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Abstract
Morris–Lecar model is arguably the simplest dynamical model that retains both the
slow–fast geometry of excitable phase portraits and the physiological interpretation
of a conductance-based model. We augment this model with one slow inward
current to capture the additional property of bistability between a resting state and a
spiking limit cycle for a range of input current. The resulting dynamical system is a
core structure for many dynamical phenomena such as slow spiking and bursting. We
show how the proposed model combines physiological interpretation and
mathematical tractability and we discuss the benefits of the proposed approach with
respect to alternative models in the literature.
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1 Introduction
Conductance-based models are by now well established as a fundamental modeling frame-
work to connect the physiology and the dynamics of excitable cells. Ever since the seminal
work of Hodgkin and Huxley [1], there has been a continuing effort in the literature to
develop models that combine mathematical tractability and physiological interpretation.
An interesting example is the two-dimensional model published by Morris and Lecar in
1981 [2]. Like Hodgkin–Huxley model, it captures the essential physiology of excitability:
a spike results from the fast activation of an inward current followed by the slow activa-
tion of an outward current. The former provides positive feedback in the fast time-scale
whereas the latter provides negative feedback in the slow time-scale. Because it is only two-
dimensional, the model is also amenable to phase-portrait analysis without any reduction.
Its geometry is similar to the one of FitzHugh–Nagumo model [3], the first mathemati-
cal model proposed to understand the core dynamics of the Hodgkin–Huxley model. In
that sense, Morris–Lecar model combines the physiological interpretation of Hodgkin–
Huxley model and the mathematical tractability of FitzHugh–Nagumo circuit.

In the present paper, we aim at capturing in a similar way the essence of rest–spike
bistability, that is, the coexistence of a stable spiking attractor and a stable fixed point
in a slow–fast model. The importance of this phenomenon is well acknowledged in the
neurodynamics literature due to its role as a building block of neuronal patterns such as
bursting [4, 5]. We obtain rest–spike bistability by adding one extra current in the Morris–
Lecar model: an inward current with slow activation. The resulting model combines the
three following features:

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/342672141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1186/s13408-020-00090-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13408-020-00090-z&domain=pdf
http://orcid.org/0000-0002-1162-3225
mailto:gic27@cam.ac.uk


Cirillo and Sepulchre Journal of Mathematical Neuroscience           (2020) 10:13 Page 2 of 18

(i) For a range of input currents, the model is rest–spike bistable, that is, a stable
equilibrium coexists with a stable limit cycle. The geometry of the two attractors is
robust to the time-scale separation in the sense that it persist in the limit of infinite
time-scale separation.

(ii) The model has the direct physiological interpretation of dynamics and attractors
being shaped by three distinct currents (fast positive feedback (e.g. sodium
activation), slow negative feedback (e.g. potassium activation), and slow positive
feedback (e.g. calcium activation)).

(iii) The model is amenable to a mathematical analysis by geometric singular
perturbation theory.

We are not aware of other single-cell models in the literature combining those three fea-
tures. Mathematical models of rest–spike bistability often lack the first feature above. For
instance, a homoclinic bifurcation in the Morris–Lecar model only exists for a specific
time-scale separation (see e.g. Table 3.1 in Sect. 3.2 of [4]). Limitations of such models
with respect to the geometry of the attractors and the robustness of bursting are dis-
cussed in [6, 7]. We are only aware of two published models in which rest–spike bistability
persists in the singular limit of infinite time-scale separation. The first one is the model
proposed by Hindmarsh and Rose in 1982 [8] as a mathematical model aimed at captur-
ing low-frequency spiking. The second one is the transcritical model proposed in 2011
as a two-dimensional reduction of a physiological model combining the currents of the
Hodgkin–Huxley model with a slow inward (calcium) current [9]. Both models are planar
and lack the second feature, that is, they can only be regarded as a mathematical reduction
of a physiological conductance-based model.

This paper aims to contribute to the idea that balancing positive and negative feedback
in the slow time scale is a key mechanism to generate rest–spike bistability. This viewpoint
is at the core of the planar model in [6] and its importance from a physiological viewpoint
is highlighted by [7]. Here we complement that work by studying how this mechanism
can be naturally implemented in a physiological context: using two distinct slow currents,
one providing negative feedback to restore the membrane potential, the other providing
positive feedback to obtain two attractors separated by the stable manifold of a saddle.

The remainder of the paper is organized as follows. Section 2 presents the model and
recalls the notions of geometric singular perturbation theory needed for its analysis. In
Sect. 3 we study numerically the dynamics on the critical manifold, highlighting its per-
sistence properties. Section 4 builds on this picture to derive conditions for multistability
and monostability, we focus on the singular case and mention what hypotheses guarantee
persistence. In Sect. 5 we discuss some variations of the same geometric picture, while
in Sect. 6 we relate the Hindmarsh–Rose and the transcritical models to the one we are
studying. We draw some conclusions in Sect. 7. Two appendices report additional details.

2 A model of rest–spike bistability
We consider a three-dimensional slow–fast conductance-based model defined by

εv̇ = i – iion(v, n, p),

ṅ = –n + Sn(v),

τ ṗ = –p + Sp(v),

(1)
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Figure 1 Rest–spike bistability in the model (1)

where ε is a small parameter. The total ionic current is the sum of a leak current and three
voltage-gated currents:

iion = gl(v – vl) + Sm(v)(v – 1) + n(v + 1) + p(v – 1)

= c(v) + n(v + 1) + p(v – 1). (2)

The parameters –1 < vl < +1 that appear in the equation can be thought of as reversal
potentials. In the absence of an external current i, the voltage range [–1, 1] is positively in-
variant. The currents Sm(v)(v – 1) and p(v – 1) are then negative (inward currents) whereas
the current n(v + 1) is positive (outward current). The variables n and p are gating (pos-
itive) variables that model the slow activation of the inward current p(v – 1) and of the
outward current n(v + 1). The inward current Sm(v)(v – 1) has instantaneous activation,
a standard simplification for currents that activate in the fast time-scale. The functions
Sx(v) correspond to activation functions that we assume of the form

Sx =
gx

2

(
tanh

(
v – ax

bx

)
+ 1

)
. (3)

Here the multiplicative factor gx corresponds to the maximal conductance associated to
the current x. We find it convenient to write the equations in this form, rather than in-
cluding maximal conductances in the voltage equation, because this allows us to change
maximal conductances of slow currents without modifying the critical manifold of the
system. A consequence of this is that the dynamics of p and n lies between zero and the
corresponding maximal conductance, i.e. p ∈ [0, gp] and n ∈ [0, gn].

The key property of the model is the presence of the slow inward current p(v – 1). In
the absence of this current, the model is two-dimensional and has a phase portrait similar
to the classical FitzHugh–Nagumo model. With this additional slow inward current, both
continuous spiking and rest coexist for the same value of applied current, as shown by the
simulation in Fig. 1 (see Appendix B for numerical values of the parameters).

We note that similar phenomena can be obtained with a current of the type p(v + 1)
where p inactivates, i.e. decreases as v increases. Physiologically this corresponds to an
outward current that inactivates slowly, rather than an inward current that activates slowly.
Both types of currents model a source of positive feedback in the slow time-scale [10].
A classical example of slowly inactivating outward current is the A-type potassium current
[11].
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We use geometric singular perturbation theory [12] to study the slow–fast system (1) as
ε tends to zero. The singular limit of this model is the differential-algebraic system

0 = i – iion(v, n, p),

ṅ = –n + Sn(v),

τ ṗ = –p + Sp(v),

(4)

which we call slow dynamics or reduced system. After rescaling time, the same limit leads
to the layer dynamics

v′ = i – iion(v, n, p),

n′ = 0,

p′ = 0,

(5)

where ′ refers to differentiation with respect to the fast time τ = t/ε.
The reduced system (4) is constrained to the critical manifold C0, defined by

iion(v, n, p) = i (6)

and corresponding to fixed points of the layer dynamics (5). Normally-hyperbolic compact
subsets of C0 persist as invariant manifolds of (1) for ε small enough. This manifolds are
not necessarily unique, but we assume one family of perturbation Cε has been fixed and
call them slow manifolds.

Perturbations of subsets of C0 maintain their type of stability with corresponding (local)
stable and unstable manifolds. These admit invariant foliations, with each point on the
critical manifold acting as base for a fiber. Invariance of the foliation can be interpreted
as points on each fiber “shadowing” the corresponding base point, in forward time for the
stable manifold and backward for the unstable. Points on Cε follow a dynamics that is a
regular perturbation of the reduced system (4); in the following we refer to this perturba-
tion as slow dynamics.

A point x on the critical manifold is normally hyperbolic if it is a hyperbolic fixed point
of the layer dynamics (5). If this is the case, as ε → 0 the fibers based at x tend to its
stable and unstable manifolds in the layer dynamics (5). For (1) the layer dynamics is one
dimensional, so that hyperbolic fixed points are either attractive or repulsive, with their
invariant manifolds corresponding to lines with n and p constant.

We consider parameter ranges for which the critical manifold can be divided in three
normally-hyperbolic branches. These are separated by two lines of folds that we call Fl

and Fh, and verify

∂iion

∂v
=

dc
dv

(v) + n + p = 0. (7)

The two lines of folds are connected by an unstable branch M. The other branches, Sl and
Sh, are both stable. Figure 2 shows the typical shape of the critical manifold for fixed i.

Around any point away from the lines of folds, the critical manifold admits a para-
metrization in the slow variables n and p. However, this local parametrization cannot be
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Figure 2 Reduced dynamics (4) on the critical manifold (6), and its projection onto the v–p plane, together
with the lines of folds Fl , Fh and their projections Pl , Ph . A saddle point and its stable (blue) and unstable (red)
manifolds in the reduced system are shown on the critical manifold. The black trajectory is a singular
relaxation oscillation composed of two slow parts (single arrow) connected by two trajectories along fast
fibers (double arrow, dotted in the projection)

made global due to the presence of folds. Following [13–15], we use v and p to obtain a
parametrization valid in the interval v ∈ (–1, 1). This is achieved by solving (6) for n(v, p, i).
The corresponding projection is shown in Fig. 2.

The reduced dynamics in these coordinates is obtained differentiating (6):

∂iion

∂v
v̇ = –

∂iion

∂n
ṅ –

∂iion

∂p
ṗ,

τ ṗ = –p + Sp(v).
(8)

The first equation becomes singular on the lines of folds ∂iion
∂v = 0. Multiplication by ∂iion

∂v
recovers a regular differential equation:

v̇ = –
∂iion

∂n
ṅ –

∂iion

∂p
ṗ,

τ ṗ =
∂iion

∂v
(
–p + Sp(v)

)
.

(9)

The two systems (8) and (9) share the same trajectories with different time parametriza-
tions. Moreover, in (9) time is reversed on the unstable branch ∂iion

∂v < 0 and new fixed
points can appear on the lines of folds. These verify

∂iion

∂v
= 0,

∂iion

∂n
ṅ +

∂iion

∂p
ṗ = 0. (10)

They are called folded singularities [13].
Away from the lines of folds the two systems (8) and (9) are largely equivalent, but im-

portant differences occur in the neighborhood of Fl and Fh. Moreover, near these lines the
perturbed dynamics is no longer constrained by normal hyperbolicity, in particular it can-
not be obtained as a regular perturbation of the reduced system (8). Different phenomena
are possible. The least degenerate situation occurs when the desingularized vector field is



Cirillo and Sepulchre Journal of Mathematical Neuroscience           (2020) 10:13 Page 6 of 18

never zero along these lines:

∂iion

∂n
ṅ +

∂iion

∂p
ṗ �= 0. (11)

Under this assumption the desingularized vector field (9) can point either to the unstable
branch or the stable one. Assuming the additional nondegeneracy condition

∂2iion

∂v2 �= 0, (12)

the first case corresponds to jump points, at which the reduced system (8) admits two
solutions backwards in time but none in forward time. For ε > 0 a stable branch of Cε near
these points can be continued using the flow [14]. Doing so shows that trajectories on the
slow manifold pass the folds and reach a fiber contained in the stable manifold of the other
stable branch of Cε , with the flow contracting the direction transverse to the manifold.

Condition (11) corresponds to the vector field being transverse to the critical manifold,
a condition which is violated at folded singularities. These are fixed points of the desin-
gularized system (9), but not necessarily fixed points of the reduced dynamics (8). As a
consequence, they can be reached in finite time. Depending on the type of fixed point
they can correspond to the singular limit of canard trajectories, i.e. intersections between
stable and unstable branches of the slow manifold [13]. Generically, the desingularized
flow changes direction at these points. Hence, a folded singularity delimits the set of jump
points on a line of folds [15].

3 Reduced dynamics
We will now study the reduced system (8), often with the aid of its desingularized version
(9). Fixed points can be parametrized by v through the steady-state i–v curve

is(v) := iion
(
v, Sn(v), Sp(v)

)
. (13)

This is shown in Fig. 6 and is an S-shaped curve, with two folds separating three families
of fixed points Xl , Xm and Xh; Xl corresponds to low voltages, Xm to intermediate voltages
and Xh to high voltages. For fixed i, we denote points in each family with corresponding
lower-case letters xl , xm and xh. In addition to these three fixed points, the desingularized
dynamics (9) has a folded singularity xf ∈ Fl . For parameter values reported in Appendix B,
and i in the range of interest in this section, this point is a focus and does not lead to canard
trajectories [13]; it only delimits jump points on Fl .

Figure 3 shows the typical phase portrait of the reduced system (8). The fixed point xl is
a stable node, while xm and xh are both saddle points. Their stable and unstable manifolds
do not extend beyond Fl and Fh due to loss of existence and uniqueness along these lines.
In particular, unstable manifolds terminate at jump points.

For ε > 0 hyperbolic fixed points persist in the slow dynamics with their stable and un-
stable manifolds [12, 16]. In the perturbed system (1) these fixed points are still hyperbolic.
In particular, saddle points remain saddle, with their invariant manifolds being obtained
as a combination of trajectories in the slow dynamics and fast fibers. The unstable mani-
fold of xm is completely contained in the slow manifold. Its stable manifold, instead, is two
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Figure 3 A typical phase portrait of the reduced system (8). Fixed points of the desingularized system (9) are
denoted by crosses, xl is a stable node, xm and xh are saddle points and xf is a folded focus (unstable). Stable
and unstable manifolds of the saddle points are shown in blue and red, respectively. Along the two lines of
folds Fl and Fh the system is singular: trajectory at those points are defined only in forward or backward time;
the first of these two cases corresponds to jump points. The stable manifold of xm separates initial conditions
in Sl (left of Fl ) that reach a jump point from those that converge to xl

dimensional; it includes the stable manifold in Cε and all fast fibers based on that curve.
In the singular limit this surface tends to the stable manifold of xm in the reduced system
(8) and all nearby segment with constant n and p that intersect it. Similarly, xh perturbs
to a saddle with a one-dimensional stable manifold and a two-dimensional unstable man-
ifold.

Adding a trivial equation for i to (1), the same is true for the family of fixed points xm(i).
At least for i in a small interval, this family persists together with its two-dimensional
unstable manifold and three-dimensional stable one. Sections of these manifolds for fixed
i coincide with the invariant manifolds of the corresponding fixed point.

When i varies on larger domains, the outlined phase portrait can undergo two distinct
qualitative changes: increasing i leads to a fold of the i–v curve at which xl and xm merge
in a saddle-node bifurcation, leaving only one fixed point xh ∈ M. Likewise, decreasing i,
xm and xh reach a similar fate, leaving xl ∈ Sl as the only fixed point.

To obtain this second bifurcation it is necessary that one of the two fixed points crosses
the line Fl and changes branch.a In our case xm crosses Fl . This passage corresponds to an
exchange of stability with the folded singularity through a folded saddle-node [17]. Beyond
this crossing, the folded singularity is a saddle, while xm is a node of the reduced system.
In a similar fashion increasing the applied current leads to xh crossing Fh, which happens
once xh is the only fixed point left. After this crossing, xh is a stable fixed point on an
attractive branch.

Finally, varying i can lead to changes in the type of folded singularity. As already men-
tioned xm ∈ Fl corresponds to a folded saddle-node, thus varying i and moving xm between
branches leads to different types of folded singularity: it is a saddle when xm ∈ M and a
node when xm ∈ Sl . Both situations lead to canard trajectories [13]. Moreover, since xf is
a focus in the phase portrait described above, it has to change to a node before becoming
a folded saddle-node.
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4 Rest–spike bistability
Returning to the phase portrait in Fig. 3, we now analyze the global return mechanism
that leads to rest–spike bistability.

In the singular limit ε = 0, trajectories on stable branches of the critical manifold C0 stay
on it until they reach a line of fold in correspondence of a jump point. Once one of these
points is reached the singular trajectory is continued along a fast fiber with constant n
and p, reaching the opposite branch as shown in Fig. 2. The points at which these singular
trajectories arrive correspond to the projections of Fl and Fh along fast fibers. We call these
projections Pl ⊂ Sl and Ph ⊂ Sh.

Based on this property, we can analyze the singular system referring only to the v–p
plane and the reduced dynamics: when a trajectory reaches a jump point it is transported
to the corresponding projection keeping p fixed, as shown in Fig. 2 for a limit cycle.

Rest–spike bistability follows from how the stable and unstable manifold of xm constrain
trajectories. The role of the stable manifold is simple, it separates initial conditions on Sl

that reach a jump point on Fl from those that remain on the critical manifold and tend to
xl . The unstable manifold, instead, determines if the system is multistable. This is the case
if the unstable manifold stays away from xl . Otherwise almost all trajectories converge to
xl . We treat these two situations separately in the next sections.

4.1 Bistability
In the following we denote by x1 the intersection of the unstable manifold of xm with Fl ,
and by x–1 the intersection of the stable manifold of xm with Pl . Following the singular
flow from x1 leads to x2 ∈ Ph, then to x3 ∈ Fh and back to Pl at x4 (see Fig. 4). We recall
that given the dynamics (1) we can assume that p lies in the interval [0, gp], where gp is the
maximal conductance appearing in (3).

Assume that the trajectory starting at x4 reaches a jump point on Fl (x5), as shown in
Fig. 4. Consider the segment Il ⊂ Pl between x4 and p = gp. The reduced dynamics maps
this segment to Fl in finite time, defining a map Πl : Il → Fl . Clearly the same map can
be defined using the desingularized reduced system (9), thus as long as this vector field is

Figure 4 Reduced dynamics (8) in the multistable case. The stable manifold of xm (blue) separates initial
conditions that reach a jump point on Fl from those that converge to xl . Jump points are mapped to their
projections (e.g. x1 to x2 and x3 to x4). The unstable manifold of xm (red) delimits an invariant set for the
dynamics
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transverse to Fl at all points in Πl(Il) the map is smooth. We note that this is equivalent to
Πl(Il) not containing folded singularities. Similarly, on Sh we define the segment Ih ⊂ Ph

between x2 and p = gp, and a corresponding map Πh : Ih → Fh. We denote the projection
along fast fibers by Πf (from Fl to Ph and from Fh to Pl). Since the dynamics is bounded
by the line p = gp, by construction we have

Πf ◦ Πl(Il) ⊂ Ih, Πf ◦ Πh(Ih) ⊂ Il, (14)

which allows us to define the singular Poincaré map

Π = Πf ◦ Πh ◦ Πf ◦ Πl : Il → Il. (15)

This construction shows that the stable manifold of xm divides the state space into two
invariant sets. One is the basin of attraction of xl , while the other one has dynamics char-
acterized by the Poincaré map (15). Since this is a smooth map of an interval into itself it
admits at least one fixed point, which corresponds to a singular relaxation oscillation. As
shown in [14], if this fixed point is hyperbolic, under the additional hypothesis that the
singular trajectory intersects Pl and Ph transversally, it perturbs to a hyperbolic limit cycle
for ε > 0. In fact the Poincaré map (15) is (up to conjugacy) a global version of the one used
in that reference.

We remark that this construction only guarantees multistability. Further analysis of the
map (15) is required to obtain a more accurate picture. While this is beyond the scope
of this work, numerical simulations confirm that this map has a unique attracting fixed
point.

4.2 Monostability
Constructing the Poincaré map (15) requires that x4 falls inside the interval defined by
x–1 and p = gp on Pl . The situation in which this assumption fails is illustrated in Fig. 5. In
this case most trajectories on Sl and Sh are attracted by the stable fixed point xl , the only
exception being the stable manifold of xm.

To see this, we start from x–1 and consider its anti-image through Πf on Fh. Continuing
to follow the singular flow “backwards”, as shown in Fig. 5, leads back to Pl at a point that
we call x–2. Any compact segment in Pl that lies between these points is mapped by the
singular flow strictly inside the segment delimited by x4 and x–1. Since any point strictly
inside this second segment converges to xl , the same conclusion extends to all points in
the original segment.

The same argument shows that points in the portion of Sl delimited by the trajectories
starting at x–1 and x–2 tend to xl . The only exceptions are these boundary trajectories
that reach xm and belong to its stable manifold. As long as the stable manifold of xm is
unbounded in the p coordinate, the same argument can be iterated on all Sl and adapted
to Sh, leading to the conclusion that almost all points on Sl and Sh are in the basin of
attraction of xl . This situation persists for small enough ε > 0, and since most points are
attracted to stable branches of the slow manifold we see that for almost all initial conditions
the perturbed dynamics converges to xl .
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Figure 5 Reduced dynamics in the monostable case. The stable manifold of xm separates initial condition
that arrive at a jump point on Fl from those that converge to xl (not shown). The unstable manifold of xm (red)
converges to xl after one jump. Similarly, almost all initial conditions on stable branches converge to it, the
only exception being the ones that form the stable manifold of xm

4.3 Homoclinic trajectory and bifurcation diagram
Transitions between monostability and bistability in system (1) are controlled by the ap-
plied current i. The phase portraits in Figs. 4 and 5 suggest the presence of a homoclinic
trajectory, which can be obtained by decreasing the applied current from the bistable case.
In the singular limit this trajectory corresponds to the condition x4 = x–1 and delimits the
boundary of bistability. We denote by iH the value of current at which this happens. While
we cannot expect this homoclinic trajectory to persist for ε > 0 with i fixed, it is natu-
ral to ask whether for ε > 0, fixed and small, we can find an iH (ε), close to iH , at which
a homoclinic trajectory exists. There is a natural transversality condition that guarantees
this property. The family of fixed points xm(i) admits a three-dimensional stable manifold
and a two-dimensional unstable one. Their intersection is a homoclinic trajectory. In the
singular limit, following the unstable manifold of xm(i) leads back to Sl after two jumps.
Extending C0 to include i, xm(i) is a (normally hyperbolic) invariant set in it, with two-
dimensional invariant manifolds. The continuation of the unstable one using the singular
flow, after two jumps intersects the stable manifold in the plane i = iH . If this intersection
is transverse then it persists for small ε and i close to iH . We show this in Appendix A
adapting the arguments used in [14] to prove existence of relaxation oscillations.

To conclude this section, Fig. 6 shows the bifurcation diagram of the whole system (1)
computed with AUTO-07p [18] for parameter values reported in Appendix B. The numer-
ics confirms the presence of a family of limit cycle (red curves) and its coexistence with
a family of fixed points (blue curve). The family of periodic solutions terminates in a ho-
moclinic trajectory for low values of i (the numerical continuation was stopped at period
T = 104).

5 A common geometric picture
The bifurcation diagram illustrated in the previous section is understandably only one
among many possible scenarios compatible with the three-dimensional geometry of Fig. 2.
While a detailed study of all possible cases is beyond the scope of this work, we wish to
highlight how different types of bistability could have the same geometric structure. To do
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Figure 6 Bifurcation diagram of (1). Solid lines denote stable solutions, dotted correspond to unstable ones;
blue lines correspond to fixed points, red lines to limit cycle, in the latter case both maximum and minimum
are shown

this we use ideas and techniques from [19]. As in Sect. 3 we identify fixed points with the
i–v curve

is(v) = iion
(
v, Sn(v), Sp(v)

)
(16)

and divide them in three familiesXl ,Xm andXh, separated by two folds. As noted in Sect. 3
there is a value of current ic, between the two folds, at which xm crosses Fl to enter the
unstable branch M. The scenario studied in Sect. 4 assumes ic < iH since the homoclinic
bifurcation occurs when xm ∈ Sl .

As a first variation we consider what happens when the bistable range extends to current
values for which xm ∈ M. The bifurcation xm ∈ Fl corresponds to a folded saddle-node.
Beyond this bifurcation xm ∈ M is a node of the reduced dynamics while xf is a saddle. In
this case the analysis is easily adapted from Sect. 4. One must simply substitute the stable
manifold of xm with the one of xf , and use Πf (xf ) in place of x2 = Πf (x1). Figure 7 shows
the corresponding geometric construction. A classical example where this scenario occurs
is the Hodgkin–Huxley model with the reversal potential of potassium increased. This
situation of bistability has been studied in the early work [20]. Its planar reduction leads
to the transcritical model [10]. Also in this case the boundary of bistability is a singular
homoclinic trajectory. This trajectory, however, has to go through the folded singularity
xf to reach xm on the unstable branch M.

Both cases discussed so far assume that xm and xh collide in a fold on M. Yet another
scenario corresponds to this fold occurring on Sl , after xh crosses Fl . Also this crossing
leads to a folded saddle-node, after which xh ∈ Sl can perturb to a stable fixed point. Local
analysis around folded saddle-node shows the possibility of Hopf bifurcations [17], which
are indeed found numerically. After this the system presents two stable fixed points. The
relevant part of the reduced dynamics in this case is shown in Fig. 7: the stable manifold of
xm acts as separatrix between the basins of attraction of the two stable fixed points, while
the one of xf (a folded saddle) separates initial conditions that reach a jump point on Fl

from those that remain on the critical manifold.
The examples above suggest that many possible variants for transitions between monos-

tability and bistability are possible. We also note that many of the geometric constructions
used in [6, 7, 19] have an analog in our setting, allowing, for example, non-plateau oscilla-
tions, contrary to the case showed in Fig. 1. This flexibility is interesting in the perspective
of connecting the present approach to the classification of bursting types according to the
transitions that occur from rest to spike and vice versa (see e.g. [21]).
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Figure 7 Alternative scenarios that lead to bistability. Top: geometric construction when a folded saddle (xf )
takes the place of xm . Bottom: bistability between two fixed points (xl and xh)

6 Connections with phase-portrait analysis
We close this paper by clarifying the connection between the proposed three-dimensional
model and two published slow–fast phase portraits of rest–spike bistability.

The first phase portrait goes back to the seminal work of Hindmarsh and Rose [8, 22].
In one of the earliest attempts to model slow spiking and bursting, Hindmarsh and
Rose proposed to modify the FitzHugh–Nagumo model with a recovery variable that
has a nonmonotonic activation function. Geometrically, this situation corresponds to
a degenerate case of the planar pictures described in Sect. 3 and Sect. 4, in which
all essential elements are contained on a line. As a result, the main elements of the
three dimensional dynamics can be captured by constraining it to a plane, resulting
in a simplified two-dimensional model of rest–spike bistability. This is characterized
by the classical N-shaped critical manifold, as shown in Fig. 8. The price paid for this
simplification is that the flexibility of the two-dimensional slow dynamics described in
Sect. 5 is lost. For instance, bistability is only possible if xl lies out of the stripe de-
limited by Pl and Fl , ruling out patterns in which the voltage of the resting state is
between maximum and minimum of the spike. We note that the nonmonotonicity of
the activation function in Hindmarsh–Rose model has the natural interpretation of
summarising in one variable the distinct roles of an inward and an outward slow cur-
rent.

The second rest–spike bistable phase portrait is the transcritical model of [6]. This
model was obtained as a two-dimensional reduction of a conductance-based model that
adds a slow calcium current to the Hodgkin–Huxley model [9]. The analysis of [6] rests on
the presence of a transcritical bifurcation of the critical manifold. This bifurcation also di-
rectly relates to the mixed role of the slow variable as a source of both positive and negative
feedback in the slow time-scale. A main motivation of the present paper was to understand
the geometric picture generated by this motif in conductance-base models, where these
two roles are often played by distinct variables.



Cirillo and Sepulchre Journal of Mathematical Neuroscience           (2020) 10:13 Page 13 of 18

Figure 8 Bistable slow–fast phase portraits as reduction of a larger dimensional model. Left: critical manifolds
obtained as the intersection of a higher-dimensional one (green) with a surface (gray). Right: corresponding
phase plane with the critical manifold obtained (green) and a possible nullcline for the slow variable (dashed)
that completes the dynamics. Top: Hindmarsh–Rose model can be obtained constraining the dynamics to a
plane, the critical manifold in the phase plane is the classical N-shaped one, but presents nontrivial dynamics
leading to rest–spike bistability. Bottom: the transcritical model obtained constraining the dynamics to a
surface. The transcritical bifurcation is obtained when this surface is tangent to a line of folds at a point. This
bifurcation is responsible for a singular homoclinic trajectory in the planar reduction

To connect the transcritical bifurcation of the planar model [6] to the three-dimensional
geometry of the present paper we consider how this planar reduction can be obtained.
Referring to our model (1) for simplicity, a planar reduction is typically obtained imposing
an algebraic constraint between n and p, which can be interpreted as a path n(s), p(s)
[20]. After obtaining a dynamic equation for s from a combination of ṅ and ṗ, the system
becomes

εv̇ = i – iion
(
v, n(s), p(s)

)
,

ṡ = g(v, s),
(17)

which is a slow–fast planar model. Its critical manifold is given by

i = iion
(
v, n(s), p(s)

)
(18)

It corresponds to the intersection of the critical manifold of the larger system with the
surface

n = n(s), p = p(s). (19)
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A transcritical bifurcation is obtained when

iion = i,

∂iion

∂v
= 0,

∂

∂s
(
iion

(
v, n(s), p(s)

))
=

∂iion

∂n
dn
ds

+
∂iion

∂p
dp
ds

= 0.

(20)

Geometrically this corresponds to a point at which the surface (19) is tangent to the line
of folds of the critical manifold, as shown in Fig. 8. Similar geometric constructions lead
to the presence of a transcritical bifurcation when reducing the Hodgkin–Huxley model
with increased potassium reversal potential, as well as when reducing the same model
augmented with a calcium current, as done in [6].

An equivalent interpretation of how the transcritical bifurcation arises is that the path
(n(s), p(s)) defining the surface (19) is tangent to the line of folds

i = iion(v, n, p),
∂iion

∂v
(v, n, p) = 0, (21)

projected onto the n–p plane. This is the simplest example of how singularities in the
sense of [23] can be generated from elementary catastrophes, the core idea in the path
formulation of [23, Ch.3 §12]. This is particularly interesting in view of [24], where singu-
larity theory is used to obtain a global description of the critical manifolds of slow–fast
planar systems relevant to neuronal dynamics. Two singularities play a prominent role:
hysteresis, in connection with spiking, and winged cusp, for rest–spike bistability. Both
these singularities can be realized as paths in the unfolding of the cusp catastrophe [23].
Interestingly, this bifurcation is often found in the fast subsystem of neuronal models (an
early example being [25]), and it is typically related to the appearance and disappearance
of bistability. For example, decreasing the sodium conductance in the Hodgkin–Huxley
model leads to the appearance of this bifurcation, and the same is achieved by reducing
gm in (1). The presence of this type of bifurcation in these models suggests that those sin-
gularities can arise from model reduction similarly to what happens in the transcritical
case.

7 Conclusions
We studied a simplified slow–fast model of neuronal activity that exhibits rest–spike bista-
bility. The simplest physiological models of excitability include a fast-activating inward
current and a slowly-activating outward current. Our model adds a slowly-activating in-
ward current to this basic motif. We think of this model as a core structure for the gener-
ation of multistability in more general and realistic conductance-based models. We spec-
ulate that similar results are possible using a slowly inactivating outward current, which
would have the same functional role of a slow positive feedback.

Through geometric singular perturbation theory we could analyze the geometry of this
three-dimensional model. This geometry is rather simple, with the slow dynamics taking
place on a classical N-shaped critical manifold. The saddle point on the critical manifold
is a key feature of the proposed model. Its stable manifold acts as separatrix, while its
unstable manifold determines whether multiple attractors are present. Moreover, a same
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geometric picture captures different types of bistability, suggesting a common framework
to study different phenomena important to neuronal dynamics.

This is by no means the first study of a slow–fast systems with one fast and two slow
variables, nor the first single-cell model of bistability. The value of this model is in that it
explains how bistability can arise in a physiologically relevant context using a mechanism
that is generic but not widely acknowledged. Our hope is that it contributes to the view that
a combination of positive and negative feedback in the slow time-scale is a core element
in the generation of neuronal patterns.

Appendix A: Existence of a homoclinic trajectory
In this section we show that under the assumption of transversality, the intersection of
stable and unstable manifolds that leads to a singular homoclinic trajectory persists for
ε > 0. We do this using the setting of [14] and in particular their results on maps defined
by the flow of (1). We recast these results in the notation of Sect. 4 and refer the reader to
the original work for details.

As in Sect. 4, iH is the value of i at which a singular homoclinic trajectory exists. We
consider the reduced dynamics for this value of i, and fix a point xu on the unstable man-
ifold of xm between xm and Fl . Similarly, we fix a point xs on the stable manifold between
Pl and xm.

After a local change of coordinates we can find two neighborhoods of these points, Ns

and Nu, such that the critical manifold C0 corresponds to the plane v = 0. The intersections
of these neighborhoods with the planes n = ns and n = nu determine two surfaces Σs and
Σu. Rotating n and p if necessary, we can assume that Σu ∩ C0 intersects the unstable
manifold of xm transversally and only at xu, and similarly for Σs ∩ C0. For fixed δ we let
Nδ = (iH – δ, iH + δ) and consider Σs × Nδ and Σu × Nδ . If δ is small enough, stable and
unstable manifolds of xm(i) intersect transversally these extended neighborhoods (in the
critical manifold extended to include i). In the following we assume that Ns, Nu, Nδ are
shrunk whenever necessary.

In Sect. 3, we have characterized the stable manifold of xm for small ε > 0, this is com-
posed of a line on Cε and the fibers based on it. In the limit ε → 0, the singular stable
manifold intersect Σs transversally along one of these fibers. Thus if ε and δ are small
enough the same will be true for the stable manifold of xm(i) for fixed i and ε. Moreover,
since at ε = 0, i = iH this intersection is a line of constant p, we can find a parametriza-
tion of it that has the form p = ps(v, i, ε). Similarly, the intersection of Σu with the unstable
manifold of xm(i, ε) defines two functions vu(i, ε) and pu(i, ε).

Notice that in this section we use v and p to parametrize the two slices Σs and Σu, so that
v preserves its nature of fast variable. This differs from the use of v and p to parametrize
the critical manifold as done in Sect. 3 and Sect. 4.

We can now use the same construction of [14] to obtain a map Π : Σu → Σs corre-
sponding to the action of the flow. This has the form

Π

(
v
p

)
=

(
R(v, p, i, ε)
G(v, p, i, ε)

)
; (22)

R is exponentially small in ε (|R| + ‖∇R‖ < exp(–c/ε)) and in particular verifies

R(v, p, i, 0) = 0. (23)
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G has the form

G = G0(p) + O
(
ε ln(ε)

)
(24)

where G0 : Σu ∩C0 → Σs ∩C0 is the map defined by the singular flow. Smooth dependence
on i follows from standard results.

The only difference between this map and the Poincaré map defined in [14] is that we
consider two different sections Σs and Σu rather than one.

Applying this map to (vu, pu) we obtain the intersection of the unstable manifold of xm

with Σs

Π

(
vu

pu

)
=

(
R(vu, pu, i, ε)
G(vu, pu, i, ε)

)
. (25)

In this setting an intersection of stable and unstable manifolds corresponds to a solutions
of

G(vu, pu, i, ε) = ps
(
R(vu, pu, i, ε), i, ε

)
(26)

where vu = vu(i, ε) and pu = pu(i, ε). Thus, we can define

Pu(i, ε) = G(vu, pu, i, ε), Ps(i, ε) = ps
(
R(vu, pu, i, ε), i, ε

)
(27)

and a homoclinic trajectory corresponds to Pu – Ps = 0.
At ε = 0

Pu(i, 0) = G0
(
pu(i, 0)

)
,

Ps(i, 0) = ps
(
R
(
0, pu(i, 0), i, 0

)
, i, 0

)
= ps(0, i, 0),

(28)

and the existence of the singular homoclinic trajectory at i = iH means that

Pu(iH , 0) = G0
(
pu(iH , 0)

)
= ps(0, iH , 0) = Ps(iH , 0). (29)

Assuming that

∂Pu

∂i
(iH , 0) –

∂Ps

∂i
(iH , 0) �= 0, (30)

an application of the implicit function theoremb guarantees the existence of a continuous
functions iH (ε) such that Pu(iH (ε), ε) = Ps(iH (ε), ε).

At ε = 0, Pu(i, 0) is the intersection of the singular unstable manifold (after two jumps)
with Σs ∩ C0, while Ps(i, 0) corresponds to the intersection of the stable manifold of the
reduced flow and Σs ∩C0. Condition (30) corresponds to transversality of the intersection
between the manifolds p = Ps(i, 0) and p = Pu(i, 0) in the extended neighborhood Σs × Nδ .
Since the invariant manifolds of xm(i) can be obtained applying the singular flow to these
two sections, we see that condition (30) is equivalent to transversality of the intersection
between the invariant manifolds of xm(i) on the critical manifold (where the unstable man-
ifold has been continued past two jumps using the singular flow).
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Appendix B: Parameters
The analysis in Sects. 3 and 4 uses the following numerical values for the parameters of
(1)

ε = 0.05, vl = –0.8, gl = 2,

gm = 4.4, am = –0.19, bm = 0.18,

gn = 8.0, an = –0.16, bn = 0.29,

gp = 2.0, ap = –0.5, bp = 0.3,

τ = 1.5.

(31)
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