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Chemokine receptor trafficking coordinates
neutrophil clustering and dispersal at wounds
in zebrafish
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Immune cells congregate at specific loci to fight infections during inflammatory responses, a
process that must be transient and self-resolving. Cell dispersal promotes resolution, but it
remains unclear how transition from clustering to dispersal is regulated. Here we show, using
quantitative live imaging in zebrafish, that differential ligand-induced trafficking of chemokine
receptors such as Cxcrl and Cxcr2 orchestrates the state of neutrophil congregation at sites
of tissue damage. Through receptor mutagenesis and biosensors, we show that Cxcrl1 pro-
motes clustering at wound sites, but is promptly desensitized and internalized, which pre-
vents excess congregation. By contrast, Cxcr2 promotes bidirectional motility and is
sustained at the plasma membrane. Persistent plasma membrane residence of Cxcr2 pro-
longs downstream signaling and is required for sustained exploratory motion conducive to
dispersal. Thus, differential trafficking of two chemokine receptors allows coordination of
antagonistic cell behaviors, promoting a self-resolving migratory response.
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ell migration is required in development and immune

responses, and is the hallmark of metastasis. Cells are

directed towards target sites by chemoattractants, often in
the form of secreted molecules that are recognized by G-protein-
coupled receptors (GPCRs). GPCR signaling activates effectors of
cytoskeletal dynamics that promote directed migration (chemo-
taxis)1>2. The final distribution of cells in a tissue depends on their
behavior post arrival at the target. Upon reaching a source of
attractant, cells may stop and cluster or may disperse and leave the
site. There is a trade-off between the two behaviors. Clustering
allows close inspection of an area and maximal response to local
signals, be it growth factors, nutrients, activation cues, or microbes.
Yet, this occurs at the expense of global space exploration and the
encounter of alternative signals nearby. It remains unclear how cell
dispersal and clustering are balanced to generate specific large-scale
physiological or pathological outcomes.

The inflammatory response represents a prominent example
where cell dispersal and clustering must be tightly controlled.
Neutrophils are the first cells to be recruited to sites of damage or
infection where they promote innate immunity through phago-
cytosis, release of antimicrobial products and production of sig-
nals that recruit or activate other immune cells®. Neutrophils are
also recruited to tumors and can modulate the inflammatory
niche and tumor evolution*. Excess neutrophil presence is often
detrimental, as it may perpetuate inflammation and cause col-
lateral tissue damage through neutrophil-released enzymes or
radicals®. Thus, altogether, there is strong biomedical interest
in understanding how neutrophil migration is controlled and
resolved.

Neutrophils reach sites of infection or damage after extra-
vasation and chemotaxis to inflammatory chemoattractants, such
as leukotrienes, pathogen-associated molecular patterns, damage-
associated molecular patterns, and chemokines, such as CXCL8
(interleukin-8)3°. A long-held view has been that neutrophil
recruitment is resolved through apoptosis at sites of inflamma-
tion. However, increasing evidence suggests neutrophils can also
depart from sites of inflammation revealing an additional step in
resolution®. This so-called reverse migration is distinguished
into two stages: reverse interstitial migration (rIM), i.e., extra-
vascular movement away from the inflammatory focus, and
reverse transmigration (rTEM), i.e., abluminal-to-luminal trans-
migration into the blood stream®. The mechanism of rIM remains
elusive but cell tracking analyses indicate that random dispersal
rather than repulsion plays a role®!0. Unexpectedly, some che-
mokine receptors stimulate random interstitial motility (chemo-
kinesis) and as such drive dispersal!:12, This raises the question
why a subset of chemoattractant receptors can promote clustering
while others promote dispersal.

Candidate mechanisms for functional diversification of che-
moattractant receptors lie in the early receptor signaling events after
ligand binding. Ligand binding triggers GPCR conformational
changes that induce association of trimeric apy G proteins, which
are classified according to the variable a-subunit (Gs, Gi/o, Gq/11,
or G12/13)!3. GPCR activation triggers exchange of GDP for GTP
on the a-subunit and dissociation of the trimer into a monomeric
a-subunit and a dimeric By-subunit, which trigger various cytos-
keletal effectors!>13. Subsequently, GPCRs are phosphorylated
by GPCR kinases (GRKs). Phosphorylation sterically blocks
re-association to G proteins, preventing further signaling, leading to
the so-called desensitization!4-16, Thereafter, GPCRs may be
rapidly dephosphorylated and recycled at the plasma membrane or
downregulated through degradation in lysosomes!4-16. The role of
receptor desensitization has been studied in WHIM syndrome
neutrophils (Warts—-Hypogammaglobulinemia-Immunodeficiency—
Myelokathexis), B cells, and zebrafish primordial germ cells!7-20,
The impact of desensitization differs in these settings. Blocking

receptor desensitization in WHIM syndrome neutrophils and in B
cells inhibited passage of cells to tissues producing alternative
chemoattractants!718. In contrast, in primordial germ cells
equivalent mutations led to cells skipping their target develop-
mental site?0, Furthermore, GRK inhibition can suppress or
enhance gradient sensing in leukocyte chemotaxis under different
settings in vitro2!=23, The molecular basis for the different func-
tional effects observed is unclear. Thus, it is difficult to infer how
receptor trafficking might regulate neutrophil behavior within
inflammatory sites.

Here we show that differential trafficking of two chemokine
receptors coordinates neutrophil clustering and dispersal at
sites of tissue damage. We link chemokine receptor trafficking
with neutrophil behavior in zebrafish through genetic manip-
ulations and live imaging. We demonstrate that the chemokine
receptor Cxcrl promotes neutrophil clustering but is rapidly
desensitized and internalized in response to gradients of its
ligand (Cxcl8a) at wounds. This is critical to allow transition
to signaling through the chemokine receptor Cxcr2, which
recognizes Cxcl8b and promotes bidirectional motion. Unlike
Cxcrl, Cxcr2 is sustained at the plasma membrane of neu-
trophils. We show that this is required for sustained random
motion and reverse migration that supports resolution of the
response. These findings provide a foundation for identifying
receptors that mediate neutrophil dispersal in mammals and for
directing chemoattractant drug discovery towards specific
leukocyte trafficking patterns.

Results

Rapid constitutive turnover of neutrophil Cxcrl and Cxcr2.
Neutrophil receptors for inflammatory chemoattractants?»2°
show differential trafficking upon ligand binding, the functional
significance of which in vivo is unclear. We hypothesized that
receptor turnover or trafficking may diversify the contributions of
chemoattractant receptors in the inflammatory response. To
address this question, we sought to develop a model that allows
imaging and manipulation of neutrophil receptor trafficking
behavior in a physiological inflammatory setting in vivo. Zebra-
fish larvae are ideally amenable to imaging and genetic manip-
ulation, and express homologs of the human CXCL8 receptors
CXCRI (Cxcrl) and CXCR2 (Cxcr2)26. We set out to visualize
zebrafish Cxcrl and Cxcr2 trafficking and turnover by generating
fluorescent timer constructs (hereafter referred to as Cxcrl-FT
and Cxcr2-FT)2728, Cxcrl and Cxcr2 were fused to tandems of
superfolder green fluorescent protein (GFP) and tag red fluor-
escent protein (tagRFP) (Fig. 1a). Superfolder GFP (sfGFP)
matures rapidly (<10 min) and allows monitoring of fast receptor
dynamics, whereas tagRFP requires over 1.5hours (h) to fluor-
esce28, sfGFP is quenched in acidic environments, whereas
tagRFP remains stable. Thus, the combination of the two fluor-
ophores allows monitoring of a broad range of receptor fates and
can provide estimates of protein turnover time at the plasma
membrane (newly synthesized receptors would fluoresce in green
and progressively become red as they age).

To investigate the constitutive and ligand-induced dynamics of
Cxcrl and Cxcr2 in neutrophils, we generated transgenic fish
expressing either receptor in neutrophils under the Lysozyme C
promoter (Tg(lyz:Cxcrl-FT), Tg(lyz:Cxcr2-FT); Fig. 1a)?%30.
Interestingly, neutrophils at steady state showed predominantly
green fluorescence at the plasma membrane, whereas red
receptors accumulated in intracellular, presumably more acidic,
vesicular compartments (Fig. la and Supplementary Movie 1).
This distribution was similar for Cxcrl-FT and Cxcr2-FT
transgenics (Fig. 1a and Supplementary Movie 1). This indicated
that both receptors have rapid constitutive turnover in these cells,
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Fig. 1 Live imaging of chemokine receptor trafficking in neutrophils. a Constructs used for neutrophil-specific transgenic expression of Cxcr1-FT
(Fluorescent Timer) and Cxcr2-FT. Confocal projections of neutrophils in the head of a 3 days post fertilization (dpf) transgenic larva (Tg(lyz:Cxcr1-FT),
top; Tg(lyz:Cxcr2-FT), bottom) showing tRFP (tagRFP; magenta) and sfGFP (green) channels. Scale bar =20 um. b Anatomical scheme of 3 dpf larva
showing the location of the caudal hematopoietic tissue (CHT), the venus circulation (VC, blue), the ventral fin (VF), and the wound site. Below the larva
are schemes depicting the area of the wound (W) with neutrophils getting mobilized from the CHT (top) or performing chemotaxis upon entering the
ventral fin (bottom). The Caudal Vein plexus (CVP) of the CHT tissue is drawn in blue. Dashed square indicates area imaged in snapshots on the right.
¢ Neutrophils in Tg(lyz:Cxcr1-FT) larvae (sfGFP is shown) upon mobilization from the CHT (top panels) or chemotaxis towards the wound (bottom panels).
Arrows show the same cells over time. Time points on the right image are minutes elapsed after image on the left. Scale bar =10 um. d Schematic of
Cxcrl1/2-FT construct behavior in neutrophils. Newly synthesized receptors fluoresce in green due to short residence time at the plasma membrane. Older
receptors fluoresce in red and green, and accumulate in intracellular compartments through constitutive turnover. Upon exposure to ligands at wounds, the
receptor may internalize and subsequently be degraded or recycled
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and that the residence time at the plasma membrane is shorter
than the maturation time of tagRFP (see below).

Cxcrl and Cxcr2 have distinct trafficking at wound sites. We
then explored ligand-induced receptor trafficking based on the
rapid dynamics of the sfGFP-labeled receptor molecules. We
performed a wound in the ventral fin of a 3 day post fertilization
(dpf) larva, nearby the caudal hematopoietic tissue (CHT), which
is the first site of definitive hematopoiesis and a site of neutrophil
production3! (Fig. 1b). We found that Cxcrl-FT first underwent
internalization upon mobilization of the cells from the CHT
(Fig. 1c and Supplementary Movies 2 and 3). Once in the ventral
fin, neutrophils underwent chemotaxis concomitantly with fur-
ther internalization of the Cxcrl-FT as they reached the wound
(Fig. 1c and Supplementary Movies 2 and 3). In contrast with
Cxcrl, Cxcr2 remained largely sustained at the cell membrane
(Supplementary Movies 2 and 4). Thus, changes in the distribu-
tion of sfGFP could serve as a readout for receptor internalization
in response to endogenous ligands at wounds (Fig. 1d).

To quantify these dynamics, we devised an approach that relied
solely on the distribution pattern of sfGFP (Fig. 2a, b). We
computed the contrast of the sfGFP signal in surface-segmented
neutrophils. This metric reflects intensity differences between
neighboring pixels3? and is higher in cells with punctate/vesicular
distribution of the receptor, as opposed to cells with smooth
intensity fluctuations at the plasma membrane (Fig. 2a, b). We
found this method more suitable for neutrophils than a
ratiometric approach that scores membrane receptor levels over
a control membrane marker, as it bypasses the need for accurate
membrane segmentation. The latter was difficult to achieve due to
the irregular shape and membrane configuration of neutrophils,
as well as their dense clustering (Supplementary Fig. 1).
Quantification confirmed that Cxcrl-FT, but not Cxcr2-FT,
markedly internalized at wounds (Fig. 2¢, d).

To establish whether Cxcrl-FT internalization was in response
to the putative Cxcrl/2 ligands Cxcl8a or Cxcl8b, we used
knockdown of the two chemokines with previously validated
morpholinos33-3>. We found that cxcl8a knockdown markedly
suppressed the internalization of Cxcrl-FT, whereas cxcl8b
knockdown was ineffective (Fig. 2d, Supplementary Fig. la, b,
and Supplementary Movie 5). As further evidence for Cxcl8a-
induced internalization, we utilized an ectopic expression system.
We injected Cxcrl-FT or Cxcr2-FT mRNA in one-cell-stage
embryos to obtain a uniform constitutive expression of the
receptors in gastrulating embryos, in which cell membranes are
easily visualized and segmented (Supplementary Fig. 3). Both
receptors showed membrane distribution comparable to a control
membrane enhanced cyan fluorescent protein (membrane ECFP,
hereafter referred to as mCFP) (Supplementary Fig. 3a). However,
when Cxcl8a was co-expressed, Cxcrl showed a marked
internalization (Supplementary Fig. 3a). Quantification of the
ratio of sfGFP (Cxcrl) levels at the plasma membrane over a
control mCFP indicated receptor downregulation from the cell
surface in the presence of Cxcl8a, which was not observed in the
case of Cxcr2 (Supplementary Fig. 3b). These patterns did not
arise from a crosstalk between ECFP and sfGFP detection, and
were also observed without mCFP co-expression (Supplementary
Fig. 4).

To probe for endogenous Cxcrl internalization in response to
Cxcl8a, we visualized neutrophil uptake of a fluorescent fusion of
Cxcl8a. We transplanted human embryonic kidney (HEK293T)
cells expressing Cxcl8a-mCherry in zebrafish larvae, as previously
described and validated3>. In wild-type Tg(mpx:GFP)!114 trans-
genic larvae, we observed a considerable accumulation of Cxcl8a-
mCherry inside the neutrophils contacting the transplant

(Supplementary Fig. 5 and Supplementary Movie 6). By contrast,
in Tg(mpx:GFP)1114 (sa14414 is a null mutant allele of cxcrl) we
observed a significantly reduced Cxcl8a-mCherry uptake. This
suggested that endogenous Cxcrl internalizes in response to
Cxcl8a, much like the Cxcr1-FT construct.

Altogether, this evidence showed that Cxcrl, but not Cxcr2,
internalizes and is downregulated in response to endogenous
Cxcl8a at sites of tissue damage.

Cxcrl downregulation reports endogenous Cxcl8a gradients.
To characterize the pattern of Cxcl8a distribution, we performed
further quantitative analyses. To facilitate quantification of Cxcrl
internalization, we forced neutrophils to enter the ventral fin by
applying an alternative chemoattractant, LTB4, in the bath of the
larva (Fig. 2e)3°. This led to a quick entry of neutrophils into the
ventral fin providing more cell numbers for quantification and
eliminating the contribution of Cxcrl internalization of cells in
the CHT (Fig. 2e and Supplementary Movie 7). Neutrophils did
not show chemokine internalization after LTB4 treatment, further
confirming specificity of Cxcrl internalization in response to
Cxcl8a (Supplementary Movie 7). After performing a wound, we
quantified internalization of Cxcrl as a function of the distance
from the closest point of the wound margin (Fig. 2f). Quantifi-
cation reported a gradient of a range of 200 um (Fig. 2f).

Cxcrl and Cxcr2 recognize Cxcl8a and Cxcl8b, respectively.
The differential trafficking behavior of Cxcrl and Cxcr2 could
have been due to differential ligand preferences of the receptors
and/or differential trafficking fates in response to the corre-
sponding ligands. A biochemical characterization of the ligand
preferences of Cxcrl and Cxcr2 was lacking. To elucidate the
ligand preferences of the receptors, we used a reductionist
approach. We transfected mammalian HEK293T cells with
plasmids coding for Cxcrl or Cxcr2. We then employed label-free
live-cell biosensing based on a dynamic mass redistribution
(DMR) to characterize receptor function in response to indivi-
dually applied ligands (Cxcl8a and Cxcl8b) (Supplementary
Fig. 6a). This technique measures integrated whole-cell responses
of living cells to pharmacological stimuli.3”>38. Cxcrl, but not
Cxcr2-expressing HEK293T cells, showed specific DMR respon-
ses when exposed to recombinant Cxcl8a or supernatant prepared
from Cxcl8a-transfected HEK293T cells (Supplementary Fig. 6a).
By contrast, activation of Cxcr2 but not of Cxcrl occurred only
when transfectants were exposed to Cxcl8b-containing super-
natants (Supplementary Fig. 6a). This indicated that Cxcrl and
Cxcr2 recognize Cxcl8a and Cxcl8b, respectively, at least in iso-
lation from each other.

This finding contrasted previous genetic experiments showing
that Cxcr2 knockdown compromises responses to Cxcl8a injection
in vivo’%, which had suggested a possible ligand-receptor
interaction. To reconcile the two findings, we interrogated the
dependence of neutrophil Cxcl8a-driven chemotaxis on Cxcrl and
Cxcr2 in a reductionist in vitro setting. We used an in vitro
transwell chemotaxis assay using neutrophils from wild-type
Tg(mpx:GFP)I14,  Te(mpx:GFP) 114 cxcrisalddld/salddld (cxcr)—/—
hereafter sa6118 is a null mutant allele of cxcr2), and
Tg(mpx:GFP)L14/cxcr2sa6118/5a6118 (cxcr2—/— hereafter; sa6118 is a
null mutant allele of cxcr2) zebrafish (Supplementary Fig. 6b, c).
Wild-type neutrophils transmigrated in response to Cxcl8a but both
cxcrl™~ and cxcr2~/~ neutrophils showed a markedly reduced
response (Supplementary Fig. 6d). Notably, cxcrl~/~ neutrophils
showed no residual response, whereas cxcr2~/~ neutrophils showed
a modest residual response. Together, this evidence confirmed the
genetic dependency of Cxcl8a responses on Cxcr2 but indicated that
this does not arise from a direct ligand-receptor interaction.
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The revised ligand preferences raised the question whether lack
of Cxcr2 internalization in neutrophils at wounds was due to the
absence of Cxcl8b in ventral fin wounds or inability to internalize
in response to this ligand. Reverse transcription polymerase chain
reaction (RT-PCR) analysis from ventral fin-wounded larvae
revealed an upregulation of both Cxcl8a and Cxcl8b by 30 min
after wounding, suggesting both ligands are likely present
(Supplementary Fig. 6e). To assess the internalization of Cxcr2
in response to Cxcl8b, we used ectopic expression in gastrulating
embryos (Supplementary Fig. 7). Cxcr2 was internalized in the
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presence of Cxcl8b (Supplementary Fig. 7a). Quantification did
not capture a significant downregulation of the receptor from the
plasma membrane (Supplementary Fig. 7b), suggesting either a
limitation in the sensitivity of this metric or possible differences
in the internalization pattern of Cxcrl and Cxcr2.

To therefore clarify possible differences in the internalization
pattern of Cxcrl and Cxcr2 in response to their corresponding
ligands, we switched to a higher-resolution in vitro system that
allowed acute, short-term exposure to cognate ligands, which
better reflected the timescale of ligand exposure in neutrophils
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Fig. 2 Distinct trafficking of Cxcrl and Cxcr2 during neutrophil migration to wounds. a Overview of receptor distribution patterns and corresponding
quantitative approach. Confocal projection of neutrophils in a representative wounded or unwounded Tg(lyz:Cxcr1-FT) larva. Examples of cells are shown in
different colors: single (blue) or clustered (green) cells at the wound, cells in the CHT of the same wounded larva (red) or cells in the CHT of an
unwounded larva (orange). CHT: caudal hematopoietic tissue, VF: ventral fin, W: wound. b Calculation of contrast from the cells segmented in a. n=3
(green, blue, red), n=11 (orange) cells. Scale bar = 25 um, scale bar (insets) =10 um. ¢ Confocal projection of neutrophils in Tg(lyz:Cxcr1-FT) or Tg(lyz:
Cxcr2-FT) larvae at the wound focus. Scale bar =10 um. mpw = minutes post wound. d Normalized contrast (contrast per individual neutrophil normalized
to the mean contrast of non-mobilized cells in the CHT). Cxcl8a refers to injection of a splice-blocking together with a translation-blocking morpholino for
cxcl8a. cxcl8b refers to injection with a splice-blocking morpholino for Cxcl8b. For Tg(lyz:Cxcr1-FT): n = 24 cells (CHT), n =47 cells (wound) from 8 larvae.
For Tg(lyz:Cxcr1-FT) with morpholinos: n = 28 cells (Cxcl8a-MO) from 5 larvae, n =16 cells (Cxcl8b-MO) from 5 larvae. For Tg(lyz:Cxcr2-FT): n =10 cells
(CHT) and n= 20 cells (wound) from 3 larvae. Data were pooled from independent larvae acquired in 1to 5 imaging sessions. Kruskal-Wallis test with
Dunn'’s multiple comparisons test for Tg(lyz:Cxcr1-FT), two-tailed unpaired Mann-Whitney test for Tg(lyz:Cxcr2-FT). e Top: cartoon depicting neutrophils
in the CHT after mobilization to the ventral fin in response to an exogenous LTB4 gradient. Bottom: confocal projections of Cxcr1-FT neutrophils 30 min
after LTB4 addition, right before (middle) and 1h after wound (bottom). Scale bar =50 um. f Same larva as in e, at 10 mpw. Orange dashed line shows the
wound margin. Graph below shows normalized contrast of individual neutrophils as a function of distance from the nearest point in the wound margin. For
normalization, values were divided by the maximum contrast of each movie. n > 92 cells or clustered cells per bin, from 3 larvae in 3 imaging sessions. Two-

tailed unpaired Mann-Whitney test. Error bars represent S.E.M. across cells. Source data are provided as a Source Data file

in vivo. To this end, we expressed Cxcrl-FT and Cxcr2-FT in
HEK293T cells in vitro. Visualization of Cxcrl-FT and Cxcr2-FT
15 or 30 min after exposure to Cxcl8a and Cxcl8b, respectively,
revealed distinct intracellular localizations. stGFP-positive vesicles
in Cxcr2-FT-expressing HEK293T cells were localized along the
plasma membrane, whereas the equivalent vesicles were localized
deeper in the cytosol in Cxcrl-FT-expressing cells (Supplemen-
tary Fig. 7c). Altogether, these data suggested that Cxcrl and
Cxcr2 both internalize in response to their corresponding ligands
but the former does so in a manner consistent with down-
regulation, whereas the latter does so in a manner consistent with
recycling.

Distinct roles of Cxcrl and Cxcr2 in neutrophil dispersal. We
then investigated the functional contributions of Cxcrl and Cxcr2
in the migratory response on neutrophils to ventral fin wounds,
with a view to linking receptor trafficking behavior with receptor
function. A previous study using null mutants of Cxcrl and
Cxcr2, photoconvertible reporters, and a tail fin wound model
showed different roles for Cxcrl and Cxcr2 in forward and
reverse traffic!l. Here we sought to characterize two independent
knockout lines for these receptors and to develop analysis
methods to distinguish forward and reverse traffic defects in real-
time trajectory data. To this end, we took advantage of the ventral
fin wound model, which has accelerated kinetics, facilitating the
tracking of reverse migration in real time. Here, maximal neu-
trophil accumulation occurs as early as 1-2 h post wound (hpw)
(as opposed to 6 h in a tail fin wound), due to the proximity of the
target wound site to the starting location of the cells (CHT).

We imaged neutrophil behavior in ventral fin wounds of wild-
type, cxcrl~/~ and cxcr2~/~ zebrafish in a Tg(mpx:GFP)ill4
background. As part of a general validation of our knockout lines,
we measured neutrophil distribution and numbers in the absence
of wounding and found these to be comparable in the knockouts
compared with wild-type zebrafish (Supplementary Fig. 8).
Consistent with previous reports, we found that Cxcrl and
Cxcr2 have different roles in neutrophil migration behavior
(Supplementary Movie 8). Neutrophils in wild-type Tg(mpx:GFP)
i114 embryos showed clustering at the wound but also some
degree of exploration and dispersal (Fig. 3a and Supplementary
Movie 8). Neutrophils in Tg(mpx:GFP)“M/ cxcrl=/= larvae
showed reduced recruitment and cluster size (Supplementary
Movie 8 and Fig. 3a, b, ¢). On the other hand, neutrophils in Tg
(mpx:GFP)1114/cxcr2=/~ larvae showed reduced dispersal (Sup-
plementary Movie 8).

To quantify forward and reverse migration defects, we
developed a protocol that bypasses the need for intra-cluster
tracking accuracy. We generated a code that classifies tracks as
forward and reverse tracks. Tracks were classified as “forward” if
the start position was outside the occupied wound area (owa; i.e.,
the area occupied by clustering neutrophils, ranging 50-70 pm
from the wound margin) and the cells intersected with the owa
thereafter (datapoints after intersection with the owa were
excluded) (Fig. 3d). In reverse tracks, data within the owa and
before entering the owa were excluded (Fig. 3d). Statistics could
then be performed on forward and reverse motion separately or
on pooled tracks. To probe chemotaxis differences, we measured
track straightness of pooled tracks within the area covering the
owa and a zone extending of 50 um from the owa, which
corresponded to the most significant part of the chemokine
gradient (Fig. 2f, 0-150 um from wound margin). Neutrophils in
Tg(mpx:GFP)114/cxcr1—/~ larvae showed reduced track straight-
ness in this area (Fig. 3¢). When assessing the forward movement,
we found that forward tracks showed a comparable bias on
directional speed between the three conditions (Fig. 3f), as
measured by a trend for higher speeds when neutrophils were
oriented towards the target. Conversely, neutrophils in Tg(mpx:
GFP)il14/cxcr2=/~ larvae showed a reduced speed independently
of orientation and across a range of distances (Fig. 3f, g). This
indicated that neutrophils in Tg(mpx:GFP)il4/cxcr2—/= are
slower to reach the wound, and that Cxcr2 signaling contributes
to the forward traffic. However, consistent with observations
using photoconvertible reporters!!, the most prominent pheno-
type of Tg(mpx:GFP)114/cxcr2—/~ neutrophils was the reduced
dispersal from the wound, as indicated here by a lower ratio of
reverse over forward tracks (net reverse traffic; Supplementary
Movie 8 and Fig. 3h). Follow-up staining of neutrophils at a late
stage of 24 hpw confirmed a defect in resolution in these mutant
larvae (Supplementary Fig. 9).

Altogether, these results revealed the specific functions of the
two receptors and validated our quantitative analysis approach.
These results also functionally showed that the Cxcr2 ligand(s) is
(are) likely present in ventral fin wounds.

Cxcrl and Cxcr2 have redundant roles in wound recruitment.
Previous studies, using a chemical inhibitor of human CXCR2,
did not reveal a role in neutrophil dispersal but rather in
recruitment to wounds3334, We hypothesized that the Cxcrl/
Cxcl8a and the Cxcr2/Cxcl8b signaling pathways might be partly
redundant in recruiting neutrophils to the wound and compen-
sating for each other in cxcr2~/~ zebrafish. To explore this, we
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assessed the behavior of neutrophils in wounds under combina-
torial Cxcrl and Cxcr2 inhibition. Cxcrl and Cxcr2 are adjacently
located on the same chromosome precluding the generation of
double knockout fish by crossing. We thus injected a previously
validated morpholino against Cxcr23¢ into cxcrl~/~ larvae. In
these fish, we detected a marked defect in recruitment compared
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with cxcr1~/~ and wild-type larvae (Supplementary Movie 8 and
Supplementary Fig. 10a, b). The relatively few neutrophils that
were recruited showed no directional bias on speed and markedly
lower speed levels during forward traffic (Supplementary Fig. 10c,
d). To ascertain that the Cxcr2 morpholino did not cause oft-
target effects, we compared its effect in cxcrl=/~ and cxcr2=/~
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Fig. 3 Differential contributions of Cxcrl and Cxcr2 in neutrophil clustering and dispersal. a Confocal projections showing distribution of neutrophils at
wounds of wild-type (WT) Tg(mpx:GFP)14, cxcri="— (cxerT—/Tg(mpx:GFP)M4), or cxcr2=— (cxcr2~—/Tg(mpx:GFP)14) larvae at 2 hpw. CHT: caudal
hematopoietic tissue, VF: ventral fin. Cartoon on the left indicates area imaged. Dashed lines show VF and CHT outlines. Scale bar = 25 um. b Number of
recruited neutrophils at T and 2 hpw, within a square area of 200 x 200 um around the wound. One-way ANOVA with Tukey’s multiple comparisons test.
n=12 (WT), n=17 (cxcrT~/=), and n =11 (cxcr2~/~) larvae. Larvae shown in a are represented with a red dot. ¢ Average neutrophil cluster size per larva.
n=12 (WT), n=17 (cxcrT/=), and n=11 (cxcr2~/~) larvae. Kruskal-Wallis test with Dunn’'s multiple comparisons test. d Cartoon depicting trajectory
parameters measured. The occupied wound area (owa) is the area occupied by the neutrophil cluster. Forward (magenta) and reverse (orange) segments
of cell trajectories are defined as the path of neutrophils prior to entering and after leaving the owa, respectively. d;, shortest distance from owa at time
point t. v;, speed at time point t. 8; = approach angle to owa at time point t. e Neutrophil track straightness within the owa and an area extending 50 um
beyond. n= 680 tracks (WT), n =603 tracks (cxcr7=), and n= 319 tracks (cxcr2~~). Kruskal-Wallis test with Dunn's multiple comparisons test.

f Neutrophil speed in relation to the cosine of the angle 6, within a zone of 0-50 um from the owa are shown. n=131-2423 steps per bin (WT), n=
11-3008 steps per bin (cxcr1™~), n = 88-2823 steps per bin (cxcr2~/~). g Neutrophil speed in relation to distance from the owa. n = 133-1227 cell steps
per bin (WT), n = 231-1436 steps per bin (cxcrl—/—), n = 202-1382 steps per bin (cxcr2~~). h Net reverse traffic. n =12 (WT), n =17 (cxcrl7 =), and n =
1 (cxcr2=/=) larvae. In all panels, data are from the same 12 WT, 17 cxcr7—, and 11 cxcr2~~ larvae from 6, 10, and 8 imaging sessions, respectively. Cells
were analyzed from the start of the movie (15 mpw) up to 2 hpw. Error bars represent S.E.M. across cell steps (f,g) or cell tracks (e) or larvae (b,c,h).

Source data are provided as a Source Data file

larvae. We found that the morpholino reduced the overall accu-
mulation of neutrophils in tail fin wounds in cxcrl~/~ but not in
cxcr2~/~ larvae, confirming the specificity of targeting (Supple-
mentary Fig. 10e, f). These results clarified that both Cxcrl and
Cxcr2 contribute to the forward traffic but these functions are
largely redundant, whereas their respective roles in clustering and
in dispersal are non-redundant.

Receptor mutations alter Cxcrl and Cxcr2 trafficking. We
found that Cxcrl and Cxcr2 have distinct trafficking in neu-
trophils at wound sites despite the likely presence of the corre-
sponding endogenous ligands in this context. This raised the
question whether the receptors have intrinsic differences in
ligand-induced trafficking. To test this, we used mutagenesis of
Cxcrl and Cxcr2. GPCR downregulation is determined by a
cluster of serine residues at the C-terminus of the receptor that
are substrates for GRK phosphorylation and recruit B-arrestins
with high affinity!4-16. We noted that the C-terminus of Cxcrl
carries a higher incidence of adjacently located serine residues in
comparison with Cxcr2 (Fig. 4a). We generated a mutant of
Cxcrl where all the C-terminal serines are replaced with alanines
(Cxcrl-ala; Fig. 4a) and a mutant whereby the Cxcrl C-terminus
is replaced with that of Cxcr2 (Cxcrl-chim) (Fig. 4a). We gen-
erated equivalent constructs for Cxcr2 (Fig. 4a).

We then produced rescue transgenic lines where either a wild-
type Cxcrl-FT (Cxcrl-WT), a Cxcrl-FT-ala (Cxcrl-ala), or a
Cxcrl-FT-chimera (Cxcrl-chim) was expressed in neutrophils of
cxerl™/~ fishor a wild-type Cxcr2-FT (Cxcr2-WT), a Cxcr2-FT-
ala (Cxcr2-ala) or a Cxcr2-FT-chimera (Cxcr2-chim) was
expressed in neutrophils of cxcr2—/~ fish. We retained usage of
the FT cassette, instead of switching to sfGFP single fusion,
despite the limited usage of tagRFP in our analyses. This was to
keep a consistency with the analyses from the Tg(lyz:Cxcrl-FT)
and Tg(lyz:Cxcr2-FT) zebrafish, and to facilitate screening of
transgenic embryos and cell tracking based on the brighter signal
of tagRFP.

As anticipated, the Cxcrl-ala mutant receptor showed
membranous distribution in neutrophils at wounds, consistent
with an inability to desensitize (Fig. 4b, ¢ and Supplementary
Movie 9). The chimeric mutant receptor (Cxcrl-chim) was also
sustained at the neutrophil cell membrane, indicating that plasma
membrane sustenance of Cxcr2 was transferable to Cxcrl
through its C-terminus (Fig. 4b, ¢ and Supplementary Movie 9).
The Cxcr2-ala mutant receptor showed membranous distribu-
tion, whereas the Cxcr2-chim was markedly internalized in
neutrophils at wound sites (Fig. 4b, ¢ and Supplementary
Movie 10). This indicated that the relatively low extent of

internalization of Cxcr2 at wounds compared with Cxcrl was due
to the lack of appropriate motifs in the cytoplasmic tail of the
receptor. To confirm that Cxcr2-chim internalization is Cxcl8b-
dependent at wounds, we used Cxcl8b morpholino treatment.
Cxcl8b morphants showed reduced internalization in comparison
with non-treated Cxcr2-chim neutrophils, consistent with the
ligand preference of this receptor (Supplementary Fig. 11 and
Supplementary Movie 11). To further confirm that Cxcr2-chim
recognizes Cxcl8b, we expressed the receptor in early gastrulating
embryos with or without Cxcl8b (Supplementary Fig. 11). Cxcr2-
chim showed significant internalization in response to Cxcl8b but
not in response to Cxcl8a (Supplementary Fig. 12). These results
confirmed that Cxcr2-chim recognizes the same ligand as Cxcr2.
We were not able to reconstitute expression of the chimeric
receptors in HEK293T cells to compare the trafficking pattern of
Cxcr2-chim with Cxcr2-WT. However, altogether, the evidence
from neutrophils suggested that Cxcr2-chim has enhanced
downregulation in response to Cxcl8b in wounds in comparison
with Cxcr2-WT.

Dispersal requires Cxcr2 sustenance at the plasma membrane.
The above findings indicated that Cxcrl and Cxcr2 have distinct
trafficking responses to their corresponding ligands at wounds.
To causally link receptor trafficking with the distinct functions of
the receptors in neutrophil migration behavior, we tracked neu-
trophil behavior in the receptor rescue lines. We first analyzed
neutrophil behavior in ventral fin wounds in the Cxcr2 rescue
lines (Fig. 5a). Interestingly, all Cxcr2 receptor constructs (WT,
Cxcr2-ala and Cxcr2-chim) rescued the slow forward motility
defect of cxcr2~/~ neutrophils (Fig. 5b). Both Cxcr2-WT and
Cxcr2-ala also rescued the dispersal defect of the cxcr2=/~ neu-
trophils (Fig. 5c and Supplementary Movie 12). However, the
Cxcr2-chim receptor was unable to rescue the dispersal defect
(Fig. 5¢ and Supplementary Movie 12). This demonstrated that
sustained residence at the plasma membrane is specifically
required for reverse migration but not for forward migration.

Receptor internalization limits neutrophil motion at wounds.
The analysis of Cxcr2 receptor mutants raised the question how
receptor plasma membrane sustenance supports dispersal from
the target site. To this end, we assessed the functional impact of
Cxcrl mutations that render the receptor resistant to inter-
nalization (Cxcrl-ala and Cxcrl-chim). Both these receptor
mutants showed a gain of Cxcrl plasma membrane sustenance.
Thus, any shared gain of functions on cell migration behavior
would point to the functional importance of plasma membrane
sustenance.
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Fig. 4 Receptor mutagenesis alters Cxcr1 and Cxcr2 trafficking. a Mutagenesis of Cxcrl. Amino acid sequence of the C-terminus is shown with candidate
phosphorylation targets (serines) or transplanted sequences highlighted in red. b Neutrophils in cxcrT—/cxcr2~/~ larvae rescued by transgenic
neutrophil-specific expression of Cxcr1-FT/Cxcr2-FT, Cxcrl-ala-FT/Cxcr2-ala-FT, or Cxcrl-chim-FT/Cxcr2-chim-FT receptors. Arrows point to neutrophils
at the center of the wound, with representative distribution of the receptor. Scale bar =15 um. ¢ Quantification of contrast in cxerl=/= or cxerl=/+
neutrophils rescued by the different Cxcrl1-FT receptor variants. n = 23 cells (WT) from 7 larvae, n = 26 cells (ala) from 6 larvae, n =19 cells (chim) from 5
larvae. Data were acquired in 2 to 4 imaging sessions. Kruskal-Wallis test with Dunn’s multiple comparisons test. d Quantification of contrast in cxcr2—/~
neutrophils rescued by the different Cxcr1-FT receptor variants. n = 33 cells (WT) from 5 larvae, n =18 cells (ala) from 5 larvae, n = 33 cells (chim) from 8
larvae. Data are from independent larvae in 3 to 5 imaging sessions. Kruskal-Wallis test with Dunn's multiple comparisons test. Error bars represent S.E.M.

across cells. Source data are provided as a Source Data file

We visualized neutrophil migration behavior at wound sites in
rescue lines of Cxcrl-WT, Cxcrl-ala, and Cxcrl-chim expressed
in a cxcrl~/~ background. The Cxcrl-WT receptor rescued the
clustering of cxcr1~/~ neutrophils and the modest differences in
speed observed in this mutant with respect to wild-type
neutrophils (Supplementary Movie 13 and Supplementary
Fig. 13). Cxcrl-ala-expressing neutrophils showed markedly
enhanced clustering compared with Cxcrl-WT neutrophils,
whereas Cxcrl-chim-expressing neutrophils formed clusters of
comparable size to Cxcrl-WT-expressing neutrophils. Despite

these differences, the Cxcrl-ala and Cxcrl-chim shared a gain of
function in speed of motion, both inside the owa (Fig. 6¢) as well
as throughout their forward migration to the owa (Fig. 6d, e).
This indicated that plasma membrane sustenance sustains
motility input in vivo. In addition, these results indicated that
the enhanced clustering of Cxcrl-ala-expressing mutants was not
due to enhanced stopping at the owa but to a gain of
unidirectional, focalized motion pattern that favored congrega-
tion (see also Supplementary Movie 13). By contrast, the Cxcrl-
chim-expressing mutant neutrophils showed a gain of exploratory
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Fig. 5 Plasma membrane sustenance of Cxcr2 is required for neutrophil dispersal. a Confocal projections of neutrophil distribution in Tg(lyz:Cxcr2-WT-
FT)/cxcr2~~ larvae, Tg(lyz:Cxcr2-ala-FT)/cxcr2~/~, and Tg(lyz:Cxcr2-chim-FT)/cxcr2~/~ at ~2 hpw. Dashed line indicates occupied wound area (owa).
CHT: caudal hematopoietic tissue, VF: ventral fin, W: wound. Scale bar = 32 um. b Neutrophil speed in relation to distance from the owa. Average speeds
per cell per distance bin are shown. n=558-2651 steps per bin (WT), n=95-1266 steps per bin (ala), n=494-2000 steps per bin (chim), and n=

1168-2823 steps per bin for (cxcr2=7=). ¢ Net reverse traffic. n=6 (WT), n=9 (ala), n= 8 (chim), n =11 (—; cxcr2~/~) larvae. Kruskal-Wallis test with
Dunn's multiple comparisons test. In b and ¢, data are from 6 (WT), 9 (ala), 8 (chim), and 11 (—; cxcr2~~) larvae from 3, 4, 3, and 8 imaging sessions,
respectively. Cells were analyzed from the start of the movie (~15 mpw) up to 2 hpw. Error bars represent S.E.M. across cell steps (b) or larvae (c). Source

data are provided as a Source Data file

motion (Supplementary Movie 13), which was less directionally
biased (Fig. 6e) and which resulted in enhanced dispersal (Fig. 6f)
with respect to Cxcrl-WT-expressing neutrophils.

Altogether, this evidence revealed the role of receptor
sustenance in sustaining neutrophil motility in vivo.

Distinct temporal signaling profiles of Cxcrl and Cxcr2. The
differences in motion pattern observed between Cxcrl-ala and
Cxcrl-chim suggested that plasma membrane sustenance is not
the only determinant in Cxcr2-mediated dispersal and other
signaling factors, linked to the C-terminus of Cxcr2, must be
involved in interpreting the external gradient into bidirectional
motion. To obtain insight into signal processing differences, we
switched to reductionist DMR studies in HEK293T cells. We
explored possible differences in temporal signal processing and
how these may depend on the phosphorylation status of the
receptor. Cxcrl and Cxcr2 showed temporal signaling profiles
consistent with their differential trafficking. Cxcrl showed a
prominent signaling response upon first exposure to the ligand
(Cxcl8a), followed by slow decay and an attenuated response to
secondary exposure (Supplementary Fig. 14a). By contrast,
Cxcr2 showed a rapid signal decay after stimulation (by Cxcl8b)
and an ability to be re-stimulated to maximal levels upon sec-
ondary exposure (Supplementary Fig. 14a). Both Cxcrl-ala and

the Cxcr2-ala mutants showed more sustained responses after
the first stimulation, consistent with the plasma membrane
sustenance of both these receptors (Supplementary Fig. 14a, b).
However, Cxcr2-ala retained a trend for a more discrete
and potent response upon second stimulation, which was not
seen in the Cxcrl-ala receptor. This suggested additional
phosphorylation-independent differences in temporal signal
processing. We explored whether such differences might stem
from differential Ga protein coupling preferences for Cxcrl and
Cxcr2. Mammalian neutrophil chemoattractant receptors can
couple to Gi or Gq subunits®. We therefore tested receptor
coupling to these subunits using well-defined pharmacological
treatments. Cxcrl and Cxcr2 showed comparable coupling to
Gi and Ggq, as their DMR ligand-induced responses could be
suppressed by the corresponding inhibitors (pertussis toxin
(PTX) and FR9003590) (Supplementary Fig. 15a, b). These
coupling profiles were not changed by the addition of fluor-
escent protein fusions or the alanine mutations (Supplementary
Fig. 15¢, d). Thus, the phosphorylation-independent differences
in temporal signal processing are unlikely to arise from dif-
ferential Ga -coupling profiles.

Altogether, this evidence provided a framework to interpret the
different neutrophil motion patterns induced by Cxcrl-chim and
Cxcrl-ala in vivo. Cxcrl-chim can be inferred to have the
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Fig. 6 Receptor internalization limits neutrophil motion at wounds. a Confocal projections of neutrophil distribution in Tg(lyz:Cxcr1-WT-FT)/cxcr7/~ larvae
(WT), Tg(lyz:Cxcrl-ala-FT)/cxcr1~— (ala), Tgllyz:Cxcrl-chim-FT)/cxcri=/—(chim) at ~2 hpw. Dashed line indicates occupied wound area (owa). CHT:
caudal hematopoietic tissue, VF: ventral fin, W: wound. Scale bar =32 um. b Quantification of neutrophil cluster size, n=8 (WT), n=6 (ala), and n=
4 (chim) larvae from 3 imaging sessions per condition. One-way ANOVA test with Tukey’s multiple comparisons test. € Quantification of speed within the
owa. n=9 (WT), n=6 (ala), and n=7 (chim) larvae. One-way ANOVA test with Tukey’s multiple comparisons test. d Neutrophil speed in relation to
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signaling pattern of Cxcr2-WT, with interruptions between
signaling rounds, and this intermittent profile correlates with a
bidirectional motion that favors dispersal (Fig. 6g). By contrast,
the Cxcrl-ala mutations, cause continuous signaling at nearly
maximal levels and this profile correlates with unidirectional/
focalized motion that supports clustering (Fig. 6g).

Discussion

Immune cells utilize multiple chemoattractant receptors to guide
themselves to inflammatory sites. How these cells coordinate
signal inputs to generate complex migration patterns in vivo has
remained a challenge to understand. Here we elucidate how two
chemokine receptors fine-tune neutrophil clustering and dispersal
at sites of tissue damage (Fig. 7). Cxcrl promotes clustering of
zebrafish neutrophils, whereas Cxcr2 promotes dispersal. These
functional contributions arise, in large part, from the distinct sub-
cellular trafficking of the two receptors in response to their cor-
responding ligands in situ. Cxcrl is downregulated from the
plasma membrane in the neutrophils as they cluster at wound
sites, leading to a loss of input from this receptor and transition to
Cxcr2 signaling. The latter receptor promotes bidirectional
motion and is sustained at the plasma membrane. This ensures
long-lived chemokinesis, dispersal, and resolution (Fig. 7). Our
findings have general implications, as human chemoattractant
receptors also exhibit differential ligand-induced trafficking
in vitro?44! and the implications of this on immune responses
remain elusive.

We used biosensors and quantitative analyses to describe the
dynamics of chemokine receptors in live neutrophils in vivo. We
found that the constitutive turnover of chemokine receptors is
rapid in neutrophils in comparison with other cell types (our
paper and ref. 27). Thus, fluorescent sensors with a long
maturation time may not be suitable to capture receptor
dynamics in this cell type. The origin of such cell-type-based
differences is unclear, as the constitutive trafficking of chemokine
receptors is less characterized than ligand-induced trafficking. In
other GPCRs, constitutive internalization depends on receptor
motifs and endocytic pathways distinct from those driving
agonist-dependent internalization*2. Developmental differences
in these pathways between neutrophils and other cells may exist
and this could have implications in signaling. For example, a high
constitutive turnover of chemokine receptors might somewhat
resist ligand-induced downregulation, increasing the dynamic
range of signaling without compromising sensitivity to ligand.
This may reflect an evolutionary adaptation to cope with a large
range of signal inputs. Internalization of Cxcr1 reported signaling
gradients of a range of 200 um, a somewhat longer range than the
reported ectopic Cxcl8a gradients3” in zebrafish and endogenous
CCL21 chemokine gradients in mice?343. This could reflect dif-
ferences in ligand distribution in the different settings and/or a
higher sensitivity of the readout used here for chemokine levels.
The internalization of Cxcrl upon mobilization of neutrophils
from the CHT is consistent with the reported roles of inflam-
matory chemokines in mobilizing neutrophils from hemato-
poietic sites343644,

We characterized the in vivo trafficking patterns and the ligand
preferences of Cxcrl and Cxcr2. We dissected the implications of
receptor trafficking from ligand aspects through our receptor
mutagenesis approach. Our functional data conclude on a model
whereby Cxcrl is downregulated in response to Cxcl8a at the
wound, whereas Cxcr2 is relatively sustained in response to
Cxcl8b likely through a difference in recycling potency. Our
findings do not exclude the contribution of other ligands but do
clarify that Cxcrl and Cxcr2 have different agonist preferences.
This leads to reinterpretation of previous studies showing that

neutrophil responses to Cxcl8a are Cxcr2-dependent in vivo3°.
We confirmed this dependency here, but our evidence suggests
that this does not arise from a direct ligand/receptor interaction.
Possible mechanisms include formation of a high affinity Cxcr1/2
heterodimer and modulation of Cxcrl expression and/or function
by Cxcr2. On the contrary, the reported role of Cxcr2/Cxcl8b in
neutrophil mobilization into the blood stream33-34 likely reflects a
direct ligand-receptor interaction. Previous studies reported a
mild defect for cxcl8a—/— neutrophils in dispersalll, which had
also alluded to a direct ligand-receptor interaction for Cxcl8a/
Cxcr2. In light of our findings, a possible reinterpretation of this
phenotype could be that genetic elimination of Cxcl8a affects
Cxcr2/Cxcl8b functionality/expression. It is noteworthy that
neither Cxcl8a or Cxcl8b morpholino-mediated knockdown
showed a dispersal phenotype in two independent studies3334.
This is consistent with the idea that both Cxcl8a/Cxcrl and
Cxcl8b/Cxcr2 axes are involved in forward traffic, and that
compensatory effects may be occuring under genetic elimination
experiments, but not under knockdown conditions, which may be
important for manifestation of dispersal phenotypes.

We elucidated the role of chemokine receptor trafficking on
neutrophil migration behavior at inflammatory sites. We show
that plasma membrane sustenance of Cxcr2 is important for
Cxcr2-mediated dispersal from the wound, as this allows pro-
longed bidirectional motility on site. This is an important
mechanistic insight of broad relevance, as previously it remained
unknown why certain receptors can support dispersal/reverse
migration and others cannot. Our evidence further suggests that
the route via which the receptor is sustained has implications in
gradient interpretation. The rapid signal input decay after
Cxcr2 stimulation suggests rapid phosphorylation, whereas its full
restimulation potency is consistent with recycling. The localiza-
tion of internalized Cxcr2 close to the plasma membrane is also
consistent with a capacity for rapid re-stimulation. This inter-
mittent signaling profile may explain the bidirectional motion
pattern elicited by the Cxcr2 and Cxcrl-chim receptors, as this
would allow neutrophils to be sequentially stimulated in different
parts of the cell, supporting re-polarization and directional
changes. Conversely, continuous signaling with little decay
between stimulation rounds would not favor bidirectional motion
and this is indeed the case for the Cxcr1-ala mutant, which causes
focalized motility. It remains unclear why the Cxcr2-ala mutant
nevertheless rescued the dispersal defect of cxcr2-null mutants.
Our evidence indicates that this receptor retains an ability to
discriminate sequential signal inputs despite having lost GRK
phosphorylation sites, which may suggest receptor-intrinsic fac-
tors. Alternatively, the different phenotypes of Cxcrl-ala and
Cxcr2-ala neutrophils could reflect differences in the concentra-
tion or presentation of the corresponding ligands in vivo. Further
studies could explore these unknown determinants of bidirec-
tional motion.

The mechanisms we describe have general relevance in
understanding mammalian immune cell trafficking in vivo.
Reverse migration has sparked interest since its discovery in
zebrafish® and mice”® due to its implications in resolution of
inflammation. Uncovering related mechanisms is envisaged as a
potential route for targeting neutrophil inflammation without
compromising host defense. Our study shows that neutrophil
dispersal post arrival at injury sites requires receptors that can
persist at the plasma membrane in the presence of ligand and
thereby sustain chemokinesis in the tissue. This is useful in
identifying receptors that might execute similar functions in
mammals and highlights a possible avenue to manipulate rIM
through modulation of receptor trafficking. We consider this
insight particularly important, as the functional correspondence
of receptors that mediate rIM may not be as translatable from
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Fig. 7 Model for coordination of neutrophil clustering and dispersal through chemokine receptor trafficking. (Top) Cxcr1/Cxcl8a and Cxcr2/Cxcl8b can
partly compensate for each other during initial chemotaxis to the wounded tissue. However, Cxcr1 specifically promotes clustering and this contribution is
limited by desensitization and downregulation. Conversely, Cxcr2 is recycled after internalization and promotes persistent bidirectional motility in the
wounded tissue through sustained, intermittent signaling. This facilitates dispersal from the site. Bottom left: in the absence of Cxcrl, neutrophils are
recruited, through Cxcr2/Cxcl8b and other endogenous signals, but show a loss in clustering. Bottom right: in the absence of Cxcr2, neutrophils are
recruited, through Cxcr1/Cxcl8a and other endogenous signals. Once at the target, Cxcrl1 is maximally downregulated and neutrophils lack signal input for

motility, leading to a defect in dispersal

zebrafish to mammals based on orthology, as much as based on
receptor biochemistry. For example, our study would suggest
mammalian CXCR1 as a better candidate than CXCR2 for
functions analogous to zebrafish Cxcr2, as the former is more
resistant to internalization than the latter?%. Beyond chemokines,
various chemoattractant receptors are sustained at the plasma
membrane, among which the human BLT1 receptor for the
attractant LTB4%!, which, interestingly, has been implicated in
rTEM in a pathological mouse model of chronic injury®. Beyond
neutrophils, sustained chemokinesis is important for random
motility of mouse T cells within lymph nodes and initiation of
adaptive immune responses®>. It would be interesting to explore
the role of chemokine receptor trafficking in the longevity of
chemokinesis in this context, as one of the relevant chemokines
(CCL21) does not trigger receptor (CCR7) downregulation4047,
Thus, our findings in zebrafish could be extended to various
physiological and pathological settings.

In conclusion, we reveal a molecular mechanism that enables
appropriate transition from neutrophil congregation to reverse
migration and resolution. Similar mechanisms may regulate the
migration behavior of other cells, given the broad representation
of GPCRs as chemoattractant receptors.

Methods

General zebrafish procedures. Zebrafish were maintained in accordance with UK
Home Office regulations, UK Animals (Scientific Procedures) Act 1986. At the
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Wellcome Sanger Institute, zebrafish were maintained under project licence 70/
7606, which was reviewed by the Wellcome Trust Sanger Institute Ethical Review
Committee. At the University of Cambridge (Department of Physiology, Devel-
opment, and Neuroscience) zebrafish were maintained under project licence 70/
8255, which was reviewed by the University Biomedical Services Committee.
Animals were maintained according to ARRIVE guidelines. Zebrafish were bred
and maintained under standard conditions at 28.5 + 0.5 °C on a 14 h light:10 h dark
cycle. Embryos were collected from natural spawnings at 4-5h post fertilization
(hpf) and thereafter kept in a temperature-controlled incubator at 28 °C. Embryos
were grown at 28 °C in E3 medium, bleached as described in the Zebrafish Book?s,
and then kept in E3 medium supplemented with 0.3 ug/ml of methylene blue and
0.003% 1-phenyl-2-thiourea (Sigma-Aldrich) to prevent melanin synthesis. For live
imaging of neutrophils expressing fluorescent receptors, methylene blue was
omitted from E3 medium to minimize tissue autofluorescence. All embryos were
used between 2.5 and 3.5 dpf, thus before the onset of independent feeding.

DNA constructs. Complementary DNA for zebrafish Cxcrl (Entrez ID: 797181;
Ensembl gene: ENSDARG00000052088) was obtained by PCR from a zebrafish
neutrophil cDNA library. cDNA for zebrafish Cxcr2 (Entrez ID: 796724; Ensembl
gene: ENSDARG00000054975) was obtained by PCR from total larval cDNA
library. Cxcrl and Cxcr2 cDNA was fused to a fluorescent timer cassette and
cloned into a pCS2* vector for mRNA production or a Tol2 backbone vector
carrying a Lysozyme C promoter (Tol2-lyz vector), using KpnI-Mfel sites>C.
Similarly, mCFP was amplified by PCR from the Clontech vector p-ECFP-Mem
(catalog number: 6918-1) and cloned into the Tol2-lyz vector using KpnI-Mfel
sites. pCMV-Cxcl8a-mCherry was cloned previously by overlapping PCR3®. Cxcrl-
ala-FT mutant and Cxcrl-chim-FT mutant receptors were generated by over-
lapping PCR. Overlapping primers used for Cxcrl-ala-FT mutant: Fw: 5'-CGC
AGAGGTCCCTGCGGCGTTTCTGGACCCAGCTTTCTTGTACAAAGTGG-3’
and Rv: 5'-CAGAAACGCCGCAGGGACCTCTGCGGTCAGAGCAGCTGC
CTTGGCGGCTTTAGCAAGCGCGAACCGCTCCAGAACTCCCTT-3".
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Overlapping primers used for Cxcrl-chim-FT mutant: Fw: 5'-CGTCGGAGAGAA
GTTCAGACGGAGGCGTAACCAGTTGCTGATTTCTCTC-3’ and Rv: 5'-GAG
AGAAATCAGCAACTGGTTACGCCTCCGTCTGAACTTCTCTCC-3". Over-
lapping primers used for Cxcr2-chim-FT mutant: Fw: 5'-CCATCCTGTACGCCT
TCATCGGGAAGAAATTTTTTCTGCAGTTGCTCCACAGGAAGGGAG-3' and
Rv: 5'-CTCCCTTCCTGTGGAGCAACTGCAGAAAAAATTTCTTCCCGATGA
AGGCGTACAGGATGG-3'. The Cxcr2-ala mutant was made by synthesis of the
segment carrying the mutations (Genewiz) and this segment was cloned into the
pCS2+-Cxcr2-FT construct using Nhel and Bsu361, and further subcloned into the
Tol2-lyz vector using Kpn-Bsu36I. Some of the mutant constructs were cloned into
pCS27 vector for mRNA production and all mutant constructs were cloned into
the Tol2-Lyz backbone vector for transgenesis. cONA with the coding sequence for
Cxcl8b (NM001327985/XM_003198892) was synthesized by Genewiz and cloned
into pCS2™ using EcoRI/Xhol sites. This was used for in vitro transcription and
HEK293T transfections. A pCS2+ plasmid containing Cxcl8a cDNA
(XM_001342570)3° was used for in vitro transcription and a pCMV vector con-
taining a C-terminal, His-tagged version of Cxcl8a3 was used for transfection of
HEK29T cells.

Chemokine receptor internalization assays in early embryos. For mRNA
production, the pCS2+ plasmids containing the Cxcrl-FT, Cxcr2-FT, Cxcr2-chim-
FT, Cxcl8a, and Cxcl8b constructs were linearized and transcribed with an
mMessage mMachine SP6 kit (Ambion) followed by polyA addition (Ambion).
mCFP template for in vitro transcription was prepared from a Clontech Plasmid
containing the cDNA for mCFP (p-ECFP-mem; Catalog #6918-1) and the fol-
lowing primers: Fw: 5'-GGGGATTTAGGTGACACTATAGAAGCCGCCACCAT
GCTGTGCTGTATGAGA AGAAC-3’, Rv: 5-TCGCGGCCGCTTTACTTGTA
CAGCTCGTC-3'. One hundred picograms of Cxcr1/2-FT, mCFP, or Cxcr2-chim-
FT, were injected into the cell body of one-cell stage embryos along with 100 pg
mECFP mRNA. In some cases, 150 pg Cxcl8a or Cxcl8b mRNA was co-injected.
Injected embryos were stored in Petri dishes at 28 °C and imaged at about 8 hpf.
For imaging, embryos were de-chorionated using forceps and mounted on glass-
bottomed microwell dishes (MatTek) in 0.8% low-melting point agarose covered
with 2 ml E3. Embryos were imaged on an inverted Olympus Fluoview FV1000
or Leica SP8 confocal microscope and z-stacks were acquired using a x40/1.25
numerical aperture (NA) silicon objective (Olympus) and x40/1.3 NA oil objective
(Leica). The mCFP, sfGFP, and tagRFP were visualized with 440, 488, and 559 nm
excitation wavelengths, respectively, for the Olympus scope and with 405, 488, and
552 nm, respectively, on the Leica scope.

Internalization of receptors in gastrulating embryos was quantified in Fiji. For
analysis, a binary membrane mask was made using the cyan channel of the mCFP
control by thresholding. This mask was then applied to all three channels (sfGFP,
tagRFP, and memECFP) using the image calculator. Ratios of masked images were
normalized to the corresponding ratios of the unmasked images. This normalized
variation in expression levels across different embryos and allowed pooling of
ratios from different samples. The same approach was tested on neutrophils in
Supplementary Fig. le, f.

Generation of Cxcr1/2-FT transgenic lines. Solution (1 nl) containing 12.5 ng/ul
Tol2 DNA construct and 17.5 ng/ul transposase mRNA (1 nl of 17.5 ng/ul) were
injected into the cell body of one-cell stage embryos (either in wild-type AB
embryos or cxcr2~/~/cxcrl =/~ embryos for the rescue lines). Transposase mRNA
was synthesized from pCS2-TP*® by in vitro transcription mMessage mMachine
SP6 kit Ambion). Injected embryos were stored at 28 °C until 5 dpf and thereafter
were raised in the fish nursery according to standard rearing protocols. At

3 months old, FO fish were outcrossed to a wild-type (TL) line to screen for
germline transgenesis. F1 offspring were kept as separate sub-strains due to dif-
ferences in expression of the transgenic cassette used. F1 to F3 embryos were used
for live imaging.

Generation and screening of cxcrT and cxcr2 knockout lines. The mutant alleles
cxer15014414 (cxcr] is otherwise annotated as si:ch73-54b5.2) and cxcr25a6118
(hereafter referred to as cxcr2~/~) were generated in the Zebrafish Mutation
Project® and subsequently maintained at the Wellcome Trust Sanger Institute
through natural matings and in vitro fertilization using frozen sperm as previously
described®!. Heterozygous cxcr1s4414 (cxcr1/~) and cxcr2596118 (cxcr2t/—)
embryos were transferred to University of Cambridge (PDN) for further screening
and maintenance. For genotyping, cxcr15#14414 and cxcr2:6118 fish were anesthe-
tized in fish water containing 200 pug/ml tricaine and tissue samples were obtained
via fin clipping. DNA was extracted using a ThermoScientific Phire Tissue Direct
PCR Master Mix or through the protocol described by ref. 0. Fish were genotyped
using KASP-genotyping chemistry®!, using two allele-specific primers and a
common reverse primer synthesized by LGC. For cxcr1514414, primers were as
follows: primer_alleleFAM: 5'-AGTGAGAGCACTAAACCCAAAACC-3/, pri-
mer_alleleHEX: 5'-CAGTGAGAGCACTAAACCCAAAACT-3’, primer_common:
5'-GTGGAGTCGCKTGCGGATTAGTTT-3'". For cxcr25?6118 primers were as
follows: primer_alleleFAM: 5 -ATCTGATTGGGTTTGTGTGTGCGTT-3', pri-
mer_alleleHEX: 5'-ATCTGATTGGGTTTGTGTGTGCGTA-3', primer_common:
5-GGTGCACCATAACCGGAAGAGATAA-3". KASP genotyping assays were

conducted according to the manufacturer’s instructions (https://www.lgcgroup.
com/products/kasp-genotyping-chemistry/#. W036CxjMzXQ). Briefly, 100 ng
samples of extracted DNA were loaded onto a 384-well PCR plate and left to dry
overnight. KASP assays were assembled as follows: 2.5 ul, 0.07 ul primer mix, and
2.43 pl water. Plates were read on a Roche LC480 LightCycler VII and genotypes
were assigned to samples using cluster analysis®!. Fish screened positive for the
desired mutation were outcrossed to a Tg(mpx:GFP)!114 transgenic line®2, to
visualize neutrophils during microscopy. Outcrosses were repeated to progressively
remove additional mutations carried by the cxcr15#14414 and cxcr2:#6118 fish. Rescue
zebrafish lines were generated using homozygous cxcr1814414 (cxcr1—/—) screened
negative for other mutations identified in the founder fish during the Zebrafish
Mutation Project.

Fin wounds. Wild-type (Tg(mpx:GFP)11452, cxcr1—/= or cxcr2~/~ larvae and the
various rescue lines were anesthetized with 200 pg/ml tricaine (MS222) at 3 dpf and
wounded in the ventral fin or tail fin using a sterile surgical scalpel blade (Swann-
Morton, 23). A previously validated morpholino targeting the ATG region of cxcr2
(5'-ACTCTGTAGTAGCAGTTTCCATGTT-3’) was injected into the yolk of
cxcrl~/~ embryos (3 nl of 100 uM solution). In some cases, 30 nM of LTB4
(Sigma) was added in E3 for 30 min, transferred to E3 medium (+tricaine),

and wounded using a sterile blade as previously described.

Neutrophil uptake of Cxcl8a. HEK293T cells were cultured in Dulbecco’s mod-
ified Eagle’s medium (DMEM) (Invitrogen) containing 10% fetal bovine serum
(Gibco ThermoFisher Scientific) and 1% Penicillin/Streptomycin (Sigma). HEK293
cells were transfected with Cxcl8-mcherry using Lipofectamine 2000 (Invitrogen).
Transfected cells were incubated at 37 °C (with 5% CO,) overnight, collected the
following morning, and resuspended in DPBS (Invitrogen) at a density of 30 x 106/
ml. Cells were transplanted above the yolk as previously described®’ into 48hpf Tg
(mpx:GFP)/wild type or Tg(mpx:GFP)/cxcrl~/~. Transplanted larvae were incu-
bated in E3 medium containing PTU (1-phenyl-2-thiouria) at 34 °C overnight.
Eighteen to 24 h post transplantation, larvae were used for imaging (see “live
imaging” section) and temperature was maintained at 32-35 °C using a built heated
chamber (for the upright scope) or a heated stage (for the inverted scope).

Chemokine expression analysis and knockdown. Morpholino oligonucleotides
(Gene Tools) were injected in the yolk of one-cell-stage embryos. A cxcl8a splice-
blocking morpholino 5-ATTTATGCTTACTTGACAATGATC-3' (12 ng) was
used in combination with a cxcl8a translation-blocking morpholino 5'-TTTGCTG
GTCATTTTGCCTAAGTGA-3' (9 ng)*. A cxcl8b splice-blocking morpholino was
used alone 5-TTAGTATCTGCTTACCCTCATTGGC-3" (4 ng)?3. For genotyping
the splice-blocking morpholinos, RNA was prepared from pools of ten injected or
non-injected 3 dpf larvae using the RNeasy Mini Kit (Qiagen). cDNA was prepared
using M-MLV reverse transcriptase (Invitrogen) and used for RT-PCR. The
following primers were used: cxcl8a forward: 5'-GCCACCTTGATGACAACT
GGA-3', cxcl8a reverse: 5'-TGTCTGACGTATGAACATCATCAAAC-3'; cxcl8b
forward: 5'-GATGAAGTTGAGCGTTTCAGCC-3', cxcl8b reverse: 5'-GAAAT
CACCCACGTCTCGGTAG-3'. The following primers were used for the house-
keeping gene: efla forward: 5'-GCTGATCGTTGGAGTCA

ACA-3/, efla reverse: 5'-ACAGACTTGACCTCAGTGGT-3'. For comparison of
cxcl8a and cxcl8b expression levels in wounded vs. unwounded larvae, 3 dpf larvae
were wounded in the ventral fin and RNA was extracted from pools of ten larvae at
30 mpw, 1.5 hpw and 2 hpw. The following primers were used for RT-PCR: cxcl8a
forward: 5'-ATGAGCTTGAGAGGTCTGGC-3', cxcl8a reverse: 5'-GTGATCCGG
GCATTCATGG-3' (for cxcl8b, the same primers as for morphotyping were used).

In vitro chemotaxis assays. Transwell chemotaxis assays were performed as
previously described>”. Briefly, whole kidney marrow was extracted from Tg(mpx:
GFP), Tg(mpx:GFP)/cxcrl~/=, or Tg(mpx:GFP)/cxcr2~/~. Single-cell suspensions
were made and cells were placed at a density of 100,000 cells/well in the top
chamber of a 96-well HTS Transwell system with 3 um pore-size polycarbonate
membrane filters (Corning). Recombinant Cxcl8a was added to the bottom wells at
the indicated concentrations. After incubation for 3 h at 28 °C, cells in the bottom
chamber were collected and the number of GFP™ cells was assessed by
fluorescence-activated cell sorting (FACS) analysis (FACScan, BD) on a Cytek
DxP8. A 20 mW 488 nm laser was used to excite GFP and a 530/30 bandpass filter
for detection. Cells and beads were acquired using a 530/30-H vs. SSC-H and at
least 5000 events were recorded per sample. The analysis was done on FlowJo
10.4.1.The results were normalized to Calibrite beads (BD), which had been added
to each cell sample just before collection, to ensure independence from volume and
FACS fluctuations.

Live imaging of zebrafish neutrophils. Fish larvae were mounted immediately
after wounding (or 18-24 h post transplantation) onto a glass-bottom plate in 1%
low-melting agarose (Invitrogen) or a custom-built coverslip chamber (for when
using an upright scope). Agarose-embedded embryos were covered with 2 ml E3
medium (supplemented with tricaine) and imaged either on (i) an inverted Per-
kinElmer UltraVIEW ERS, Olympus IX81 spinning disk confocal microscope with
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a x20/0.45 NA air objective (Olympus) or x30/1.05 NA silicon (Olympus), or x40/
1.25 NA silicon objective (Olympus) and 405 nm for CFP excitation, 488 nm for
GFP excitation, and 561 for tagRFP or mCherry, or (ii) on an upright Nikon E1000
microscope coupled to a Yokogawa CSU10 spinning disc confocal scanner unit
with a x20/0.75 NA air objective (Nikon) or x10/0.5 NA air objective (Nikon) and
illuminated using a Spectral Applied Research LMMS5 laser module (491 nm for
GFP excitation; 561 nm for Ruby or TagRFP or mCherry). Confocal stacks using a
2 pum z-spacing were acquired every 30s.

Sudan black staining. Tg(mpx:GFP)/wildtype, Tg(mpx:GFP)/cxcr1~/~, and Tg
(mpx::GFP)/cxcr2~/— 3 dpf larvae were wounded in the ventral fin with a scalpel
blade and fixed 20-24 h later in 1 ml of 4% ethanol-free formaldehyde (Thermo-
Scientific) in phosphate-buffered saline (PBS; Sigma-Aldrich) overnight at 4 °C
with agitation. Fixed larvae were rinsed in PBT (PBS with 0.1% Tween-20; Sigma-
Aldrich) twice for 5 min and incubated in 1 ml Sudan Black (Sigma-Aldrich) for 15
min. Following staining, larvae were washed in 70% ethanol for several hours and
passaged into 30% ethanol overnight at 4 °C with agitation. Larvae were washed in
PBT for ten minutes, passaged into increasing concentrations of glycerol and stored
in 80% glycerol at 4 °C.

Cell culture. Tissue culture media, reagents, and PTX were purchased from
ThermoFisher Scientific (Karlsruhe, Germany). Recombinant Cxcl8a was produced
by Proteintech using a bacterial expression system (Manchester, UK). The produce
sequence contained two additional N-terminal amino acids and a C-terminal His-
tag (sequence produced: (MGMSLRGLAVDPRCRCIETESRRIGKHIKSVELFP
PSPHCKDLEITATLMTTGQEICLDPSAPW VKKIIDRIIVNRKPLEHHHHHH).
The FR900359 used in all experiments was isolated from the dried leaves of Ardisia
crenata as previously described?’. Cells were cultured at 37 °C in a humidified
atmosphere of 95% air and 5% CO,. HEK293T cells were obtained from the
American Type Culture Collection and parental HEK293 were from ThermoFisher
Scientific (Karlsruhe, Germany). HEK293T and parental HEK293 were cultivated
in DMEM supplemented with 10% (v/v) fetal calf serum (FCS), the antibiotics
penicillin (100 U/ml) and streptomycin (100 pg/ml). Cell lines expressing zebrafish
Cxcrl and Cxcr2 receptors were generated by stable transfection of parental
HEK293 and subsequent selection with G418 (500 ug/ml, InvivoGen, Toulouse,
France). For preparation of Cxcl8a/Cxcl8b supernatant, HEK293T cells were
transfected with the corresponding constructs (see “DNA constructs” section)
using polyethylenimine. Six hours later, medium was replaced with culture med-
ium without FCS. After 18 h conditioned medium containing secreted Cxcl8b was
collected and stored at —20 °C for use in DMR assays and studies of receptor
internalization.

Label-free DMR assays. HEK293T cells were transfected with receptor (800 ng in
50 pl Opti-MEM) using Lipofectamine 2000 (ThermoFisher Scientific) according to
the manufacturer’s instructions. In brief, plasmid DNA was mixed with Lipo-
fectamine 2000 (2 ul in 50 pl Opti-MEM) and incubated for 5 min at room tem-
perature. The transfection mixture (100 ul) was added to the freshly trypsinized
HEK293T cells (600,000 cells in 900 pl complete media) and seeded in 384-well
fibronectin-coated EPIC biosensor plates (Corning; 15,000 cells/well). On the next
day, PTX (100 ng/ml) was added. At 48 h post transfection, real-time whole-cell
DMR measurements were conducted as previously described in detail3”-38. Briefly,
cells were washed twice with Hank’s Balanced Salt Solution (HSBB) containing
20 mM HEPES (pH 7.2) and 0.5% fatty acid-free bovine serum albumin (BSA)
(Sigma-Aldrich, Steinheim, Germany) and incubated for 1h at 37 °C in the EPIC
benchtop reader (Corning) for temperature equilibration. During this pre-
incubation time, FR900359 was added at a final concentration of 1 uM. The sensor
plate was scanned for a baseline optical read of about 3 min and then agonist was
added with a semi-automated liquid handling robotic (Selma, CyBio®) and DMR
changes were recorded for 1 h at 37 °C. In restimulation experiments using parental
HEK293 cells stably expressing chemokine receptors, second ligand addition was
performed 30 min after the first stimulation. All real-time recordings show one
representative biological replicate as mean 4+ SEM of three technical replicates.
Quantification of DMR signals was performed by calculation of the maximum
responses or areas under curve as indicated.

Imaging of HEK293T cells. Microscopy was carried out on an AxioObserver
inverted fluorescence microscope (Zeiss). For live-cell imaging of FT-tagged Cxcrl
and Cxcr2, stable cells were seeded onto fibronectin-coated 8-well u-Slides (Ibidi)
and cultured overnight at 37 °C and 5% CO,. The next day, cells were washed three
times with HBSS containing 20 mM HEPES and 0.5% fatty acid-free BSA, and
stimulated either with buffer, recombinant Cxcl8a, or Cxcl8b supernatant at 37 °C
for 15 and 30 min. Fluorescence images were obtained using an ApoTome Imaging
System with a Plan-Apochromat x63/1.40 Oil DIC and the filter set 38 (green).

Statistics. All error bars indicate SEM. All p-values were calculated with two-tailed
statistical tests and 95% confidence intervals. A t-test (pairwise comparisons) and
one-way analysis of variance (multiple group comparisons) with Dunnet’s post test
were performed after distribution was tested for normality, otherwise non-

parametric tests were performed (Mann-Whitney for two-way comparisons and
Kruskal-Wallis with Dunn’s post test for multiple comparisons). Statistical tests
were performed in Prism v8.0.2 (GraphPad Software, Inc., La Jolla, CA). The
statistical test and the n number are indicated in the figure legends. The error bars
show SEM either across individual embryos (i.e., analysis of neutrophil recruit-
ment, cluster size, and net reverse traffic) or individual neutrophils pooled from
different embryos (i.e., track straightness, which is a track-based analysis, or speed
vs. distance or orientation, which are step-based analyses). Live-imaging experi-
ments were acquired in minimum two independent imaging sessions unless
otherwise indicated.

Extraction and classification of neutrophil trajectories. Analysis of neutrophil
trajectories was performed in Imaris v8.2 (Bitplane AG, Zirich, Switzerland) on
a two-dimensional (2D) maximum intensity projections of the four-dimensional
time-lapse movies. Unless otherwise indicated, analyzed trajectories were
extracted from the whole fin area to account for interstitial movement (move-
ment in the CHT was excluded). A track duration threshold of three time points
was defined to exclude short-lived tracks. Manual track corrections were also
applied where needed. Instantaneous neutrophil coordinates over time (x, y, t)
were exported into Microsoft Excel 2016 spreadsheet files (Microsoft Corpora-
tion, Redmond, WA).

Exported Excel files were imported into MATLAB R2018b (The MathWorks,
Inc., Natick, MA) using a custom-written script, for neutrophil trajectory analysis.
For each experimental image dataset, the area of the wound occupied by the
neutrophil cluster (owa) was defined by a set of manually selected points (x, y). To
define the owa, we used a maximum intensity time projection of the movies, in
which high-density neutrophil areas could be distinguished based on intensity
levels. Separation of trajectories into forward and reverse segments was done as
follows: for forward trajectory segments, the first time point of the trajectory
segment was defined as the first time point the neutrophil was detected in the fin
and the last time point of the trajectory was defined as the time point before
entering the owa. For reverse trajectory segments, the first time point was defined
as the last time point the neutrophil was detected within the owa, whereas the last
time point was taken as the last time point it was detected in the fin. In
speed-distance and speed-cosine plots, forward tracks also included tracks that did
not intersect with the owa, but whose direction of movement could be defined as
forward, based on the end position of the track being located closer to the owa than
the start position. In the “net reverse traffic” plots, cells not intersecting the owa
were not included, to exclude contribution of tracks that did not pass by the owa.
For track straightness plots, no classification on forward/reverse tracks was
performed. Data were binned using custom-written scripts.

Analysis of speed vs. distance/orientation from the owa. For analysis of speed
vs. distance from the owa, we used custom MATLAB scripts modified from pre-
viously used scripts®. The instantaneous speed was calculated based on the dis-
tance traveled by a neutrophil between two successive time points The distance
from owa was defined as the distance between the position of a neutrophil centroid
(x, y coordinates) and the nearest point of the owa perimeter.

For analysis of speed vs. orientation in relation to the owa, we calculated the
instantaneous speed as above. The angle 6 was calculated as the angle between the
vector of the neutrophil instantaneous speed and the vector that connects the
neutrophil initial position with the nearest point in the owa perimeter (Fig. 3d).
The migration orientation effect was calculated using the cosine of angle 6 within a
range of 50 um from the owa perimeter. A value of cosine 6 closer to +1 shows
directed migration towards the wound, whereas a value closer to —1 shows
migration away from the wound.

Calculation of track straightness. The track straightness was calculated as the
distance that a neutrophil traveled between the first and last time point of its
trajectory, divided by the cumulative distance traveled in the same time window,
using a MATLAB custom-written script. A track straightness value closer to

1 showed a direct migration, while a track straightness value closer to 0 showed an
arbitrary motion. For each track, data from neutrophil coordinates corresponding
to positions inside a range of 50 um were included. Tracks of total length of <10 pum
were eliminated to exclude neutrophils that did not show sufficient movement to
calculate representative straightness. Data were binned using custom-written
scripts.

Calculation of net reverse traffic. The net traffic was calculated as the number of
reverse neutrophil tracks, divided by the number of forward migrating neutrophil
tracks. The higher the value, the higher the net reverse traffic.

Receptor internalization analysis. Analysis of Cxcrl or Cxcr2 receptor inter-

nalization was performed in MATLAB using custom-written scripts. Neutrophil or
cluster outline definition was achieved with active contours using MATLAB’s built-
in function for the Chan-Vese method®3. To define the core of the neutrophil, a 2D
point (x, y) inside each neutrophil was selected manually and expanded for 5-15
pixels in each direction (—x, +x, —y, +y). The active contour algorithm expanded
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this core until the neutrophil boundary. For surface segmentation, all pixels inside
the contour were included to define a binary surface mask that was applied on the
sfGFP channel. In this segmentation process, a threshold on the size of objects
(50 pixels) was applied to eliminate small false detected objects. For contour-based
membrane segmentation (Supplementary Fig. 1), the pixels comprising the outline
of each neutrophil or cluster were used to define a binary membrane mask that was
applied on the mCFP and sfGFP channels. Segmentation was carried out on a
representative snapshot of neutrophil migration at around 1-1.5 hpw, indicating
the overall internalization level after neutrophils clustered. Only cells that were
entirely visible (and not partially) were segmented. Overly dim (not enough signal)
or overly bright cells (saturated) with unreliable intracellular signal distribution
were not segmented for these analyses.

For datasets in Fig. 2f, for each embryo, the overall quantification had some
differences to increase the number of datapoints for profiling the gradient. Data
from all time points between 15 and 45 mpw were included. For this reason, the
segmentation was more crudely (not on selected cells) using an intensity threshold
on the entire image.

Neutrophil contrast, reflecting intracellular heterogeneity in signal distribution,
was calculated in segmented neutrophils, using MATLAB’s built-in functions. The
intensity matrix of each surface-segmented neutrophil was transformed into a gray-
level co-occurrence matrix32. The latter represents the intensity difference between
neighboring pixels. Contrast was calculated as the difference in intensity
relationships, based on the following equation (https://uk.mathworks.com/help/
images/ref/graycoprops.html):

N-1
c= [ li-ilpGi)
ij=0
where p(i, j) is the image co-occurrence matrix and i, j are the co-occurrence matrix
coordinates.

For datasets in Figs. 2d and 4, and Supplementary Fig. 11, contrast values of
neutrophils at the wound were normalized to the contrast values of neutrophils
in the CHT of the same time point to account for image intensity fluctuations
across embryos acquired with independent imaging settings. For datasets in
Fig. 2f, normalization with the contrast of cells in the CHT was not applicable as
neutrophils were induced to exit the CHT prior to imaging. In this case, the
contrast of neutrophils was normalized to the maximum contrast value per
individual embryo. For plotting the contrast over distance in Fig. 2f, the distance
of the neutrophil centroid from the nearest point of the wound margin was
calculated. For calculating the ratio of GFP/CFP in contour-based segmented
neutrophils, a ratiometric GFP/CFP image was generated in MATLAB and the
mean intensity of each neutrophil was computed from this image.

Quantification of Cxcl8a chemokine uptake. For calculation of Cxcl8a uptake,
GFP-positive neutrophils were segmented based on active contours, as described
above. The resulting GFP binary mask was applied on the mCherry images to
obtain the intracellular mCherry signal. Neutrophil mean intensity was calculated
per cell and normalized with the mean intensity of a 150 x 150 pixels of the
transplant. This was to account for variation in levels of mCherry expression in the
transplanted cells across independent embryos.

Calculation of neutrophil cluster size. Neutrophil cluster size at wound was
calculated in Imaris. Neutrophils were tracked as a surface, rather than as neu-
trophil centroids, within a square area approximating the owa. The area of seg-
mented objects (neutrophils) was computed in Imaris and imported in MATLAB
for plotting. Surfaces with area below 60 pm? were excluded to minimize artefacts
from erroneous surface detection. Cluster size per embryo was calculated as an
average across an indicated time window.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The data supporting the findings of this study are available within the Article,
Supplementary Information files, and Source data. Source data for the figures are
included in the Source Data file. Additional data are available upon reasonable requests.
Genetic constructs generated in this study are available from the corresponding author
upon request. Genetically modified animals generated in this study are available from the
corresponding author upon request, subject to institutional and ethical approvals.

Code availability
The Matlab codes and functions can be found in GitHub at https://github.com/
LeukocyteMotionAndDynamics/ReceptorTraffic
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