a state-space form as in Equation (47)

ẏ = Aδy(t) +Bδu(t), (47)

where the system’s matrices A and B have been found by computing the derivatives of the glider’s EOM

(2 - 12) at the steady-state conditions yeq and ueq:

A =

0 0 0.025 0 0 9.44023

0 0 0 0.99889 0.44456 0

0 0 0 −0.04704 9.44023 0

0 0 0 −0.09766 −9.79579 0.01110

0 0 0 0.21947 −0.04881 0.00006

0 0 0 0 −0.02506 0

,yeq =

0

0

0

9.45068

−0.04705

0

, B =

0 0

0 0

0 0

−0.62763 0

1.41127 0

0 1.03882

,ueq =

0.73527

0

 .

10

4.2. Discretisation methods

In this paper, we solve the gliders’ EOMs by means of a direct collocation method (Betts, 2001). This

is accomplished by discretising the linear EOMs represented by Equations (47) and adding the resulting

expressions as constraints in the GRTOP.

In a direct collocation method, a continuous optimal control problem is discretised into a NLP by

defining a grid of collocation points over a time interval [τo, τf]. Let us define N as the number of collocation

points, where each time point t represents a time instant τ ∈ [τo, τf]. In this paper, a uniform grid is

adopted, as represented in the Equation τ = τo + ηt, t ∈ T, η =
τf−τo
N , where T = {0, . . . , N − 1} is a set

of collocation points. The value of η denotes the step size, which is constant in a uniform grid. Without

loss of generality, we assume that τo = 0.

Several integration schemes have been employed in order to discretise the linear system dynamics. All

of them are defined over the same time grid. More specifically, we have applied a forward Euler method, a

Trapezoidal method, two Adams-Bashforth methods and two Runge-Kutta methods (differing only by the

controls interpolation). These approaches will be detailed in the next sections. More information about

numerical methods for solving ODEs can be found, e.g., in the books by Betts (2001) and Butcher (2008).

The flight time interval [τo, τf] and step size η will be fixed for all methods presented here, therefore the

linearity of the EOMs is maintained. Due to the linearity of the EOMs, the MINLP formulation for the

GRTOP, defined by Equations (15-38), becomes a MISOCP formulation that can be solved by commercial

optimisation software without the need of initial guesses to converge.

4.2.1. Euler method

The forward Euler method is a first-order explicit numerical approach for solving ODEs (Butcher, 2008).

Let yt and ut approximate y(τ) and u(τ), respectively, at time τ ∈ [τo, τf] with an associated error ε such

that:

ẏ ≈ yt+1 − yt
η

.

By using this approximation on Equation (47) we can write:

yt+1 = yt + η(Aδy(t) +Bδu(t)). (48)

This dynamical system can be re-written in terms of the discretised state and control variables in Equation

(49).

yt+1 = (ηA+ I)yt + ηBut − η(Ayeq +Bueq). (49)

4.2.2. Trapezoidal method

The Trapezoidal method is a second-order implicit approach for solving ODEs based on the trapezoidal

rule for computing integrals (Butcher, 2008). The equation defining the trapezoidal method can be derived

11

from both Runge-Kutta and Adams-Bashforth methods, and for the GRTOP it can be defined as follows:

yt+1 = yt +
1

2
η(Aδyt +Bδut +Aδyt+1 +Bδut+1). (50)

By re-writing this system in terms of the original variables we find the discrete linear system (51).

yt+1 = yt +
1

2
η(A(yt+1 + yt) +B(ut+1 + ut))− η(Ayeq +Bueq). (51)

4.2.3. Runge-Kutta methods

The Runge-Kutta methods are a family of numerical methods for solving initial value problems. It

consists of sampling intermediate values between subsequent time steps in order to cancel out lower order

error terms (Butcher, 2008). In this paper, we apply a fourth-order Runge-Kutta method (RK4) in order

to discretise the glider dynamics. The coefficients of the RK4 method for the linear glider dynamics are

defined by Equations (52-55) in terms of the original discrete state and control variables.

k1 =A(yt − yeq) +B(ut − ueq) (52)

k2 =A(yt +
1

2
ηk1 − yeq) +B(û− ueq) (53)

k3 =A(yt +
1

2
ηk2 − yeq) +B(û− ueq) (54)

k4 =A(yt + ηk3 − yeq) +B(ut+1 − ueq), (55)

where the auxiliary variable û represents an interpolation of the control variables between time steps t and

t + 1. Here, two interpolation methods have been used. The first one consists of a linear interpolation

(Equation (56)) and the second one consist of an exponential smoothing (Equation (57)), which weights

the control history up to time step t.

û =
ut+1 + ut

2
(56)

û =
1

2

k≤t∑
k=0

1

2k
ut−k (57)

Discretised EOMs can then be defined by Equation (58)

yt+1 = yt +
η

6
(k1 + 2k2 + 2k3 + k4). (58)

4.2.4. Adams-Bashforth methods

Linear multistep methods use information from previous steps to determine the current values of the

state vector (Butcher, 2008). Unlike Runge-Kutta methods, multistep methods do not required interpola-

tion of the control variables at intermediate steps since calculations are based on predetermined collocation

points (in case of a direct collocation method). The Adams-Bashforth (AB) methods are a family of explicit

integrators that compute the value of the current state from a linear combination of the values of previous

12

states. In this article, a third-order Adams-Bashforth method (AB3) and a fourth-order Adams-Bashforth

method (AB4) are presented, in terms of the original state and control vectors, in the form of Equations

(59) and (60).

yt+3 = yt+2 +
1

12
η(23(A(yt+2 − yeq) +B(ut+2 − ueq))

−16(A(yt+1 − yeq) +B(ut+1 − ueq))

+5(A(yt − yeq) +B(ut − ueq)) (59)

yt+4 = yt+3 +
1

24
η(55(A(yt+3 − yeq) +B(ut+3 − ueq))

−59(A(yt+2 − yeq) +B(ut+2 − ueq))

+37(A(yt+1 − yeq) +B(ut+1 − ueq))

−9(A(yt − yeq) +B(ut − ueq)) (60)

Unlike single step methods, the third- and fourth-order AB methods require 3 and 4 initial values at

the first iteration, respectively. This can be accomplished by running a single step method in order to find

these initial values and then continuing the solution process with a multistep AB method. In this paper,

we apply the Euler method in order to compute initial values.

5. Computational Experiments

The computational experiments described in the next sections have been implemented in the AMPL

modelling language (version 20150516) and solved with CPLEX 12.7, Gurobi 7.0 and Xpress 8.0 in an Intel

Core i7-4770 CPU with 3.40GHz and 16GB of RAM running under Linux Mint 17 64bits (kernel 3.13.0-24).

The solvers were set to their standard configurations, with a time limit of 1 hour of execution each.

5.1. Generation of test instances

A number of test instances have been generated in the following way. First of all, we have considered

instances having n ∈ {2, . . . , 10} waypoints, m ∈ {1, 2} landing zones and bn/2c gliders. Two classes of

instances have been created. The so-called small ranged instances (represented by “S” in the instances’

name) have been defined over an area of 1km2 and the so-called large range instances (represented by “L”

in the instances’ name) over an area of 25km2. We assume a square shape for each area. In addition, each

combination of number of waypoints and landing zones received 5 different random instances, so to have

a diversity of test cases. These instances are grouped in our tables by the number of waypoints, e.g., the

group GRTOP-S10 represents all small-ranged instances with 10 waypoints.

The geometry of waypoints and landing zones has been defined by the parameters in Table 2. Let U [a, b]

denote the continuous uniform distribution from a to b. The launching altitude z̄0 has been chosen from

13

U [500, 600] for the small range instances and U [1000, 2000] for the large range instances, with the values

of the limits given in metres. In Table 2, the value of R represents the square’s side of the area, R = 1km

for the small-ranged instances and R = 5km for the large range ones. All the other values in Table 2 are

given in metres.

The positions of waypoints were not constrained, overlaps were allowed except when they generate

duplicates and were assigned randomly within the boundaries of the area. However, landing zones were

not allowed to overlap with waypoints.

Table 2: Limits of parameters defining the geometry of waypoints and landing zones in the generated instances.

Parameter a b Parameter a b

x̄ 0 R x̃ 0 R

ȳ 0 R ỹ 0 R

z̄ 0 0 z̃ 0 0

r̄ 10 25 r̃ 10 25

¯hmin 50 100 x̄0 0 R

¯hmax 200 300 ȳ0 0 R

5.2. Comparing the performance of different solvers

Table 3 shows a summary of the results for the small range instances. In this table, Group denotes

the nine groups of 10 instances (organised according to the number of waypoints in each instance). The

performance of each solver is shown on columns CPLEX, Gurobi and Xpress. These solvers were chosen

due to availability of licenses and their popularity in the research community (Mittelmann, 2017).

In Table 3, the Status column shows the tuple (a, b, c) ∈ Z3, representing the possible output statuses

from AMPL as explained on AMPL (1998), where a denotes the number of solved instances, b represents

the number of instances finished with status solved? and limit, and c represents the number of instances

finished with status failure. Column Error corresponds to the normalised average discretisation error for

each group. This has been calculated by averaging the error in each group and then dividing this average

by the smallest error among the solvers for the same group. We use normalised average errors in order to

make the comparison between different strategies easier. Column Gap(%) shows the average optimality

gap at the end of the optimisation. Column CPU(s) represents the average computing time in seconds.

Finally, column Tree Size shows the average number of explored branch-and-bound nodes for each group.

In order to test the solvers, we have chosen the Euler discretisation method. The number of collocation

points N has been set to 30. The flight time horizon of each instance has been estimated by using the

steady-state velocity and the largest range of that instance, i.e., τf = max
i∈V
{x̄i, ȳi}/veq.

The solver Xpress outperforms the other solvers in most aspects. Best results overall in each column

(except from the second) have been highlighted in boldface. Averages are shown for each solver. The

relationship between CPU times and tree sizes indicates that Xpress is noticeably faster on processing the

14

second-order cone relaxations during the branch-and-bound search. Due to a large number of failures and

worse performance for computing Second-Order Cone Programming (SOCP) relaxations, CPLEX presents

smaller average tree sizes on most cases. For our problem, Xpress has been capable of solving 76% of the

instances to optimality. As opposed to 32% and 24% of the instances that have been solved by CPLEX and

Gurobi, respectively. One can notice that CPLEX has failed to find solutions to 15 problems in total. For

the reasons exposed above, the solver Xpress has been chosen for the computational experiments presented

in the next sections.

Table 3: Summary of the results for different solvers

Group
Status Error Gap(%) CPU(s) Tree

CPLEX

GRTOP-S2 (10,0,0) 1.000 0.00% 22.348 1274.30

GRTOP-S3 (8,0,2) 1.007 0.00% 99.081 2428.75

GRTOP-S4 (2,0,8) 1.034 0.00% 1199.889 26176.00

GRTOP-S5 (3,4,3) 1.000 18.57% 2171.628 12652.43

GRTOP-S6 (3,6,1) 1.403 32.33% 2997.753 20993.56

GRTOP-S7 (1,8,1) 1.736 35.78% 3175.324 13763.67

GRTOP-S8 (2,8,0) 4.017 51.30% 3397.745 12404.38

GRTOP-S9 (0,10,0) 3.285 54.50% 3600.500 11439.10

GRTOP-S10 (0,10,0) 3.230 65.90% 3600.589 12096.90

avg. - 1.97 28.71% 2251.65 12581.01

Gurobi

GRTOP-S2 (10,0,0) 1.000 0.00% 44.125 2831.40

GRTOP-S3 (9,1,0) 1.028 2.70% 492.016 7698.60

GRTOP-S4 (1,9,0) 1.681 22.10% 3351.221 40894.40

GRTOP-S5 (1,9,0) 2.256 26.00% 3250.099 40628.50

GRTOP-S6 (1,9,0) 2.763 44.00% 3379.685 42566.10

GRTOP-S7 (0,10,0) 2.731 39.40% 3600.206 48218.50

GRTOP-S8 (0,10,0) 2.736 42.90% 3600.184 39544.80

GRTOP-S9 (0,10,0) 2.946 39.60% 3600.166 35009.00

GRTOP-S10 (0,10,0) 4.482 56.90% 3600.204 31395.40

avg. - 2.40 30.40% 2768.66 32087.41

Xpress

GRTOP-S2 (10,0,0) 1.000 0.00% 7.124 800.60

GRTOP-S3 (10,0,0) 1.000 0.00% 14.024 3250.30

GRTOP-S4 (10,0,0) 1.000 0.00% 104.985 18475.50

GRTOP-S5 (9,1,0) 1.020 0.10% 727.232 186538.20

GRTOP-S6 (7,3,0) 1.000 2.40% 1294.716 140235.50

GRTOP-S7 (9,1,0) 1.000 0.60% 1207.613 138074.90

GRTOP-S8 (5,5,0) 1.000 3.40% 2226.280 200746.40

GRTOP-S9 (7,3,0) 1.000 5.20% 2157.578 173651.90

GRTOP-S10 (1,9,0) 1.000 12.30% 3256.597 201550.40

avg. - 1.00 2.67% 1221.79 118147.08

15

5.3. Comparing the performance of different discretisation methods

In this section we compare the performance of the numerical integration methods presented in Section

4. Table 4 summarises the results for the small range instances. The remaining columns refer to the

aforementioned discretisation methods, namely the Euler method, Trapezoidal method (TRP), the third-

and fourth-order Adams-Bashforth methods, AB3 and AB4, respectively, and both versions of the fourth-

order Runge-Kutta method 1RK4 and 2RK4, where the former refers to the RK4 method with linear

control interpolation of Equation (56) and the latter to the RK4 method with the interpolation described

in Equation (57). Table 4 has been subdivided for each algorithm performance measure, namely, Status,

Error, Gap(%), CPU(s) and Tree, as in Table 3. Overall averages are shown at the end of each subdivision.

The discretisation size and flight time horizon estimation have been kept the same as in the previous

section.

From the results in Table 4, one can notice that the Euler and Trapezoidal methods are the most effective

in solving instances to optimality, finding 68 (75.6%) and 69 (76.7%) optimal solutions, respectively, against

62 (68.9%) and 61 (67.8%) optimal solutions found by using the 1RK4 and 2RK4 methods. Together, they

also produce smaller gaps for the instances that were not solved within the provided time limit. One can

also verify that the ratio between the average number of branch-and-bound nodes and average CPU times is

larger for these methods. This fact indicates that the Euler and Trapezoidal methods generate relaxations

that are easier to solve during the tree search. On the other hand, Runge-Kutta methods outperform all

the others in terms of discretisation error. The Runge-Kutta methods present error magnitudes that are

up to 16 times smaller on average than the largest errors, at the expense of presenting higher average gaps

for the instances that were not solved to optimality. There is a clear trade-off between computational

performance and solution accuracy among the lower and higher order integration methods. Nonetheless,

the third- and fourth-order Adams-Bashforth methods perform quite poorly for our problem, given the

large error values and considerable gaps compared to the lower order methods.

We have extended our computational results for the smallest and largest instances of type “S” in Table

5. In this table, the first column shows the instance names and remaining columns present the error and

CPU times for each discretisation methods presented in Section 4. The settings for the experiments shown

in Table 5 remain the same as in the ones shown in Table 4.

From the results presented in Table 5, it can be seen that the magnitudes of the discretisation errors

can be considered acceptable even for the lower order methods. To support our claim we have further

investigated which state variables are most affected by the errors when using the Euler’s method. This

has been accomplished by performing two modifications in our formulation. The first one consists of using

a vector εεε ∈ R6 to represent the error for each state variable in the dynamic equations. For example,

the generic discretisation method presented in Constraints (29) and (30) can be re-written in the form

of Constraints (61) and (62), respectively. It means that more variables will be added to the MISOCP

16

Table 4: Comparing discretisations

Group Euler TRP AB3 AB4 1RK4 2RK4

Status

GRTOP-S2 (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0)

GRTOP-S3 (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0)

GRTOP-S4 (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0) (10,0,0)

GRTOP-S5 (9,1,0) (10,0,0) (10,0,0) (9,1,0) (8,2,0) (7,3,0)

GRTOP-S6 (7,3,0) (9,1,0) (5,5,0) (4,6,0) (7,3,0) (6,4,0)

GRTOP-S7 (9,1,0) (8,2,0) (5,5,0) (3,7,0) (6,4,0) (6,4,0)

GRTOP-S8 (5,5,0) (5,5,0) (5,5,0) (3,7,0) (6,4,0) (6,4,0)

GRTOP-S9 (7,3,0) (6,4,0) (2,8,0) (1,9,0) (3,7,0) (3,7,0)

GRTOP-S10 (1,9,0) (1,9,0) (2,8,0) (2,8,0) (2,8,0) (3,7,0)

Error

GRTOP-S2 6.076 6.071 6.040 6.079 1.000 1.077

GRTOP-S3 4.438 4.565 4.633 4.565 1.000 1.007

GRTOP-S4 6.825 6.963 7.134 7.207 1.000 1.045

GRTOP-S5 3.866 4.015 3.928 3.951 1.000 1.088

GRTOP-S6 9.525 9.454 9.518 9.789 1.000 1.309

GRTOP-S7 5.854 5.659 6.264 6.164 1.033 1.000

GRTOP-S8 14.396 14.608 15.477 16.025 1.028 1.000

GRTOP-S9 8.114 8.194 9.018 8.868 1.000 1.108

GRTOP-S10 12.478 13.235 12.937 12.141 1.000 1.382

avg. 7.952 8.085 8.328 8.310 1.007 1.113

Gap(%)

GRTOP-S2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GRTOP-S3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GRTOP-S4 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

GRTOP-S5 0.10% 0.00% 0.00% 0.90% 3.00% 0.40%

GRTOP-S6 2.40% 0.50% 4.10% 3.00% 6.50% 9.20%

GRTOP-S7 0.60% 1.30% 5.10% 9.50% 10.20% 3.90%

GRTOP-S8 3.40% 3.20% 6.20% 13.50% 9.80% 8.30%

GRTOP-S9 5.20% 4.80% 15.40% 12.30% 17.00% 15.60%

GRTOP-S10 12.30% 16.10% 16.50% 20.50% 34.20% 34.40%

avg. 2.67% 2.88% 5.26% 6.63% 8.97% 7.98%

CPU(s)

GRTOP-S2 7.12 9.09 13.62 20.55 6.96 6.14

GRTOP-S3 14.02 17.10 38.15 39.37 16.93 49.12

GRTOP-S4 104.99 151.17 338.46 714.07 306.09 530.00

GRTOP-S5 727.23 146.84 328.67 919.91 859.51 1282.27

GRTOP-S6 1294.72 939.52 2423.59 2778.01 1602.54 1878.44

GRTOP-S7 1207.61 1693.21 2517.73 3157.09 1952.83 1774.54

GRTOP-S8 2226.28 2159.28 2571.27 3071.74 1813.62 1958.09

GRTOP-S9 2157.58 2789.33 3276.83 3386.65 2959.64 2660.28

GRTOP-S10 3256.60 3277.13 3216.06 3274.96 3089.89 2938.90

avg. 1221.79 1242.52 1636.04 1929.15 1400.89 1453.09

Tree

GRTOP-S2 800.60 491.50 1536.60 2208.70 1349.80 605.00

GRTOP-S3 3250.30 2772.60 9364.90 6327.00 2937.30 13045.80

GRTOP-S4 18475.50 24006.80 47125.80 87958.70 74628.00 88431.30

GRTOP-S5 186538.20 17292.70 36597.40 85667.00 104206.00 197635.70

GRTOP-S6 140235.50 88382.10 165818.60 140593.00 114531.70 98954.10

GRTOP-S7 138074.90 157636.90 146485.20 133274.00 126049.60 89096.20

GRTOP-S8 200746.40 144065.70 122573.20 100995.50 95772.00 95153.00

GRTOP-S9 173651.90 174789.50 114985.30 98945.70 127546.60 100475.20

GRTOP-S10 201550.40 174476.00 110871.60 82600.00 112147.00 113462.60

avg. 118147.08 87101.53 83928.73 82063.29 84352.00 88539.88

17

formulation for the GRTOP.

yg,t+1 ≤ ygt + ηf(ygt,ugt, t) + εεε,∀g ∈ G,∀t ∈ T \ {N − 1} (61)

yg,t+1 ≥ ygt + ηf(ygt,ugt, t)− εεε,∀g ∈ G,∀t ∈ T \ {N − 1} (62)

The second modification follows from the first one as the objective function (15) needs to be re-written as

in Equation (63). While the first term remains the same, the second term of the new objective function

sums up the individual errors for each state variable.

min
∑
g∈G

∑
i∈L

∑
t∈T

tbgit + 1>εεε. (63)

Table 6 shows the results of this reformulation for a subset of instances (using Euler’s method for

discretising the dynamics). The main source of errors are the position components of the state vector.

This can be explained by the fact that those components have the largest magnitude among all state

variables, varying roughly between 0 and 1000. Even though the error associated to the translational

dynamics is comparatively higher, they only represent a small fraction of the magnitudes of the position

variables. For example, the error εy = 11.58 associated to the y variable for the small-ranged instance

grtopS 21 1 only represents 1.16% of the range of this state variable. The last two columns of Table 6

shows the results from the original formulation with a single error variable using Euler’s method.

Table 5: Detailed discretisation error results

Name Euler TRP AB3 AB4 1RK4 2RK4

error CPU(s) error CPU(s) error CPU(s) error CPU(s) error CPU(s) error CPU(s)

grtopS 21 1 15.54 5.0 15.54 6.4 15.05 8.6 14.59 13.2 11.68 5.0 11.62 5.2

grtopS 21 2 18.63 6.4 16.57 8.5 15.46 12.4 16.53 19.0 1.83 5.3 1.66 4.7

grtopS 21 3 12.54 5.7 13.43 7.0 13.09 9.9 13.12 12.5 0.96 4.1 0.96 6.4

grtopS 21 4 12.02 3.7 12.96 6.6 12.74 8.4 13.76 12.1 0.50 3.9 0.56 3.0

grtopS 21 5 12.77 5.5 12.63 8.2 13.38 10.1 12.51 19.1 1.32 4.2 1.35 3.3

grtopS 22 1 12.19 7.9 14.23 13.3 12.95 23.8 12.83 22.8 0.68 11.0 1.48 12.8

grtopS 22 2 12.24 6.6 12.95 9.5 13.24 12.2 12.27 20.2 1.01 4.0 1.04 5.2

grtopS 22 3 13.07 11.5 13.12 12.5 14.64 23.9 13.72 41.3 3.55 23.6 4.54 9.9

grtopS 22 4 14.06 9.4 12.91 8.9 13.50 15.3 13.66 29.4 0.63 2.0 0.63 4.1

grtopS 22 5 14.95 9.6 13.58 10.0 13.15 11.6 15.10 15.9 0.56 6.5 0.63 7.0

avg. 13.80 7.1 13.79 9.1 13.72 13.6 13.81 20.5 2.27 7.0 2.45 6.1

grtopS 101 1 23.04 3601.6 26.40 3600.6 29.45 2603.9 25.66 2863.3 1.37 1732.4 1.24 2049.6

grtopS 101 2 23.17 3600.5 20.50 3600.4 20.78 3600.4 21.30 3600.3 1.24 3600.4 1.22 3600.4

grtopS 101 3 30.60 3600.5 25.93 3600.2 30.49 3600.5 23.68 3600.4 4.11 3600.5 3.50 3600.4

grtopS 101 4 23.39 160.3 23.27 367.2 24.80 753.3 24.36 1083.1 0.83 363.1 1.01 889.0

grtopS 101 5 24.94 3600.7 28.66 3600.5 26.31 3600.4 22.48 3600.4 2.22 3600.3 6.89 3600.3

grtopS 102 1 25.91 3600.5 22.28 3600.4 26.11 3600.5 24.67 3600.4 1.64 3600.3 0.78 3600.5

grtopS 102 2 24.60 3600.6 33.02 3600.6 27.00 3600.5 32.97 3600.4 2.85 3600.5 8.35 3600.7

grtopS 102 3 30.08 3600.5 26.27 3600.4 27.11 3600.2 25.29 3600.4 4.09 3600.4 1.69 1247.1

grtopS 102 4 22.01 3600.5 27.28 3600.5 21.67 3600.6 19.75 3600.4 1.07 3600.4 2.20 3600.6

grtopS 102 5 26.27 3600.3 35.81 3600.6 29.63 3600.3 26.99 3600.5 0.93 3600.6 1.26 3600.4

avg. 25.40 3256.6 26.94 3277.1 26.33 3216.1 24.71 3275.0 2.04 3089.9 2.81 2938.9

Finally, we analyse how the discretisation error and CPU times behave as the number of collocation

points N increases. This results are shown in Figure 3. For this experiment, the following number of

18

Table 6: Analysis of the discretisation error for the individual components of the state vector.

Name x y h v γ ϕ Sum CPU(s) ε CPU(s)

grtopS 21 1 0.00 11.58 0.00 0.00 0.68 0.00 12.26 6.34 15.54 4.98

grtopS 21 2 0.00 0.01 0.00 0.00 1.22 0.14 1.37 10.67 18.63 6.36

grtopS 21 3 0.00 0.79 0.00 0.00 1.14 0.00 1.93 6.58 12.54 5.70

grtopS 21 4 0.00 0.38 0.00 0.00 0.66 0.00 1.04 2.77 12.02 3.68

grtopS 21 5 0.00 0.00 0.00 0.00 0.99 0.00 0.99 3.77 12.77 5.54

grtopS 22 1 0.00 0.00 0.00 0.00 0.75 0.00 0.75 6.47 12.19 7.85

grtopS 22 2 0.00 0.00 0.00 0.00 0.89 0.00 0.89 5.01 12.24 6.59

grtopS 22 3 0.00 0.59 0.00 0.00 1.20 0.04 1.83 12.80 13.07 11.50

grtopS 22 4 0.00 0.00 0.00 0.00 0.66 0.00 0.66 1.47 14.06 9.42

grtopS 22 5 0.00 0.47 0.00 0.00 0.59 0.35 1.40 5.97 14.95 9.62

collocation points have been adopted N = {30, 45, 60, 75, 90, 105}. The flight time interval has been

computed as in the previous sections. Since the first term of the objective function (15) might affect

the value of ε, we have eliminated this term from the objective function in order to properly assess the

behaviour of the error term when varying the discretisation size. We highlight that these experiments

were performed with the original MISOCP formulation (with a single error variable) and Euler’s method.

For the sake of comparison, we added a column (in red) representing the results from using the 1RK4

method with N = 30. Figure 3a shows the magnitude of the error for each number of collocation points

on the small range instances of group GRTOP-S2 (expressed in the horizontal axis). One can notice that

the discretisation error decreases as the number of collocation points increases, as expected. The opposite

happens with the CPU times. In Figure 3b, these have been plotted in log scale.

(a) Magnitude of the error. (b) CPU(s) in log scale.

Figure 3: Behaviour of discretisation error and CPU times for several values of N .

5.4. Results for large range instances

In this section, we present the results of our model for a subset of large range instances. Here, we have

chosen Euler’s discretisation method due to its better average performance among the lower-order methods

(Section 5.3). The number of collocation points N has been set to 60 and the flight time horizon τf has

been chosen by the same procedure as described in Section 5.2.

19

In Table 7, we show the results of our model for instances with 3, 4, 5 and 6 waypoints. One will notice

that running times for the instances solved to optimality have substantially increased compared to the

small range instances, as well as the gap for the instances were optimality could not be proved. This

happens because of the larger discretisation size that we have applied. Our choice on larger discretisation

sizes seeks to guarantee the convergence of the integration methods. We also highlight that discretisation

errors remain small compared to the range of the instances. The largest error for the results in Table 7

(89.83) represents only 1.8% of the magnitude of position variables related to this instance.

Figure 4 depicts the optimal solution for two instances, grtopL 41 5 and grtopL 42 3. For illustration

purposes, we have approximated the trajectories between collocation points by natural cubic splines. In

the solution of instance grtopL 41 5, the flight times are 156s and 152s, for the first and second gliders,

respectively, and the step size equals 4.34s. In the solution of instance grtopL 42 3, the flight times are

139s and 85s, for the first and second gliders, respectively, and the step size equals 3.39s. We have also

provided video animations of feasible and optimal solutions of several instances as supplementary material

and through the website Coutinho (2017).

0
0

500

1000

1000

5000

h

1500

2000

4500
4000 2000

y

3500

x

3000
30002500

2000
1500 4000

1000
500

(a) Solution of grtopL 41 5.

1500
2000

2500
30000

x

500

3500

1000

h

1500

1500

2000 4000
2500

y

45003000
3500 50004000

4500

(b) Solution of grtopL 42 3.

Figure 4: Depiction of the optimal solutions of two large range instances.

5.5. Routing and trajectory optimisation for disaster assessment

A number of instances based on UK cities prone to flooding has been created. They represent hypothet-

ical flooding scenarios in the cities of Boston, Highbridge, London, Moore (Warrington) and Portsmouth.

The so-called UK instances have been constructed as follows. We searched for flood risk-prone cities in

the UK by using risk information maps provided at Government Digital Service (2017).

For each city, waypoints have been placed in locations with a high concentration of potential flooding

victims, such as hospitals, schools, nurseries, residential areas, asylums and industries (which could be-

come possible environmental hazards in a disaster situation), using Google maps. Next, the geographic

coordinates of waypoints were collected and converted into Euclidean coordinates. The geometry of the

waypoints and landing sites has been chosen in order to match the dimensions of the real locations.

20

Table 7: Results for a number of L instances

Name Fleet UB LB Error CPU(s) Tree Gap(%)

grtopL 31 1 1 94.49 94.49 38.49 52.84 6559 0.00%

grtopL 31 2 1 83.43 83.43 28.43 99.77 10871 0.00%

grtopL 31 3 1 105.56 105.56 46.56 150.12 50459 0.00%

grtopL 31 4 1 135.85 135.85 76.85 35.71 4239 0.00%

grtopL 31 5 1 108.36 108.36 49.36 40.19 5323 0.00%

grtopL 32 1 1 73.59 73.59 24.59 167.19 15641 0.00%

grtopL 32 2 1 103.17 103.17 44.18 1098.67 262303 0.00%

grtopL 32 3 1 124.55 124.55 65.55 102.86 10618 0.00%

grtopL 32 4 1 95.88 75.81 37.88 3600.83 783809 21.00%

grtopL 32 5 1 91.79 91.79 33.80 260.57 38517 0.00%

grtopL 41 1 2 138.36 138.35 59.36 1943.31 115060 0.00%

grtopL 41 2 2 124.20 102.43 42.20 3600.47 185657 18.00%

grtopL 41 3 1 113.71 87.80 33.71 3600.79 334907 23.00%

grtopL 41 4 2 96.20 96.20 25.20 3080.92 306189 0.00%

grtopL 41 5 2 100.45 100.44 31.45 3174.82 192406 0.00%

grtopL 42 1 2 92.30 85.59 34.30 3600.32 122582 7.00%

grtopL 42 2 2 86.12 65.83 27.12 3600.28 99994 24.00%

grtopL 42 3 2 109.12 109.12 45.12 301.81 10467 0.00%

grtopL 42 4 2 153.41 97.07 71.41 3600.48 102879 37.00%

grtopL 42 5 1 129.94 129.94 54.94 2376.52 177920 0.00%

grtopL 51 1 2 160.34 99.19 82.34 3600.70 272174 38.00%

grtopL 51 2 2 122.69 107.50 43.69 3600.44 146891 12.00%

grtopL 51 3 2 154.80 146.37 72.80 3600.26 167945 5.00%

grtopL 51 4 2 116.08 105.20 28.08 3600.47 250171 9.00%

grtopL 51 5 2 137.60 88.60 58.60 3600.51 293565 36.00%

grtopL 52 1 2 148.99 148.99 59.99 1083.69 26234 0.00%

grtopL 52 2 2 93.96 79.15 41.96 3600.53 168447 16.00%

grtopL 52 3 2 119.81 85.83 36.81 3600.53 151592 28.00%

grtopL 52 4 2 141.57 95.62 51.57 3600.67 147272 32.00%

grtopL 52 5 2 159.38 91.63 75.38 3600.77 236883 43.00%

grtopL 61 1 3 168.25 107.26 37.25 3600.59 121569 36.00%

grtopL 61 2 3 126.14 112.61 49.14 3600.48 136656 11.00%

grtopL 61 3 3 182.83 79.91 89.83 3600.58 96375 56.00%

grtopL 61 4 2 159.76 112.63 73.76 3600.43 149115 30.00%

grtopL 61 5 2 121.34 80.89 43.34 3600.54 105711 33.00%

grtopL 62 1 2 141.84 81.54 50.84 3600.46 82085 43.00%

grtopL 62 2 2 167.52 78.92 88.52 3600.47 84507 53.00%

grtopL 62 3 3 193.56 154.27 78.56 3600.44 40665 20.00%

grtopL 62 4 3 163.16 78.92 40.16 3600.65 108157 52.00%

grtopL 62 5 2 153.53 91.17 50.53 3600.61 79393 41.00%

Table 8 shows the results of our experiments with the generated UK instances. In this table, column

#W represents the number of waypoints in the instance. The remaining columns kept the same meaning

as in Table 7. The number of landing sites for all instances was set to 1. The number of collocation points

has been set to N = 30. Figure 5 depicts the solutions for 2 UK instances, namely, grtopS lond1 (London)

and grtopS highb (Highbridge).

6. Conclusion

In this paper we have tackled the GRTOP. This problem has been motivated by a disaster assessment

application. In the GRTOP, we are asked to find optimal routes and trajectories for a fleet of unmanned

gliders. The fleet of gliders is modelled by their EOMs, which consist of a set of ordinary differential

equations. We propose a novel MINLP formulation for the GRTOP. In order to avoid a non-convex

21

Table 8: Results of the GRTOP formulation for the UK instances

Name #W Fleet UB LB Error CPU(s) Tree Gap(%)

grtop bost1 7 3 73.03 73.03 34.03 263.95 9973 0.00%

grtop bost2 7 2 75.38 75.15 31.38 3600.16 391381 0.00%

grtop bost3 7 3 69.07 69.07 31.07 255.58 24063 0.00%

grtop highb 5 2 57.08 57.08 23.08 34.23 830 0.00%

grtop lond1 5 2 59.44 59.44 27.44 54.46 4923 0.00%

grtop lond2 7 3 73.86 73.86 34.86 106.89 3059 0.00%

grtop lond3 10 1 77.41 75.09 34.41 3600.42 241168 3.00%

grtop lond4 7 3 75.48 75.48 30.48 142.17 5207 0.00%

grtop moore 7 1 80.39 80.39 25.40 51.51 751 0.00%

grtop prtsm 5 1 65.59 65.59 28.59 103.49 16355 0.00%

10000

2000 500

500

1500

h

xy

1000

1000

0
500

0
-500-500

(a) Solution of grtopS lond1.

0

500

y

10000

1000

x

500
0 1500

-500

500h
1000

(b) Solution of grtopS highb.

Figure 5: Depiction of the optimal solutions of two UK instances.

formulation we linearise the gliders’ EOM using a set of steady-state conditions. This reduces the MINLP

into a more tractable MISOCP problem. In addition, we relax the resulting dynamic equations and penalise

the corresponding error term in the objective function. We present several discretisation methods for the

resulting linear dynamic equations.

In order to test our model, we have generated 180 random instances. We compared different commercial

solvers on a subset of instances, namely, CPLEX, Gurobi and Xpress. Based on the results, Xpress was

chosen for the next experiments. The second set of experiments was concerned about the discretisation

methods and discretisation errors. Higher order integration methods were able of achieving smaller error

magnitudes, but at the expense of CPU times. On the other hand, lower order methods typically reduced

computation times, at the expense of solution accuracy. A detailed analysis has been carried out regarding

the magnitude of the discretisation error. It was shown that the errors represent a small fraction of the

magnitudes of the state variables and therefore are considered acceptable. Experiments on a subset of

instances showed that the discretisation error is mostly due to the position variables, which have higher

magnitude than the variables regarding angular orientation and airspeed. Finally, we studied the effect of

22

increasing the number of collocation points on the magnitudes of discretisation error and CPU times. In

general, the trade-off between error magnitudes and CPU times becomes clear on the choice of N .

The results for large range instances showed that acceptable accuracy can also be achieved for long

range flights even by employing lower-order discretisation methods. In order to guarantee the convergence

of integration methods, the number of collocation points has to be increased. This has a direct influence

on the number of large range instances solved to optimality. Finally, we present results for the so-called

UK instances. These instances are created for disaster assessment in UK cities with high flooding risk.

The model presents a good performance over instances from this group.

The accuracy of our solutions could be further improved by applying sequential linearisation at each

node of the B&B tree, but this would dramatically increase the computation times. Further research could

also focus on an adaptive integration method instead of the fixed time grid we have used. However, this

improvements would also increase the CPU times.

Our formulation is capable to tackle a good number of test cases. However, for the instances with a

larger number of waypoints and for higher discretisation sizes we were unable to prove optimality. This

motivates the development of heuristic methods that should be able to find good solutions in small CPU

times.

Acknowledgements

The authors would like to thank Jodie Walshe from RNLI and Dr. Andràs Sóbester from the Engineering

Department at the University of Southampton for suggesting this problem. We also would like to thank

Mrs. Fatine Mrabet for creating the UK instances. The first author received grants from CNPq [Grant no.

202241/2041-9].

23

References

Ahmed, E., Hafez, A., Ouda, A., Ahmed, H., & Abd-Elkader, H. (2015). Modelling of a Small Unmanned

Aerial Vehicle. Advances in Robotics & Automation, 4 . doi:10.4172/2168-9695.1000126.

AMPL (1998). New in ampl: Statuses. http://www.ampl.com/NEW/statuses.html. Accessed: 25/05/2017.

Ariyur, K. B., & Fregene, K. O. (2008). Autonomous tracking of a ground vehicle by a UAV. In 2008

American Control Conference (pp. 669–671). IEEE. doi:10.1109/ACC.2008.4586569.

Betts, J. T. (2001). Practical methods for optimal control using nonlinear programming . Advances in design

and control. Philadelphia, PA: Society for Industrial and Applied Mathematics.

Bower, G. C. (2010). Boundary Layer Dynamic Soaring for Autonomous Aircraft: Design and Validation.

Ph.D. Thesis Stanford University Stanford, California.

Butcher, J. C. (2008). Numerical Methods for Ordinary Differential Equations. Wiley.

Chakrabarty, A., & Langelaan, J. W. (2011). Energy-Based Long-Range Path Planning for Soaring-

Capable Unmanned Aerial Vehicles. Journal of Guidance, Control, and Dynamics, 34 , 1002–1015.

doi:10.2514/1.52738.

Chowdhury, S., Emelogu, A., Marufuzzaman, M., Nurre, S. G., & Bian, L. (2017). Drones for disaster

response and relief operations: A continuous approximation model. International Journal of Production

Economics, 188 , 167–184. doi:10.1016/j.ijpe.2017.03.024.

Conway, B. A. (2010). Spacecraft Trajectory Optimization. Cambridge University Press.

Coutinho, W. P. (2017). Glider routing. https://www.youtube.com/playlist?list=

PL1mldBX67GxrUkuQZSzArTRLbYOowDD45. Accessed: 25/05/2017.

Coutinho, W. P., Battarra, M., & Fliege, J. (2017). The Unmanned Aerial Vehicle Routing and Trajec-

tory Optimisation Problem. Technical Report. Available at http://www.optimization-online.org/

DB HTML/2017/06/6106.html.

Crispin, C. (2016). Path Planning Algorithms for Atmospheric Science Applications of Autonomous Aircraft

Systems. Ph.D. Thesis University of Southampton Southampton, UK.

Drew, D. R., Barlow, J. F., & Lane, S. E. (2013). Observations of wind speed profiles over greater london,

uk, using a doppler lidar. Journal of Wind Engineering and Industrial Aerodynamics, 121 , 98 – 105.

doi:10.1016/j.jweia.2013.07.019.

24

http://dx.doi.org/10.4172/2168-9695.1000126
http://www.ampl.com/NEW/statuses.html
http://dx.doi.org/10.1109/ACC.2008.4586569
http://dx.doi.org/10.2514/1.52738
http://dx.doi.org/10.1016/j.ijpe.2017.03.024
https://www.youtube.com/playlist?list=PL1mldBX67GxrUkuQZSzArTRLbYOowDD45
https://www.youtube.com/playlist?list=PL1mldBX67GxrUkuQZSzArTRLbYOowDD45
http://www.optimization-online.org/DB_HTML/2017/06/6106.html
http://www.optimization-online.org/DB_HTML/2017/06/6106.html
http://dx.doi.org/10.1016/j.jweia.2013.07.019

Fisch, F. (2011). Development of a Framework for the Solution of High-Fidelity Trajectory Optimization

Problems and Bilevel Optimal Control Problems. Ph.D. Thesis Technical University of Munich Munich,

Germany.

Flanzer, T. (2012). Robust Trajectory Optimisation and Control of a Dynamic Soaring Unmanned Aerial

Vehicle.. PhD. Thesis Stanford University Stanford.

Fügenschuh, A., & Müllenstedt, D. (2015). Flight Planning for Unmanned Aerial Vehicles. Technical

Report AMOS #34(2015) Helmut Schmidt University / University of the Federal Armed Forces Hamburg.

Available at https://www.hsu-hh.de/download-1.5.1.php?brick id=fyCYI55SQ6oFqe5e.

Government Digital Service (2017). Long term flood risk information. https://flood-warning-

information.service.gov.uk/long-term-flood-risk/map? Accessed: 20/05/2017.

Hajiyev, C., Soken, H. E., & Vural, S. Y. (2015). Equations of Motion for an Unmanned Aerial Vehicle. In

State Estimation and Control for Low-cost Unmanned Aerial Vehicles (pp. 9–23). Springer International

Publishing.

Harris, M. W., & Acikmese (2013). Maximum Divert for Planetary Landing Using Convex Optimization.

Journal of Optimization Theory and Applications, 162 , 975–995. doi:10.1007/s10957-013-0501-7.

How, J. P., Frazzoli, E., & Chowdhary, G. V. (2015). Linear Flight Control Techniques for Unmanned

Aerial Vehicles. In K. P. Valavanis, & G. J. Vachtsevanos (Eds.), Handbook of Unmanned Aerial Vehicles

(pp. 529–576). Springer Netherlands.

Keane, A., Scanlan, J., Lock, A., Ferraro, M., Spillane, P., & Breen, J. (2017). Maritime flight trials of

the southampton university laser sintered aircraft: Project albatross. The Aeronautical Journal of the

Royal Aeronautical Society , (p. to appear). Available at https://eprints.soton.ac.uk/411713/.

Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., & Balas, G. (2008). Decentralized Receding Horizon

Control and Coordination of Autonomous Vehicle Formations. IEEE Transactions on Control Systems

Technology , 16 , 19–33. doi:10.1109/TCST.2007.903066.

Kroo, I. (2001). Aircraft Design: Synthesis and Analysis. P.O. Box 20384, Stanford, CA

94309: Desktop Aeronautics. URL: http://rahauav.com/Library/Design-performance/Aircraft%

20Design,%20synthesis%20and%20analysis.pdf version 0.99.

Langelaan, J. (2007). Long Distance/Duration trajectory optimization for small UAVs. In AIAA Guidance,

Navigation and Control Conference and Exhibit . American Institute of Aeronautics and Astronautics.

25

https://www.hsu-hh.de/download-1.5.1.php?brick_id=fyCYI55SQ6oFqe5e
https://flood-warning-information.service.gov.uk/long-term-flood-risk/map?
https://flood-warning-information.service.gov.uk/long-term-flood-risk/map?
http://dx.doi.org/10.1007/s10957-013-0501-7
https://eprints.soton.ac.uk/411713/
http://dx.doi.org/10.1109/TCST.2007.903066
http://rahauav.com/Library/Design-performance/ Aircraft%20Design,%20synthesis%20and%20analysis.pdf
http://rahauav.com/Library/Design-performance/ Aircraft%20Design,%20synthesis%20and%20analysis.pdf

Laville, S., Ross, A., Topping, A., Gayle, D., & Grierson, J. (2017, June 15). Grenfell tower: firefighters

search overnight with toll expected to rise. https://www.theguardian.com/uk-news/2017/jun/14/

fire-24-storey-grenfell-tower-block-white-city-latimer-road-london.

Maolaaisha, A. (2015). Free-Flight Trajectory Optimization by Mixed Integer Programming . Master Thesis

University of Hamburg Hamburg.

Mittelmann, H. D. (2017). Mixed-integer socp benchmark. http://plato.asu.edu/ftp/misocp.html.

Accessed: 14/07/2017.

Nedjati, A., Izbirak, G., Vizvari, B., & Arkat, J. (2016). Complete coverage path planning for a multi-uav

response system in post-earthquake assessment. Robotics, 5 . URL: http://www.mdpi.com/2218-6581/

5/4/26. doi:10.3390/robotics5040026.

Rayleigh, L. (1883). The Soaring of Birds. Nature, 27 , 534–535. doi:10.1038/028198a0.

Roelofsen, S., Martinoli, A., & Gillet, D. (2016). 3d collision avoidance algorithm for Unmanned Aerial

Vehicles with limited field of view constraints. In 2016 IEEE 55th Conference on Decision and Control

(CDC) (pp. 2555–2560). doi:10.1109/CDC.2016.7798647.

Russell, J. (1996). Performance and Stability of Aircraft . Butterworth-Heinemann.

Sartorius, S. (2013). Oswald efficiency estimation function. https://uk.mathworks.com/matlabcentral/

fileexchange/38800-oswald-efficiency-estimation-function?focused=3795877&tab=function.

Shaw-Cortez, W. E., & Frew, E. (2015). Efficient Trajectory Development for Small Unmanned Aircraft

Dynamic Soaring Applications. Journal of Guidance, Control, and Dynamics, 38 , 519–523. doi:10.2514/

1.G000543.

Sobester, A., Castro, I. P., Czerski, H., & Zapponi, N. (2013). Notes on Meteorological Balloon Mission

Planning. In AIAA Balloon Systems (BAL) Conference (pp. 1–15). American Institute of Aeronautics

and Astronautics.

Soler, M., Zou, B., & Hansen, M. (2014). Flight trajectory design in the presence of contrails: Application

of a multiphase mixed-integer optimal control approach. Transportation Research Part C: Emerging

Technologies, 48 , 172–194. doi:10.1016/j.trc.2014.08.009.

Stengel, R. F. (2004). Flight Dynamics. Princeton University Press.

Yuan, C., Zhang, Y., & Liu, Z. (2015). A survey on technologies for automatic forest fire monitoring,

detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Canadian Journal

of Forest Research, 45 , 783–792. doi:10.1139/cjfr-2014-0347.

26

https://www.theguardian.com/uk-news/2017/jun/14/fire-24-storey-grenfell-tower-block-white-city-latimer-road-london
https://www.theguardian.com/uk-news/2017/jun/14/fire-24-storey-grenfell-tower-block-white-city-latimer-road-london
http://plato.asu.edu/ftp/misocp.html
http://www.mdpi.com/2218-6581/5/4/26
http://www.mdpi.com/2218-6581/5/4/26
http://dx.doi.org/10.3390/robotics5040026
http://dx.doi.org/10.1038/028198a0
http://dx.doi.org/10.1109/CDC.2016.7798647
https://uk.mathworks.com/matlabcentral/fileexchange/38800-oswald-efficiency-estimation-function?focused=3795877&tab=function
https://uk.mathworks.com/matlabcentral/fileexchange/38800-oswald-efficiency-estimation-function?focused=3795877&tab=function
http://dx.doi.org/10.2514/1.G000543
http://dx.doi.org/10.2514/1.G000543
http://dx.doi.org/10.1016/j.trc.2014.08.009
http://dx.doi.org/10.1139/cjfr-2014-0347

Zapponi, N. (2013). Astra high altitude balloon flight planner. http://astra-planner.soton.ac.uk/.

Accessed: 21/02/2017.

Zhao, Y. J. (2004). Optimal patterns of glider dynamic soaring. Optimal Control Applications and Methods,

25 , 67–89. doi:10.1002/oca.739.

27

http://astra-planner.soton.ac.uk/
http://dx.doi.org/10.1002/oca.739

	Introduction
	Gliders' Flight Dynamics
	Gliders' Equations of Motion

	Problem Definition
	A Mixed-Integer Non-Linear Programming Formulation

	Linearisation and Discretisation of the Glider's Dynamics
	Equilibrium flight and linearisation
	Discretisation methods
	Euler method
	Trapezoidal method
	Runge-Kutta methods
	Adams-Bashforth methods

	Computational Experiments
	Generation of test instances
	Comparing the performance of different solvers
	Comparing the performance of different discretisation methods
	Results for large range instances
	Routing and trajectory optimisation for disaster assessment

	Conclusion

