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SUPPLEMENTARY NOTE 1: FURTHER NOTES
ON THE EXPERIMENTAL SETUP

Figure S1 shows a schematic of the overall experimen-
tal setup. Three laser systems are combined and sent to
the quantum dot (QD): a microwave-modulated Raman
laser system (Toptica DL Pro, ωR = 2π × 309300 GHz
), a resonant laser to perform spin readout and initial-
isation (Newport NF laser, ω1 = 2π × 310051.2 GHz),
and a second resonant laser to perform repump during
the nuclear-spin cooling process (MogLabs CatEye laser,
ω2 ≈ ω1 + δ, where δ compensates for a 100− 400 -MHz
shift in the transition frequency induced by the Raman
laser). Both the laser excitation and fluorescence collec-
tion are achieved using a confocal microscope with an
0.5-NA objective lens. A cross-polarised detection min-
imises reflected resonant laser light, and a grating sup-
presses Raman laser light from the collection.

FIG. S1. A schematic of the experimental setup. Three
continuous-wave lasers are passed through electro-optic mod-
ulators (EOMs) and acousto-optic modulators (AOMs) to
build pulse sequences. The Raman-laser EOM is controlled
by an arbitrary waveform generator (AWG). All other mod-
ulators are driven by delay generators, synchronised with the
AWG. The lasers are combined using beamsplitters (BSs) and
sent to a cryostat-housed QD device. Polarisation is con-
trolled using a series of linear polarisers (LPs) and a quarter-
wave plate (QWP), set such that the excitation is circularly
polarised at the QD. Reflected laser light is minimised using
a cross-polarised detection. A grating further suppresses the
Raman laser background. The filtered collection is sent to a
superconducting nanowire single-photon detector (SNSPD).

SUPPLEMENTARY NOTE 2: EFFECTIVE ESR
FREQUENCY

A QD in Voigt geometry has two excited states (|e〉
and |e′〉, split by the hole Zeeman splitting ωh), giving
rise to two paths for the Raman process [1]. These paths
interfere and the polarisation of the Raman beams, to-
gether with the phase-relationship between the optical
transitions, dictates the effective ESR Rabi frequency.
The Raman laser is circularly polarised thus driving
each arm of the Λ-systems with equal strength following
Ω = Ω2

L/(2∆L) where ΩL is the optical Rabi frequency
and ∆L = ∆±ωh/2 (∆ is defined in Figure 1 of the main
text). The two Raman processes add up yielding an ef-
fective ESR frequency Ω = Ω2

L/∆, in the limit ωh � ∆.

SUPPLEMENTARY NOTE 3: RABI
OSCILLATIONS

Decay of Rabi oscillations limited by spin decay

A resonantly driven 2-level system with a spin decay
process (Γ1) which depolarises the electron spin can be
described by the master equation:

ρ̇ = −i[ΩSx, ρ] + Γ1(L[S−] + L[S+])ρ, (1)

where Sx = 1
2 (|↑〉 〈↓|+ |↓〉 〈↑|), S+ = |↑〉 〈↓|, S− = |↓〉 〈↑|

and L(a)ρ = aρa†− 1
2{a
†a, ρ}. The time evolution of the

upper state population with the initial condition ρ↑↑(t =
0) = 1 is:

ρ↑↑(t) =
1

2
(1 + e−3/2Γ1t[cos

(
Ω̃t/2

)
− Γ1

Ω̃
sin
(

Ω̃t/2
)

]),

(2)
where Ω̃ =

√
4Ω2 − Γ2

1. Spin Rabi at ESR frequencies
Ω > 80MHz has a coherence limited by the extrinsic
laser-induced spin decay Γ1 � Ω, yielding a 1/e-time
(3/2Γ1)−1 and a Q factor ≈ 4Ω

3Γ1
.

Extraction of the 1/e time, Q factor and pulse fidelity

We measure Rabi oscillations as presented in Figure
S2, up to ESR pulse lengths of 790 ns. For each dataset
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FIG. S2. Rabi oscillations at a set of different Rabi frequencies, illustrating the three regimes of (i) low Rabi frequency (10 MHz,
top data), long decay time (ii) intermediate Rabi frequency (28, 49 MHz, 2nd and 4th data from top), very short decay time
(iii) high Rabi frequency (95 MHz, bottom data), short decay time, as detailed in the main text. Data at 39 MHz (middle
data) belong to a region in the nuclear spectral density where coupling is low. These data were used to extract the decay times
presented in the main text, where we measure up to a maximum pulse length of 790 ns.

we evaluate the visibility over a π-period and measure
the 1/e time, after which the visibility has decayed to
1/e of its initial value. The Q factor is the ratio between
this 1/e time and the π pulse time [tπ = 1/(2Ω)]. In
the high-power regime (Ω � ωznuc), where the decay of
the Rabi envelope is well-described by an exponential,
the fidelity of a π pulse is closely related to the Q factor

following fπ = 1/2(1 + e−
1
Q ). In the low-power regime

(Ω� ωznuc), the fidelity of a π pulse can be obtained from
fitting the Rabi oscillation to a two-level Bloch-equation
model where we carry an averaging over a Gaussian de-
tuning distribution of variance σOH = 4.8 MHz (Figure
S3). This two-level Bloch-equation model which includes
the Figure 2 mechanisms - (i) inhomogeneous broaden-
ing σ = 4.8 MHz and (iii) spin decay Γ1 = α‖Ω‖ with
α = 2.7× 10−2 - is used to fit the experimental spin tra-
jectory away from Hartmann-Hahn resonances [Figures
1(b), 3(a), 4(a), 4(b)].

Laser-induced spin decay

At Rabi frequencies above ∼ 80 MHz (beyond
the Hartmann-Hahn resonances), our decay envelope
and corresponding gate fidelity become limited by
laser-induced decay. At ∆ = 700 GHz, the decay is
∼ 102 times faster than the photon scattering rate
expected for ideal optical transitions (at our highest
ESR drive Ω ∼ 160 MHz, the photon scattering rate
is 2Γ0Ω2

L/∆
2
L ≈ 60 kHz, where Γ0 ∼ 140 MHz is the

optical linewidth). The identification of a laser-induced
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FIG. S3. Fidelity of ESR rotations at low Rabi frequencies.
The spin population can be reconstructed from a two-level
master equation model that accounts for nuclear-field inho-
mogeneities (black curve), yielding a π-pulse fidelity of ∼ 60%
at Ω ≈ 5 MHz and ∼ 80% at Ω ≈ 10 MHz.
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FIG. S4. Laser-induced spin relaxation as a function of input
laser power, where the purple (yellow) circles indicate a laser
detuning ∆ of 800 GHz (1600 GHz). The black line is a
linear fit to the data. The independence of relaxation rate
from detuning indicates that this process is unrelated to the
optical transitions of the QD.

spin decay is further supported by pump-probe mea-
surements presented in Figure S4, where we measure
the spin relaxation due to a detuned laser pulse (in the
absence of any EOM modulation). The spin-relaxation
rate increases linearly with the pulse power. If we
increase the detuning (from 800 GHz to 1600 GHz) but
keep the power constant, we observe the same decay rate.

In previous work, it was proposed that incoherent pro-
cesses such as trion dephasing led to the creation of ex-
cited state population [1]. However, the optical deco-
herence that has to be included to model the Rabi de-
cay in Figure 2 of the main text is incompatible with
the close-to-lifetime-limited linewidth measured in reso-
nance fluorescence. Phonons can also be ruled out both
theoretically (we estimate phonon-absorption to be 102-
times smaller than off-resonant photon-scattering) and
by our decay measurement (the exponentially suppressed
phonon absorption beyond kBT ≈ 80 GHz would lead to
very different decays at 800 GHz and 1600 GHz which is
not the case for the decay observed here). Lastly, in our
device, this laser-induced decay is even more pronounced
for hole spins (fπ ≈ 0.92 with ultrafast rotations or ESR
rotations). Our observation of a detuning-independent
laser-induced decay and qubit-dependent fidelities points
towards non-resonant processes occurring directly within
the ground-state manifold.

SUPPLEMENTARY NOTE 4: INTERACTIONS
WITH THE NUCLEAR-SPIN BATH

Non-Markovian master equation

The Hamiltonian describing the driven central electron
and the nuclear-spin bath, after a Schrieffer-Wolff trans-
formation that yields the effective low-energy dynamics
in the presence of lattice strain, is [2, 3],

H = He +Hn +Hhf +Hnc, (3)

where He describes the driven electron, Hn =∑
j ω

z
nucI

j
z + ∆j

Q(Ijz )2 describes the free evolution of the

nuclei, Hhf =
∑
j 2AjIjzSz is the low-energy part of the

hyperfine interaction and Hnc = −SzVn, with

Vn =
∑
j

AjBjQ
ωznuc

× {[(Ijx)2 − (Ijy)2] cos2 θj + [IjxI
j
z + IjzI

j
x] sin 2θj}

(4)

describes a non-collinear strain-induced hyperfine in-
teraction. Here, ωznuc is the nuclear Zeeman split-
ting, Aj , BjQ and (π2 − θj) are the hyperfine interac-
tion strength, the quadrupolar coupling strength and the
quadrupolar angle relative to the magnetic field for the
j’th nucleus, and ∆j

Q = BjQ(sin2 θj − 1
2 cos2 θj) is the as-

sociated quadrupolar energy shift. The Overhauser field,
∆ =

∑
j 2AjIjz is modelled as a quasi-static classical vari-

able [4] and is absorbed into He = ΩSx+∆Sz. This non-
interacting electron Hamiltonian can be diagonalised un-
der the unitary transformation H → H̃ = eiφSyHe−iφSy ,
where sinφ = Ω/Ω′, cosφ = ∆/Ω′ and Ω′ =

√
Ω2 + ∆2.

The transformed terms in the Hamiltonian are then
H̃e = Ω′Sz, H̃n = Hn, H̃nc = (Sx sinφ− Sz cosφ)Vn.

To obtain the reduced dynamics of the electron spin
density operator, ρ, we derive a quantum master equa-
tion, where the nuclear bath is traced out. When the sys-
tem is operated in the vicinity of the Hartmann-Hahn res-
onance, the most significant contribution to the dynam-
ics is expected to arise from the secular electron–nuclear
transitions generated by H̃nc. Therefore, to simplify the
analysis, we start out by removing the non-secular terms
therein, obtaining H̃ → 1

2 sinφ(S−V
+
n + S+V

−
n ), where

V +
n =

1

2

∑
j

Ajnc

[
(Ij+)2 cos2 θj + (Ij+I

j
z + IjzI

j
+) sin 2θj

]
,

(5)

Ajnc =
AjBj

Q

ωz
nuc

, V −n = (V +
n )† and S± = Sx ± iSy, Ij± =

Ijx ± iIjy are the electron- and nuclear-spin transition
operators. The corresponding non-Markovian time-
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convolutionless master equation for ρ is [5]

∂

∂t
ρ = −i[Ω′Sz, ρ]−

∫ t

0

dτ Trn[H̃nc, [H̃nc(−τ), ρ⊗ ρ0
n]]

(6)

where H̃nc(−τ) = e−i(H̃e+H̃n)τ H̃nce
+i(H̃e+H̃n)τ denotes

the interaction picture time evolution of H̃nc and ρ0
n is

the reference state of the nuclear bath. Following Ref. [6],
we assume that the nuclear reference state is factorisable
among the nuclei. Furthermore, we assume that the rele-
vant features contributing to the non-collinear processes
in the master equation, Eq. (6), can be described by a
thermal nuclear density operator at infinite temperature.
Under these assumptions, we arrive at the following mas-
ter equation for the electron spin,

∂

∂t
ρ(t) = −i[Ω′Sz, ρ(t)] + Γ(Ω′, t)(L(S+) + L(S−))ρ(t),

(7)

where the nuclear-induced Lamb shift has been neglected,
L(x)ρ = x†ρx− 1

2{xx
†, ρ} is the Lindblad dissipator and

Γ(Ω′, t) =
sin2 φ

4

1

π

∫
dωD(ω)

sin[(ω − Ω′)t]

ω − Ω′
(8)

is a time-dependent decay rate calculated from the spec-
tral density, D(ω) = D(1)(ω) + D(2)(ω), which contains
contributions from the nuclear processes changing the to-
tal nuclear polarisation by one or two units,

D1(ω) =
π

2

∑
j

(Ajnc sin 2θj)2

2Ij + 1

Ij−1∑
mj=−Ij

[M+(Ij ,mj)(2mj + 1)]2

× δ(ω − [ωznuc + (2mj + 1)∆j
Q]),

D2(ω) =
π

2

∑
j

(Ajnc cos2 θj)2

2Ij + 1

Ij−2∑
mj=−Ij

[M+(Ij ,mj)M+(Ij ,mj + 1)]2

× δ(ω − [2ωznuc + 4∆j
Q(mj + 1)]),

(9)

where M+(I,m) =
√
I(I + 1)−m(m+ 1) and Ij is the

total spin eigenvalue for the j’th nucleus. The next step
is to split the summation over nuclei into a summation

over nuclear species, s, such that D(i) =
∑
sD

(i)
s . For

each species, the total nuclear spin is constant, Ij = Is,
and the parameters (θ,BQ, A) =: ξ are described by a
statistical distribution over the nuclear ensemble, Ps(ξ),
for the given species, s. We then approximate the sum-
mation over nuclei in Eq. (9) as an integral over this dis-
tribution,

∑
j f

j
s ' Ns

∫
dξ Ps(ξ)fs(ξ), where Ns is the

number of nuclei of species s and f js is a general func-
tion of single-nucleus parameters of that species. Tak-
ing the distribution P (ξ) to be factorisable, Ps(ξ) =
ps,1(θ)ps,2(BQ)ps,3(A), we find

D(1)
s (ω) =

π

2

〈A2〉sNs
2Is + 1

Is−1∑
m=−Is

[M+(Is,m)(2m+ 1)]2

×
∫

dθ p1(θ)p2

[
ω − ωznuc

(2m+ 1)(sin2 θ − 1
2 cos2 θ)

]

×

(
(ω − ωznuc) sin 2θ

ωznuc(2m+ 1)(sin2 θ − 1
2 cos2 θ)

)2

×
∣∣∣∣(2m+ 1)

(
sin2 θ − 1

2
cos2 θ

)∣∣∣∣−1

D(2)
s (ω) =

π

4

〈A2〉sNs
2Is + 1

Is−2∑
m=−Is

[M+(Is,m)M+(Is,m+ 1)]2

×
∫

dθ p1(θ)p2

[
ω − 2ωznuc

4(m+ 1)(sin2 θ − 1
2 cos2 θ)

]

×

(
(ω − 2ωznuc) cos2 θ

4ωznuc(m+ 1)(sin2 θ − 1
2 cos2 θ)

)2

×
∣∣∣∣2(m+ 1)

(
sin2 θ − 1

2
cos2 θ

)∣∣∣∣−1

,

(10)

where
〈
A2
〉
s

=
∫

dAps,3(A)A2.
Transforming back to the Zeeman eigenbasis, the mas-

ter equation is

∂

∂t
ρ(t) =− i[∆Sz + ΩSx, ρ(t)]

+ Γ(Ω′, t){L(Sφ) + L(S†φ)}ρ(t),
(11)

where Sφ = Sx cosφ + iSy + Sz sinφ. Finally, we add
the terms Γ1(L(S+) + L(S−))ρ(t) and Γ2L(Sz) to the
master equation, where Γ1 is the extrinsic laser-induced
spin-decay process and Γ2 is the spin coherence decay
measured in Hahn-Echo, 1/(2.8 µs).

Parameter probability distributions

The probability distributions for the hyperfine and
quadrupolar coupling strengths, ps,2 and ps,3 are taken
Gaussian. The major quadrupolar axis distribution is
assumed to be symmetric around the QD growth axis,
characterised by a uniform distribution of the azimuthal
angle, ϕ′ and a Gaussian distribution for the polar angle,
θ′. The equivalent distribution for the θ-angle appearing
in Eq. (4) is obtained by rotating the coordinate system
around the magnetic field axis (the x-axis), such that the
quadrupolar angle is lying in the xz-plane. Denoting the
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Indium Arsenic

BQ (MHz) 1.29 3.7

σBQ (MHz) 0.45 1.5

θ′ (degrees) 17 15.2

σθ′ (degrees) 12 10

A (GHz/Ntot) 26.6/Ntot 20.8/Ntot

σA (GHz/Ntot) 26.6/Ntot 20.8/Ntot

N 18500 37000

TABLE S1. Summary of the nuclear parameters taken in
our model. To reduce the number of free parameters in our
model, we assume a QD composition of In0.5Ga0.5As, and
set the standard deviation of strain parameters to values
used previously in [7]. The parameters which are fitted to
the Hartmann-Hahn spectrum of this QD is the total num-
ber of nuclei (Ntot = 74000), the quadrupolar field BQ and
quadrupolar angle θ for Indium and Arsenic. The contribu-
tion of Gallium is neglected as its nuclear spectral density is
much smaller than that of Arsenic and Indium [7].

Gaussian polar probability distribution for the nuclear
species s by ps,p(θ′), the distribution for θ is found to be

ps,1(θ) =
1

π

∫ π−θ

θ

dθ′
ps,p(θ′) cos(θ) sin θ′√

sin2 θ′ − sin2 θ
, (12)

where θ is defined to be in the range [0, π].

Rabi decay rate

Due to the non-Markovianity of the electron-spin time
evolution, a decay rate of the Rabi oscillations is in princi-
ple not well-defined. However, the non-Markovian effects
are most strongly pronounced at short times, whereas in
the long-time limit, the system approaches the Marko-
vian limit. Effectively, the electron spin probes the spec-
tral density at the Rabi frequency during a finite time
window corresponding to the decay time. This can be
encoded into the calculation of the dynamics by employ-
ing a self-consistent Born-Markov approximation [8, 9].
Here, we implement such an approach by first writing the
Markov limit for the nuclear transition induced electron
decay rate,

ΓM(Ω′) =
1

4
sin2 φRe

[∫ ∞
0

dτ e−iΩ
′τ

∫ ∞
−∞

dω

2π
D(ω)eiωτ

]
.

(13)

Here, the exponential factor e−iΩ
′τ appears through the

free evolution of the electronic S± operators. In our self-
consistent Born-Markov approach, we encode the decay
of the electron spin into this correlation function, replac-
ing it by e−[iΩ′+γ(Ω′)]t. The damping rate, γ(Ω′), is then
determined self-consistently through an iterative process.
By replacing the free correlation function by the damped

one, we define a self-consistent Markovian decay rate,

ΓSCM(Ω′) =
sin2 φ

4
× 2 Re

[ ∫ ∞
0

dτ e−[iΩ′+γ(Ω′)]τ

×
∫ ∞
−∞

dω

2π
D(ω)eiωτ

]
=

sin2 φ

4

∫ ∞
−∞

dωD(ω)
1

π

γ(Ω′)

γ(Ω′)2 + (ω − Ω′)2
,

(14)

which describes a convolution of the spectral density with
a Lorentzian distribution. Furthermore, we also average
over the configurations of the Overhauser field, which is
taken as a Gaussian distribution with standard deviation
σOH, leading to the averaged decay rate

Γ̃SCM(Ω) =
1

4

∫
d∆

∫ ∞
−∞

dω
Ω2

∆2 + Ω2
D(ω)

× e−∆2/2σ2
OH√

2πσ2
OH

1

π

γ(Ω′)

γ(Ω′)2 + (ω − Ω′)2
.

(15)

To self-consistently determine Γ̃SCM(Ω) and γ(Ω′), we
start out by letting γ(Ω′) = 1

4D(Ω) + 3
2Γ1 + Γ2 and cal-

culate the first iteration of the decay rate, Γ̃
(1)
SCM(Ω). In

the next iteration, we set γ(Ω′) = Γ̃
(1)
SCM(Ω) + 3

2Γ1 + Γ2

and repeat this procedure until the iterative series has
converged.
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