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A Bayesian LSTM Model to Evaluate the Effects of Air Pollution Control 1 

Regulations in Beijing, China 2 

 3 

Abstract 4 

Rapid socio-economic development and urbanization have resulted in serious deterioration in 5 

air-quality in many world cities, including Beijing, China. This study attempts to examine the 6 

effectiveness of air pollution control regulations implemented in Beijing during 2008 – 2019 7 

through a data-driven regulatory intervention analysis. Our proposed Bayesian deep learning 8 

model utilizes proxy data including Aerosol Optical Depth (AOD) and meteorology as well as 9 

socio-economic data, while accounting for confounding effects via propensity score estimation. 10 

Our results show that air pollution control regulatory measures implemented in China and 11 

Beijing during 2008 – 2019 reduced PM2.5 pollution in Beijing by 11% on average. After the 12 

introduction of Action Plan for Clean Air in China and Beijing in late 2013, as compared to the 13 

hypothetical PM2.5 concentration (without any regulatory interventions), the estimated PM2.5 14 

reduction increased dramatically from 15% in 2015 to 44% in 2018. Our results suggest that 15 

Beijing’s air quality has improved gradually over the past decade, though the annual PM2.5 16 

pollution still exceeds the WHO threshold. In this regard, the air pollution control regulations 17 

introduced in Beijing and China tend to become more effective after 2015, suggesting a 2-year 18 

time lag before the stringent air pollution control regulations starting from 2013 takes any 19 

strong positive effects. Moreover, as compared to the air pollution control regulations 20 

introduced before 2013, newly introduced policy-making governance, which couples the 21 

policy-makings of the local jurisdictions with that of the central government, and the new 22 

policy measures that tackle the vested interests of the local stakeholders in Beijing and its 23 

nearby cities, alongside with the stringent local and national air pollution control regulations 24 

and plans, should help reduce air pollution and promote healthy living in Beijing over the 25 

longer term. 26 

 27 

Keywords: air pollution control regulations, effects of regulatory interventions, Bayesian 28 

LSTM, propensity score, counterfactual analysis, causal inference 29 

 30 

Highlights 31 

• Aerosol optical depth, meteorology, and socio-economic data are collected 32 

• A Bayesian deep-learning approach is proposed for regulatory intervention analysis 33 
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• Confounding effects are addressed by the propensity score estimation 34 

• Air pollution controls reduced PM2.5 in Beijing by 11% during 2008 – 2019 35 

 36 

1. Introduction 37 

Over the past few decades, rapid socio-economic development and urbanization have resulted 38 

in serious deterioration in air quality in Beijing, China. Air pollutants, especially PM2.5 39 

(particulates smaller than 2.5 micrometers in diameter), can lead to extremely detrimental 40 

health consequences, such as cancer, stroke, asthma, or heart disease (Pope III and Dockery, 41 

2006; Pui et al., 2014). To provide in a timely manner, the critical health advice for Beijing’s 42 

citizens based on scientific evidence, the introduction of real-time air pollution monitoring and 43 

reporting system in China has become increasingly crucial. Since April 2008, the US Embassy 44 

in Beijing has been publishing hourly PM2.5 readings based on its own monitors installed in the 45 

embassy building. In January 2013, Beijing officially launched a new air quality monitoring 46 

system. Since then, PM2.5 has been fully monitored by Beijing’s automatic monitoring network, 47 

with hourly air pollution concentrations released by Beijing’s Environmental Monitoring 48 

Center. A number of air pollution control regulations have been introduced by the government 49 

in China to control air pollution, with increasing stringency over the last two decades. Using 50 

Beijing as a case study, this study proposes a data-driven regulatory intervention analysis 51 

framework to study the causal relationship between air pollution control regulations and city-52 

level PM2.5 pollution concentration, based on available monitored air pollution data, proxy data 53 

including AOD and meteorology, and socio-economic data. The effects of air pollution control 54 

regulations in Beijing during 2008 – 2019 are evaluated. Our current work is an extension of 55 

an earlier work, which evaluates the effectiveness of air pollution control regulations in Beijing, 56 

China, during 2013 – 2017 (Han et al., 2018), by (1) adding socio-economic statistics in the 57 

input data, (2) taking account of the effective periods of air pollution control regulations, (3) 58 

extending the period of study to 2008 – 2019, and (4) reducing the confounding biases via 59 

propensity score estimation. The rest of the paper is organized as follows. Section 2 reviews 60 

related works. Section 3 discusses our collected data and proposed the methods for regulatory 61 

intervention analysis. Section 4 presents our experimental results, followed by discussions on 62 

limitations of study and future directions. Section 5 highlights the policy implications. Section 63 

6 concludes our study. 64 

 65 

2. Related Work 66 
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2.1 Machine-Learning for Causal Inference and Policy Evaluation 67 

Examining the causal effects from observational datasets has been a subject of serious attention 68 

in the fields of social science, policy, or medical science (Athey, 2017; Imbens and Rubin, 69 

2015). Numerous theories attempted to account for the cause of an outcome/event, with the 70 

counter-factual framework being widely recognized and adopted (Rubin, 2005). Under such 71 

framework, the causal relationship between X and Y can be re-formulated as a counter-factual 72 

question. For example, in order to test whether there is a causal relationship between X and Y, 73 

a question such as “If X had not occurred, what would Y be?” is raised. However, it remains a 74 

difficult challenge to determine the counter-factual outcome. For any unit at a given time point, 75 

only the factual (instead of the counter-factual) outcome of a specific intervention could be 76 

observed (Rubin, 2005). Confounding factors were considered as the major barrier for 77 

determining with confidence whether causal relationships exist across a set of examined 78 

variables in a big dataset (Pearl, 2018). A proper and rigorous solution is to resort to the 79 

randomized control trials (RCT) and perform statistical adjustments to reduce the confounding 80 

biases. RCT is the “gold standard” for evaluating the causal effects while controlling for any 81 

confounding variables. However, in many cases, it was an infeasible task due to high research 82 

cost and ethical constraints (Stolberg et al., 2004). Hence, traditional statistical techniques, 83 

such as matching, re-weighting, and propensity score, were proposed to reduce confounding 84 

bias in observational studies (Athey and Imbens, 2017). However, these traditional methods 85 

were usually based on low-dimensional linear modelling, and failed to capture the complex 86 

non-linear relationships identified from high dimensional datasets (Hartford et al., 2017).  87 

Advances in deep-learning have given rise to the remarkable success in overcoming 88 

many computational challenges that involve non-linear modelling of high dimensional data, 89 

such as natural language processing and computer vision (LeCun et al., 2015). However, these 90 

deep-learning models were mostly trained on datasets that carried noisy and unrepresentative 91 

big data (Caliskan et al., 2017), and often failed to account for the confounding effects when 92 

making causal inference (Marcus, 2018). As a result, spurious causations might occur and 93 

biased decisions made (Osoba and Welser IV, 2017). For supervised machine-learning 94 

algorithms, a fundamental shift from correlation analysis to causality analysis is needed to fully 95 

understand the causal relationship between an intervention (treatment or policy change) and an 96 

outcome. Recently, there has been a growing interest in using deep-learning models for causal 97 

inference and policy evaluation, based on techniques such as autoencoder (Atan et al., 2018) 98 

or variational autoencoder (VAE) (Louizos et al., 2017), propensity dropout (Alaa et al., 2017), 99 

propensity score estimation (Shi et al., 2019), domain adaptation (Shalit et al., 2017), multi-100 
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task learning (Alaa and van der Schaar, 2017), and generative adversarial network (GAN) 101 

(Yoon et al., 2018). These techniques aimed to improve the generalization ability of the models 102 

beyond observational data, and to reduce the confounding biases in high dimensional data. 103 

Moreover, since it is difficult to take into account all important confounders in counterfactual 104 

modelling, some other techniques, including the instrument variable (IV) method, were applied 105 

to the deep-learning models to control for any unobserved confounders, with additional 106 

assumptions taken (Hartford et al., 2017). 107 

2.2 Evaluation of Air Pollution Regulatory Interventions 108 

Many studies examined the effect of regulatory interventions on pollution concentrations in 109 

both the Chinese and the international context. Two major approaches, namely, (1) the 110 

environmental engineering approach and (2) the environmental economic approach, were 111 

adopted in these studies (Li et al., 2017d). The first approach provided an ex ante evaluation of 112 

policy impacts, by forecasting air qualities under different policy scenarios or constructing 113 

hypothetical air qualities in the absence of policy regulations, using physical and statistical 114 

modelling (Liu et al., 2012). The second approach performed an ex post evaluation of the causal 115 

effects of policy interventions, using experimental/quasi-experimental design and 116 

observational data, and methods such as difference-in-differences estimation (Chen et al., 117 

2013), regression discontinuity design (RDD) (Li et al., 2017d), and panel data regression 118 

(Zheng et al., 2015). However, both approaches had drawbacks. The first one was often 119 

constrained by high computational costs, complex process modelling, and high uncertainties in 120 

emission inventories (Li et al., 2017d; Liu et al., 2010). The second one often failed to model 121 

the complex relationship between air pollution and other confounders such as meteorology and 122 

time trends, account for the uncertainties in input data and model parameters, and establish the 123 

causal relationship only after controlling for the confounders (Ferraro, 2009; Henneman et al., 124 

2017). 125 

Rapid development in machine learning made the adoption of data-driven regulatory 126 

analysis possible, with applications in resource allocation and causal inference (Athey, 2017). 127 

Recently, deep-learning approaches achieved state-of-the-art performance in air pollution 128 

estimation and forecasting (Li et al., 2017b; Li et al., 2017c; Ong et al., 2016), including PM2.5 129 

estimation, utilizing satellite-based Aerosol Optical Depth (AOD) as proxy data (Li et al., 130 

2017a). However, in studies such as Li et al. 2017a, the temporal correlation between PM2.5 131 

pollution concentration and AOD is yet to be fully exploited by the neural network structure. 132 

Moreover, deep learning can still suffer from limited data source and low data quality when 133 

compared to other machine-learning techniques. Incorporating the Bayesian approach into deep 134 
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learning can reduce network overfitting due to data sparsity and noise, and provide uncertainty 135 

measure for the prediction (Gal, 2016). However, a data-driven approach is yet to be applied 136 

to accurately estimate the counter-factual effects of air pollution regulatory interventions on air 137 

pollution outcomes, while accounting for the confounding biases. 138 

 139 

3. Data and Method 140 

This study proposes a machine-learning framework to provide counter-factual inference and 141 

evaluate the effects of air pollution regulatory interventions. The problem setup is similar to 142 

previous studies where potential outcome frameworks were adopted for causal inference (Alaa 143 

and van der Schaar, 2017; Atan et al., 2018). Differing from previous studies, our work focusses 144 

more specifically on evaluating the aggregate effect of multiple air pollution regulatory 145 

interventions. For each daily observation, there is a corresponding regulatory intervention state, 146 

which falls into two potential outcomes: the first potential outcome is a regulatory state where 147 

all regulatory interventions have been implemented as planned, whilst the second potential 148 

outcome is a regulatory state where no regulatory intervention has been implemented. Our goal 149 

is to learn how each feature-intervention pair is mapped to its corresponding factual outcomes, 150 

based on the observational air pollution samples collected during the period of study. Once the 151 

mapping model is trained, given an observed sample of air pollution outcomes after a group of 152 

regulatory interventions has been implemented, the counter-factual outcomes can be estimated 153 

for the scenario when the equivalent regulatory interventions are not implemented. Moreover, 154 

to estimate the causal effects of regulatory interventions, we follow the un-confoundedness 155 

assumption made in the potential outcome framework (Wooldridge, 2000). We assume that all 156 

important confounders that can potentially affect the regulatory interventions and the air quality 157 

outcomes have been taken into account in our model, and the confounding biases can be 158 

addressed via the propensity score estimation. Our proposed Bayesian deep learning policy 159 

intervention framework consists of four components, covering, data collection, data pre-160 

processing, model training, and regulatory intervention analysis (see Figure 1). 161 

 162 

[Insert Figure 1 about here] 163 

 164 

3.1 Data Collection 165 

We collected data consisting of air quality, AOD, meteorology, socio-economic, and air 166 

pollution regulatory measures from 2008 to 2019 (see Table 1 for a summary of data sources). 167 

 168 
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[Insert Table 1 about here] 169 

 170 

3.1.1 Air Quality Data 171 

We collected hourly PM2.5 concentration data recorded at the US Embassy, Beijing from 9 172 

April 2008 to 31 December 2019 (US Department of State, 2020). Only PM2.5 observations 173 

with the quality control label “Valid” were included. Hourly PM2.5 data were aggregated to 174 

daily means. Given that official PM2.5 concentration data had not been available until 2013, air 175 

pollution observations at the US Embassy, Beijing for city-level PM2.5 pollution concentrations 176 

in Beijing during the study period were used as the ground truths. Existing studies showed that 177 

Beijing’s city-level PM2.5 concentrations was highly correlated with PM2.5 concentrations 178 

observed at the US Embassy, Beijing. Hence, it was reasonable to assume that the readings 179 

reported by the US Embassy can be used to represent the level of air-quality throughout the 180 

city in Beijing (Wang et al., 2013). To further examine the representativeness of the US 181 

Embassy PM2.5 data, we collected official hourly station-level PM2.5 concentration data from 1 182 

January 2014 to 31 December 2019 using the data source provided in Zhang et al. (2019), and 183 

examined the correlation between the daily average PM2.5 concentrations measured at the US 184 

Embassy, Beijing and the daily city-level average PM2.5 concentrations measured at the 35 185 

official stations in Beijing during 2014 – 2019. Result showed that the two measurements were 186 

highly correlated (R2=96.2%; see Figure 2). 187 

 188 

[Insert Figure 2 about here] 189 

 190 

3.1.2 Proxy Data (AOD and Meteorology) 191 

Previous studies showed that AOD and meteorology data can be incorporated into the statistical 192 

modelling to examine the effects of regulatory interventions on air pollution concentrations in 193 

Beijing (Liu et al., 2012). Our study had incorporated the AOD data into our statistical 194 

modelling.  AOD observations at the city level were collected from the NASA MODIS satellite 195 

database from 26 March 2008 to 21 March 2019 (US NASA, 2020). Five features were selected 196 

based on data availability during the period of study, including AOD at 1020 nm, AOD at 870 197 

nm, AOD at 675 nm, AOD at 440 nm, and precipitable water. AOD data points observed each 198 

day were aggregated into daily means. In addition, hourly city-level meteorology data, 199 

including temperature, relative humidity, wind speed, wind bearing, and visibility, across the 200 

period from 1 January 2008 to 31 December 2019, were collected from a weather data 201 
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application program interface (API), based on the official data sources (Apple Inc., 2020). 202 

Hourly meteorology data were aggregated to daily means. 203 

3.1.3 Socio-economic Data 204 

Previous studies showed that socio-economic data can be used as control variables to model 205 

statistically the effects of regulatory interventions on air pollution concentrations at the 206 

provincial-level in China (Zheng et al., 2015). In this study, we collected the yearly socio-207 

economic statistics including the percentage of GDP generated from the secondary sector, the 208 

population density, and the number of vehicles, during the period of 2008 to 2019 (Beijing 209 

Municipal Bureau of Statistics, 2020; Beijing Transport Institute, 2020). 210 

3.1.4 Regulatory Measures Data 211 

We identified major air pollution control regulations at the city- or the national-level during 212 

the period of 2008 to 2019 (DieselNet, n.d.; Lam et al., 2019; Zhang et al., 2016). These 213 

regulations were directly responsible for air pollution prevention and control in Beijing/China, 214 

with a strong focus on the energy and transportation sectors, including emission controls on 215 

the coal-fired power plants and the industrial facilities and vehicles, emission standards on cars 216 

and light trucks, optimization of energy structures and traffic systems, technological 217 

innovations of clean environment, emergency plans for high pollution episodes, and legal 218 

responsibilities. Some were updated during the period of study, including, the Air Pollution 219 

Prevention and Control Law in China (see Figure 3). 220 

 221 

[Insert Figure 3 about here] 222 

 223 

3.2 Data Preprocessing 224 

The daily air quality data and the daily proxy data were combined to generate a tabular dataset, 225 

ranging from 9 April 2008 to 21 March 2019. The dataset was pre-processed for model training, 226 

validation, and evaluation. The data pre-processing procedure was listed as follows. First, a 227 

random 80/10/10 split of the data was used as the training set, the validation set, and the test 228 

set. Second, each dataset was converted into the input/output pairs. The input data consisted of 229 

two parts: a vector representing the historical daily proxy data (including AOD and 230 

meteorology) of the current day and the previous days, and a binary vector representing the 231 

current status of regulatory interventions. To account for the socio-economic variation, the 232 

corresponding yearly statistics were included in the input vector. To account for the unobserved 233 

time trends and recurrent effects, the month and the day of the week were included as the 234 

categorical features in the input vector. The output was a continuous value representing the 235 
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corresponding city-level daily PM2.5 concentration (i.e., PM2.5 concentration observed at the US 236 

Embassy, Beijing). Then, missing data was filled in via iterative imputation (Buuren and 237 

Groothuis-Oudshoorn, 2010). To avoid any potential information leakages, the iterative 238 

imputer was constructed based on the training set, which was subsequently used to impute the 239 

validation and test datasets. Next, each input feature (except for the time trend) in the training 240 

set was standardized according to its mean and standard deviation; which were then used to 241 

standardize the corresponding feature of the validation and the test datasets. Finally, the data 242 

pre-processing procedure was repeated five times. Eventually, five datasets for model training, 243 

validation, and test were constructed from five random data splits. 244 

3.3 Model Training 245 

The pre-processed data was fed into a Bayesian deep learning model for training. During the 246 

period of study, the covariate data at day 𝑡 was denoted as 𝑥!. The input data for day 𝑡 consisted 247 

of the observations over the past 𝐿 + 1 days (including the current day 𝑡) and the time trend: 248 

𝑋! = {𝑥!"# , … , 𝑥! , Month! , Day	of	week!}. The regulatory status vector at day 𝑡 consisted of 249 

the status of 𝐾 regulatory interventions 𝐼! = {𝐼!$, …, 𝐼!%}, e.g., {Regulation 1 is implemented, 250 

Regulation 2 is not implemented, …, Regulation 𝐾 is not implemented} (see Figure 3 for the 251 

effective periods). We used zero or one to indicate the status of a particular regulatory 252 

intervention 𝐼!% , namely, one for “is implemented” and zero for “is not implemented”. The 253 

output 𝑦! was the observed city-level air quality (i.e. PM2.5 concentrations observed at the US 254 

Embassy, Beijing). The proposed framework had two potential outputs, the first one 255 

corresponded to 𝐼!, where all regulatory interventions are implemented as planned, while the 256 

second one corresponded to a regulatory state where no regulatory interventions are 257 

implemented.	A Bayesian deep-learning model with network structure 𝑓 and parameters 𝜃 was 258 

denoted as 𝑓& . During the study period of length 𝑇 , given the input 𝑋! , the regulatory 259 

intervention status 𝐼!, and the output 𝑦! = 𝑓(𝑋! , 𝐼!), we aimed to estimate the counter-factual 260 

output 	𝑦!B = 𝑓(𝑋! , 𝟎). The model 𝑓& aimed to find the optimal posterior distribution of the 261 

network weight parameters 𝜃, given the observed tuples {(𝑋! , 𝐼! , 𝑦!)}!'$!'(. To better address the 262 

confounding effects, a shared representation layer was used (1) to predict air quality based on 263 

the covariate and the regulatory intervention status and (2) to predict regulatory intervention 264 

status from the covariates (i.e., the propensity score estimation). By incorporating the 265 

propensity score estimation model into the proposed framework, the input features relevant for 266 

confounding effects could be distilled automatically (Shi et al., 2019). More specifically, we 267 

focussed on the Bayesian RNN, which is a particular type of Bayesian deep learning model 268 
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capable of modelling time-series data (Fortunato et al., 2017). We used LSTM as the recurrent 269 

unit of the network. A Bayesian embedding layer was used to map the time trend vector into a 270 

vector of continuous values (Yi et al., 2018). Another Bayesian embedding layer was used to 271 

map the regulatory status vector to a vector of continuous values (Pham et al., 2017). Two 272 

Bayesian fully connected linear layers were utilized. One Bayesian fully connected linear layer 273 

was used to predict	𝑦!, while the other Bayesian fully connected linear layer followed by a 274 

sigmoid function, was used to predict 𝐼! (Shi et al., 2019). Both of them were based on the 275 

shared representation, which consisted of three parts, the final hidden state of Bayesian LSTM 276 

(ℎ!), the embedded time trend (𝑒!$), and the embedded regulatory intervention status (𝑒!)). 277 

Conceptually, our proposed model was as follows: 278 

 279 

ℎ! = Bayesian-LSTM(𝑥! , ℎ!"$)    (1) 280 

𝑒!$ = Bayesian-Embedding(Month! , Day	of	week!)    (2) 281 

𝑒!) = Bayesian-Embedding(𝐼!)    (3) 282 

𝑦! = Bayesian-Linear(ℎ! ,	𝑒!$, 𝑒!))    (4) 283 

𝐼! 	= Sigmoid(Bayesian-Linear-Propensity-Score(ℎ! ,	𝑒!$, 𝑒!)))    (5) 284 

 285 

To train our proposed model, we followed the work done by Blundell et al. (2015); Fortunato 286 

et al. (2017). In the network, each weight parameter was a random variable with a Gaussian 287 

mixture prior, and the weight at each time step had the same distribution. A diagonal Gaussian 288 

distribution was used as the variational posterior distribution, which is often computationally 289 

tractable and numerically stable, assuming that the network weights were uncorrelated. The 290 

loss function of the proposed model consisted of three components. The first part was the Mean 291 

Squared Error (MSE) loss calculated by the predicted and the observed air quality values, 292 

which is the most commonly used loss for predicting continuous values. The second part was 293 

the Binary Cross Entropy (BCE) loss calculated by the predicted and the observed regulatory 294 

intervention status, which is often used for multi-label classification. The BCE loss enforced 295 

the learned shared representation layer to account for the propensity score estimation, in order 296 

to address the confounding effects. The third part was the Kullback–Leibler (KL) divergence 297 

between the posterior and the prior distribution, which is a regularization term to penalize 298 

model overfitting. Bayes by Backprop was adopted to update the weight parameters of the 299 

network while minimizing the loss function, given the observed inputs (see Algorithm 1). The 300 
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proposed model was trained via the shuffled mini batches, using a stochastic gradient descent 301 

(SGD) optimizer. 302 

________________________________________________________________ 303 

Algorithm 1. Bayesian LSTM Model Training via Bayes by Backprop 304 

Require: training data 𝐷 = {(𝑋! , 𝐼! , 𝑦!)}!'$!'(, epoch size 𝐸, batch size 𝐵, and learning rate 𝛼 305 

For epoch from 1 to E 306 

  Repeat 307 

  1. Sample a mini batch of size 𝐵 from the training data 𝐷 without replacement 308 

  2. Sample 𝜀	~	Gaussian(0, 𝐼), where 𝐼 is the identity matrix 309 

  3. Set network parameters 𝜃 = 𝜇 + 𝜎𝜀, where 𝜇 and 𝜎 are the mean and  310 

      standard deviation, respectively 311 

  4. Compute the gradients of MSE loss plus BCE loss  312 

      with respect to 𝜃 using normal back-propagation: 𝑔&#  313 

  5. Compute the gradients of 𝐹(𝜇, 𝜎, 𝜃) = log Gaussian(𝜇, 𝜎)) − log 𝑝(𝜃) with  314 

      respect to 𝜇, 𝜎, 𝜃: 𝑔*+ , 𝑔,+ , 𝑔&+, where 𝑝(𝜃) is the Gaussian mixture prior  315 

  6.  Update 𝜇 = 	𝜇 − 𝛼 -!
".-!

#.-$#

/
 316 

  7.  Update 𝜎 = 	𝜎 − 𝛼 -!
"0.-!

#0.-%#

/
 317 

  Until all mini-baches are sampled 318 

End 319 

Return fitted network model 𝑓& 320 

________________________________________________________________ 321 

During the model training, the tuning hyper-parameters took into account the number of lagged 322 

observations (0 or 7; 0 indicated that no lagged observations were used, while 7 indicated that 323 

the past one week data was used for prediction), the embedding dimension of the regulatory 324 

intervention status vector (3 or 5), the number of hidden units used in the neural network (128 325 

or 256), the batch size (32 or 64). For each data split (including the training, the validation, and 326 

the test dataset), the best hyper-parameters were selected based on the validation MSE. 327 

Moreover, the fixed hyper-parameters included the number of training epochs (30), the learning 328 

rate (0.01), the number of recurrent layers (1), the embedding dimension of the time trend 329 

vector (3; based on a configuration used by Yi et al. (2018)), the prior distribution of the 330 

Bayesian deep-learning model ( 𝜋  = 0.25, −log𝜎$  = 0, and −log𝜎)  = 6; based on a 331 

configuration used by Blundell et al. (2015)). 332 
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3.4 Regulatory Intervention Analysis 333 

After the model training, counter-factual outcomes, in the absence of regulatory interventions, 334 

were predicted to quantify the net effects of regulatory intervention, based on the fitted model 335 

𝑓&. More specifically, for each data split 𝑗, the regulatory intervention analysis was performed 336 

according to the following steps. First, a random sample was drawn from the posterior of the 337 

network weight parameters to obtain a model 𝑓&&,(. Next, the corresponding regulatory status 338 

vector was constructed with the hypothesis that no regulatory intervention was implemented 339 

and represented by a vector of zeros. Such hypothetical regulatory intervention status vector, 340 

after combining with the covariate data 𝑋! ,	 were used to re-estimate PM2.5 concentration using 341 

model 𝑓&&,(. This was repeated 𝑁 times, such that the mean of PM2.5 re-estimations could be 342 

calculated to account for the uncertainties of the model parameters (Kendall and Gal, 2017). 343 

During the study period of length 𝑇 (2008 – 2019 or a particular year such as 2017), the final 344 

estimation of PM2.5 concentrations on day 𝑡 and the average regulatory effect (ARE) were 345 

calculated by the following equations: 346 

 347 

𝑦e!
1,3=	E[𝑓&&,((𝑋! , 𝟎)]			 (6) 348 

ARE1,3 = 𝑦e − 𝑦 = E!∈(j𝑦e!
1,3k − E!∈([𝑦!]    (7) 349 

 350 

where 𝜃1,3 was the 𝑖th sample from the network weights posterior  trained on the 𝑗th data split, 351 

𝑖 ranged from 1 to 𝑁, 𝑗 ranged from 1 to 5, 𝑇 was in the ex post evaluation period, 𝑦! and 	𝑦!	B  352 

were the observed and counter-factual air quality, respectively, and 𝑋! is the covariate data. 353 

The number of posterior samples 𝑁 was set to 100, in order to obtain a reasonable estimation 354 

of the re-estimated air quality values. Note that the regulatory intervention analysis was 355 

performed for five times, using the models trained across different data splits. Finally, given 356 

that the air quality values may not follow a Gaussian distribution (see Figure 2), the final 357 

estimation of ARE with 95% confidence interval (CI) was calculated based on bootstrapping. 358 

More specifically, a list of ARE values of length 5 ∗ 𝑁  was resampled from 359 

{ARE$,$,ARE),$, … ,ARE5,6}  with replacement, the resampled mean was subsequently 360 

calculated. This was repeated 10,000 times, and the 250 percentiles and the 9,750 percentiles 361 

of the resampled means were selected as the lower and the upper bound of the ARE during the 362 

study period, respectively.  363 

 364 
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4. Results 365 

4.1 Baseline Selection and Model Evaluation 366 

Previous research suggested that non-linear relationship might exist between PM2.5 pollution 367 

concentration and other covariates data (Han et al., 2018). Hence, in our experiment, two non-368 

linear machine-learning models, namely, Support Vector Regression (SVR) and Random 369 

Forest (RF), were selected as the baseline models. We used Mean Absolute Error (MAE) and 370 

Mean Absolute Percentage Error (MAPE) for model evaluation and comparison. For Bayesian 371 

LSTM, we fine-tuned the hyper-parameters as listed in Section 3.3. For SVR, we fine-tuned 372 

three hyper-parameters, including the lagged observations (0 or 7), the kernel function 373 

(polynomial function or radial basis function) and the penalty parameter of the error term (0.1, 374 

1, or 10). For RF, we fine-tuned four hyper-parameters, including the lagged observations (0 375 

or 7), the number of estimators (10 or 100), the maximum depth of the tree (1, 16, or 32), and 376 

the maximum number of features (n, sqrt(n), or log2(n), where n is the number of features). 377 

Finally, the models with the lowest MSE on the validation set were selected as the final models 378 

for further analysis. 379 

The performance of the proposed model and the baseline models are shown in Table 2. 380 

Results have clearly revealed that the Bayesian LSTM model outperforms the baseline models. 381 

On the test set, the mean MAE of the proposed model is 20.3, while the mean MAE of the SVR 382 

and RF model are 22.1 and 22.4, respectively. The mean MAPE of the proposed model is 383 

36.8%, while the MAPE of the SVR and RF model are 38.8% and 46.9%, respectively. 384 

Moreover, the standard deviation of the proposed model’s performance is also the lowest as 385 

compared to the baseline models. This suggests that our proposed model can give a much better 386 

prediction of the out-of-sample data as compared to traditional machine-learning techniques, 387 

across different training/validation/test data splits. Note that the absolute/relative error rates of 388 

the proposed model remain high, partly due to the fact that some features inputs (which were 389 

irrelevant to the causal relationships according to the propensity score estimation) were 390 

considered as noise for air quality estimation. However, the causal estimation of ARE can be 391 

improved through such a trade-off between predictive accuracy and propensity score estimation 392 

(Shi et al., 2019). 393 

 394 

[Insert Table 2 about here] 395 

 396 

4.2 Regulatory Intervention Analysis 397 
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We used the final fitted Bayesian LSTM models across different data splits to estimate/simulate 398 

the average counter-factual air quality, based on the assumption that all regulatory interventions 399 

were not implemented, in order to examine the ARE of all regulatory interventions during 2008 400 

– 2019. Figure 4 shows that the observed monthly average daily air quality and simulated 401 

monthly average daily air quality without any regulatory interventions during 2008 – 2019. 402 

The average of observed daily PM2.5 concentration was 86 µg/m3 during 2008 – 2019. Had the 403 

same set of regulatory interventions not been implemented before 2008, the hypothetical 404 

average daily PM2.5 pollution would be 97 µg/m3 (95% CI: 96 µg/m3 to 99 µg/m3). The average 405 

intervention effect of all regulatory interventions was 11 µg/m3 (95% CI: 10 µg/m3 to 13 µg/m3). 406 

This implies that the aggregate effect of all air pollution regulatory interventions implemented 407 

during this period can lead to a 11% reduction in PM2.5 pollution concentration on average. 408 

Based on Eq. (7), the relative reduction was calculated as ARE	/	𝑦e, where 𝑦e is the hypothetical 409 

average daily PM2.5 pollution. 410 

 411 

[Insert Figure 4 about here] 412 

 413 

Table 3 shows the observed yearly average daily air quality and simulated yearly average daily 414 

air quality without any regulatory interventions during the period of study. Results have shown 415 

that the estimated PM2.5 reduction due to the implementation of the set of air pollution 416 

regulatory interventions implemented during the 2008 – 2019 period on average was not as 417 

significant as expected on average (11%), even when a series of stringent air pollution control 418 

regulations and plans have been introduced during the period (see Figure 2). However, after 419 

the introduction of Action Plan for Clean Air in China and Beijing in late 2013, the estimated 420 

PM2.5 reduction increased dramatically from 2% in 2014 to 15% in 2015. After 2015, the 421 

estimated PM2.5 reduction increased up to 44% in 2018, and dropped to 37%1 in 2019. 422 

 423 

[Insert Table 3 about here] 424 

 425 

4.3 Limitations of Study and Future Work 426 

There are some limitations in our current study. First, the interpretability of the proposed 427 

Bayesian deep-learning framework for policy evaluation can be improved. Although the 428 

 
1 This only covers the data in the first quarter of 2019. We expect the average improvement would be changed 
(would likely be increased) when the full year data is incorporated into our model. 
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confounding variables have been addressed in the proposed model by incorporating a 429 

propensity score estimation layer, it remains difficult to understand which variables have 430 

contributed most to the confounding biases and the causal relationships, and when/where the 431 

proposed model works better as compared to the traditional statistical methods for policy 432 

evaluation (such as propensity score estimation using a logistic linear regression model). Future 433 

work can focus on an interpretable machine-learning framework for policy evaluation. Second, 434 

our study only examines the aggregate effect of air pollution control regulations and plans 435 

during the period of study. More sophisticated analysis is needed to understand the individual 436 

effect of a particular regulatory intervention on air quality, and over a particular sector. Third, 437 

the proxy data is still very limited. Additional data, such as satellite images and industrial 438 

outputs published by the government’s statistical bureau, can be included in the regulatory 439 

analysis to improve the accuracy of policy evaluation. Finally, this study only uses a single-440 

point PM2.5 monitor data. Given that the air quality can vary across different parts of Beijing, 441 

in future work, more fine-grained air quality data obtained from the 35 official stations can be 442 

used to evaluate the effects of air pollution regulatory interventions since 2013. 443 

 444 

5. Policy Implications 445 

Evaluating the effects of air pollution control regulations has significant implications for 446 

environmental policy-makings in China and the rest of the world. We have identified two major 447 

policy implications with regard to our proposed Bayesian deep-learning policy intervention 448 

study methodology and results. First, our proposed data-driven regulatory analysis 449 

methodology can estimate the aggregate effects of air pollution control regulations and plans 450 

with reduced confounding biases and higher accuracies, when compared to other machine-451 

learning techniques. Hence, our model can provide the needed evidence to support evidence-452 

based air pollution policy-makings. For instance, the governments can perform ex post 453 

evaluation on air pollution control regulations to test the effectiveness of the regulations they 454 

implemented based on our model. Second, though the annual PM2.5 pollution concentration in 455 

Beijing remains far beyond the WHO threshold (10µg/m3), our results suggest that Beijing’s 456 

air quality has been improved gradually over the past decade (11% improvement on average; 457 

see Table 3). The air pollution control regulations implemented during 2008 – 2019 tend to be 458 

more effective after 2015, i.e., after the air pollution control laws in Beijing/China have been 459 

further revised and stringent air pollution control action plans have been implemented in 460 

Beijing/China since 2013 (see Figure 3 and Table 3). This suggests that there is a 2-year time 461 

lag before the stringent air pollution control regulations in Beijing/China taken any strong 462 
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positive effects. As compared to the regulatory interventions introduced before 2013, policy-463 

makings that coordinate that of the local jurisdictions and the central governments (such as the 464 

guidelines on air quality monitoring and law enforcement introduced by provincial authorities, 465 

effective in 2016), and laws and policies that tackle the vested interests of the local stakeholders 466 

in Beijing and neighbouring cities (such as the joint action plan for air pollution control in 467 

Beijing-Tianjin-Hebei Region, effective in 2013), alongside with the stringent air pollution 468 

control regulations and plans, can help reduce air pollution and promote healthy living in 469 

Beijing over the longer term (Lam et al., 2019). 470 

  471 

6. Conclusion 472 

This study extends our previous work on modelling the effects of air pollution control 473 

regulations (Han et al., 2018), to investigate the effectiveness of existing and newly introduced 474 

air pollution control regulations in Beijing, China during 2008 – 2019, using a Bayesian deep-475 

learning approach. Our approach can model the complex relationship between PM2.5 pollution 476 

concentrations and other confounding factors that potentially affect PM2.5 pollution 477 

concentrations, better address the confounding effects in policy evaluation, and predict the 478 

hypothetical PM2.5 pollution concentrations in the absence of any regulatory interventions 479 

(MAE=20.3; MAPE=36.8%). Results of our novel Bayesian deep learning regulatory 480 

intervention analysis show that the PM2.5 pollution concentrations in Beijing were reduced by 481 

11% on average, due to the aggregate effects of all regulatory interventions implemented 482 

during the period of 2008 – 2019. Moreover, after the introduction of Action Plan for Clean 483 

Air in China and Beijing in late 2013, as compared to the hypothetical PM2.5 concentration 484 

(without any regulatory interventions), the estimated PM2.5 reduction increased dramatically 485 

from 15% in 2015 to 44% in 2018. In the future, more relevant data should be collected, and 486 

more advanced machine-learning methods can be used to improve the interpretability of our 487 

proposed model and provide more fine-grained estimation of the regulatory effects in China 488 

and elsewhere. 489 
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 619 

Table 1. Data source 620 

Data Resolution Variable Source 

Air quality Hourly station-level 

(aggregated into 

daily means) 

PM2.5 concentrations (ug/m3) US Department of 

State (2020) 

Meteorology Hourly city-level 

(aggregated into 

daily means) 

Temperature, relative 

humidity, air pressure, wind 

speed, wind bearing, and 

visibility 

Apple Inc. (2020)1 
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AOD All city-level 

observations per day 

(aggregated into 

daily means) 

AOD at 1020 nm, AOD at 

870 nm, AOD at 675 nm, 

AOD at 440 nm, and 

precipitable water (cm) 

US NASA (2020) 

Socio-

economic 

Yearly Population density 

(population per km2), 

percentage of GDP generated 

from the secondary sector, 

and the number of vehicles 

Beijing Municipal 

Bureau of 

Statistics (2020), 

Beijing Transport 

Institute (2020) 

Notes 

1. The weather data application program interface (API) no longer accepts new signups 

(Apple Inc., 2020). The historical meteorology data in Beijing can also be downloaded 

from the US’s National Climatic Data Center (US NOOA, 2020). 

 621 

Table 2. Comparison of the performance between Bayesian deep-learning and other baseline 622 

air pollution regulatory intervention models based on the test set 623 

Model MAE1 MAPE1 

SVR 22.1 (1.6) 38.8% (3.4%) 

RF 22.4 (1.7) 46.9% (4.9%) 

Bayesian LSTM 20.3 (0.6) 36.8% (1.8%) 

Notes 

1. Standard deviation is shown in parenthesis. 

 624 

Table 3. Annual PM2.5 reduction due to local and national air pollution control regulations 625 

implemented in Beijing, China 626 

Year Observed 

PM2.5 (µg/m3) 

Simulated 

PM2.5 (µg/m3) 

PM2.5 

reduction 

(µg/m3) 

Relative 

reduction  

of PM2.5 

2008 92 96 4 4% 

2009 102 99 -3 -3% 

2010 104 100 -4 -4% 

2011 98 99 1 1% 

2012 91 98 7 7% 
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2013 101 101 0 0% 

2014 98 100 2 2% 

2015 82 97 15 15% 

2016 73 96 23 24% 

2017 59 94 35 37% 

2018 51 91 40 44% 

2019 58 92 34 37% 

2008 – 2019 86 97 11 11% 

 627 
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 628 

Figure 1. The overall framework of our proposed Bayesian deep-learning regulatory 629 

intervention analysis 630 
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 631 

 632 

Figure 2. Correlation between the daily PM2.5 concentrations monitored at the US Embassy, 633 

Beijing and the daily city-level average PM2.5 concentrations monitored at the 35 official 634 

stations in Beijing, 2014 – 2019 635 
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 636 

Figure 3. Timeline of air pollution control regulations implemented in Beijing/China during 637 

2008 – 2019 638 
 639 

 640 

Figure 4. The monthly trend of observed PM2.5 pollution concentrations (with regulatory 641 

interventions) and simulated PM2.5 pollution concentrations (without any regulatory 642 

interventions) during 2008 – 2019 643 

 644 

Guidelines on Vertical Integration and 
Reform for Monitoring of Law 
Enforcement of Environmental Protection 
Units under Provincial Governance

22/9/2016 -

Action Plan for Air Pollution Prevention and Control in Beijing-
Tianjin-Hebei Region

17/9/2013 -

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Environmental Protection Law in China

26/12/1989 - 31/12/2014
Environmental Protection Law in China (first revision)

1/1/2015 -
Air Pollution Prevention and Control Law in China (second revision)

01/09/2000 - 31/12/2015 Air Pollution Prevention and Control 
Law in China (third revision)

1/1/2016 - 25/10/2018 Air Pollution Prevention 
and Control Law in China 
(fourth revision)

26/10/2018 -
Air Pollution Prevention and Control Law in Beijing

01/01/2001 - 28/02/2014
Air Pollution Prevention and Control Law in Beijing (first revision)

1/3/2014 - 29/3/2018 Air Pollution Prevention 
and Control Law in 
Beijing (second revision)

30/3/2018 -China 4 Emission Standard Cars and Light Trucks in Beijing

1/3/2008 - 31/1/2013
China 5 Emission Standard Cars and Light Trucks in Beijing

1/2/2013 - 31/12/2019
Action Plan for Clean Air in China

10/9/2013 -
Action Plan for Clean Air in Beijing

11/9/2013 -


