
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Wu, Xiuli and Peng, Junjian and Xiao, Xiao and Wu, Shaomin (2020) An effective approach
for the dual-resource flexible job shop scheduling problem considering loading and unloading.
 Journal of Intelligent Manufacturing . ISSN 0956-5515.

DOI

https://doi.org/10.1007/s10845-020-01697-5

Link to record in KAR

https://kar.kent.ac.uk/84129/

Document Version

Publisher pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/342819727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Intelligent Manufacturing
https://doi.org/10.1007/s10845-020-01697-5

An effective approach for the dual-resource flexible job shop
scheduling problem considering loading and unloading

Xiuli Wu1 · Junjian Peng1 · Xiao Xiao1 · Shaomin Wu2

Received: 28 December 2019 / Accepted: 14 October 2020
© The Author(s) 2020

Abstract
Many manufacturing systems need more than one type of resource to co-work with. Commonly studied flexible job shop
scheduling problems merely consider the main resource such as machines and ignore the impact of other types of resource.
As a result, scheduling solutions may not put into practice. This paper therefore studies the dual resource constrained flexible
job shop scheduling problem when loading and unloading time (DRFJSP-LU) of the fixtures is considered. It formulates a
multi-objective mathematical model to jointly minimize the makespan and the total setup time. Considering the influence of
resource requirement similarity among different operations, we propose a similarity-based scheduling algorithm for setup-
time reduction (SSA4STR) and then an improved non-dominated sorting genetic algorithm II (NSGA-II) to optimize the
DRFJSP-LU. Experimental results show that the SSA4STR can effectively reduce the loading and unloading time of fixtures
while ensuring a level of makespan. The experiments also verify that the scheduling solution with multiple resources has a
greater guiding effect on production than the scheduling result with a single resource.

Keywords Flexible job shop scheduling problem · Fixture · Resource requirement similarity · Set-up time · Improved
NSGA-II

Introduction

Since the early 1960s, the job shop scheduling problem
(JSP) has been considered as one of the most important NP-
hard combinatorial optimization problems. The flexible job
shop scheduling problem (FJSP), which is an extension of
JSP, increases the flexibility and complexity of scheduling
(Xie et al. 2019). The real production environment, such as
production conditions and customer requirements, becomes
more andmore complexwith the increasingpopularity of per-
sonalized requirements. A growing number of authors have
paid attention to the actual production problems and devel-
oped many scheduling approaches for FJSP (Gao and Pan
2016; Gong et al. 2018a, b; Costa et al. 2020). Most of them,
nevertheless, ignored the important influenceoffixtures, such
as loading and unloading time, which is an essential part in
the production time and should be therefore not neglected.

B Shaomin Wu
s.m.wu@kent.ac.uk

1 University of Science and Technology Beijing, Beijing, China

2 University of Kent, Canterbury CT2 7FS, UK

Among recent studies, most scheduling studies only focus
on the machine resource (Wu and Wu 2017; Xie et al. 2019;
Li et al. 2019; Nesello et al. 2018). Jobs, however, need to
be processed with not only machines but also other types
of resource, such as fixtures and measuring tools. Such a
scheduling problem is referred to as a multi-resource con-
strained scheduling problem, which exists ubiquitously in
many production environments. In the studies related to this
kind of scheduling problem, most authors focus on the con-
straints of machine and worker resource (Alejandro et al.
2020), and few consider the constraints of fixture resources
in the scheduling solution (Costa et al. 2020). However, fix-
tures are an indispensable tool for fixing and locating jobs
on machines. Especially in some types of workshops, some
fixtures are unique for typical jobs. During scheduling such
job shops, the scheduling solution can be executed only if
both the machine and fixture resources are considered. This
gap motivates this study.

According to the statistics from the International Asso-
ciation of Production and Research, 95% of the time dur-
ing processing is consumed in the non-processing process
(Wang 2005). These non-processing processes do not cre-
ate value (Allahverdi 2015). Efficiently using the production

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10845-020-01697-5&domain=pdf
http://orcid.org/0000-0001-9786-3213

Journal of Intelligent Manufacturing

resources, reducing non-processing time and improving pro-
duction efficiency have become a challenge for practitioners
and academia. In the production, the complex processing
technology and the constant change of fixtures on machines
cause frequently load and unload the fixture resources, which
takes a large amount of non-processing time and a waste of
resources. Exploring the ways to reduce the setup time of
production is an important part of the research in the relevant
literature. Moreover, in the past research process, the setup
time is considered as a whole, which does not conform to
the reality of production. In this paper, we divide the setup
time of fixture into loading time and unloading time, and pro-
pose a similarity-based scheduling algorithm for setup-time
reduction (SSA4STR).

Up to now, a variety of models have been developed in
various production environments and different algorithms
have been designed to study the multi-resource schedul-
ing problem and the scheduling problem considering setup
time respectively. However, in the study of the multi-
resource scheduling problem, most considered the machine
and worker resources (Costa et al. 2020), but few consider
the fixture resource. In terms of setup time, the setup time
between jobs used to be studied as a whole, few studied
the loading and unloading of fixture separately. This moti-
vates us to study the multi-resource scheduling problem
with fixture and machine resources, and consider the load-
ing and unloading time of the fixtures. For convenience,
we define the problem thereafter in this study as the dual
resource flexible job shop scheduling problem with consid-
eration of loading and unloading of fixtures (DRFJSP-LU).
Considering the excellent performance of the non-dominated
sorting genetic algorithm II (NSGA-II) algorithm (Wu and
Sun 2018), we propose an improved NSGA-II integrating
SSA4STR to reduce the loading and unloading time. The
main contributions of this paper are as follows:

(1) A new method that defines the similarity of resource
requirement among different operations is proposed;

(2) A resource requirement similarity-based scheduling
algorithm for setup-time reduction (SSA4STR) is devel-
oped;

(3) An improved non-dominated sorting genetic algorithm
II integrating SSA4STR is presented.

The remainder of this paper is structured as follows. “Lit-
erature review” section reviews the related literatures in
recent years. “Themodel of DRFJSP-LU” section introduces
the DRFJSP-LU and formulates a mathematical model. “The
calculation of resource requirement similarity” section pro-
poses the calculation of the resource requirement similarity.
“The non-dominated sorting genetic algorithm II” section
improves an improved NSGA-II integrating a SSA4STR.

“Case study” section reports the case study. “Conclusions”
section concludes the paper.

Literature review

The multi-resource constrained scheduling problem is more
complicated than the single resource one (Alejandro et al.
2020). Existing researches have studied shop scheduling
problems under different resource constraints. Costa et al.
(2020) studied a flexible job shop scheduling problem con-
sidering machines and workers, but did not consider the
time needed to shift workers. Gong et al. (2018a, b) consid-
ered the processing time, green production and worker skill
simultaneously, established a multi-objective dual resource
constraint model, and solved the problem with the non-
dominated sorting genetic algorithm. Andrade-Pineda et al.
(2019) studied a novel dual-resource constrained flexible
job-shop problem and considered the influence of workers’
proficiency. Marichelvam et al. (2020) studied a multi-stage
hybrid flow shop scheduling problem with identical paral-
lel machines at each stage with the effect of human factors
under consideration. The learning and forgetting effects of
labors at different skill levelswere considered. Li et al. (2016)
considered machines and heterogeneous workers, and added
dynamic scheduling and worker fatigue in their study of the
scheduling problem. Bitar et al. (2016) proposed a meta-
heuristic for solving a scheduling problem with auxiliary
resources in a photolithography workshop of a semicon-
ductor plant. Gao and Pan (2016) considered three kinds of
additional resources, i.e. as well as machines resource and
proposed a hybrid multi-group migration bird optimization
algorithm.

There is a bulk of related literatures onproduction schedul-
ing in last several decades since the production scheduling
theory was introduced. However, a survey has shown that
90% of the literature neglected the setup time (Allahverdi
2015). The setup time, nevertheless, has a certain impact on
production scheduling in real industries, including the elec-
tronics industry, the printed circuit board manufacturing, etc.

The setup time can be divided into two categories:
the sequence-dependent setup time and the sequence-
independent setup time.

(1) Sequence-dependent setup time is related to the pre-
processing operation. For example, in solving the
dynamic flow shop problem, Heger et al. (2016) con-
sidered sequence-dependent setup time by dynami-
cally adjusting the parameters of the scheduling rules.
Benkalai et al. (2017) used the migration bird algo-
rithm to solve the permutation flow shop scheduling
problem, considering sequence-dependent setup time.
Li et al. (2019) proposed an elitist non-dominated sort-

123

Journal of Intelligent Manufacturing

ing hybrid algorithm for the multi-objective flexible
job shop scheduling problem with sequence-dependent
setup times. Naderi et al. (2009) investigated flexible
flow line problemswith sequence dependent setup times
and proposed a novel variable neighborhood search
algorithm. Yuan et al. (2020) developed a mixed inte-
ger linear programming model for the flow shop group
scheduling problem where both sequence-dependent
setup time between groups and round-trip transportation
time between machines are considered. They proposed
an efficient co-evolutionary discrete differential evo-
lution algorithm to solve this problem. Nesello et al.
(2018) proposed a single-machine scheduling prob-
lemwith periodicmaintenance and sequence-dependent
setup times.

(2) Sequence-independent setup time is only related to
the current processing operation. Aydilek et al. (2017)
proposed a new hybrid simulated annealing insertion
algorithm in the context of two-stage assembly shop
by considering the sequence-independent setup time. It
had been verified that the proposed algorithm shares
similar performance with the algorithm of self-adaptive
differential evolution which has the best performance
for such a problem. Mutu and Eren (2020) studied
the single machine scheduling problem with sequence-
independent setup times and time-dependent learn-
ing and forgetting effects. Aldowaisan and Allahverdi
(2015) proposed an improved genetic algorithm and
an improved simulated annealing algorithm for the
flow shop scheduling problem where the sequence-
independent setup time is considered.

To sum up, the multi-resource scheduling problemmainly
considers machine resources andworker resources, and there
is scarcity of literature that studies both machine and fixture
resources. Among the existing studies, a small percentage
of the studies that take into account the setup time, and the
studies that divide the setup time into loading and unloading
time are inadequate.

Themodel of DRFJSP-LU

Problem description

The dual-resource constrained flexible job shop scheduling
problem considering loading and unloading (DRFJSP-LU)
can be described as follows: there are |I| jobs waiting to be
processed, and each job i is composed of Ji operations. There
areM machines andF fixtures available for processing. Each
job is processed on machines following a pre-defined order.
Each operation can be processed on more than one available
machine, and the processing time on different machines is

Table 1 The information of jobs

Job 1 Job 2 Job 3

O11 O12 O13 O21 O22 O23 O31 O32 O33

Machine 1,2 2,4 1,4 1,3,4 2,3 1,2,3 3,4 1,5 3,4

Fixture 1,3,5 3 1,4 3 1 2,4,5 4,5 1,2,5 4,5

Table 2 The loading/unloading time for fixtures

Fixture Machine

1 2 3 4 5

1 0.1/1.1 1.6/0.7 0.7/1.4 1.8/0.9 1.4/1

2 1.1/0.5 0.7/1.9 0.8/1.1 1.1/0.3 0.7/0.7

3 0.8/0.4 0.2/1.5 1.4/2 0.2/0.4 1.4/1.5

4 1.8/1.9 0.7/1.3 0.5/0.7 1.6/0.8 0.4/1.3

5 0.2/0.2 1.7/1.8 0.6/1.2 0.9/1.3 1.2/1.1

different. The job needs to be fixed with a specific fixture
during processing, and each operation can be fixed with one
of the available fixtures. A job can only be processed on
one machine with one fixture at a time. The setup time is
sequence-independent. A fixture needs to be loaded onto the
machine at the beginning of processing and unloaded from
themachine after processing.The loading andunloading time
of the fixture on different machines is different, too. The task
of scheduling is first to select a machine and a fixture for
each operation and then determine the processing sequence
on the selected machine to optimize the makespan and the
setup time simultaneously.

Some assumptions are as follows:

(1) Each machine can only process one job at a time.
(2) Each fixture can only process one job at a time.
(3) The processing time for each operation is determined

and known in advance.
(4) Once processing has begun on a machine, it cannot be

interrupted until the processing is completed.
(5) The processing of an operation cannot be performed

until its preceding operation is completed.

To make it easier to understand, we give an example of
DRFJSP-LU in Tables 1 and 2, respectively. In Table 1, the
data in the first row is the available machine indexes for each
operation. The data in the second row is the available fix-
ture indexes for each operation. In Table 2, the data is the
loading/unloading time for each fixture.

Notations

Somenotations are listed belowbefore formulatingDRFJSP-
LU.

123

Journal of Intelligent Manufacturing

I Set of jobs indexed by i, i � 1,2,…,|I|

M Set of machines indexed by m, m � 1,2,…,|M|

F Set of fixtures indexed by f, f � 1,2,…,|F|

Ji Set of operations of job i indexed by j, j � 1, 2, . . . , |J i |
Oij j-th operation of job i

tijm Processing time of operation Oi j on machine m

STi j Starting time of operation Oi j

ETi j Ending time of operation Oi j

s f m Loading time of fixture f on machine m

d f m Unloading time of fixture f on machine m

sdi j Setup time of operation Oi j

C Makespan

T Sum of setup time

xi jm xi jm � 1, if the operation Oi j is processed on machine m;
otherwise, xi jm � 0

yi j f yi jq � 1, if the operation Oi j is fixed by fixture f ;
otherwise, yi j f � 0

Ai jm Ai jm � 1, if the operation Oi j can be processed on
machine m; otherwise, Ai jm � 0

Bi j f Bi j f � 1, if the operation Oi j can be fixed by fixture f ;
otherwise, Bi j f � 0

wi jgh wi jgh � 1, if the operation Oi j is the precedence of the
operation Ogh on the same machine with the same fixture;
otherwise, wi jgh � 0

z1i jgh If the operation Oi j is the precedence of the operation Ogh
on the same processing machine, z1i jgh � −1; if the
operation Ogh is the precedence of the operation Oi j on
the same processing machine, z1i jgh � 1; otherwise,

z1i jgh � 0

z2i jgh If the operation Oi j is the precedence of the operation Ogh
on the same fixture, z2i jgh � −1; If the operation Ogh is
the precedence of the operation Oi j on the same fixture,
z2i jgh � 1; otherwise, z2i jgh � 0

Formulation of DRFJSP-LU

In the production, the desire for the decisionmakers is to com-
plete all processing tasks effectively and efficiently. Besides,
although the loading and unloading time for a fixture may
not create any value, a fixture is an indispensable resource
during processing. In order to reduce the makespan, the deci-
sion maker will prioritize to select machine that can finish
processing earliest when scheduling the subsequent opera-
tions, but does not consider whether the fixture installed on
the machine is available. If the fixture on the machine is
not available for the subsequent operation, the fixture needs
loading and unloading. This results in the increasing of setup
time. Hence it is necessary to take setup time into consider-
ation when scheduling. The objectives of the mathematical
model in this study are therefore to minimize the makespan
and the setup time of the fixtures simultaneously.

The DRFJSP-LU can be formulated as follows:

(1)

C � min
(
max

(
ETi j

))
, i

� 1, 2, . . . , |I | , j � 1, 2, . . . , |J i |

(2)

T � min

⎛

⎝
|I |∑

i�1

|J i |∑

j�1

sdi j

⎞

⎠ , , i

� 1, 2, . . . , |I | , j � 1, 2, . . . , |J i |

(3)

s.t.

sdi j �
|M|∑

m�1

|F|∑

f�1

(1 − wg1h1i j)xi jm yi j f s f m

+
|M|∑

m�1

|F|∑

f�1

(1 − wi jg2h2)xi jm yi j f d f m, g1, g2,

i � 1, 2, . . . , |I | , h1, h2, j � 1, 2, . . . , |J i |
|M|∑

m�1

xi jm � 1, i � 1, 2, . . . , |I |, j � 1, 2, . . . , |J i | (4)

|F|∑

f �1

yi j f � 1, i � 1, 2, . . . , |I |, j � 1, 2, . . . , |J i | (5)

(6)

xi jm ≤ Ai jm, i � 1, 2, . . . , |I | , j
� 1, 2, . . . , |J i | ,m � 1, 2, . . . , |M|

(7)

yi j f ≤ Bi j f , i � 1, 2, . . . , |I | , j
� 1, 2, . . . , |J i | , f � 1, 2, . . . , |F|

(8)

STi(j+1) ≥ STi j + ti jmxi jm + sdi j , i � 1, 2, . . . , |I | , j
� 1, 2, . . . , |J i | ,m � 1, 2, . . . , |M|

STi j ≥ 0, i � 1, 2, . . . , |I |, j � 1, 2, . . . , |J i | (9)

(10)

ETi j � STi j + ti jmxi jm, i � 1, 2, . . . , |I | , j
� 1, 2, . . . , |J i | ,m � 1, 2, . . . , |M|

(
ETi j − ETgh − ti jm − sdi j

)
xi jm xghm

(
1

2
z1i jgh

(
z1i jgh + 1

))

+
(
ETgh − ETi j − tghm − sdgh

)
xi jm xghm

(
1

2
z1i jgh

(
z1i jgh − 1

))

≥ 0&STi j �� STgh , i, g � 1, 2, . . . , |I | , j, h
� 1, 2, . . . , |J i | ,m � 1, 2, . . . , |M|

(11)

123

Journal of Intelligent Manufacturing

(
ETi j − ETgh − ti jm − sdi j

)
xi jm yi j f ygh f

(
1

2
z2i jgh

(
z2i jgh + 1

))

+
(
ETgh − ETi j − tghm − sdgh

)
xghm yi j f ygh f

(
1

2
z2i jgh

(
z2i jgh − 1

))

≥ 0&STi j �� STgh , i, g � 1, 2, . . . , |I | , j, h
� 1, 2, . . . , |J i | ,m � 1, 2, . . . , |M| , f � 1, 2, . . . , |F|

(12)

(13)

xi jm ∈ {0, 1} , i � 1, 2, . . . , |I | , j
� 1, 2, . . . , |J i | ,m � 1, 2, . . . , |M|

(14)

yi j f ∈ {0, 1} , i � 1, 2, . . . , |I | , j
� 1, 2, . . . , |J i | , f � 1, 2, . . . , |F|

(15)

Ai jm ∈ {0, 1} , i � 1, 2, . . . , |I | , j
� 1, 2, . . . , |J i | ,m � 1, 2, . . . , |M|

(16)

Bi j f ∈ {0, 1} , i � 1, 2, . . . , |I | , j
� 1, 2, . . . , |J i | , f � 1, 2, . . . , |F|

(17)

z1i jgh ∈ {−1, 0, 1} , i, g

� 1, 2, . . . , |I | , j, h � 1, 2, . . . , |J i |

(18)

z2i jgh ∈ {−1, 0, 1} , i, g

� 1, 2, . . . , |I | , j, h � 1, 2, . . . , |J i |

Equations (1) and (2) are two objectives, i.e. to minimize
the makespan and to minimize the setup time. Equation (3) is
to compute the setup time of operation Oi j , which is the sum
of the loading time (i.e. the first part of the formulation) and
the unloading time (i.e. the second part of the formulation) of
the fixture employed in this process. Equation (4) guarantees
that each operation can only be processed on one machine.
Equation (5) guarantees that only one fixture can be used
in one operation. Equation (6) imposes the constraint that
an operation can only be processed by one of the available
machines. Equation (7) imposes the constraint that the fixture
used by operation Oi j must be available for the operation.
Equation (8) ensures that all operations must meet process
constraints. Equation (9) indicates that the starting time must
be more than zero. Equation (10) is to compute the complet-
ing time of operation Oi j . Equation (11) indicates that the
same machine can only process a job at the same time. Equa-
tion (12) constrains that the same fixture can only hold one
job at a time. Equations (13)–(18) are the decision variables.

The calculation of resource requirement
similarity

Resource requirement similarity

If the fixtures for the adjacent operations on one same
machine are different, the worker needs to unload one fixture
and load another fixture, resulting in too long non-processing
time. Therefore, in order tominimize the loading and unload-
ing of the fixture and reduce the setup time, the fixture
resources required by the adjacent operations on machines
should be the same. In reality, jobs in a workshop normally
have some similar characters (Erromdhani et al. 2012). In
existing research, the measurement methods for the similar-
ity between jobs are different (Yin and Yasuda 2006). Most
of them defined the similarity between jobs as the similarity
of their processing, and calculated it according to the pro-
cessing route of the jobs. The similarity of the processing
not only relates to the operations included in the processing
route, but also relates to the sequence of the operations. Ho
et al. (1993) proposed a processing route similarity algorithm
based on compatibility index, which analyzed the same num-
ber of operations between processing routes A and B from
the forward and reverse directions, using the ratio of the same
number of operations and the length of processing route as a
similarity. Choobineh (1988) proposed a similarity algorithm
for the hybrid processing route. The sequence similarity was
proposedby Irani andHuang (2000) andwas the longest com-
mon subsequence to transform one sequence into another
with the minimum number of substitutions, insertions and
deletions. In addition, other factors are taken into consider-
ation according to the processing technology. Goyal et al.
(2013) developed a novel method to evaluate similarity con-
sidering bypassingmoves and idle machines according to the
longest common subsequence. Alhourani (2013) constructed
a new comprehensive similarity, including the processing
route, process sequence, batch, shared equipment, etc.

As can be seen from the above discussion, although some
methods to calculate the processing similarity between jobs
have been designed, the definitions of the similarity in the
existing research mostly focus on the similarity between
jobs. Few authors considered the similarity between opera-
tions.Moreover,most of the research calculates the similarity
according to the processing route, regardless of the similar-
ity of resources requirement, which in turn affects the setup
time. Hence, we propose a method to define the similarity
of the resource requirements for operations in the following
section.

The representation for the similarity

The required resources can be classified into 2 categories,
machines and fixtures. Each can be further split into sub-

123

Journal of Intelligent Manufacturing

Fig. 1 The representation of the resource requirement similarity

categories according to their resource requirement features.
Denote the resources required for each operation are the
machine resourceM and the fixture resource F . Themachine
resource has sm sub-categories and the fixture resource has
sq sub-categories.

The binary encoding is used to indicate whether the cor-
responding operation can be processed by the resource.
“1” represents that the operation can be processed by the
corresponding resource, and “0” represents that the opera-
tion cannot be processed by the corresponding processing
resource. Figure 1 shows a representation of the resource
requirement similarity for operation Oi j .

WhereWs is the value of the corresponding sub-category.
The value of Ws is as shown in Eq. (19).

Ws �
{
1, i f the operaiton Oi j can be processed by roscouse sk
0, otherwise

(19)

The example mentioned in Table 1 can be encoded to be
a matrix W as shown in (20). O11 � [1 1 0 0 0 1 0 1 0 1]
means that the first operation of the job 1 can be processed
by machine 1 or machine 2, and it can be fixed by fixture 1,
fixture 3 or fixture 5, respectively.

(20)

The calculation of the similarity

The resource requirement similarity is calculated according
to the Jaccard coefficient (Sujoy et al. 2019). The Jaccard
coefficient is the ratio of the number of intersections to the
number of unions for two elements. It does not consider the
size of the specific difference between individuals, and only
pays attention to whether there are common features among
elements. Denote two operations as A and B, respectively.
The calculation formula of the Jaccard coefficient is shown
in Eq. (21).

J (A, B) � |A ∩ B|
|A ∪ B| , 0 ≤ J (A, B) ≤ 1 (21)

Since the encoded process has Boolean attributes, f00 is
the number of attributes that both equals to 0, f11 is the
number of attributes that both equal to 1, f01 is the number
of attributes that A equals to 1 and B equals to 0 and f10 is
the number of attributes that A equals to 0 and B equals to
1. Hence, the Jaccard coefficient can be calculated according
to Eq. (22).

J (A, B) � f11
f01 + f10 + f11

, 0 ≤ J (A, B) ≤ 1 (22)

For example, the resource requirement similarity of O11

and O12, as shown in Table 1, can be calculated as follows:

J (O11, O12) � 2

3 + 1 + 2
� 1

3
(23)

The resource requirement similarity of each operation is
calculated in the same way and the similarity matrix W can
be obtained as shown in Eq. (24).

(24)

The non-dominated sorting genetic
algorithm II

The details of the NSGA-II

The dual resource scheduling problem has been proved to
be a typically NP-Hard problem (Yuan et al. 2020), which
is generally solved by meta-heuristics, such as the genetic
algorithm (Paksi and Ma’ruf 2016), the fruit fly optimization
algorithm (Zheng and Wang 2016), and the particle swarm
algorithm (Zhang et al. 2017). DRFJSP-LU takes the load-
ing and unloading time of fixture, the resource requirement
similarity, and the dual resources into consideration, which
is obviously strongly NP-hard. Since the NSGA-II performs
well in solving multi-objective optimization problems, we
employ the NSGA-II to search the optimal solution for the
DRFJSP-LU.

The representation for DRFJSP-LU

The operation-based encoding method (Wu and Sun 2018)
is employed in the paper, which is the classical encoding
method for FJSP. The example shown in Fig. 2 is a represen-
tation of the case in Table 1.

123

Journal of Intelligent Manufacturing

3 2 2 1 3 3 2 1 1

31 21 22 11 32 33 23 12 13

Fig. 2 An example for encoding

The SSA4STR for decoding

The DRFJSP-LU can be divided into three sub-problems:
machine assignment, fixture assignment, and job sequenc-
ing. When solving them, one needs to consider the conflict
among different types of resource, including the conflict
among machines and that among fixtures. When one fix-
ture is loaded to or unloaded from one machine, the loading
and unloading time cannot usually be ignored, especially for
some special fixtures that need a little time to load or unload.
The encoding method in “The representation for DRFJSP-
LU” section only considers the scheduling sequence, while
neither the machine nor the fixture is determined for each
operation. Hence, the machine and the fixture for each oper-
ation should be determinedwhen decoding. Based on the gap
extrusion method (Wu and Sun 2018), this paper proposes a
scheduling algorithm considering the resource requirement
similarity and the loading/unloading time of fixture simulta-
neously.

The core of the gap extrusionmethod is to insert the current
operation into the time gap between the scheduled operations
if possible. That is, if the start time of a gap is greater than the
completion time of the preceding operation and the length of
the gap meets the processing time of the current operation,
it is preferred to insert the current operation into the gap
for processing. The details of the gap extrusion method are
described inWu and Sun (2018). Motivated by the gap extru-
sion method, we propose a SSA4STR to take the machines
and the fixtures into account jointly. The main idea of the
SSA4STR are as follows.

(1) Rank the operations according to their similarity so that
those with similarity value higher than a given threshold
will be scheduled successively.

(2) For each operation, choose the machine on which there
is both an available gap and an available fixture to reduce
the loading and unloading time.

Let’s explain why the similar operations are scheduled
successively in the SSA4STR first. Take the cases in Tables 1
and 2 as an example. The processing time for each operation
is given in Table 3. Consider the individual representation
shown in Fig. 2. If we decode the individual without con-
sidering the similarity between operations, the scheduling
solution is as shown in Fig. 3. The X-axis represents time
and the Y-axis represents machines. The numbers in each
block “a-b-c” indicates the b-th operations of job a is fixed

Table 3 The processing time for operations

Job 1 Job 2 Job 3

O11 O12 O13 O21 O22 O23 O31 O32 O33

Machine 1 8 – 6 4 – 6 – 10 –

Machine 2 6 5 – – 5 7 – – –

Machine 3 – 6 4 8 6 – 8

Machine 4 – 4 8 8 – – 4 – 6

Machine 5 – – – – – – – 10 –

with fixture c, e.g. “2-3-4” indicates that the third operation
of job 2 is fixed with fixture 4. The rectangles in the front of
and at the back of each block indicate the loading time and
the unloading time, respectively. From Fig. 3, the makespan
is 36.3 and the total times for the loading and unloading is 7
and the amount is 14.3. Figure 4 gives the ranking process.

However, if we use the SSA4STR to decode the chro-
mosome, the genes indicating operations are ranked first
according to the similarity and the threshold. Only those with
similarity value larger than the threshold should be re-ranked.
The similarity value is computed by Eq. (22) to form the
similarity matrix as shown in Eq. (24). Assume the threshold
value is 0.2 and take the chromosome in Fig. 2 as an example.
The ranking algorithm is as follows.

Step 1Thefirst operation (O31) in the original chromosome
is still the first one in the ranked chromosome.
Step 2 Search the similar operations with operation O31

with similarity value larger than the threshold. We obtain
operations O13, O21, and O23, respectively. Because the
immediate predecessor operations for operations O13 and
O23 have not been scheduled, the current available oper-
ation is only operation O21. If there is more than one
available operation, choose the one whose similarity value
is the largest.
Step 3Repeat step 2 for the other operations in the original
chromosome. For example, for operation O21, repeat the
process in step 2 to search its most similar operation and
we get operation O32. During searching the similar opera-
tions, if there is no operations with similarity value larger
than the threshold, choose the first un-scheduled opera-
tion. For example, for operation O12, no operation whose
similarity value is more than 0.2, so we choose operation
O33 because it is the first un-scheduled operation in the
original chromosome.

Now, we generate a scheduling solution from the ranked
chromosome with the gap extrusion method. The Gantt chart
is shown in Fig. 5. It can be seen that the makespan is 29, the
times of the loading and unloading is 6, and the total amount
of the loading and the unloading time is 12.5. By comparing

123

Journal of Intelligent Manufacturing

Fig. 3 The scheduling solution
with the gap extrusion method

2-1-31

2

3

4 8 12 16 20 24 28 32 36 40

4

5

M

3-1-5

1-1-3

3-2-2

3-3-5

2-3-4

1-3-4

2-2-1

1-2-3

T

Fig. 4 An example of how the
ranking algorithm works 3 2 2 1 3 3 2 1 1

3 2 3 1 2 1 3 2 1

Original chromosome

Ranked chromosome

0.33 0.33 0.29 0.33 0.2 0.17 0.250.43

Fig. 5 the scheduling solution
with SSA4STR

2-1-31

2

3

4 8 12 16 20 24 28 32 36 40

4

5

3-1-5

1-1-1

3-2-2

3-3-5

2-2-1

2-3-4

1-2-3

1-3-4

M

T

the two solutions in Figs. 3 and 5, the solution generated with
SSA4ST can significantly reduce the loading and unloading
time and the makespan.

The detailed steps (Fig. 6) to generate a scheduling solu-
tion with SSA4STR are as follows:

Step 1 Input a chromosome and rank its gene sequence
with the ranking algorithm to get a ranked chromosome.
Record the length of the chromosome as L. Set i � 1.
Step 2Repeat (for each gene i in the ranked chromosome).

Step 2.1Determine the corresponding operation of gene
i according to the encoding method.

Step 2.2 Search the available combination of the
machines and fixtures. Record the number of combi-
nation as n. Set j � 1.
Step 2.3 Repeat (for each combination j).
Step 2.3.1Checkwhether themachine in combination
j has been occupied. If yes, go to step 2.3.2; Go to step
2.3.3, otherwise.
Step 2.3.2 Check whether the fixture in combination j
has been occupied. If yes, schedule the operation with
the rule for Case 4; Schedule the operation with the
rule for Case 3, otherwise.
Step 2.3.3 Check whether the fixture in combination j
has been occupied. If yes, schedule the operation with

123

Journal of Intelligent Manufacturing

the rule for Case 2; Schedule the operation with the
rule for Case 1, otherwise.
Step 2.3.4 Record the makespan and setup time for
combination j and let j � j + 1. If j <n, go back to
step 2.3; go to step 2.4, otherwise.

Step 2.4 Select the combination which can ensure both
themakepan and the setup time simultaneously optimal.
Let i � i + 1. If i ≤L, go back to step 2; go to step 3,
otherwise.

Step 3 All the genes have been scheduled and the output
the scheduling solution,

Cases 1–4 are four cases in terms of the status of machines
and fixture. In different cases, the scheduling method is dif-
ferent, with which the position of the current operation, the
loading time and unloading time for the fixture is determined.

Case 1 In this case, neither the selected machine nor the
selected fixture is occupied. The fixture should be loaded
onto the machine first, and the start time of the current
operation is zero.
Case 2 In this case, the selected machine has not been
occupied by other operations, but the selected fixture has
already been occupied. Hence, we should first find the
operation that is occupying the selected fixture, and then
calculate the idle time gaps for the fixture. Choose the idle
time gap into which the current operation can be inserted.
The fixture should be unloaded first from the previous
machine and then loaded on the selected machine. If the
two machines are the same, the unloading and the unload-
ing time of the fixture is saved.

There are three sub-cases for this case, as shown in Fig. 7.
The time of each operation can be broken down into three
parts: loading time, processing time and unloading time. The
operation in green [i.e. block “1-2-3” in (a), block “3-1-3”
in (b) and (c)] is currently being scheduled. The block in
brown is the extra loading or unloading time spent. In Fig. 7a,
the selected fixture (i.e. fixture 3) has been loaded onto the
other machine (i.e. machine 2), and it is occupied in the gap
time.Hence, the fixture should be unloaded from themachine
(i.e. machine 2) first, and then be loaded onto the selected
machine (i.e. machine 1) to process the current operation
(i.e. operation O12). When the processing finishes, it should
be unloaded from the selected machine (i.e. machine 1) and
loaded back to machine 2 again to avoid interfering with the
scheduled operations’ processing. In Fig. 7b and c, fixture 3
is idle during the gap time, so it can be loaded on the selected
machine (i.e. machine 1) directly.

Case 3 The selected machine is occupied but the selected
fixture is not occupied. First find the operations that have
been scheduled on the selected machine and then calculate
the idle time gaps in the machine. Choose the idle time
gap into which the current operation can be inserted. The
fixture is loaded first on the machine and then unloaded
from the machine after processing.

There are three sub-cases for case 3, as shown in Fig. 8.
In Fig. 8a and b, the operation in green (i.e. block “3-1-3”) is
the currently being scheduled. The selected fixture (i.e. fix-
ture 1) is not occupied on the selected machine (i.e. machine
2). The selected fixture (i.e. fixture 1) can be loaded on the
selectedmachine (i.e. machine 2) directly and unloaded from
the selected machine (i.e. machine 2) after processing. In
Fig. 8c, other fixture (i.e. fixture 3) has been loaded on the
selected machine (i.e. machine 2) in the gap time, so it (i.e.
fixture 3) should be unloaded first and loaded again for pro-
cessing the operation “2-2-3” after the current operation (i.e.
block “3-1-1”). The selected fixture (i.e. fixture 1) for the cur-
rent operation (i.e. block “3-1-1”) should be loaded first on
and then unloaded from the selected machine (i.e. machine
2).

Case 4 Both the selected machine and the selected fixture
are occupied. This case is themost complicated.Hence,we
develop a scheduling algorithm. The steps are as follows:

Step 1 Denote the selected machine as m, the selected
fixture as f, the completing time for each operation as
CP , the idle time gap ofm and f as Tm and T f , respec-
tively, the fixtures on machine m at a certain moment as
M f , and the machines occupying fixture f at a certain
moment as Fm.
Step2For the currently scheduledoperationOi j , find the
completing time ETi(j−1) of its predecessor operation
Oi(j−1) in CP . The time ETi(j−1) is the earliest start
time for processing operation Oi j . Get the processing
time ti jm of operation Oi j , the loading time s f m and the
unloading time d f mfor fixture f from the input data set.
Step 3 The intersection of the idle time gaps both in
machinem and fixture f is denoted as TMF,which can
be calculated according to Tm and T f .
Step 4 For the idle time gap in TMF , there are seven sub-
cases of the loading or unloading for fixture f. To show
it clearly, we use a decision tree (Fig. 9) to describe
the subcases. Modify the loading and unloading sta-
tus of according to M f and Fm. Denote the sum of
the processing time ti jm , the loading time s f m and the
unloading time d f m of fixture f is denoted as tall . If
the common idle time gap in TMF is more than tall ,
the operation Oi j can be processed in the gap. Append

123

Journal of Intelligent Manufacturing

Fig. 6 The flowchart of the
SSA4STR

operation Oi j at the end of the selected machine and the
selected fixture, otherwise.

Figure 9 shows the decision tree to determine whether the
loading and unloading of fixture in the gap needs modify-
ing. f1 is the fixture loaded before the idle time gap on the
machinem. f2 is the fixture loaded after the idle time gap on

the machine m. k1 is a state variable for fixture f1. k1 � 1
indicates that there is an unloading process for fixture f1 and
a loading process for fixture f2 while k1 � 0 means fixture
f1 has not been unloaded and there is no loading process
for fixture f2 (this case only exists when f1 � f2) .k2 is
another state variable for fixture f2. k2 � 1 indicates there
is an unloading process for fixture f2 and a loading process

123

Journal of Intelligent Manufacturing

M

1

2

3

1-1-3

2-1-2

2-2-3

1-2-3

M

1

2

3

1-1-3

2-1-2

2-2-2

3-1-3

1-2-3

TT

M

1

2

3

1-1-3

2-1-2

2-2-2

3-1-3

1-2-3

T(b)(a) (c)

Fig. 7 Three examples for the sub-cases of Case 2

M

1

2

3

1-1-3 3-1-1 2-2-3

2-1-4

M

1

2

3

1-1-3 3-1-1

2-1-3

2-2-2

T

M

1

2

3

1-1-3 3-1-1 2-2-3

2-1-3

T(b)(a) (c)

Fig. 8 Three examples for the sub-cases of case 3

for fixture f1, while k2 � 0 implies fixture f2 has not been
unloaded and there is no loading process for fixture f1. m1

represents the machine where fixture f is loading before the
idle time gap and m2 represents the machine where fixture
f is loading after the idle time gap. The start time of opera-
tions in machine m before and after the gap are denoted as
ST1and ST2, respectively, and the start times of operations
that are fixed by fixture f before and after the gap are denoted
as ST3and ST4, respectively.

There are seven resulting nodes in the decision tree, which
determines how to schedulemachines andfixtureswhendeal-
ing with operation Oij. The details of the resulting nodes are
as follows.

(1) Result A. Load fixture f, insert operation Oij and then
unload fixture f.

(2) Result B.Unloadfixture f frommachinem1, loadfixture
f on machine m, insert operation Oij, unload fixture f
from machine m and load fixture f on machine m2.

(3) ResultC.Unloadfixture f1 frommachinem, loadfixture
f on machine m, insert operation Oij, unload fixture f
from machine m and load fixture f2 on machine m.

(4) Result D. Insert operation Oij in the idle time gap
directly.

(5) Result E. Unload fixture f from machine m1. Unload
fixture f1 from machine m, load fixture f on machine
m, insert operation Oij, unload fixture f from machine
m and load fixture f2 on machine m. Load fixture f on
machine m2.

(6) Result F. Keep fixture f1 loading on machine m before
the idle time gap, insert operationOij, and unload fixture
f1 (f1 � f).

(7) Result G. Load fixture f on machine m, insert operation
Oij, and the loading process after the idle time gap is
saved on machine m (f2 � f).

Crossover andmutation

Newgene combinations can be generatedwith crossover. The
local search ability of the algorithm is improved with muta-
tion. The search direction and strength of different operators
are different. Hence, a crossover operator pool and a muta-
tion operator pool are established to search the solution space
as comprehensively as possible. The crossover operators are

123

Journal of Intelligent Manufacturing

Fig. 9 The decision tree for case 4

selected from the literature (Akay and Yao 2013), includ-
ing linear order crossover, position-based crossover, and
sequence-based crossover. The mutation operators include
inversion, swap, displacement, and insertion. One of these
operators is randomly selected in each iteration.

The non-dominated ranking

The non-dominated ranking of the population is determined
by the non-dominated level. A non-dominated solution is a
solution that is not dominated by any other solutions. The
offsprings are mixed with their parent population, and the
non-domination level of each individual is determined by the
crowding degree that describes the distribution of a solution
with other solutions in the same non-dominated level.

According to Deb et al. (2002), the crowding degree,
crowd, of the individual X i is calculated with the Eq. (25).

crowdi � 1

K

K∑

k�1

f (k)(i + 1) − f (k)(i − 1)

f (k)max − f (k)min

(25)

where K is the number of objectives, f (k)max is the maximum
value of the k-th objective, f (k)min is the minimum value of
the k-th objective, f (k)(i + 1) and f (k)(i − 1) are the k-th
objective of X i+1 and X i−1, respectively.

The next generation is selected from the mixed popula-
tion according to the non-dominated level and the crowding
degree. The steps are as follows.

Step 1 Individuals with the minimum non-dominated level
enter the next generation directly. If the amount is less than
the required population size, go to Step 2; otherwise, two
individuals are randomly selected, and the individualswith
the larger crowding degree are selected to enter the next
generation until the number of individuals is equal to the
population size.
Step2Randomly select two individuals from the remaining
individuals, and the individualwith a small non-dominated
level enters the next generation; if the non-dominated lev-
els of two individuals are same, the individual with a larger
crowding degree enters the next generation preferentially
until the number of individuals in the next generation is
equal to the population size.

Individuals with a small non-dominated level are selected
so that better individuals in the population are retained, and
individuals with a larger crowding degree are chosen to
ensure the diversity of the population.

Case study

The design of experiments

All experiments were conducted in a desktop computer with
an Intel Core i5-7200U, 2.50GHzCPU, 8.00GRAM,Win10
64 OS, and Matlab©.

The parameters for the NSGA-II are set as follows: the
population sizeNum� 50, the number of iterations Iterations
� 500, the crossover probability pc � 0.8, and the mutation
probability pm � 0.2.

The experimental instances are generated from theBrandi-
marte instances (Brandimarte 1993). The number of fixtures
is the same as the number ofmachines.Mmax is themaximum
number of available machines for the operation, the number
of available fixtures for the operation follows the uniformdis-
tribution U[0,Mmax]. The available fixture sets are generated

123

Journal of Intelligent Manufacturing

Table 4 The instances

Instance Job Operation Machine fixture

MKF-1 10 6 6 U[0, 3]

MKF-2 10 6 6 U[0, 6]

MKF-3 15 10 8 U[0, 5]

MKF-4 15 9 8 U[0, 2]

MKF-5 15 9 4 U[0, 2]

MKF-6 10 15 15 U[0, 5]

MKF-7 20 5 5 U[0, 5]

MKF-8 20 14 10 U[0, 2]

MKF-9 20 14 10 U[0, 5]

MKF-10 20 14 15 U[0, 5]

according to the number of fixtures randomly. The loading
and unloading time follows the uniform distribution of U[0,
2]. The instances are listed in Table 4.

In order to verify the performance of the proposed
algorithm and compare the difference between single and
multi-resource, we design the following numerical experi-
ments, respectively:

(1) Analysis of the performance of the SSA4STR.
(2) Analysis of the effect of the threshold size in the schedul-

ing algorithm.
(3) Analysis of the performance of the improved NSGA-II.
(4) Analysis of the difference between scheduling solutions

that fully and partially consider resource, respectively.

Analysis of the performance of the SSA4STR

The aim is to verify the optimization effect of the SSA4STR
by comparing it with the makespan oriented scheduling
algorithm (algorithm A for convenience) and the setup
time oriented scheduling algorithm (algorithm B for con-
venience), respectively. The SSA4STR is represented as
algorithm C for convenience. Three scheduling algorithms
are employed to solve the MKF-01 problem. The results are
reported in Table 5, and the comparison results of Pareto
solutions are shown in Fig. 10.

It can be seen from Fig. 10 that the Pareto solutions
obtainedwith the SSA4STRoutperforms those obtainedwith
the other two scheduling algorithms. The solution obtained
with the SSA4STR dominates the solutions obtainedwith the
makespan oriented scheduling algorithm. At the same level
of the makespan, the setup time of the solution obtained with
the SSA4STR is shorter. Compared with the setup time ori-
ented scheduling algorithm, although the solutions dominate
each other, the makespan of the solution obtained with the
setup time oriented scheduling algorithm is too long. The
SSA4STR can greatly reduce the setup time while ensuring

Table 5 The comparison of experimental results

The number of Pareto
solutions

Pareto solutions

Algorithm A 10 (60.8,66.8), (63.8,58),
(59.8,69.2), (68,48.2),
(67.2,53.2),
(63.6,59.8), (59.5,73),
(61.1,62.2),
(67.1,54.1), (65,57.2)

Algorithm B 11 (101.2,24.7),
(79.6,34.8),
(85.7,29.6),
(97.5,26.8),
(82.8,30.8),
(81.9,33.2),
(82.5,31.2),
(82.4,31.4),
(89.2,26.9),
(100.2,24.7),
(83.5,29.6)

Algorithm C 10 (58.3,45.2), (63.4,42.7),
(68.8,37.8),
(70.9,36.9),
(69.7,37.5),
(63.8,40.1),
(71.5,35.5),
(65.6,39.5),
(72.6,34.7),
(62.6,45.2)

50 60 70 80 90 100
makespan

20

30

40

50

60

70

se
tu

p
tim

e

algorthm A

algorthm B

algorthm C

Fig. 10 The comparison of Pareto solutions with three algorithms

the makespan, and in that way the jobs can be finished pro-
cessing efficiently.

In order to analyze these three scheduling algorithmsmore
intuitively, the Gantt charts of the typical solutions obtained
with the three scheduling algorithms (marked with circles
in Fig. 10) are provided in Figs. 11, 12 and 13. The X-axis
represents time, the Y-axis represents machine, the blue rect-
angle is the loading process of the fixture, the red rectangle

123

Journal of Intelligent Manufacturing

Fig. 11 The Gantt Chart with makespan oriented scheduling algorithm

0 20 40 60 80 100 120
time

0

1

2

3

4

5

6

7

m
ac

hi
ne

9
6

2
5

1
4

1
2

10
4

3
5

5
3

5
3

2
4

10
6

5
3

8
5

4
1

8
3

1
5

5
1

10
3

3
4

5
3

3
5

2
1

3
3

3
5

5
4

1
1

4
3

8
1

8
1

4
5

1
4

8
1

2
2

1
4

4
1

7
6

7
2

4
5

7
4

9
6

10
6

7
1

9
2

9
1

9
4

7
5

6
6

10
1

6
5

9
1

6
6

6
2

6
2

10
2

2
2

6
3

Fig. 12 The Gantt Chart with setup time oriented scheduling algorithm

Fig. 13 The Gantt Chart on machine resource with the SSA4STR

is the unloading process, the number in the lower row is the
job index, the number in the upper row is the fixture index,
and the rectangles with the same color represent the different
operations of the same job. It can be seen fromFig. 11 that the
makespan oriented scheduling algorithm does not consider
the setup time in scheduling, resulting in frequent loading

and unloading of fixtures. Especially on machine 3, there are
many non-processing processes, thus leading to a waste of
time. In Fig. 12, in order to reduce the setup time, the oper-
ations are arranged as much as possible on the machine on
which the available fixture is installed. This strategy leads to
the unbalanced load among machines. We can see that most

123

Journal of Intelligent Manufacturing

Fig. 14 The Gantt chart on fixture resource with the SSA4STR

operations are assigned on machine 2 so that the makespan is
too big. As shown in Fig. 13, the SSA4STR reduces the fre-
quency of loading and unloading of the fixture. It can be seen
that the SSA4STR can effectively balance the two optimiza-
tion goals. Figure 14 shows the Gantt chart on the fixtures of
Fig. 13.

Analysis of the effect of the similarity threshold size
in the scheduling

In the SSA4STR, the generation of ranked chromosome
depends on the size of the threshold. More operations will be
adjusted in the generation of the ranked chromosome with a
smaller threshold. Hence, the threshold value is vital in the
scheduling algorithm. The purpose of this experiment is to
determine the effect of the threshold size.

To show it clearly, the comparison of the results is shown
in Fig. 15. The dotted line is the trend of the setup time
with the decreasing of the threshold value referring to the
coordinate axis on the left and the solid line is the trend of the
makespanwith the decreasing of the threshold value referring
to the coordinate axis on the right. As can be seen from the
Fig. 15, the size of the threshold affects the experimental
results greatly. The setup time decreases with the decreasing
of the threshold. When the threshold decreases to a certain
level, the setup time begins to increase. Obviously, there is an
inflection point for the threshold.When the threshold is large,
some operations which are similar to the current operation
will be arranged near to the current one. When scheduled,
these operations can select the same fixtures to reduce the
setup time. For the makespan, it shows an increasing trend as
the threshold decreases. As a result, the introduction of the
threshold trades off the makespan to reduce the setup time.

Furthermore, we study the performance of the proposed
algorithm. For convenience, the algorithm, without consid-
ering similarity, is denoted as algorithmD, and the algorithm

with the best threshold is denoted as algorithmE. The experi-
mental results of the above algorithms are shown inTable 6. It
can be seen that at the threshold inflection point, the increased
ratio of makespan is not more than 6%, and the decreased
proportion of the setup time is up to 13%. The reduction rate
of the setup time is significantly greater than the increase
rate of completion time. Although the makespan increases
little, the decrease of the setup time can produce a greater
effect on the production of the workshop than the increase
of the makespan. The reduction of setup time is to reduce
not only the loading and unloading times of fixtures but also
the complexity of work and the operation difficulty of the
processing. Therefore, it can be concluded that introducing
resource requirement similarity in the scheduling algorithm
can greatly reduce the setup time.

Analysis of the performance of the improved NSGA-II

To evaluate the performance of the improved NSGA-II algo-
rithm, we develop a multi-objective differential evolution
algorithm (MODE). MODE is an algorithm based on popu-
lation evolution and its flowchart is shown in Fig. 16.

The basic idea of this algorithm is to generate a new pop-
ulation with differential mutation and crossover, and then
select individuals from the parent–child mixed population to
obtain the offspring population. The operation-based encod-
ing method and the SSA4STR are employed in MODE
algorithm. The differential evolution operator mixes the
DE/best/1 strategy and the DE/rand/1 strategy. The global
search ability of the MODE algorithm is good, but its local
search ability is poor, so the scaling factor F is set to
adaptively change with the number of iterations between
[F0,2F0]. F has a large value in the early stage of the search,
and it can fully explore the solution space. As the number of
iterations increases, the value of F gradually decreases. The
algorithm can retain excellent genes and avoid the best solu-

123

Journal of Intelligent Manufacturing

Fig. 15 The trend of makespan
and the setup time with the
changing threshold

62

64

66

68

70

36

38

40

42

44

1 0.8 0.79 0.5 0.4 0.35 0.3

m
ak

es
pa

n

th
e

se
tu

p
�m

e

the threshold value
MKF-1

38

40

42

44

46

48

15

17

19

21

23

25

1 0.92 0.9 0.8 0.7 0.65 0.58

m
ak

es
pa

n

th
e

se
tu

p
�m

e

the threshold value
MKF-2

250

255

260

265

270

275

95

100

105

110

115

1 0.72 0.7 0.65 0.6

m
ak

es
pa

n

th
e

se
tu

p
�m

e

the threshold value
MKF-3

119

120

121

122

123

124

80

85

90

95

100

105

1 0.6 0.4 0.35 0.33

m
ak

es
pa

n

th
e

se
tu

p
�m

e

the threshold value
MKF-4

250

252

254

256

258

260

65

70

75

80

85

1 0.9 0.72 0.6 0.5
m

ak
es

pa
n

th
e

se
tu

p
�m

e

the threshold value
MKF-5

110

112

114

116

118

90

95

100

105

110

1 0.8 0.5 0.45 0.43 0.4

m
ak

es
pa

n

th
e

se
tu

p
�m

e
the threshold value

MKF-6

195

200

205

210

215

47

48

49

50

51

52

1 0.8 0.7 0.6 0.5

m
ak

es
pa

n

th
e

se
tu

p
�m

e

the threshold value
MKF-7

640

650

660

670

680

290

295

300

305

310

315

1 0.7 0.6 0.5 0.4 0.3

m
ak

es
pa

n

th
e

se
tu

p
�m

e

the threshold value
MKF-8

440

460

480

500

520

200

220

240

260

1 0.6 0.5 0.4 0.35 0.3

m
ak

es
pa

n

th
e

se
tu

p
�m

e

the threshold value
MKF-9

340

350

360

370

380

390

190

200

210

220

230

240

1 0.5 0.4 0.35 0.3 0.25

m
ak

es
pa

n

th
e

se
tu

p
�m

e

the threshold value
MKF-10

tion being destroyed. The calculation formula of F is shown
in Eqs. (26) and (27), where Iterations is the maximum num-
ber of iterations, Itr is the current number of iterations, and
F0 is the initial value of the scaling factor.

t � e1−
I tr

I terations+1−I tr (26)

F � F0 ∗ 2t (27)

Multi-objective optimization is generally evaluated in
terms of convergence, diversity and distribution uniformity.
There are some indicators that are generally employed, such
as contemporary distance (Gong et al. 2018a, b), hyper-

123

Journal of Intelligent Manufacturing

Table 6 The comparison of experimental results

Algorithm D Algorithm E Increase ration of makespan (a) (%) Decrease ratio of setup time (b) (%) b/a

Makespan Setup time Makespan Setup time

MKF-1 65.22 41.93 65.28 39.52 0.09 − 5.76 64.94

MKF-2 42.22 18.08 43.18 17.09 0.25 − 3.74 15.03

MKF-3 261.25 110.46 269.31 101.69 3.09 − 7.94 2.57

MKF-4 120.52 99.12 122.12 89.34 1.33 − 9.86 7.43

MKF-5 253.14 80.74 254.20 70.27 0.42 − 12.97 30.98

MKF-6 114.64 101.06 116.06 97.51 1.24 − 3.52 2.84

MKF-7 205.74 51.24 208.51 48.54 1.346 − 5.26 3.92

MKF-8 653.16 312.93 657.70 299.18 0.69 − 4.21 6.06

MKF-9 488.14 232.24 510.14 217.76 4.51 − 6.23 1.38

MKF-10 360.68 233.47 380.82 210.65 5.59 − 9.77 1.75

volume, ideal solution deviation, spread and so on. Two
indicators, i.e. hypervolume and spread, are selected to mea-
sure the results in this study.

(1) Hypervolume index (Ciavotta et al. 2013): The hyper-
volume index method is proposed by Zitzler and Thiele
(1999), which indicates the volume of the hypercube
enclosed by the individual and the reference point in
the target space. The coordinate origin is selected as the
reference point, and the two objective values are respec-
tively normalized before calculation. A hypervolume
indicator can measure the convergence of the solution
set. The smaller the hypervolume index is, the better of
the convergence of the algorithm is.

(2) Spread index (Lu et al. 2017): The spread index eval-
uates the diversity and the distribution uniformity of
solutions. The smaller the spread value, the better the
diversity and distribution uniformity of the solution
set. The calculation formula of spread is as shown in
Eq. (28).

SP �
√√√√(Z − 1)−1

Z∑

i�1

(
d̄ − di

)2
(28)

where Z is the number of the Pareto solutions, di is the
Euclidean distance between solution i and the nearest
solution, and d̄ is the average of di .

The experimental results and performance indicators
obtained with the MODE algorithm and the NSGA-II algo-
rithm are shown in Table 7, including themakespan, the setup
time, the hypervolume index, and the spread index, respec-
tively. The results with the MODE algorithm are listed in
the left column under each indicator, and the results with the
NSGA-II algorithm are listed in the right column under each
indicator. For the hypervolume index, the NSGA-II algo-

rithm outperforms the MODE algorithm for 10 instances.
For the spread index, the NSGA-II algorithm obtains the
better results for 9 instances. For each instance, better solu-
tions are shown in bold. Therefore, the NSGA-II algorithm
outperforms the MODE algorithm in the convergence, the
distribution and the diversity of the solution.

Figure 17 is the comparison of the distribution of the
Pareto solution, obtained by the NSGA-II algorithm and the
MODE algorithm. The stars in the figure are the results from
the NSGA-II algorithm, and the dots are the results from the
MODE algorithm. It can be seen from Fig. 17 that most of
the results obtained from the NSGA-II algorithm are better
than those obtained from the MODE algorithm. Only for the
MKF-05 instance, the results are similar, with the possibil-
ity of either algorithm producing better results. Therefore,
the NSGA-II algorithm outperforms the MODE algorithm
in general.

Analysis of the differences between scheduling
solutions that fully and partially consider resource,
respectively

In order to test the difference between the multi-resource
scheduling solution and the single-resource scheduling solu-
tion, we ignore the fixture resource and only consider
machine resource.

Figure 18 shows a scheduling solution generated only if
single resource (e.g. machine) for the scheduling solution
shown in Fig. 13 is considered. By comparing Fig. 18 with
Fig. 13, one can find that on the basis of multi-resource
scheduling solution, the makespan can be reduced without
considering the loading and unloading time of fixtures. But
in the real production, fixtures are indispensable. If the pro-
duction is carried out according to the scheduling solution
that only considers the single resource, there will be a sit-
uation that the scheduling solution cannot be executed due

123

Journal of Intelligent Manufacturing

Fig. 16 the flow chart of MODE
Start

Initialize and generate
initial population

Terminate condition ?

N

Differential mutation

Crossover

Select the next generation
form the parent -child

mixed population

Obtain the current pareto set,
and update the pareto set

Output the pareto set

The end

Y

Evaluate the population
Obtain the pareto set

Evaluate the new population

to the occupation of the machines or fixtures. For example,
job 9 is scheduled on machine 4 and fixed by fixture 2 as
shown in Fig. 13. When multi-resource is considered, the
production of job 9 after job 2 can avoid the loading and
unloading of the fixture and the time spent on those actions
can be saved. However, if the fixture resources are not con-
sidered when generating scheduling solution, job 9 can only
be placed behind job 10 for processing (as shown onmachine
4 in Fig. 18). When machine 4 processes job 9, fixture 2 used
by job 9 is occupied by job 6 produced on machine 2. At
this time, the processing of job 9 has to be stopped, which
will affect the subsequent processing. Therefore, scheduling

solutions consideringmulti-resource aremore operational for
actual production, though it might increase the makespan.

Discussions

This paper proposed a similarity-based scheduling algorithm
for setup-time reduction (SSA4STR) to reduce the setup
time and the makespan. We compared the performance of
SSA4STR with the makespan oriented scheduling algorithm
and setup time oriented scheduling algorithm, respectively.
The first reason that SSA4STR outperforms others is that
the operation with a larger similarity is placed adjacently.

123

Journal of Intelligent Manufacturing

Table 7 The comparison of
experimental results min(C) min(T) Hypervolume Spread

MODE NSGA-II MODE NSGA-II MODE NSGA-II MODE NSGA-II

MKF-1 60.1 56.7 38.5 37.3 0.791 0.625 2.511 2.257

MKF-2 39.6 39.1 15.7 13.7 0.676 0.570 1.715 1.433

MKF-3 242.1 233.2 98.1 95.3 0.825 0.815 3.647 4.981

MKF-4 107 107.5 99.2 84.2 0.803 0.712 3.434 2.822

MKF-5 247.4 243.8 78.9 75.4 0.886 0.744 4.847 4.041

MKF-6 108.9 105.6 95.2 87.7 0.865 0.813 5.386 4.265

MKF-7 194.7 191.9 51.5 36.6 0.704 0.642 5.703 3.552

MKF-8 634.4 638.3 313.5 296.6 0.863 0.791 10.961 5.957

MKF-9 459.5 457.7 218.3 202.9 0.904 0.839 7.033 6.786

MKF-10 329.7 332.7 214.2 191 0.805 0.779 5.736 5.054

Fig. 17 The comparison of Pareto set

In this way, the loading and unloading time is significantly
reduced, and the operation can be completed efficientlywhile
ensuring a good utilization rate of resources. Secondly, the
performanceofSSA4STR is greatly affected by the similarity
threshold. Therefore, we obtained the trend of the makespan
and setup time changing with threshold value under different
instances (as shown in Fig. 15). The results show that the
setup time and the makespan will increase if the threshold
value is too large or too small. When the threshold is too
small, the operations with the smaller similarity are arranged
in the adjacent positions for processing, and the processing

still needs the loading and unloading of fixture resources;
otherwise, when the threshold is too large, only a small part
of the operations with the larger similarity are arranged in the
adjacent position for processing, and the role of SSA4STR
is not fully played. Thirdly, in order to verify the good per-
formance of NSGA-II in solving this problem, we designed
an experiment to compare the performance of NSGA-II and
MODE, in terms of the makespan, the setup time, the hyper-
volume index, and the spread index. NSGA-II outperforms
MODE in the convergence, the distribution and the diver-
sity. Finally, in order to prove the necessity for considering

123

Journal of Intelligent Manufacturing

Fig. 18 The scheduling solution
considering single resource

multiple resources when scheduling, we analyze the differ-
ences between the two scheduling solutions (Figs. 13, 18).
Makespan only considering themachine resource scheduling
solution is shorter than that considering multiple resources,
but scheduling solution considering multiple resources is
more practicable for real production.

Conclusions

In real production, it is always necessary to cooperate with
multiple types of resource. Thus, the study of the multi-
resource scheduling problem is of great importance. When
researching into the multi-resource scheduling problem, one
needs to consider the similarity of the resources between dif-
ferent operations, so that some unnecessary setup time can
be saved. This paper proposed a similarity-based scheduling
algorithm for setup-time reduction to solve the dual resource
constrained flexible job shop scheduling problem, with the
makespan and the loading and unloading time as objectives.
The improved non-dominated sorting genetic algorithm II
was employed to search the optimal solution. Experiments
showed that the proposed algorithm could effectively reduce
the loading and unloading time of fixtures while ensuring
makespan. When the similarity equals the best threshold, the
proposed algorithm can effectively reduce the loading and
unloading time of fixtures. The experiment also verified that
the scheduling solution with multiple resources has a greater
guiding effect on production than the scheduling result with
a single resource.

The managerial insights are summarized as follows. In
the production operation management, the decision maker
should take as much as possible constraints into account.
Only in this way can the decision maker ensure that the
decision is feasible and practical. Though some assumptions
can make the problem much easier for solving, they doesn’t
hold in practice. This paper considered machine and fixture

simultaneously when making a scheduling solution, which
overcomes the shortcoming of the scheduling solution where
only the machine resource is considered.

However, the problem discussed in this paper only con-
sidered two types of resources: fixtures and machines. In our
future research, more types of resource constraints will be
taken into account, such as tool wear, workers and so on, with
aims to develop more effective heuristics and algorithms to
solve the problem more effectively and efficiently. Besides,
other production environment should also be studied, such as
the flow shop scheduling problem consideringmultiple types
of resource.

Acknowledgements This work was supported by the National Natural
Science Foundation of China under Grant (51305024).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Akay, B., & Yao, X. (2013). Recent advances in evolutionary algo-
rithms for job shop scheduling (pp. 191–224)., Automated
Scheduling and Planning Berlin: Springer.

Alejandro, V. S., Ahmed, A., & Mohammed, F. B. (2020). Mathemat-
ical modeling and a hybridized bacterial foraging optimization
algorithm for the flexible job-shop scheduling problem with
sequencing flexibility. Journal of Manufacturing Systems, 54,
74–93.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Intelligent Manufacturing

Alhourani, F. (2013). Clustering algorithm for solving group tech-
nology problem with multiple process routings. Computers &
Industrial Engineering, 66(4), 781–790.

Allahverdi, A. (2015). The third comprehensive survey on scheduling
problems with setup times/costs. European Journal of Opera-
tional Research, 246(2), 345–378.

Andrade-Pineda, J. L., Canca, D., Gonzalez-R, P. L., & Calle,
M. (2019). Scheduling a dual-resource flexible job shop with
makespan and due date-related criteria. Annals of Operations
Research, 291, 5–35.

Aydilek, A., Aydilek, H., & Allahverdi, A. (2017). Minimizing maxi-
mum tardiness in assembly flow shops with setup times. Interna-
tional Journal of Production Research, 55(24), 7541–7565.

Benkalai, I., Rebaine, D., Gagné, C., & Baptiste, P. (2017). Improving
themigrating birds optimizationmetaheuristic for the permutation
flow shop with sequence-dependent set-up times. International
Journal of Production Research, 50(20), 6145–6157.

Bitar, A., Dauzère-Pérès, S., Yugma, C., & Roussel, R. (2016).
A memetic algorithm to solve an unrelated parallel machine
scheduling problem with auxiliary resources in semiconductor
manufacturing. Journal of Scheduling, 19(4), 367–376.

Brandimarte, P. (1993). Routing and scheduling in a flexible job shop
by tabu search. Annals of Operations Research, 41(3), 157–183.

Choobineh, F. (1988). A framework for the design of cellular manu-
facturing systems. International Journal of Production Research,
26(7), 1161–1172.

Ciavotta, M., Minella, G., & Ruiz, R. (2013). Multi-objective sequence
dependent setup times permutation flowshop: A new algorithm
and a comprehensive study. European Journal of Operational
Research, 227(2), 301–313.

Costa, A., Fernandez-Viagas, V., & Framinan, J.M. (2020). Solving the
hybrid flow shop scheduling problemwith limited human resource
constraint. Computers & Industrial Engineering, 146, 1–22.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast elitist
non-dominated sorting genetic algorithm for multi-objective opti-
mization: NSGA-II. IEEE Transactions on Evolutionary Compu-
tation, 6(2), 182–197.

Erromdhani, R., Eddaly, M., & Rebai, A. (2012). Hierarchical produc-
tion planning with flexibility in agroalimentary environment: A
case study. Journal of Intelligent Manufacturing, 23(3), 811–819.

Gao, L., & Pan, Q. K. (2016). A shuffled multi-swarmmicro-migrating
birds optimizer for a multi-resource-constrained flexible job shop
scheduling problem. Information Sciences, 372, 655–676.

Gong, G., Deng, Q., Gong, X., Liu, W., & Ren, Q. (2018a). A new dou-
ble flexible job-shop scheduling problem integrating processing
time, green production, and human factor indicators. Journal of
Cleaner Production, 174(10), 560–576.

Gong, D., Han, Y., & Sun, J. (2018b). A novel hybrid multi-objective
artificial bee colony algorithm for blocking lot-streaming flow
shop scheduling problems. Knowledge-Based Systems, 148,
115–130.

Goyal, K. K., Jain, P. K., & Jain,M. (2013). A comprehensive approach
to operation sequence similarity based part family formation in
the reconfigurable manufacturing system. International Journal
of Production Research, 51(6), 1762–1776.

Heger, J., Jürgen, B., Hildebrandt, T., & Scholz-Reiter, B. (2016).
Dynamic adjustment of dispatching rule parameters in flow shops
with sequence-dependent set-up times. International Journal of
Production Research, 54(22), 6812–6824.

Ho, Y., Lee, C., & Li, C. (1993). Two sequence-pattern matching-
based flow analysis methods for multi-flowlines layout design.
International Journal of Production Research, 31(7), 1557–1578.

Irani, S. A., & Huang, H. (2000). Custom design of facility layouts for
multiproduct facilities using layout modules. IEEE Transactions
on Robotics and Automation, 16(3), 259–267.

Li, J. Y., Huang, Y., & Niu, X. W. (2016). A branch population genetic
algorithm for dual-resource constrained job shop scheduling prob-
lem. Computers & Industrial Engineering, 102, 113–131.

Li, Z. C., Qian, B., & Hua, R. (2019). An elitist nondominated sorting
hybrid algorithm for multi-objective flexible job-shop schedul-
ing problem with sequence-dependent setups. Knowledge-Based
Systems, 173, 83–112.

Lu, C., Gao, L., Li, X., et al. (2017). A hybrid multi-objective grey wolf
optimizer for dynamic scheduling in a real-world welding indus-
try. Engineering Applications of Artificial Intelligence, 57(C),
61–79.

Marichelvam, M. K., Geetha, M., & Tosun, O. (2020). An improved
particle swarm optimization algorithm to solve hybrid flowshop
scheduling problems with the effect of human factors—a case
study. Computers & Operations Research, 114, 1–9.

Mutu, S., & Eren, T. (2020). The single machine scheduling problem
with setup times under an extension of the general learning and
forgetting effects. Optimization Letters. https://doi.org/10.1007/
s11590-020-01641-9.

Naderi, B., Zandieh, M., & Ghomi, S. M. T. F. (2009). A study on
integrating sequence dependent setup time flexible flow lines and
preventive maintenance scheduling. Journal of Intelligent Manu-
facturing, 20(6), 683–694.

Nesello, V., Subramanian, A., Battarra,M., et al. (2018). Exact solution
of the single-machine scheduling problem with periodic mainte-
nances and sequence-dependent setup times. European Journal of
Operational Research, 266(2), 498–507.

Paksi, A. B. N., & Ma’ruf, A. (2016). Flexible job-shop scheduling
with dual-resource constraints tominimize tardiness using genetic
algorithm. Materials Science and Engineering, 114(1), 1–9.

Sujoy, B., Sri, K. K., & Manoj, K. T. (2019). An efficient recommen-
dation generation using relevant Jaccard similarity. Information
Sciences, 483, 53–64.

Wang, U. (2005). Top-level design of integrated manufacturing system
for capital spaceflight machinery company. Aerospace Manufac-
turing Technology, 10(5), 8–12.

Wu, X. L., & Sun, Y. (2018). A green scheduling algorithm for flex-
ible job shop with energy-saving measures. Journal of Cleaner
Production, 172, 3249–3264.

Wu, X. L., & Wu, S. (2017). An elitist quantum-inspired evolutionary
algorithm for the flexible job-shop scheduling problem. Journal
of Intelligent Manufacturing, 28(6), 1441–1457.

Xie, J., Gao, L., & Peng, K. K. (2019). Review on flexible job shop
scheduling. The Institution of Engineering and Technology Col-
laborative Intelligent Manufacturing, 3(1), 67–77.

Yin, Y., & Yasuda, K. (2006). Similarity coefficient methods applied to
the cell formation problem:A taxonomy and review. International
Journal of Production Economics, 101(2), 329–352.

Yuan, S., Li, T., & Wang, B. (2020). A discrete differential evolution
algorithm for flow shop group scheduling problemwith sequence-
dependent setup and transportation times. Journal of Intelligent
Manufacturing, 3, 1–13.

123

https://doi.org/10.1007/s11590-020-01641-9

Journal of Intelligent Manufacturing

Zhang, J.,Wang,W., &Xu, X. (2017). A hybrid discrete particle swarm
optimization for dual-resource constrained job shop scheduling
with resource flexibility. Journal of Intelligent Manufacturing,
28(8), 1961–1972.

Zheng, X., & Wang, L. (2016). A knowledge-guided fruit fly opti-
mization algorithm for dual resource constrained flexible job-
shop scheduling problem. International Journal of Production
Research, 18(1), 1–13.

Zitzler, E., & Thiele, L. (1999). Multi-objective evolutionary algo-
rithms: A comparative case study and the strength pareto
approach. IEEE Transactions on Evolutionary Computation, 3(4),
257–271.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

