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Abstract

The background error covariance matrix, B, is often used in variational data

assimilation for numerical weather prediction as a static and hence poor ap-

proximation to the fully dynamic forecast error covariance matrix, Pf . In this

paper the concept of an Ensemble Reduced Rank Kalman Filter (EnRRKF)

is outlined. In the EnRRKF the forecast error statistics in a subspace defined

by an ensemble of states forecast by the dynamic model are found. These

statistics are merged in a formal way with the static statistics, which apply

in the remainder of the space. The combined statistics may then be used in

a variational data assimilation setting. It is hoped that the nonlinear error

growth of small-scale weather systems will be accurately captured by the

EnRRKF, to produce accurate analyses and ultimately improved forecasts

of extreme events.
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1. INTRODUCTION

Data Assimilation for numerical weather prediction (NWP) is the process

of combining observational data with a prior estimate of the atmospheric

state to produce an analysis state that is the best fit to both. The analy-

sis state is then used as the initial conditions for an NWP forecast. Data

assimilation is carried out before every forecast to allow new observations

to generate realistic initial conditions. The prior estimate (which is also

known as the background state) is found from a short forecast starting from

a previous analysis.

The specification of the error statistics of the observations and of the

background state are crucial in data assimilation and are represented as ob-

servation and forecast error covariance matrices respectively. For instance

the variance information, comprising the diagonal elements of the error co-

variance matrices, represent the degree of confidence in the data which allows

the data assimilation scheme to determine whether the analysis state is closer

to the observation or the background (e.g. [13]). The forecast error covari-

ance matrix is particularly important because it spreads-out observational

information spatially and to other variables by its off-diagonal elements [1].

Correct specification of the forecast error covariance matrix will aid the as-

similation in production of a more realistic analysis.

For systems that evolve linearly, the Kalman Filter equations provide a

framework in which the forecast error covariance matrix can be calculated

[12]. Given a known error covariance matrix valid at time k − 1, Pa
k−1, the

forecast error covariance matrix at the forecast time, Pf
k is found by evolving
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Pa
k−1 with the linear model, Mtk−1→tk . Assuming a perfect model this gives

Pf
k = Mtk−1→tkP

a
k−1M

T
tk−1→tk

. (1)

This equation yields a forecast error covariance matrix that is dependent

upon the flow. This is often considered the ‘gold standard’ representation of

the forecast error covariance matrix for linear systems with Gaussian statis-

tics, which many data assimilation schemes try to emulate.

The state vector for operational NWP has O(107) elements which leads

to a Pf-matrix that has O(1014) elements. This is too large to store or

to propagate explicitly and therefore some approximations need to be made.

There are a number of ways in which the Pf-matrix is represented in practice.

1. The Ensemble Kalman Filter (EnKF) [8] approximates the forecast

state error covariance using an ensemble of forecasts. For an N -member

ensemble the state vector (of dimension n) for member i is xi for i =

1, 2, . . . , N . The sample error covariance Pf
e is written as

Pf
e =

1

N − 1

N∑

i=1

(xi − 〈x〉) (xi − 〈x〉)T
, (2)

where 〈x〉 represents the ensemble mean.

2. In variational data assimilation a cost function is minimised to provide

an optimal analysis e.g [14, 6]. The incremental 3D-VAR cost function

is the sum of the background, J b, and observation, J o, penalties

J (δx) =
1

2
δxTB−1δx

︸ ︷︷ ︸

J b

+
1

2

[
y − H(xb + δx)

]T
R−1

[
y − H(xb + δx)

]
.

︸ ︷︷ ︸

J o

(3)
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Here δx is the increment, xb is the background state (where the full

state vector is defined by x = xb + δx), the vector containing observa-

tional data is y and H is is the linear operator that maps from model to

observational space. J b penalises the distance between x and xb, and

J o penalises the distance of the model observations to the measured

observations. In variational data assimilation the forecast error covari-

ances are crudely approximated by a matrix known as the background

error covariance matrix, B, which is usually a static, and thus subopti-

mal, estimate of Pf . For practical purposes, B can be represented in a

compact way via use of a Control Variable Transform (CVT), denoted

L, as follows

δx = Lδχ, (4)

where δχ is called the control vector. L is designed so that the forecast

error covariance matrix, when in the represention of δχ, is the unit

matrix. Thus
〈
χχ

T
〉

= I where 〈〉 indicates an average over a popu-

lation of forecast errors. Combining this property with (4) results in a

simplified cost function

J (δχ) =
1

2
δχTδχ

+
1

2

[
y − H(xb + Lδχ)

]T
R−1

[
y − H(xb + Lδχ)

]
. (5)

Minimizing (5) with respect to δχ is equivalent to minimizing (3) with

respect to δx with the B-matrix given by

Bimp =
〈
δxδxT

〉
= LL

T

, (6)

which is known as the implied B-matrix. Part of the CVT intro-

duces important large-scale meteorological balances into the system,
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e.g. geostrophic and hydrostatic balances (e.g. [2]).

There are advantages and disadvantages of these two representations.

The EnKF provides a flow-dependent Pf
e-matrix, but the number of ensem-

ble members, N , is in practice restricted by cost and is vastly less than n.

This restriction on N leads to sampling errors, filter divergence, the intro-

duction of spurioius correlations, and a rank deficient Pf
e-matrix (e.g. [7]).

The B-matrix of standard variational assimilation is full rank, but is static

and simplified. Variational data assimilation is currently the most common

method for operational NWP for reasons such as computational efficiency

[6]. As the resolution of weather forecast models increases so does their abil-

ity to resolve smaller-scale weather systems (e.g. thunderstorms) that can

have a significant error growth. These systems would be particularly poorly

represented by a static B-matrix [11] and so the introduction of appropritate

flow-dependent error statistics into the variational framework is an important

area for investigation.

Hybrid methods, which combine ensemble and variational techniques, are

currently a promising area of research. Various hybrid methods have been

proposed which allow the introduction of flow-dependent error statistics into

the variational framework. For example Liu et al. [15] proposed an ensemble

based 4DVAR that allows flow-dependent forecast error statistics and avoids

the need for the tangent linear and adjoint model. More recently Cheng et al.

[5] proposed a hybrid method for determining the forecast error covariances

by removing the most significant error directions in 4DVAR from a set of

background ensemble perturbations and then adding back estimates of the

forecast error in the same subspace. Other hybrid schemes exist though a
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full review is beyond the scope of this paper (further details are found in

[15] and [5]). In this paper a new mathematically rigorous hybrid method

is proposed whereby a subset of flow-dependent covariance information from

an ensemble is calculated for use within a variational setting. We call this

method the Ensemble Reduced Rank Kalman Filter (EnRRKF) which builds

on the Reduced Rank Kalman Filter (RRKF) introduced by Fisher [9].

In section 2 the RRKF and the EnRRKF are introduced, in section 3

the key differences between the schemes and the potential benefits of the

EnRRKF over the RRKF are discussed, and in section 4 is a brief summary.

2. Mathematical Formulations

The RRKF [9] is employed in variational setting as a method of including

a subset of explicitly evolving covariance information. A special subspace is

identified in which the forecast error statistics are treated explicitly during

the assimilation, the residual space is treated with the static B-matrix and

the error covariances between the special and residual subspaces are also

treated explicitly. In the standard RRKF [9] the special subspace is defined

using the K dominant Hessian Singular Vectors (HSVs) [3, 9, 4], which are

each evolved with the dynamic model to the background time and blended

with the otherwise static B-matrix. Instead of defining the special subspace

with HSVs, the proposed EnRRKF defines a subspace using a set of ensemble

members. This merging of variational data assimilation and ensemble based

techniques qualifies this scheme as a hybrid-method. The EnRRKF is a

mathematically rigorous way of combining an ensemble estimated and a static

representation of forecast error information.
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The conventional RRKF has been dervied and analysed in [9, 10] and [4].

The implementation of the RRKF requires three stages: firstly the identi-

fication of the subspace in which the forecast error covariances are to gain

explicit flow-dependence, secondly a modification to the otherwise standard

control variable transform and thirdly devising a a means by which the flow-

dependent information can be incorporated in variational data assimilation.

The basic framework of the RRKF is given below, with some alterations

for convienience, which is followed by the modifications made to form the

EnRRKF.

2.1. Reduced Rank Kalman Filter

2.1.1. Partition the vector space and redefine the cost function

The first step is to partition a state vector increment, δx, into a part that

is to have flow-dependent error statistics, δxs, and a residual δxs

δx = δxs + δxs. (7)

In the RRKF the subspace is defined using the K leading HSVs held in a ma-

trix S of dimensions n×K, where generally K ≪ n. It is convienient (though

not necessary) to orthogonalise S to give S̃. This provides an orthogonal ba-

sis to represent the part of the increment δx that lies in the subspace δxs

as a projection from a vector, δa, of K coefficients representing the special

subspace

δxs = S̃δa. (8)

The orthogonal property of S̃, S̃TS̃ = I, means that δa can be easily deter-

mined from δx

δa = S̃Tδx, (9)
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noting that S̃Tδxs = 0.

The next step is to reformulate the background term of the cost function:

Jb =
1

2
δxTPf−1

δx, (10)

here the formally correct error covariance matrix Pf has been used to describe

the forecast error covariances in contrast to (3) which uses the B matrix

approximation. Substituting (7) into (10) we find

J b =
1

2
δxT

s Pf−1
δxs +

1

2
δxT

s Pf−1
δxs +

1

2
δxT

s Pf−1
δxs +

1

2
δxT

s Pf−1

δxs. (11)

The goal of the RRKF is to treat terms containing the increment δxs

(which lies in the identifed subspace) with explicitly calculated flow depen-

dent error statistics. The term containing only the increment δxs (which lies

in the residual space) is to be treated with the implicit and static B-matrix

approximation, this is achieved by replacing the forecast error covariance Pf

with B in the fourth term of (11). The second and third terms of (11) contain

both δxs and δxs which arise due to cross covariances between these spaces.

As covariance matrices are symmetric we can write

(

δxT
s Pf−1

δxs

)T

= δxT
s Pf−1

δxs,

allowing the second and third terms to be summed to one cross term. This

cross term is is treated with the explicitly evolved error covariances this term

is anticipated to be important and non-trivial. An additional factor α added

by Fisher is typically included in the cross term to ensure the cost function

remains positive definite [9] but is omitted here for clarity. Combining these

approximations allows the background term of the RRKF cost function to

be written as
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J b =
1

2
δxT

s Pf−1
δxs + δxT

s Pf−1
δxs +

1

2
δxT

s B−1δxs. (12)

2.1.2. Control Variable Transform

The CVT in the RRKF is an adaptation of (4) used in standard varia-

tional assimilation, but there is an additional transform X that accounts for

the partioning between δxs and δxs

δx = LXδχ, (13)

where δχ is now the RRKF’s control vector. The transform X is an n × n

orthogonal matrix (XXT = I and XTX = I). Additionally XT is designed

to have the following properties. (i) When δx lies in the subspace spanned

by δxs, δχ = XTL−1δx produces a vector whose first K elements only are

able to be non-zero. (ii) When δx lies in the subspace spanned by δxs,

δχ = XTL−1δx produces a vector whose last n−K elements only are able to

be non-zero. Thus in the δχ-representation in (13), the first K (last n−K)

elements are associated exclusively with δxs (δxs). This property can be

achieved with a sequence of Householder transformations [9]. Substituting

(13) into (12), noting that (LX)(LX)T = B, and defining

Pf
χ

−1
= XTLTPf−1

LX, (14)

transforms (12) into the following form in control space

J b =
1

2
δχs

TPf
χ

−1
δχs + δχs

TPf
χ

−1
δχs +

1

2
δχs

Tδχs, (15)

where δχs = XTL−1δxs and δχs = XTL−1δxs.
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In (15), and by the design of XT specified above, Pf
χ

−1
always acts on

vectors that are zero in all but the first K elements. This means that only

the first K columns of Pf
χ

−1
are required Fisher [9] shows how this matrix is

found given the HSV calculation.

2.2. Ensemble Reduced Rank Kalman Filter (EnRRKF)

Most of the formulation is shared between the EnRRKF and the RRKF.

The main difference is the way that the special flow-dependent subspace is

identified. In the EnRRKF this subspace is defined by part of the space

spanned by an N -member ensemble. Each member is forecast with the dy-

namic model and is valid at the same time as the background. The ensemble

is not restricted to sampling initial condition error, it is feasible to use an

ensemble that also describes the random sources of model error. By analogy

with the HSVs used with the RRKF, let Sn×N be the n × N matrix that

holds the ensemble members and let S̃n×N be an orthogonal matrix that

spans the same space (some matrices are now labelled with their dimensions

to distingish between different representations). Each column of Sn×N may

be represented as a linear combination of the columns of S̃n×N with weights

specified by the N × N matrix SN×N (c.f. (8,9)), i.e.

Sn×N = S̃n×NSN×N and SN×N = S̃T
n×NSn×N . (16)

The rank N sample forecast error covariance found from the N members

calculated in the S̃n×N -space, NPf
N×N , is as follows (c.f. (2))

NPf
N×N =

1

N − 1
SN×NST

N×N . (17)

To minimize the effect of undersampling by the ensemble, a truncated space

is constructed comprising the K eigenvectors of Pf
N×N that have the largest
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eigenvalues (K ≤ N). Let these be the columns of UN×K . In n-space these

eigenvectors are

Un×K = S̃n×NUN×K , (18)

which themselves define the special subspace and effectively take the role of

the orthogonalised singular vectors in the RRKF. The truncated (to rank K)

eigenvalue decomposition of NPf
N×N is

KPf
N×N = UN×KΛK×KUT

N×K , (19)

where ΛK×K is the diagonal matrix of the largest K eigenvalues. The N −K

discarded modes are associated with noise and are treated by the B-matrix

rather than the Pf-matrix, i.e. they are now in the residual space.

This information from the ensemble is used to construct the first K

columns of Pf
χ

−1
needed in (15). Act with Pf−1

on Un×K , call the result

Z, and insert the forward and inverse CVT from (13)

Z = Pf−1
Un×K = Pf−1

LXXTL−1Un×K . (20)

Acting from the left with XTLT and using (14) gives an expression for Pf
χ

−1

Pf
χ

−1
= XTLTZ

(

ÎK×nX
TL−1Un×K

)−1

, (21)

where ÎK×n is a K ×n quasi identity matrix which has the structure ÎK×n =

(IK×K0K×(n−K)). This removes the last n−K superfluous rows of XTL−1Un×K

which contain only zero elements. Since interest is in the first K columns

only, Pf
χ

−1
in (21) (an n×K matrix), does not appear as a symmetric matrix.

In n-space the rank K error covariance from (19) is

KPf
n×n = S̃n×N(KPf

N×N)S̃T
n×N = S̃n×NUN×KΛK×KUT

N×KS̃T
n×N . (22)
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In the following, it is assumed that the operators act only on the space

spanned by the special K vectors identified above. This means that the

restricted inverse of KPf
n×n can be found. Inverting (22) by noting that

under the same assumption, S̃n×N S̃T
n×N = I and UN×KUT

N×K = I, gives

KPf
n×n

−1
= S̃n×NUN×KΛ−1

K×KUT
N×KS̃T

n×N . (23)

Approximating Pf−1
in (20) by the inverse error covariance matrix in (23)

found from the truncated sample allows Z to be found, which may be sub-

stituted into (21) for Pf
χ

−1

Pf
χ

−1
= XTLTS̃n×NUN×KΛ−1

K×KUT
N×KS̃T

n×NUn×K

(

ÎK×nX
TL−1Un×K

)−1

,

(24)

This expression for Pf
χ

−1
is intentionally non-square, it contains calculable

quantities for the typical size of n needed for useful models and has the

minimum amount of information needed to evaluate (15).

2.3. The implied forecast error covariance matrix of the EnRRKF

In a standard variational data assimilation scheme the forecast error co-

variance implied by the CVT is given by (6). In the EnRRKF the implied

forecast error covariance in model space could in theory be calculated from

Pf
imp = LXPf

χ
XTLT. (25)

In practice this is not straightforward as it would require a difficult inversion

of (24). An alternative approach to determining part of the implied forecast

error covariance is to implement the EnRRKF and look at the structure of

the analysis increments associated with single observation experiments which

reveals chosen columns of Pf
imp.
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3. Discussion

The standard RRKF has been tested in operational 4DVAR at the Euro-

pean Centre for Medium Range Weather Forecasts, with the conclusion that

the RRKF in its standard form does not have a significant impact on forecast

scores [10]. Potential problems with the current RRKF are as follows. (i)

Singular vectors are a linear construct and so may not adequately describe

the error statistics of systems with a non-linear error growth, e.g. thunder-

storms. The limited performance reported may not necessarily be attributed

to the RRKF per se, rather just to the use of singular vectors which may

not be identifying the most dynamically relevant subspace. (ii) The RRKF’s

knowledge about the Hessian in the previous cycle may be inadequate, par-

ticularly as the Hessian itself is approximate and depends upon the previous

cycle’s forecast error covariance matrix and so problems with the RRKF

may cycle through the system. (iii) Small scale weather systems (thunder-

storms or mesoscale convective systems) require high resolution models to

capture their structure. To describe the error characteristics using the HSV

calculation of these features at high resolution would be computationally

demanding, possibly prohibitively so.

The potential benefits of the EnRRKF are as follows. (i) As in the RRKF

the flow-dependent error statistics for part of the state space are calculated

explicitly, which is done for each assimilation cycle. The remaining part of

the state space is treated conventionally, the method also takes into account

the covariances between each part. (ii) The description of this subset of er-

ror statistics applies even to structures with non-linear error growth as the

ensemble trajectories are found with the non-linear forecast model. When
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used in a data assimilation environment this will hopefully lead to an anal-

ysis state that is improved compared with either 4DVAR or an RRKF and

ultimately improved forecast scores. (iii) Ensemble forecast systems are used

at a number of operational centres and so ensemble information is readily

available. An issue that will require close study in future tests of the EnR-

RKF is whether a small ensemble will give adequate information about the

special K-dimensional subspace. Methods such as the EnKF that use sample

covariances do suffer from the problems highlighted in section 1. It will be

interesting to see how the EnRRKF can help to overcome these problems

given the total effective error covariance matrix in the EnRRKF remains

full-rank.

The generation of an ensemble is a crucial component of the EnRRKF.

If ensemble information is not available one method of generating initial

ensemble perturbations is to use a technique known as error breeding [13,

16]. This breeding method generates growing modes [16], known as bred

vectors which have a larger growth rate than perturbations generated by a

Monte Carlo technique [13]. Bred vectors may make an ideal set of initial

perturbations for the EnRRKF as it is the set of most unstable modes (in a

non-linear sense) that we seek to represent explicitly.

We plan to test the EnRRKF in a high-resolution toy model based on sim-

plified equations equations of the atmosphere (Petrie et al., in preparation).

This model has been designed to have multiscale behaviour, where large-scale

balances (e.g. hydrostatic and geostrophic balance) coexist with unbalanced

motion at the small-scales. This will provide an interesting testbed of the

EnRRKF and allow us to investigate the covariance spectra for different vari-
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ables with varying numbers of ensemble members and degrees of truncation.

4. Summary

The purpose of this paper is to present the methodology of a new hybrid

data assimilation scheme. The background error statistics used in variational

data assimilation are largely static due to the practial implications of the large

dimensions of the Pf-matrix. The static representation is particularly poor in

the case of extreme weather events where the uncertainty is likely to be large,

fast growing and non-linear. The EnRRKF is an extension to the RRKF and

is proposed as a hybrid method of data assimilation that has partially flow-

dependent error statistics. A subspace defined using an ensemble (in contrast

to the use of singular vectors in the RRKF) is explicitly represented and flow-

dependent. It is hoped that this scheme will reduce analysis error and provide

useful statistical information on the uncertainty in extreme weather events.
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