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Abstract

Stably stratified shear flows, in which a less dense layer of fluid lies above and moves counter to a
more dense layer below, are ubiquitous in geophysical fluid dynamics. These are often found to be
unstable if the non-dimensional Richardson number Ri, quantifying the strength of stratification to
shear, is sufficiently low. This is of particular importance in oceanography, where shear instabilities
are conjectured to be important in the generation of turbulence in the deep ocean, an area of huge
uncertainty in contemporary climate models. The Miles-Howard theorem tells us that for a steady,
inviscid, parallel shear flow, if the local Richardson number is everywhere greater than one quarter,
the flow is stable to infinitesimal perturbations. Though an important result, the strong restrictions in
the applicability of this theorem mean care must be used when applying the criterion of Ri > 1/4 for
stability. This thesis explores some of these limitations, beginning with an overview in chapter 1.

Chapter 2 explores the infinitesimal restriction of the Miles-Howard theorem, by asking whether
finite-amplitude perturbations could lead to significant nonlinear behaviour, in a so-called subcritical
instability. It is found that while the classical Kelvin-Helmholtz instability does indeed exhibit
subcriticality, nonlinear steady states are found only just above Ri = 1/4.

Chapter 3 investigates in detail a hitherto unknown linear instability, which was discovered in
chapter 2. Behaving similarly to the classic Holmboe instability, it exists for Ri > 1/4 when viscosity
is introduced, and reveals new insights into the possible physical interpretations of stratified shear
instability.

Chapter 4 revisits the results of chapter 2 but considers two cases of the Prandtl number Pr, the
ratio of diffusivity of the momentum to density. When Pr = 0.7, as is approximately the case for air, a
simple supercritical instability is found. However, for Pr = 7, corresponding approximately to water,
strong subcritical behaviour is observed, and it is demonstrated that finite-amplitude perturbations can
trigger Kelvin-Helmholtz-like behaviour well above Ri = 1/4.

Chapter 5 considers the time-varying, non-parallel flow of an oblique internal gravity wave
incident on a shear layer. Using direct-adjoint looping, it is shown that the disturbances which
maximise energy after a certain time, so-called linear optimal perturbations, can be convective-like
rolls in the spanwise direction, rather than a shear instability, calling into question the relevance of the
classical shear instabilities in oceanography.

Chapter 6 concludes the thesis with a discussion of the implications of the results.
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Chapter 1

Introduction

Stably stratified shear flows, in which a less dense layer of fluid lies above and moves counter
to a more dense layer below, are ubiquitous in geophysical fluid dynamics (GFD), being found
in lakes (Preusse et al., 2010), rivers (Shi et al., 2019), the oceans (Van Haren and Gostiaux,
2010) and the atmosphere (Browning, 1971) of the Earth. The simplest example, of two
distinct fluids of different densities moving at different speeds, is a classical problem, giving
rise to the Kelvin-Helmholtz instability (KHI), and is universally used to teach students about
hydrodynamic stability theory. Despite this, the complex nonlinear dynamics of idealised
stratified shear flows, and in particular unbounded flows of the sort relevant to GFD, remain
relatively unstudied compared with other model instabilities (Rayleigh-Bénard (Lohse and
Xia, 2010), Taylor-Couette (Grossmann et al., 2016), pipe flow (Eckhardt et al., 2007) etc.),
perhaps because of the difficulty of setting up laboratory experiments.

1.1 The Miles-Howard theorem

Arguably the most important analytic result in the mathematical theory of stratified shear
instability is the Miles-Howard theorem, which will be a central focus of this thesis. In
the 1950s, much evidence was pointing to the fact that stratified shear flows are stabilised
when the Richardson number is greater than one quarter (Drazin, 1958; Holmboe, 1960).
One non-rigorous justification for this is given by Chandrasekhar (1961), though it has been
argued that this line of reasoning should really give a criterion of Richardson number one
(Miles, 1986). The problem was solved in 1961 with the publication of Miles (1961), and the
subsequent Howard (1961) which gave a more succinct and general proof. The statement of
the theorem can be given as follows:
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Theorem (Miles-Howard). A one-dimensional, stratified shear flow, as governed by the
inviscid Boussinesq equations, is linearly stable so long as the gradient Richardson number
Rig :=− g

ρ

∂ρ/∂ z
(∂u/∂ z)2 satisfies Rig > 1/4 everywhere in the flow.

To simplify application of this theorem, it is usual to define Rim := minz Rig, and so we
are guaranteed stability if Rim > 1/4.

Several important restrictions are hidden within the statement of this theorem. The
Boussinesq equations used to derive the theorem, governing the evolution of the momentum
and density of the flow, assume that density differences are sufficiently small compared with
the absolute density that they are not relevant to the inertia of the fluid, but are still relevant
for the buoyancy term in the equations. Additionally implicit is the fact that we are not
considering a rotational flow, so that the Coriolis force does not come in to play. Both of
these assumptions are usually valid for small scale dynamics in oceanography, and we do not
investigate them further.

More important are the assumptions that we are studying a perfectly steady, one dimen-
sional shear flow, that viscosity is completely ignored and that infinitesimal perturbations (i.e.
the linearised equations) are sufficient. Clearly none of these three are valid in the complex
and chaotic flows which develop in the ocean, and so we must question how, when these
restrictions are relaxed, they affect the Miles-Howard theorem.

1.2 The Miles-Howard criterion in oceanography

One particularly important application of the instability of stratified flows is in oceanography.
Modelling of the world’s oceans as a system is crucial to understanding the transfer and
storage of energy, and is necessary to make predictions about the future of the climate. Energy
budgets suggest that the poorly understood generation of turbulence in the oceans is a key
process in closing the system (Wunsch and Ferrari, 2004). However, such turbulence occurs
on scales much too fine to be captured directly though large scale numerical simulations,
and this is likely to remain the case for many decades. Therefore, parameterisations of the
generation of turbulence are necessary, and these remain a major area of uncertainty in ocean
circulation models.

Parameterisations often employ a critical Richardson number Ric (Mellor and Yamada,
1982; Kunze et al., 1990), and empirically or by appeal to the Miles-Howard theorem, this is
taken to be Ric = 1/4. Observations show (Polzin, 1996; Mack and Schoeberlein, 2004) that
the presence of turbulence is correlated with lower measured Richardson numbers, though
no clear cutoff at a particular value is detected. Of course, no discretised measurements will
ever be able to accurately capture the minimum Richardson number, which may go some
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way to explain the lack of a distinct threshold. More recently (Thorpe and Liu, 2009; Smyth
and Moum, 2013), Ric = 1/4 has been proposed as the critical value in a marginal stability
process, in which, if the value drops below 1/4, the system becomes unstable and thereby
increases Ri.

These applications of a Miles-Howard criterion, as opposed to the Miles-Howard theorem,
by which we mean using a value Ric = 1/4 in situations for which the theorem is not proven,
are the main motivation for the work in this thesis. We examine, through numerical methods,
the different ways the restrictions of the theorem, when relaxed, affect the behaviour of
stratified shear flows.

1.3 Structure of the thesis

The rest of the thesis comprises of four chapters of content, two of which have been published
as Parker et al. (2019, 2020) and a third which is in review, plus concluding remarks in
chapter 6. Each of the chapters has its own introduction section giving background to that
specific area.

Chapter 2 gives the first bifurcation analysis of Kelvin-Helmholtz instability (KHI), with
the aim of investigating whether, with finite-amplitude disturbances, nonlinear effects can
cause instability-like behaviour at Rim > 1/4, in violation of the Miles-Howard criterion.

Chapter 3 is a detailed study of the viscous Holmboe instability (VHI) that is discovered
and briefly discussed in chapter 2. This instability, which is not present in the inviscid limit,
allows us to explore the inviscid restriction of the Miles-Howard theorem. The hitherto
unknown instability also sheds new light on two potential physical interpretations of stratified
shear instabilities, the wave resonance argument and the wave overreflection hypothesis.

Despite substantial evidence to the importance of Pr, many numerical studies, indeed
including the other chapters of this thesis, use the convenient value Pr = 1. This is unrealistic
for atmospheric flows, for which Pr ≈ 0.7, temperature-stratified oceanic flows, for which
Pr ≈ 7, and salt-stratified oceanic flows, for which the equivalent Schmidt number Sc ≈ 700.
The latter of these is presently computationally infeasible, but for 0.7 < Pr < 7, we can apply
the methods of chapter 2, which we do in chapter 4. We find that the water case Pr = 7 is
substantially more complex than the air case Pr = 0.7.

Chapter 5 takes a step back from idealised models of stratified shear layers to the larger
scale picture of a full breaking internal gravity wave. In the presence of a background shear,
we investigate which disturbances actually lead to wave breaking in three dimensions, and
demonstrate that an intrinsically three-dimensional, convectively driven mechanism is many
orders of magnitude more energetic than a simple shear instability for the parameters studied.
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There are three appendices to this thesis. Appendix A is a discussion of the DNS code
which was written during the course of the PhD and was used for all computations in
the main part of the thesis, with the exception of the linear stability analysis of 1D flow
profiles. Appendices B and C are papers of projects in the area of computational applied
mathematics that were completed during the course of the PhD but are thematically unrelated
to the rest of the thesis. Appendix B, written in collaboration with Jacob Page, concerns
Dynamic Mode Decomposition (Schmid, 2010; Kutz et al., 2016), a numerical machine
learning method, and its analytic counterpart, Koopman analysis (Mezić, 2013). Appendix
C, in collaboration with David Goluskin and others from the Geophysical Fluid Dynamics
programme at Woods Hole Oceanographic Institute, discusses Sum-of-Squares optimisation
(Lasserre, 2001; Parrilo, 2003), a numerical method which can be used to analyse dynamical
systems without discretisation.



Chapter 2

Kelvin-Helmholtz billows above
Richardson number one quarter1

1This chapter is a slightly modified version of Parker, J. P., Caulfield, C. P., & Kerswell, R. R. (2019),
Kelvin-Helmholtz billows above Richardson number 1/4. Journal of Fluid Mechanics, 879, R1.





Abstract

We study the dynamical system of a two-dimensional, forced, stratified mixing layer at
finite Reynolds number Re, and Prandtl number Pr = 1. We consider a hyperbolic tangent
background velocity profile in the two cases of hyperbolic tangent and uniform background
buoyancy stratifications, in a domain of fixed, finite width and height. The system is forced
in such a way that these background profiles are a steady solution of the governing equations.
As is well-known, if the minimum gradient Richardson number of the flow, Rim, is less than a
certain critical value Ric, the flow is linearly unstable to Kelvin-Helmholtz instability in both
cases. Using Newton-Krylov iteration, we find steady, two-dimensional, finite-amplitude
elliptical vortex structures – i.e. ‘Kelvin-Helmholtz billows’ – existing above Ric. Bifurcation
diagrams are produced using branch continuation, and we explore how these diagrams change
with varying Re. In particular, when Re is sufficiently high we find that finite-amplitude
Kelvin-Helmholtz billows exist when Rim > 1/4 for the background flow, which is linearly
stable by the Miles-Howard theorem. For the uniform background stratification, we give a
simple explanation of the dynamical system, showing the dynamics can be understood on a
two-dimensional manifold embedded in state space, and demonstrate the cases in which the
system is bistable. In the case of a hyperbolic tangent stratification, we also describe a new,
slow-growing, linear instability of the background profiles at finite Re, which complicates
the dynamics.

2.1 Introduction

The Miles-Howard theorem (Miles, 1961; Howard, 1961) tells us that for inviscid, infinitesi-
mal perturbations to steady, one-dimensional, parallel shear flows, the minimum gradient
Richardson number Rim of the flow must be less than 1/4 for such ‘linear’ perturbations to
grow exponentially. From this, it is often argued that oceanic measurements will always
find a Richardson number greater than or equal to 1/4, otherwise turbulence will ensue
(see Smyth et al., 2019, and references therein), despite the very specific restrictions on the
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applicability of the theorem. In this chapter we will examine two aspects of these restrictions,
namely that perturbations are infinitesimal and inviscid.

With finite-amplitude perturbations, nonlinear effects can no longer be neglected. There
is various evidence that for flows susceptible to Kelvin-Helmholtz instability (KHI), complex
nonlinear behaviour exists when Rim > 1/4. Kaminski et al. (2017) showed that perturbations
which grow transiently before decaying in the linearised setting can lead to turbulent-like
irreversible mixing with Rim > 1/4 when nonlinearity is included. Howland et al. (2018)
showed that as Rim → 1/4 from below, the maximum amplitude of a saturated Kelvin-
Helmoltz billow does not tend to zero, but to some finite value. One possible cause of these
observations is that the pitchfork bifurcation, generically expected to occur (Strogatz, 2014)
at the critical Richardson number, Ric, is subcritical, so that finite-amplitude states exist
above Ric. This could mean that the system is bistable (meaning there are two stable states)
in a certain range of Rim with Rim > Ric. (Note that by ‘subcritical’ here we mean those
regions where the base flow is linearly stable, above Ric, consistent with normal dynamical
systems terminology, as opposed to the occasional oceanographic usage meaning below Ric.)

Historically, the best way to determine the nature of the bifurcation has been to consider
the next-order nonlinear effects, a so-called weakly nonlinear analysis. Such analysis has
been performed for both of the models of a stratified shear layer we consider using critical
layer theory (Maslowe, 1977; Brown et al., 1981; Churilov and Shukhman, 1987), in some
cases finding subcriticality. These results have also been confirmed, in the case of the
Drazin model, using direct numerical simulations to investigate the nonlinear behaviour near
criticality (Lott and Teitelbaum, 1992; Mkhinini et al., 2013). However, our results suggest
that the weakly nonlinear analysis can potentially be misleading, as discussed in section 2.4,
since higher-order effects can quickly dominate. Critical layer theory has also been used
to demonstrate the existence of nonlinear neutral modes in stratified shear flow, resembling
Kelvin-Helmholtz billows, but with nonzero phase speed (Maslowe, 1973). It is inferred that
such modes may exist when Rim > 1/4.

More recently, as it has become possible computationally to solve the Navier-Stokes
equations directly, finding the finite-amplitude states which arise from bifurcations has
emerged as an alternative. Newton’s method can be used to find solutions of nonlinear
problems, such as steady states, iteratively. The introduction of Newton-Krylov methods
(Edwards et al., 1994), where a Krylov-subspace method such as generalised minimal
residuals (GMRES) (Saad and Schultz, 1986) is used to solve the linear system inexactly at
each Newton step, has allowed this to be applied to very high-dimensional systems for which
it is prohibitively expensive to work with the Jacobian matrices of the flow directly (for a
comprehensive review, see Dijkstra et al., 2014). It is also possible to use Newton’s method
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to find and track bifurcation points of high-dimensional dynamical systems (Salinger et al.,
2002; Haines et al., 2011). Net and Sánchez (2015) used a matrix-free bifurcation tracking
technique with a Newton-Krylov method, as employed in this chapter, and further extended
this to find bifurcations of periodic orbits.

In this chapter, we find the exact coherent states that bifurcate from the base flow at
Ric, and track these as both Rim and Re vary, to build a picture of the dynamical system
near Rim = 1/4, and, crucially, answer the question of whether the system can be bistable
above Ric. Two different models susceptible to KHI are considered. The first, the ‘Holmboe’
model (Holmboe, 1962), with a hyperbolic tangent buoyancy profile, is the standard model
in this field (Hazel, 1972; Klaassen and Peltier, 1985; Smyth and Peltier, 1991; Mallier,
2003). However, we demonstrate that complex behaviour arises – associated with what we
believe to be a previously unreported linear instability – and dominates at long times when
this model is forced onto the system at finite Re, obscuring the KHI. We then examine an
alternative ‘Drazin’ model (Drazin, 1958), with a uniform stratification, which shares many
of the features of the Holmboe model but does not exhibit this complex behaviour. Note
that, with the parameters studied, both the Drazin and Holmboe models are only known to be
susceptible to stationary KHI, and not the propagating ‘Holmboe wave instability’ (HWI).
The chapter proceeds as follows: in section 2.2, we describe the methodology and code
used. In section 2.3.1 a bifurcation diagram is presented for the Holmboe model, as well as a
description of the newly discovered linear instability. In section 2.3.2, a bifurcation diagram
and a full description of the dynamics is given for the Drazin model. Section 2.4 gives a brief
discussion of these results.

2.2 Methodology

We consider the Boussinesq equations in two dimensions, and study the nonlinear evolution
of perturbations away from a steady parallel velocity profile U(z) and buoyancy stratification
B(z). Solving for the perturbation away from these constant-in-time profiles is equivalent
to solving for the full system, with an artificial body force to counteract diffusion. In
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non-dimensional form, the equations are:

∂tu+(U +u)∂xu+w∂z (U +u) =−∂x p+
1

Re

(
∂

2
x u+∂

2
z u
)
, (2.1)

∂tw+(U +u)∂xw+w∂zw =−∂z p+
1

Re

(
∂

2
x w+∂

2
z w
)
+Ribb, (2.2)

∂tb+(U +u)∂xb+w∂z (B+b) =
1

PrRe

(
∂

2
x b+∂

2
z b
)
, (2.3)

∂xu+∂zw = 0. (2.4)

Here u is the fluid velocity in the horizontal (x) direction, and w is the velocity in the vertical
(z) direction. Buoyancy acts in the positive z direction. We impose periodic boundary
conditions at x = 0 and x = Lx, and at z =±Lz we enforce no-penetration (w = 0), stress-free
(∂u/∂ z = 0), and insulating (∂b/∂ z = 0) boundary conditions. Given the dimensional shear
layer depth, 2L, velocity difference 2∆U , density difference 2∆ρ , typical density ρ∗, and
diffusivities of momentum ν and density κ , the Reynolds number is defined as Re = ∆UL

ν
, the

Prandtl number Pr = ν

κ
, and the bulk Richardson number Rib =

g
ρ∗

L∆ρ

∆U2 . Throughout, we take
Pr = 1 for simplicity. Two different choices of U and B are considered in sections 2.3.1 and
2.3.2 respectively. For both background flows studied, the minimum gradient Richardson
number Rim, as relevant to the Miles-Howard theorem, is equal to the bulk Richardson
number Rib.

2.2.1 Discretisation

A new solver was developed to solve the Boussinesq equations around arbitrary background
flows. Time integration uses a third order Runge-Kutta-Wray scheme, and spatial derivatives
are handled pseudo-spectrally in the periodic horizontal direction, and with explicitly conser-
vative quasi-second order finite differences in the vertical, on a non-uniform staggered grid:
the nth of N grid points is located at

z =
Lz

3

[
2
(

2n−N −1
N −1

)3

+

(
2n−N −1

N −1

)]
.

This ensures that there are more grid points near the shear layer at the centre of the domain
than at the edges. The code was validated against DIABLO (Taylor, 2008). Further, a
linearised version of the same timestepper was produced, and validated against states of very
low amplitude in the full nonlinear solver. For the system studied in section 2.3.1, a grid is
used with 256 equispaced points in the streamwise direction and 512 points in the vertical
direction, with a greater density of points in the middle of the domain. For the system studied
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in section 2.3.2, 128 points are used in the streamwise direction, covering a shorter domain,
and 768 vertically, in order to accurately capture behaviour at higher Re. The results are
validated by reconverging certain solutions at a higher resolution of 384× 768 in section
2.3.1 and 256×1024 in section 2.3.2.

2.2.2 Steady states and bifurcation points

Formally, we may describe our dynamical system as the evolution of a state X by a time t
through

X(t0 + t) = F (X(t0), t;Rib,Re) , (2.5)

where Rib and Re are the constant parameters at which we are considering the evolution.
Finding steady states of the flow is then equivalent to finding solutions to

F(X ,T ;Rib,Re)−X = 0 (2.6)

for some arbitrary fixed T . It is possible, though extremely unlikely, that this will also find a
periodic orbit of period T .

Solving (2.6) is done by using Newton-GMRES (generalised minimum residual) iteration
on an initial guess. Our implementation matches that employed by Chandler and Kerswell
(2013), including the use of a trust region to make the algorithm globally convergent. The
GMRES iteration at each Newton step is continued until the residual is less than 10−2, and
the Newton iteration is continued until its residual, the norm of the left-hand side of (2.6), is
less than 10−8. A suitable T must be chosen to optimise the GMRES method. A larger T
acts to precondition the equations, since if T is small, all states will appear to be stationary.
However, if T is too large, computation will be prohibitively expensive. For our system, we
found T = 11 to be a good compromise.

Through trial and error, we converge a steady billow solution, the result of a very long
time integration of equations (2.1-2.4), at Re = 1000 and Rib = 0.2, in both the flows studied
in this chapter. Once one state is found at these particular Rib and Re, we converge another
very close by at a different Rib but the same Re. We then follow the solution branch at this
Re over a range of Rib using pseudo-arclength continuation (Keller, 1977). We examine
the stability of the branch with Arnoldi iteration, using a linearised version of the same
timestepping code.

The stability analysis reveals the existence of bifurcation points, where eigenvalues of
the state cross a stability boundary. To continue these bifurcation points to different Re, we
use the states found by stability analysis as an initial guess in a different iterative solver. The
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system we solve is similar to that implemented in the Library of Continuation Algorithms
(Salinger et al., 2002), but we use a matrix free method, as discussed in detail in Sánchez and
Net (2016). We look for solutions to

F(X ,T ;Rib,Re)−X = 0, (2.7a)

FX(X ,Y,T ;Rib,Re)−Y = 0, (2.7b)

Y ·A−1 = 0, (2.7c)

with Newton-GMRES. In this case we allow X , Y and Rib to be found by the iteration, but
hold Re fixed. Here FX(X ,Y, t;Rib,Re) is the linearised time evolution of a state Y about
a nonlinear state X , computed using the linearised timestepper. Equation (2.7b) enforces
that Y is a neutral eigenmode of the Jacobian at X . We normalise Y using (2.7c), with some
fixed arbitrary state A, which we take to be the initially guessed value of Y . Once bifurcation
points are found at a particular Re, they are reconverged at higher Re. We are particularly
interested in how the Rib value of the bifurcation point varies with Re.

Equations (2.7) find bifurcation points with purely real neutral eigenmodes, i.e. pitchfork
and saddle-node bifurcations. For Hopf bifurcations, a set of five equations is needed, includ-
ing two different linearised time evolutions. These arise from the real and imaginary parts
of the eigenvalue eiθ of the time-integrated system, corresponding to the purely imaginary
eigenvalue iθ/T of the Jacobian. The following are solved for the unknowns X , Y1, Y2, Rib
and θ :

F(X ,T ;Rib,Re)−X = 0, (2.8a)

FX(X ,Y1,T ;Rib,Re)− cosθ Y1 + sinθ Y2 = 0, (2.8b)

FX(X ,Y2,T ;Rib,Re)− sinθ Y1 − cosθ Y2 = 0, (2.8c)

Y1 ·A−1 = 0, (2.8d)

Y2 ·A = 0. (2.8e)

In this case we use equations (2.8d) and (2.8e) to normalise the eigenmodes. The first
removes the degeneracy from the eigenproblem, with A taken to be the inital guess of Y1, and
the second enforces that Y2 not be parallel to Y1, in order that we find a Hopf bifurcation,
otherwise equations (2.8) reduce to (2.7). The additional computational requirements of (2.8)
mean that we are unable to track Hopf bifurcations to as high Reynolds numbers as pitchfork
and saddle-node bifurcations.
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Fig. 2.1 (a) Contours of the complex growth rate σ =−ikc where a normal mode is taken
proportional to exp(ik(x− ct) in a linear stability analysis of the background flow. The solid
lines show the real part and the dashed grey lines show the imaginary part. For Rib < 1/4,
the dominant instability mechanism is the stationary KHI, with a purely real growth rate. The
newly described instability, discussed in the text, is the only one for Rib > 1/4, and has a very
small growth rate, with nonzero imaginary part, so manifests as a propagating disturbance.
(b) Bifurcation diagram for the flow with hyperbolic tangent background stratification, at
Re = 4000, showing the variation of ∥X∥ over a (very narrow) range of Rib. All states are
unstable to the new propagating instability but beyond that, the solution branch has one
further unstable eigenmode ( ), two further unstable eigenmodes ( ), or is otherwise
stable ( ). RiH is plotted with a red dot, Ris with a blue dot and Ric with a green dot. The
crosses mark points converged at the higher resolution of 384×768.

2.3 Results

2.3.1 Hyperbolic tangent stratification: the Holmboe model

First we consider a background profile of U = tanhz, B = tanhz. This is a commonly used
model of a mixing layer, introduced by Holmboe (1962). It has the useful property that, at
infinite Re, the linear stability analysis can be performed analytically (Miles, 1963). With
this choice, we find that the minimum gradient Richardson number Rim is equal to Rib, and
so the Miles-Howard theorem tells us that the flow is certainly stable for Rib > 1/4. We
choose Lx = 4π , which is one wavelength of the most unstable mode at Rib = 1/4 as Re → ∞,
assuming a domain of infinite height vertically. For numerically expediency, we take Lz = 10
so that in fact Ric tends to a value slightly less than 1/4 as Re → ∞.

Following Howland et al. (2018) we define the energy of perturbations to be

E =
1

2Lx

∫ Lx

0
dx
∫ Lz

−Lz

dz
(
u2 +w2 +Ribb2) . (2.9)
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State space is taken as the space of all possible incompressible perturbation flows X =

(u,w,b), with norm ∥X∥ :=
√

2E. Note that p is not a dynamical variable as it can be
calculated from a Poisson equation forced by the velocity field.

Figure 2.1b shows a bifurcation diagram at Re = 4000. Where the background state
becomes unstable, with decreasing Rib, to KHI at Ric ≈ 0.2494, a pitchfork bifurcation
occurs (the green dot on figure 2.1b), giving rise to a branch of finite-amplitude, billow-like
states. This branch is initially stable as it bifurcates – except to the unrelated instability
discussed below – and decreasing in Rib, but there is soon a saddle-node bifurcation (see inset
in figure 2.1b) and it then increases in Rib. As the unstable branch increases in amplitude,
Rib increases, and we find steady, though unstable, states above Rib = 1/4. There is another
saddle-node bifurcation at Ris ≈ 0.250175 (blue dot), adding a second unstable direction
to the branch. (If instead we take Lz = 15, we find Ris ≈ 0.250127, so still Ris > 1/4.)
The first saddle-node bifurcation was initially assumed to be a numerical artefact, but it
was a consistent feature across all parameters studied in this model, at different resolutions.
The branch stabilises at a Hopf bifurcation at RiH ≈ 0.244 (red dot) when its two unstable
eigenmodes simultaneously stabilise as a complex conjugate pair.

A very weak temporal linear instability, apparently hitherto unreported, is present in all
states on the bifurcation diagram. As is conventional, we consider normal modes proportional
to exp[ik(x− ct)], where the wavenumber k is required to be real, while the phase speed
c = cr + ici is in general allowed to be complex, such that the (exponential) growth rate,
generically complex, of any instability is defined to be σ = −ikc. Figure 2.1a shows the
maximum growth rate of linear instability of the background state, as Rib and Re vary. For
Rib > 1/4, the new instability is the dominant one. This has a phase speed of less than one,
and manifests as counterrotating rolls, advected through the domain, above and below the
interface, as shown in figure 2.2. As Re → ∞, the growth rate tends to zero, as required by
the Miles-Howard theorem. Close agreement of growth rates, to one part in 103, was found
for this instability between the Arnoldi stability algorithm of our code, and a direct solution
of the stratified Orr-Sommerfeld equations, using a MATLAB code by W. D. Smyth (Smyth
and Carpenter, 2019). This instability, which we have termed viscous Holmboe instability
(VHI), is studied and discussed in detail in chapter 3. Despite the small growth rate, at long
times this instability leads to significant nonlinear behaviour in the artificially forced problem,
which eventually dominates and masks the signature of KHI. A time series of this effect is
shown in figure 2.3. This means we are unable to give a clean description of the dynamics on
a two-dimensional manifold embedded within state space, as we do for the Drazin model in
the following section.
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(a) (b)

Fig. 2.2 Real part of spanwise vorticity ω = ∂xw−∂zu of the most unstable mode at Rib =
0.25, for a flow with (a) Re = 4000 and (b) Re = 40000. Two domain lengths are shown
horizontally. The full domain is [−10,10] in the vertical direction. The growth rate σ :=−ikc
of the Re = 4000 mode is σ = 3.548×10−6 +0.5229i. An equivalent mode also exists in
the upper half of the domain, with growth rate 3.548×10−6 −0.5229i.
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Fig. 2.3 The perturbation amplitude along a trajectory in the Holmboe model at Re = 4000
and Rib = 0.2478. The trajectory is started from a state very close to the unstable upper
branch. It then follows a smooth path until about t = 10000, when the new instability has
grown large enough to dominate. This then saturates and obscures the dynamics of the KHI.
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2.3.2 Uniform stratification: the Drazin model

We now consider the case with a uniform background stratification, so that U = tanhz but
B = z. This is also a commonly studied problem (Drazin, 1958; Churilov and Shukhman,
1987; Thorpe et al., 2013; Kaminski et al., 2014) as again, linear stability analysis can be
performed analytically. As before, Rim = Rib for this flow. Linear stability analysis on a
domain of infinite height tells us we should now take Lx = 2

√
2π to achieve Ric → 1/4 as

Re → ∞. As before, Lz = 10. We use the same definition of energy E as in the hyperbolic
tangent case.

Qualitatively, the bifurcation diagram is very similar to the tanh stratification case. Figure
2.4a shows the diagram for Re = 4000. The main difference from figure 2.1b is the lack of
the first saddle-node bifurcation near the pitchfork. The values of the various bifurcation
Richardson numbers are different; for example the Hopf bifurcation at RiH (shown in red)
occurs at somewhat lower Rib than before. Also crucially, the propagating linear instability
described in section 2.3.1 is no longer present, and consequently we can study the long-time
behaviour of KHI.

The period of the Hopf bifurcation at Re = 4000 is approximately 1690 advective time
units, which is much too high to allow us to converge the resulting periodic orbit directly, but
long time integrations at a range of Rib give us an idea of the behaviour, since it appears to be
stable in this case. Even this simple method becomes useless as we approach Ric, since the
period increases towards infinity. This is the generic behaviour near a homoclinic bifurcation
(Strogatz, 2014), which we believe occurs somewhere between Ric and Ris: the periodic orbit
collides with the lower branch state.

The behaviour of the system, which we believe to be generic for sufficiently high Re,
can be completely understood on a two-dimensional manifold described by the two most
unstable eigenmodes, as shown schematically in figure 2.5. In region 1, where Rib < RiH , the
base state is unstable, and the instability saturates and eventually leads to the upper branch
steady state, which is stable. For RiH < Rib < Ric, region 2, the base state and upper branch
are both unstable, and perturbations lead to a stable periodic orbit. Immediately to the right
of the pitchfork bifurcation Ric in the region 3, the base state is stable and there exists a lower
branch edge state, which is unstable. If finite-amplitude perturbations to the base state are
past this edge, they are attracted to the periodic orbit, and we have subcritical ‘transition’.
Between regions 3 and 4, there is a homoclinic bifurcation of the periodic orbit with the
lower branch state. This means that in region 4, the periodic orbit no longer exists. There are
unstable finite-amplitude states and large transient trajectories, but the base state is the only
attractor. In region 5, past the saddle-node bifurcation, Rib > Ris, the base state is the only
known exact coherent structure. Of course, in reality the finite-amplitude states break the
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Fig. 2.4 (a) Bifurcation diagram of the flow with uniform background stratification, at
Re = 4000. The dashed vertical lines separate the numbered regions, as discussed in the text.
The solution branch has one unstable direction ( ), two unstable directions ( ), or is
stable ( ). RiH is plotted with a red dot, Ris with a blue dot and Ric with a green dot. (b)
Variation of Ric (green) and Ris (blue) with 1/Re. Ris passes through 1/4 at Re ≈ 9000. In
both figures, the crosses mark points converged at the higher resolution of 256×1024.

translational symmetry of the base state, and there are in fact a continuum of upper branch
states, periodic orbits and so on, with a shift of origin. Which of these the system is attracted
to depends on the phase of the initial perturbation.

All of the stationary states we have found, as well as the periodic orbit, are the result
of bifurcations away from the parallel base state. It is possible that other states exist in the
system which are not connected to this base state at all; as is the case, for example, for
the Nagata solutions in plane Couette flow (Nagata, 1990). The existence of these isolated
solutions would complicate the above description of the dynamical system. However, we
have seen no evidence of any such states in any of our results. If they exist in our flow,
therefore, we assume them to be unimportant for the range of parameters considered.

Figure 2.6 shows the vorticity structure of the steady states at two different values of
Rib. In the case of the Hopf bifurcation, billow-like structures are clearly seen, bearing
a strong resemblance to the saturated, unsteady billows found by Howland et al. (2018).
Increasing Rib along the upper branch to the saddle-node bifurcation, these structures remain
but become significantly less pronounced. Baroclinic effects mean that the height of the
billows decreases with increasing Rib.

We track the values of Ric and Ris for Re from 1000 to 10000 using the method described
in section 2.2.2, and the results are shown on figure 2.4b. As Re → ∞, extrapolation,
assuming linearity in 1/Re, suggests Ric → 0.25−1.4×10−5, slightly less than 1/4 because
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(a) Region 1 (b) Region 2 (c) Region 3 (d) Region 4 (e) Region 5

Fig. 2.5 Schematics of the dynamical system restricted to the two dimensional manifold of
the two most unstable eigenmodes. The dots mark steady states, the lower being the base
solution, and the lines show a few relevant trajectories. Solutions shown in red are stable,
and those in black are unstable.

(a) (b)

Fig. 2.6 Spanwise vorticity ω = ∂xw− ∂zu of the stationary states at the (a) Hopf RiH =
0.22803 between regions 1 and 2 and (b) saddle-node Ris = 0.24934 between regions 4 and
5, for the flow in figure 2.4a. Two domain lengths are shown horizontally. The full domain is
[−10,10] in the vertical direction.
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of the finite height of the domain. We find that Ris > 1/4 for Re ≳ 9000 and estimate that
Ris → 0.251 as Re → ∞. Since we have been unable to find the location of the conjectured
homoclinic bifurcation, we are unable to say whether region 3, with a stable periodic orbit,
extends above Rib = 1/4, and hence whether the system is bistable here. Nevertheless, region
4 certainly exists above Rib = 1/4, so there will be nonlinear transient behaviour, with the
development of Kelvin-Helmholtz style billows as shown in figure 2.6. We have also tracked
the Hopf bifurcation (omitted from figure 2.4b for scale reasons) and this shows a similar
trend to the saddle-node bifurcation.

2.4 Discussion and Conclusions

The Miles-Howard theorem is an important result in the theory of linear stability of inviscid
flows. However, the fact it seems to work in more general conditions than those for which it is
proven means it has been informally applied as a ‘rule of thumb’ at high Re. We have shown
that subcritical instability can exist in such flows, so that complex nonlinear behaviour can
occur even when the flow is linearly stable. This is not a new result; Maslowe (1977) found
subcritical instability in the Holmboe model with Pr = 0.72 and Re = 100 using a weakly
nonlinear analysis. We note however, that this technique of finding the first order correction
to the linear theory would have given misleading results applied to the parameters we study,
since in the Holmboe model, we find a saddle-node bifurcation very close to the pitchfork,
leading to subcritical instability instead of the apparent supercriticality. Furthermore, the
technique presented in this chapter allows us to precisely find the location of the saddle-node
bifurcations, and demonstrate explicitly that finite-amplitude billows exist at Rib > 1/4,
which has only been inferred previously (Howland et al., 2018; Kaminski et al., 2017).

We have been able to give a simple description of the dynamics in the Drazin model. It is
not immediately clear that the dynamics of the artificially forced system studied here will be
relevant to those of an unforced system, which has traditionally been used as a model for
geophysical flows. The incredibly long periods of the orbits born from the Hopf bifurcation
discussed earlier, for example, mean that in an unforced problem, the background flow would
have diffused almost entirely away before one complete cycle. Nevertheless, the instability
of the unforced flows still leads to saturated states very similar to the steady solutions we
have found, and the subcriticality we have demonstrated would certainly lead to non-trivial
transient behaviour.

Our results alone do not invalidate the use of Rib = 1/4 as a ‘rule of thumb’ for criticality.
The subcriticality we have found extends only very slightly about 1/4 in both cases studied.
However, the results of Brown et al. (1981) and Churilov and Shukhman (1987), who
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respectively studied the Holmboe and Drazin models using weakly nonlinear analysis, show
strong subcriticality when Pr > 1 but supercriticality when Pr < 1 and that higher-order terms
must be considered at our choice of Pr = 1. Preliminary results tracking the saddle-node
bifurcation points in our work as Pr varies seem to agree with this, so future research will
concentrate on the more oceanographically relevant range Pr ∼ O(10).

It should be noted that all our results have been performed at a fixed domain width Lx,
and yet the wavelength of maximum growth of KHI is known to vary with Rib (Hazel, 1972).
Therefore we expect our results would change at different Lx, but since we have chosen the
wavelength of maximum growth at criticality and all our results are very close to Ric, it is to
be assumed that our domain size is the most relevant to a physical flow.

In addition to these finite-amplitude nonlinear states, we have found linear instability with
Rib > 1/4 in the Holmboe model (see figure 2.2), which disappears as Re → ∞, as required
by the Miles-Howard theorem. A similar phenomenon was found by Miller and Lindzen
(1988). However, their instability had large growth rates and required a carefully constructed
flow. We have found an instability in a widely used model, hitherto unreported to the best of
our knowledge. The new instability has a tiny growth rate at physically realistic Re. This
suggests it can be ignored in oceanic problems, but fails to entirely explain why it has not
been discussed before. It is commonly assumed that finite Re effects are always stabilising
compared to inviscid behaviour in such flows, despite demonstrations to the contrary (Defina
et al., 1999). This instability demonstrates that such assumptions should be checked carefully.
While it is not appropriate to classify this instability as ‘classic’ Holmboe wave instability,
since HWI is an inviscid instability, we conjecture that it may be homotopically connected to
Holmboe instability as parameters are varied, as it has a similar phase speed and occurs at
similar values of Rib. This is an area for future research.



Chapter 3

The viscous Holmboe instability for
smooth shear and density profiles1

1This chapter is a slightly modified version of Parker, J. P., Caulfield, C. P., & Kerswell, R. R. (2020). The
viscous Holmboe instability for smooth shear and density profiles. Journal of Fluid Mechanics, 896, A14.





Abstract

The Holmboe wave instability is one of the classic examples of a stratified shear instability,
usually explained as the result of a resonance between a gravity wave and a vorticity wave.
Historically, it has been studied by linear stability analyses at infinite Reynolds number, Re,
and by direct numerical simulations at relatively low Re in the regions known to be unstable
from the inviscid linear stability results. In this chapter, we perform linear stability analyses
of the classical ‘Hazel model’ of a stratified shear layer (where the background velocity
and density distributions are assumed to take the functional form of hyperbolic tangents
with different characteristic vertical scales) over a range of different parameters at finite Re,
finding new unstable regions of parameter space, corresponding to the ‘viscous Holmboe
instability’ observed in chapter 2. In particular, we find instability when the Richardson
number is everywhere greater than 1/4, where the flow would be stable at infinite Re by the
Miles-Howard theorem. We find unstable modes with no critical layer, and show that, despite
the necessity of viscosity for the new instability, the growth rate relative to diffusion of the
background profile is maximised at large Re. We use these results to shed new light on the
wave-resonance and over-reflection interpretations of stratified shear instability. We argue
for a definition of Holmboe instability as being characterised by propagating vortices above
or below the shear layer, as opposed to any reference to sharp density interfaces.

3.1 Introduction

Stably stratified shear flows are ubiquitous in the oceans and atmosphere. Their instabilities
are believed to be relevant to a variety of geophysical processes, and understanding them is
important, for example, in the irreversible mixing of fluid of different densities in the abyssal
ocean to close ocean energy budgets. The classical example of a shear instability is the
Kelvin-Helmholtz instability (KHI) of a uniform sheet of vorticity. Generally, this instability
is damped when a stable stratification is introduced, and the linear instability is no longer
found when the minimum Richardson number, quantifying the strength of stratification to
shear effects, exceeds one quarter (Drazin, 1958; Miles, 1961; Howard, 1961). However,
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if a sharp density interface is considered, a qualitatively different, propagating instability
is instead found (Holmboe, 1962; Hazel, 1972). This so-called Holmboe wave instability
(HWI), or just ‘Holmboe instability’, is believed to be due to an interaction between internal
gravity waves on the density interface and vorticity waves on either side of the shear layer. It
is hypothesised to be important for ocean mixing (Salehipour et al., 2016), as sharp interfaces
are naturally occurring at high Prandtl numbers.

One important result is the Miles-Howard theorem (Miles, 1961; Howard, 1961), which
states that, in the inviscid case, a stratified shear profile is linearly stable so long as the local
or gradient Richardson number Rig (defined precisely below in section 3.2) is everywhere
greater than one quarter. For flows in which HWI is usually studied, including the piecewise
linear profile of Holmboe (1962) and the one-sided profile of Baines and Mitsudera (1994),
as well as the smooth profile studied by Hazel (1972), Rig is vanishingly small away from the
shear layer, so the theorem does not apply, despite arbitrarily large bulk Richardson numbers
(also defined more precisely in section 3.2). On the other hand, when the bulk Richardson
number Rib is small, the internal waves are not strong, and so KHI is preferred over HWI.

Though the Miles-Howard theorem is only proven for inviscid flows, a Richardson
number of one quarter is often employed as a criterion for stability in oceanography and
related fields. It is argued from this that a density interface must be narrow compared with
the shear layer for HWI to be present (Thorpe, 2005), quantified by the ratio R of shear layer
thickness to buoyancy interface thickness being high. However, Miller and Lindzen (1988)
showed that it is possible to have shear instabilities when Rig > 1/4 everywhere if viscosity
is introduced. This leads to the possibility that HWI exists even when R is of order one, when
Rig > 1/4, at finite Reynolds number. Such an instability was demonstrated, for a single
specific choice of parameters, in chapter 2.This could have profound implications for our
understanding of geophysical processes, since HWI is known to have very different mixing
properties to KHI (Salehipour et al., 2016).

In addition to a succinct proof of the Miles-Howard theorem, Howard (1961) also proves
an important result, now called the Howard semicircle theorem. This states that for an
inviscid, parallel, stratified shear flow, the complex phase speed of any unstable mode must
be located in a semicircle centred about the median velocity on the real axis, with radius
of half the velocity difference. Though difficult to interpret directly, this has the immediate
corollary that the phase speed of any instability must lie between the maximum and minimum
velocities of the flow. For a smooth velocity profile, this means that there certainly exists a
critical layer, at which the phase velocity equals the flow velocity, and the Taylor-Goldstein
equation (see section 3.2) becomes singular. The behaviour of instabilities at the critical layer
is a well-studied field (Maslowe, 1986; Troitskaya, 1991; Churilov and Shukhman, 1996),
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and leads to the over-reflection hypothesis discussed below. However, the semicircle theorem
is again only proven for inviscid flows, and we shall see that it does not generalise when
viscosity is taken into account.

Two different physical interpretations of stratified shear instabilities exist in the literature.
The first, suggested originally by Taylor (1931), developed by Garcia (1956); Cairns (1979);
Caulfield (1994) and Baines and Mitsudera (1994), and reviewed in detail by Carpenter et al.
(2013), is the idea that a pair of waves can phase lock and mutually amplify one another if
configured correctly. This leads to the classification of three canonical instabilities: KHI, the
resonance of two vorticity waves; HWI, the resonance of a vorticity and an internal wave;
and the so-called ‘Taylor-Caulfield’ instability (Taylor, 1931; Caulfield et al., 1995), the
resonance of two internal waves. In practice, the distinction between these is not clear cut
(Carpenter et al., 2010b; Eaves and Balmforth, 2019). In this chapter, we shall argue that any
instability with zero phase speed in flows with a single density interface should be defined as
KHI and any instability with a propagating localised vortex should be defined as HWI. The
reason for this proposed classification is based on the qualitative nonlinear evolutions, as will
become clear in section 3.4.

There is good evidence that an interaction of a gravity and a vorticity wave is responsible
for (at least inviscid) HWI. For instance, Alexakis (2005) discovered additional bands of
instability at higher Rib, which seem to be caused by the resonance of a higher-order gravity
wave harmonic with the vorticity wave. In the piecewise linear model, directly considering
the interaction of the two waves in isolation leads to accurate prediction of the band of
instability (Caulfield, 1994; Baines and Mitsudera, 1994). One major problem with this
wave-resonance description is that it does not account for the Miles-Howard theorem. It
is not clear why, with a broader density interface, the waves should no longer be able to
resonate and cause instability. Further, although KHI seems to be related to an interaction of
two vorticity waves, the theory has not yet been able to explain the damping of this instability
as Richardson number is increased.

A different perspective, developed by R. S. Lindzen and coauthors, and reviewed in
Lindzen (1988), is based on the idea that when the local Richardson number is less than
one quarter, the critical layer of a normal-mode wave incident on a stratified shear layer
will ‘over-reflect’, and in the correct configuration, this may lead to exponential growth.
This theory, although harder to understand intuitively than the wave-resonance picture, is
attractive as it explicitly includes the Miles-Howard criterion. However, Smyth and Peltier
(1989) showed that while wave over-reflection could accurately predict KHI and HWI in
isolation, near the transition between the two, the theory was insufficient. In particular, there
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exist regions of parameter space where KHI exists, so the critical layer is located where the
velocity vanishes, and yet Rig > 1/4 here so over-reflection is not expected.

In this chapter, we perform linear stability analyses over a wide range of parameters
for the ‘Hazel model’ (Hazel, 1972), including viscosity which has usually been omitted in
the past (Hazel, 1972; Smyth and Peltier, 1989; Alexakis, 2005, 2009). As well as finding
a clear continuation of the classic inviscid HWI at values of R for which it is known to
exist, we also find instability at much lower R, with growth rates which vanish as Reynolds
number is increased. We term this new instability the viscous Holmboe instability (VHI),
and demonstrate that it has many similarities to the classic HWI. Our results suggest that
while the wave interaction theory gives a useful interpretation of the phenomenology, neither
this nor the over-reflection theory is useful as a necessary or sufficient criterion to predict
instability. We shall see that results from inviscid theory are not relevant here with viscosity
present, even in situations where the Reynolds number is sufficiently high that a ‘frozen flow’
approximation is valid, and the diffusion of the background velocity and density distributions
is not thought to be significant.

The remainder of the chapter is organised as follows. In section 3.2, we present the
assumptions made and the equations solved. In section 3.3, linear stability analyses are
presented over a wide range of different parameters, and the fastest growing Holmboe modes
are tracked and discussed as Reynolds number and R are varied. Section 3.4 shows the
nonlinear evolution of VHI at parameter values for which we expect it to grow fastest, and
we compare this against the evolution of the classic, inherently inviscid HWI. In section 3.5,
the results are discussed with particular emphasis on interpretation through wave-resonance
and over-reflection.

3.2 Equations

In this chapter, we consider only two-dimensional perturbations to the background flow. This
is a common assumption, by appealing to the results of Squire (1933) and Yih (1955), who
showed that any three-dimensional normal mode can be associated with a two-dimensional
one with smaller Richardson number and larger Reynolds number. However, this is not
necessarily sufficient to show that the fastest growing mode is always a two-dimensional one
(Smyth and Peltier, 1990). We discuss this further in section 3.5.

An infinitesimal normal-mode perturbation with vertical velocity w(x,z, t) = ŵ(z)eik(x−ct)

to an inviscid Boussinesq flow with velocity profile U(z) and buoyancy profile B(z) must
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satisfy the well-known Taylor-Goldstein equation

(U − c)
(
∂

2
z − k2) ŵ−Uzzŵ =− Bz

U − c
ŵ. (3.1)

Here, k is the streamwise wavenumber of the perturbation, and c = cr + ici is the complex
phase speed, so that the growth rate of a disturbance is given by σ = kci.

When kinematic viscosity ν∗ and diffusivity of the buoyancy distribution κ∗ are taken
into account, (3.1) becomes the more complicated pair of equations

(U − c)
(
∂

2
z − k2) ŵ−Uzzŵ = ikb̂+

1
ik

1
Re

(
∂

2
z − k2)2

ŵ,

(U − c)b̂+
1
ik

Bzŵ =
1
ik

1
PrRe

(
∂

2
z − k2) b̂, Re ≡ U∗

0 d∗
0

ν∗ ; Pr ≡ ν∗

κ∗ ,
(3.2)

where length scales and time scales have been non-dimensionalised using the half-depth d∗
0

of the shear layer, and half the velocity difference U∗
0 across the shear layer, leading to a

conventional definition of the Reynolds number Re, and Pr is the usual Prandtl number.
Following Hazel (1972) and many subsequent authors, we consider the ‘Hazel’ model

for the background velocity and buoyancy distributions:

U(z) = tanhz, B(z) =
J
R

tanhRz; R ≡ d∗
0

δ ∗
0

; J ≡ B∗
0d∗

0

U∗2
0

, (3.3)

where δ ∗
0 is the (dimensional) half-depth of the background buoyancy layer with half-

difference B∗
0 and J is the bulk Richardson number. This is an extension of the Holmboe

model (Holmboe, 1960), which has R = 1 and is attractive because the stability boundary
can be found analytically (Miles, 1961). It is close to the self-similar error function profile
expected for a diffusing stratified shear layer when Pr = R2 (Smyth et al., 1988). It is
important to note that these profiles are not steady solutions of the viscous Boussinesq
equations, but we make the ‘frozen flow’ approximation (Smyth and Carpenter, 2019) which
is valid when σ ≫ 1

Re . This inequality is not always satisfied by the instabilities we find, as
discussed in section 3.3.4.

The gradient Richardson number Rig, defined as

Rig(z)≡
dB/dz

(dU/dz)2 = J
sech2 Rz
sech4 z

, (3.4)

for the Hazel model flow which means (for this particular flow) that at the centreline,
Rig(0) = J. For R ≤

√
2, J is the minimum of Rig, for

√
2 < R < 2, there are two minima
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of Rig < J either side of local maximum z = 0, and for R ≥ 2, Rig → 0 as z → ∞ and z = 0
is a global maximum (Alexakis, 2005). From the Miles-Howard theorem, we then deduce
that inviscid HWI at arbitrarily large J is only possible when R ≥ 2. In fact, Alexakis (2007)
showed that HWI only exists at all for R ≥ 2, despite the possibility of instability at J > 1/4
when

√
2 < R < 2.

The solution of (3.2) is performed using a MATLAB code from Smyth and Carpenter
(2019). The method is to construct a large matrix eigenvalue problem, using evenly spaced
finite differences. This is a mature code, and additionally the existence of viscous Holmboe
was confirmed in DNS of the Boussinesq equations at finite Re and Pr = 1 (see chapter
2).The boundary conditions are that ∂ ŵ

∂ z = ∂ b̂
∂ z = 0, i.e. frictionless, insulating boundaries, at

z =±Lz, although all of the instabilities we discuss here are centred around the shear layer,
and changing the boundary conditions would not qualitatively affect the results. All linear
stability results are found using 768 finite difference points in the vertical direction, except
for the Lz = 20 case which used 1024 points, and the figures are generated from a 48×48
grid of calculated growth rates.

3.3 Linear stability analyses

Figure 3.1 shows a typical example of the viscous Holmboe instability (VHI). There is a
clear distinction between those unstable modes with zero phase speed, which we identify as
KHI, and the modes with non-zero phase speed, which we identify as VHI. Although the
existence of unstable modes at R = 1 with non-zero phase speed was unknown before the
work in chapter 2, the diagram bears a striking resemblance to the classic stability diagrams
for inviscid HWI for a piecewise linear profile with a density discontinuity (Holmboe, 1962,
figure 7) and the Holmboe model with R > 2 (Hazel, 1972, figure 8). Crucially, above
J = 0.25 on this diagram, the gradient Richardson number of the flow is everywhere greater
than one quarter, and so we expect stability as Re → ∞. In the inviscid case, as J is increased
the dominant KHI mode and a subdominant KHI mode converge and bifurcate into the pair
of HWI modes, with opposite phase speeds. In the viscous case, the regions of the two
instabilities overlap slightly and there is no clean bifurcation from one to the other. The
remainder of this section will explore how the structure of stability diagrams like figure 3.1
change as various parameters are varied.

Figure 3.2 shows typical eigenmodes of the spanwise vorticity. With R = 1, i.e. a density
interface as wide as the shear layer, no critical layer exists. With R = 3, the eigenmode is
virtually indistinguishable from the Re → ∞ case, and a critical layer is present and clearly
manifests itself within the spatial structure of the mode. Both of these modes have an



3.3 Linear stability analyses 29

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0

00

0
.0

0
0
1

0.0001

0
.0

0
0
1

0.001

0.0
01

0.0
01

0.1
0.1

0

0.5

1

1.5

2

2.5

3

3.5

4

VHI

KHI

Fig. 3.1 Stability diagram for the Hazel model flow profile as defined in (3.3) with R = 1,
Re = 500, Pr = 1, with boundaries at z =±Lz =±15. The contours show the growth rate of
two-dimensional normal mode perturbations of wavenumber k, at bulk Richardson number J.
The colours show the phase speed. The lower region, up to J = 0.25, is KHI with zero phase
speed. The upper lobe is viscous Holmboe instability (VHI), with non-zero phase speed. The
dashed line shows the analytic stability boundary J = k(1− k) for an unbounded domain
in the inviscid limit (Miles, 1961). In this, and all the stability diagrams in this chapter, a
waviness is apparent near stability boundaries. This is a common problem in such stability
diagrams (Hogg and Ivey, 2003; Smyth and Winters, 2003; Carpenter et al., 2010b, 2013),
and is associated with interpolating near sharp changes of gradient in contour plots.
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Fig. 3.2 Vorticity field for the most unstable viscous Holmboe instability (VHI) mode for
R = 1 (J = 0.2128, k = 0.1042, left) and R = 3 (J = 0.8085, k = 0.5208, right). In the latter
case, a critical layer exists at z = 0.63437 and is marked with a dashed line.
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Re R Pr Lz σmax cmax
r Jmax kmax Figure

500 1 1 15 0.002031 1.114 0.21277 0.10417 1
500 1 1 10 0.0019489 1.1152 0.21277 0.0625 3a
500 1 1 20 0.0020869 1.1363 0.12766 0.041667 3b
500 1 0.7 15 0.0027958 1.1185 0.21277 0.10417 4a
500 1 7 15 0.00056834 1.2536 0.17021 0.020833 4b
500 0.5 0.25 15 0.0003781 1.557 0.12766 0.041667 5a
500 1.5 2.25 15 0.0032918 1.0156 0.29787 0.10417 5b
500 2 4 15 0.0033963 0.88215 0.38298 0.125 5c
500 3 9 15 0.031314 0.56129 0.80851 0.52083 5d
5.5 1 1 15 0.0014049 1.4289 0.29787 0.125 6
6 1 1 15 0.0025824 1.2608 0.21277 0.125 6
7 1 1 15 0.0039878 1.2708 0.25532 0.14583 6
10 1 1 15 0.0067811 1.2525 0.25532 0.14583 6
15 1 1 15 0.0092699 1.2498 0.34043 0.1875 6
20 1 1 15 0.01023 1.2336 0.34043 0.1875 6
25 1 1 15 0.010546 1.2515 0.34194 0.175 6
30 1 1 15 0.010542 1.2334 0.35806 0.1875 6
40 1 1 15 0.01 1.2446 0.34043 0.16667 6

100 1 1 15 0.0069558 1.1762 0.25532 0.125 6
200 1 1 15 0.0044792 1.1263 0.21277 0.10417 6
400 1 1 15 0.0025701 1.1279 0.17021 0.0625 6

1000 1 1 15 0.0011049 1.1183 0.17021 0.0625 6
2000 1 1 15 0.00057664 1.0722 0.13226 0.025 6
4000 1 1 15 0.0002994 1.0854 0.13226 0.0125 6

10000 1 1 15 0.00012168 1.0827 0.13226 0.0125 6
Table 3.1 The various parameters used for the linear stability diagrams, as well as the
maximum growth rate σmax of viscous Holmboe instability (VHI) for each set of parameters,
and the phase speed cmax

r , wavenumber kmax and bulk Richardson number Jmax at which they
occur.
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Fig. 3.3 As for figure 3.1, but with Lz = 10 (a) and Lz = 20 (b).

equivalent mode associated with the complex conjugate eigenvalue, which is identical except
for a reflection in the centreline. In the R = 1 case, we also note that the growth rate is
maximised at a much lower wavenumber.

Table 3.1 shows the full list of parameters for which stability diagrams were produced.
For each diagram, we find the maximum growth rate for VHI, i.e. the maximum of σ such
that the phase speed cr is non-zero, maximised over the discretised values of k and J. Since
the grids are relatively coarse, the values will not be the true maxima as no optimisation
algorithm has been employed, but they give a strong indication of the trend.

3.3.1 Effects of domain height

The instabilities we study, KHI and HWI, were originally derived as solutions to the Taylor-
Goldstein equation in an unbounded domain. There are several ways to approximate a
domain of infinite height numerically, but we choose the simplest, which is to use a domain
of sufficiently large, but finite, height. How large is sufficient is an important question, as a
very large domain is computationally inefficient. Certainly as the height gets small compared
with the wavelength of the instabilities we expect the results to change dramatically, and Hazel
(1972) noted how the diagrams always differ from the analytic, unbounded results at low
wavenumbers. Figure 3.3 shows the same diagram as figure 3.1, but at a smaller (figure 3.3a)
and a larger (figure 3.3b) domain height. Though the results are slightly different, qualitatively
they are very similar, especially for Lz = 20, with Lz = 10 showing more instability at low
wavenumbers. The maximum growth rate of the VHI region is σ = 1.9489× 10−3 for
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Fig. 3.4 Contours of growth rate at low wavenumber for (a) Lz = 20 and (b) Lz = 40. An
increased vertical resolution of 1024 was used. In this case the colour for phase speed is
omitted as this is not well-defined at k = 0.

Lz = 10 and σ = 2.0869×10−3 for Lz = 20, compared with σ = 2.0310×10−3 for Lz = 15,
suggesting that Lz = 15 is sufficient to capture the behaviour in which we are interested.

It is interesting to observe that the region of instability appears to extend to nonzero J at
k = 0. This is expected for small domain height (Hazel, 1972), but is counter-intuitive and
perhaps non-physical as Lz → ∞. To investigate this, figure 3.4 shows the low-wavenumber
portion of the stability diagram at Lz = 20 and Lz = 40. In both cases the stability boundary
itself appears to be at J > 1 at k = 0, but the next contour of σ = 0.0001 is clearly retreating
at k = 0 as the domain height is increased. This suggests that the stability boundary itself
may be a numerical artifact.

3.3.2 Effects of Prandtl number

Figure 3.5 shows the effect on the stability diagram of varying the Prandtl number. For
Pr = 0.7 (characteristic of thermally stratified air), we find a maximum growth rate of
σ = 2.7958×10−3, and for Pr = 7 (a typical value for thermally stratified water) of σ =

5.6834× 10−4, compared with σ = 2.0310× 10−3 for Pr = 1. Therefore, decreasing the
diffusion of buoyancy seems to have a stabilising effect on VHI. In contrast, the KHI at
the bottom of the figure is virtually unchanged as Pr is varied by an order of magnitude,
which reinforces the idea that KHI is produced by the shear alone. Jones (1977) found strong
instability at very low Pr, but we believe this to be a different effect.
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Fig. 3.5 As for figure 3.1, but with Pr = 0.7 (left) and Pr = 7 (right).

Henceforth, we give results using Pr = R2, as proposed by Smyth et al. (1988). Despite
the fact that the instability seems to be destabilised when Pr is reduced, it is also stabilised
when R is decreased, as we shall see.

3.3.3 Effects of R

So far, the results we have presented have concentrated on R = 1, the original Holmboe
model. However, in the inviscid limit, HWI exists only for R > 2 (Alexakis, 2007). Figure
3.6 shows the stability diagram at Re = 500 over a range of R, with Pr = R2. All diagrams
show a region of instability with non-zero phase speed, which we identify as VHI. In the
case R = 3, the diagram is very similar to the classical diagram of an inviscid fluid (Hazel,
1972). The unstable region above the usual band, at low wavenumbers, has cr > 1, so there
is no critical layer. As R → 2 from above, the inviscid results suggest that the band should
narrow to a line (Alexakis, 2005), but instead we see a significant region of instability. In the
diagrams for R = 1.5 and R = 2, a second band of instability is observed above the first, with
reduced phase speed, and we conjecture that this may be connected with the higher Holmboe
modes. This has not been investigated further, as the growth rate here is vanishingly small.

In all cases, although it is not clear from the truncated diagrams, the instability is
suppressed at large k by viscosity. This is in contrast to the inviscid limit, which has
instability at arbitrarily large k and J. It is only in this large k limit that the wave interaction
arguments can be made rigorous.
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Fig. 3.6 As for figure 3.1, but with (a) R = 0.5, Pr = 0.25, (b) R = 1.5, Pr = 2.25, (c) R = 2,
Pr = 4, (d) R = 3, Pr = 9. Only the last of these would exhibit HWI at Re = ∞.
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Fig. 3.7 (a) The growth rate σ (left axis) and relative growth rate σRe (right axis), maximised
over k and J, for VHI at R = 1, Pr = 1, as Re varies. (b) Growth rate against J and Re,
maximised over k, for R = 1 and Pr = 1. The band at the bottom of the figure is KHI,
destabilised as Re increases. The upper region with J ≳ 1/4 is VHI, clearly stabilised as Re
increases.

3.3.4 Effects of Reynolds number

The Miles-Howard theorem tells us that VHI at R = 1 must disappear for J > 1/4, in the
inviscid limit Re → ∞. This leaves many possibilities: 1) the stability boundary could retreat
below J = 1/4; 2) width of the unstable region in the k direction could vanish; or 3) the
growth rates could vanish but the region remain a finite size. There may or may not be some
finite Re above which VHI does not exist. It is also important to ask at what value of Re the
growth of the instability is the fastest, or indeed the relative growth rate compared with the
diffusion of the background profile.

The growth rate is maximised between Re = 25 and Re = 30, with value σ ≈ 0.0105. The
relative growth rate σRe, which is required to be large compared with unity for a physically
relevant instability (Smyth and Carpenter, 2019), was found to increase with Re (at least
until Re = 10000), which is a curious result, since it means that despite the growth rate being
maximised at a very low value of Re, in practice we are more likely to observe the instability
at much higher Re.

The critical Reynolds number Rec for the viscous Holmboe instability at R = 1, Pr = 1,
below which there is no instability except KHI, was found to be Re = 4.615. At criticality,
the instability appears at J = 0.25 and k = 0.12. This is in contrast with KHI, which at J = 0
was found to have Rec = 0 (Betchov and Szewczyk, 1963). In that case, viscosity has a
purely stabilising effect. Figure 3.7 shows how the growth rate varies with Re.
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Asymptotic behaviour at high Re

The fact that some of the VHI do not have a critical layer (cmax
r > 1 in Table 1) suggests

a regular perturbation analysis may be sufficient to capture the effect of high but finite Re.
Defining a perturbation parameter ε := 1/Re ≪ 1, we may rewrite (3.2) as

L0(c)

(
ŵ
b̂

)
= εL1

(
ŵ
b̂

)
, (3.5)

where we have defined linear operators

L0(c) :=

(
(U − c)

(
∂ 2

z − k2)−Uzz −ik
1
ik Bz (U − c)

)
(3.6)

and

L1 :=
1
ik

((
∂ 2

z − k2)2 0
0 1

Pr

(
∂ 2

z − k2)
)
. (3.7)

Adopting the expansions (
ŵ
b̂

)
=

(
ŵ0

b̂0

)
+ ε

(
ŵ1

b̂1

)
+O(ε2),

c = c0 + εc1 +O(ε2),

(keeping k fixed), then
L0(c) = L0(c0)+ εc1L

′
0 +O(ε2) (3.8)

where

L ′
0 :=

∂L0

∂c
=

(
−
(
∂ 2

z − k2) 0
0 −1

)
. (3.9)

Inserting these expansions into (3.5), we have

L0(c0)

(
ŵ0

b̂0

)
+ εL0(c0)

(
ŵ1

b̂1

)
+ εc1L

′
0

(
ŵ0

b̂0

)
= εL1

(
ŵ0

b̂0

)
+O(ε2). (3.10)

At leading order, the inviscid Taylor-Goldstein equation is recovered,

L0(c0)

(
ŵ0

b̂0

)
= 0, (3.11)
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which by the Miles-Howard theorem has only wavelike solutions c0 ∈ R when R = 1 and
J > 1/4. In this case, the diagonal elements of L0(c) are real and the off-diagonal elements
are purely imaginary, so that for a solution we must have arg b̂0 = arg ŵ0±π/2 in the absence
of a critical layer. Without loss of generality, we may choose the phase so that ŵ0 is real and
b̂0 is purely imaginary.

With an inner product on the space of vectors〈(
w1

b1

)
,

(
w2

b2

)〉
:=
∫ Lz

Lz

(w∗
1w2 +b∗1b2)dz, (3.12)

we may define the adjoint operator L †
0 (c) to L0(c) via〈(

w1

b1

)
,L0(c)

(
w2

b2

)〉
=

〈
L †

0 (c)

(
w1

b1

)
,

(
w2

b2

)〉
, (3.13)

which gives

L †
0 (c) :=

((
∂ 2

z − k2)(U − c)Uzz − 1
ik Bz

ik (U − c)

)
. (3.14)

The existence of a non-trivial solution to (3.11) implies a non-trivial solution to

L †
0 (c0)

(
ŵ†

0

b̂†
0

)
= 0, (3.15)

which is the adjoint eigenfunction. Again, we can choose ŵ†
0 to be real and b̂†

0 to be imaginary.
The O(ε) terms in (3.10) give

L0(c0)

(
ŵ1

b̂1

)
= L1

(
ŵ0

b̂0

)
− c1L

′
0

(
ŵ0

b̂0

)
, (3.16)

so taking the inner product with the adjoint eigenfunction, we have〈(
ŵ†

0

b̂†
0

)
,L0(c0)
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=
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ŵ0
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The left-hand side of this equation is zero by construction, and so

c1 =

〈(
ŵ†

0

b̂†
0

)
,L1

(
ŵ0

b̂0

)〉
〈(

ŵ†
0

b̂†
0

)
,L ′

0

(
ŵ0

b̂0

)〉 . (3.18)

Observe from (3.7) and (3.9) that L1 and L ′
0 are purely imaginary and real respectively. By

our choice of phase it is clear that the numerator is therefore imaginary and the denominator
real, so c1 is purely imaginary. It can be similarly shown that c2 is real so the next contribution
to the growth rate is at O(1/Re3). We further observe that both L1 and c1L

′
0 are purely

imaginary, so from (3.16) we deduce that ŵ1 and b̂1 are purely imaginary and real respectively,
the opposite situation to ŵ0 and b̂0.

We compute c1, and thus the growth rate of the instability as Re becomes large σ =

−ikc1/Re+O(1/Re3), using (3.18) as follows. First, we make an initial guess of c0 from the
real part of c from a numerical linear stability analysis at Re = 10000. Secondly, we use this
approximate c0 in the inverse iteration eigenvalue algorithm to solve both (3.11) and (3.15).
Finally, we directly evaluate (3.18) using a trapezoidal quadrature rule for the inner products.

The results for two sample parameter values are shown in figure 3.8a. Figure 3.8b shows
calculated zeroth- and first-order modes. We thus see that the viscous Holmboe modes are a
destabilisation of a stable, propagating mode in the inviscid limit. Viscosity acts to break the
exact π/2 phase difference between the vertical velocity and the buoyancy modes. The fact
that VHI varies smoothly between modes with and without critical layers, in particular in
figure 3.6c, suggests this regular perturbation analysis will extend to the case where a critical
layer exists, and that the critical layer is not important to the dynamics.

3.4 Nonlinear evolution

Smyth and Peltier (1990) showed that at low Reynolds numbers, the linear evolution of
HWI is insufficiently fast to overcome the diffusion of the background flow. This leads
to the possibility that VHI, for which the growth rates are always small, never physically
manifests when the background flow is allowed to diffuse. We consider the nonlinear
evolution, which allows us to see whether the viscous Holmboe instability develops the
classic counter-propagating vortices of HWI. We use the same DNS code as in chapter 2 to
solve the full Boussinesq equations, which is pseudospectral in the streamwise direction and
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Fig. 3.8 (a) Asymptotic (dashed) and numerical (solid) values of growth rate for VHI at
J = 1, k = 0.5 (lower) and J = 0.5, k = 0.25 (upper). (b) Modes for the J = 0.5, k = 0.25
case. The zeroth order modes have been scaled for clarity. In both figures, R = 1, Pr = 1 and
Lz = 15, corresponding to figure 3.1.

utilises finite differences in the vertical. In the present case, the background flow is allowed
to diffuse.

Here we present the results of two direct numerical simulations (restricted to two dimen-
sions) with R = 1.5, a case for which no HWI is predicted in the inviscid limit. We take
Re = 4000, a compromise between maximising the relative growth rate (see section 3.3.4)
and minimising the spatial resolution. We chose a domain width of Lx = 20, which permits
multiple unstable modes.

Large-amplitude random initial perturbations were used to simulate the effects of a noisy
oceanic or atmospheric environment. Using initial conditions matching the most unstable
modes would necessarily have demonstrated some nonlinear behaviour reminiscent of the
respective instabilities with sufficiently large initial amplitude. The intention here, instead, is
to see whether VHI is sufficiently fast-growing that it can manifest in unfavourable, generic
conditions.

Figure 3.9 shows the results of a calculation with J = 0.1, for which we expect a Kelvin-
Helmholtz instability to develop to finite-amplitude. A linear stability analysis predicts
exponential growth rates of σ = 0.1244 and σ = 0.0981 for mode 1 and mode 2 disturbances
(k = π/10 and k = π/5) respectively, in both cases with zero phase speed. We use a relatively
large initial perturbation of random noise in low wavenumber Fourier and Hermite modes,
which, along with the comparable growth rates for the two unstable modes, leads to an
incoherent, but nevertheless recognisable, Kelvin-Helmholtz billow. At the large Re studied,
this rapidly breaks down into turbulence, and significant mixing is achieved, although it is
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important to remember that this DNS is restricted to two dimensions, and so the specific
characteristics of the mixing are likely to be unphysical.

Figure 3.10 shows the same calculation with J = 0.67, which maximises the growth rate
for VHI at this wavenumber. Again, both modes 1 and 2 are unstable, with growth rates
σ = 4.1121×10−4 and σ = 1.7012×10−4 respectively, and phase velocities cr =±1.0211
and cr =±1.0056. Since the phase speeds are greater than 1, no critical layer exists for these
instabilities. In this case, the relative growth rate clearly does not satisfy σRe ≫ 1, so we
require a large initial perturbation to trigger significant instability. The strong asymmetry
of this random perturbation means that a Holmboe ‘wave’ is apparent only on one side of
the interface. Despite the lack of a critical layer, a ‘cusped wave’ very reminiscent of classic
HWI (Alexakis, 2009; Salehipour et al., 2016) is apparent, and grows large enough for a clear
vortex to be apparent. This vortex is responsible for some mixing, which can be observed
when comparing the long time vorticity distribution above the interface, where the vortex
exists, to below, where no strong VHI was triggered. However, this mixing is relatively
weak compared with the diffusion of the background profile. It is difficult to define a speed
precisely for the nonlinear wave, but it appears to be close to 1. Both the background flow
velocity at the level of the vortices and the phase velocity of the linear instability are also
approximately equal to 1. Animations of both evolving flows are available as supplementary
materials.

3.5 Discussion and Conclusions

In this chapter, we have described a new, inherently viscous instability and have demonstrated
that it shares many of the characteristic features of the classic, inviscid Holmboe wave
instability, namely manifesting as a propagating vortex on either side of the mixing layer
and appearing to be caused by the interaction of internal gravity waves on a shear interface.
Since it exists in regions of parameter space where no instability is predicted in the inviscid
limit, we term it the viscous Holmboe instability, or VHI. The instability we have described
is distinct from the ‘viscous Holmboe wave instability’ found by Eaves and Caulfield (2017)
in plane Couette flow, which required non-slip and non-penetration effects in the presence of
a rigid boundary, whereas we have shown that boundaries only weakly affect the instability,
and the VHI discussed here is truly an instability of a stratified shear layer. Despite the
similarities to inviscid HWI, it has significant differences from the classical case: it exists
when the density interface is not sharp compared with the shear layer; it can have a phase
speed greater than the maximum fluid velocity; and it is destabilised by viscosity. When
there is no critical layer, a simple perturbation analysis shows that the VHI arises by viscosity
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Fig. 3.9 The total vorticity field of a two-dimensional nonlinear simulation of the Boussinesq
equations at Re = 4000, Pr = 2.25, Lx = 20, Lz = 10 and J = 0.1. The initial state is a
background field with R = 1.5, plus a perturbation of random noise in the first sixth of the
horizontal Fourier modes, and the first five Hermite polynomials in the vertical. Two domain
widths are shown horizontally. (a) t = 0, showing the random initial conditions. (b) t = 20,
showing the Kelvin-Helmholtz billow that has begun to develop. (c) t = 40, showing that
the billow has saturated and is starting to break down. (d) t = 60, showing that the KHI
has led to (two-dimensional) turbulence. An animation of the evolving flow is available as
supplementary material.
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Fig. 3.10 As for figure 3.9, but with J = 0.4355. (a) t = 0, showing the random initial
conditions. (b) t = 20, showing that a ‘cusped wave’ is apparent, characteristic of HWI
at finite-amplitude. (c) t = 35, showing that a leftwards-propagating vortex is now visible
above the shear layer. (d) t = 110, showing that the vortex has weakened as the mixing layer
diffuses away. An animation of the evolving flow is available as supplementary material.

disrupting the perfectly out-of-phase velocity and buoyancy components of the neutrally
stable inviscid limit. Our work has made the ‘frozen flow’ approximation that requires σ to
be large compared with 1/Re for the instability to grow quickly compared with the diffusion
of the background profile, but we did not find this to be the case. Indeed, our perturbation
analysis shows that σ ∼ 1/Re as Re → ∞. Numerically, we find that σ is small compared
with 1/Re when Re ≲ 102, despite the fact that σ is maximised for Re ≈ 25 and only just
rises above 1/Re for Re ≳ 103. This leads to the curious situation that although this is
an instability which requires viscosity to exist, the effect of the instability relative to the
diffusion of the background flow appears to be greater as Re is increased.

This work is a study of how viscosity affects the Holmboe wave instability as certain
parameters are varied. There are many possible extensions which have been examined for
(classic) HWI, including considering the effects of compressibility (Witzke et al., 2015), sur-
face tension (Pouliquen et al., 1994), and relaxing the Boussinesq approximation (Umurhan
and Heifetz, 2007; Churilov, 2019). We briefly investigated the possibility that the higher
Holmboe modes described by Alexakis (2005, 2007, 2009) are also destabilised by viscosity
at low R, and did indeed find a further band of instability with very small growth rates. Our
work has been entirely restricted to two dimensions. Though this is a common assumption
when studying linear instabilities of shear flows, there is no physical basis for this, and
indeed we would fully expect to see the fastest growing mode being three-dimensional in
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some regions of parameter space, based on the results of Smyth and Peltier (1990). A third
dimension would also significantly affect the nonlinear evolution of the instability at high Re.

Despite the lack of a sharp density interface relative to the shear layer for the parameters
for which we have found instability, we would certainly still expect internal gravity waves
to be present on the interface. There is no reason we are aware of, a priori, to think that
these could not resonate with the vorticity waves to cause instability. The wave resonance
descriptions of stratified shear instabilities have been mainly qualitative, except in the cases
of piecewise constant density and vorticity profiles, which would be physically inconsistent
at finite viscosity. Recent attempts to analyse the components of resonances (Carpenter et al.,
2010b; Eaves and Balmforth, 2019) and to understand better the dynamics of the resonant
system (Heifetz and Guha, 2018, 2019) have relied on analysis which requires perturbations
to be inviscid, and these certainly would not apply in the low Re regimes we have described.
Though the theory of wave resonance has given useful insight in many situations, it is clearly
not the full picture. One major outstanding question is how the Miles-Howard criterion may
relate to the wave resonance picture. Baines and Mitsudera (1994) give an argument from
critical layer theory, though the authors themselves admit that this gives neither a necessary
nor sufficient criterion for stability.

Most of the unstable regions of the viscous Holmboe instability for R ≤ 2 have |cr|> 1,
so there is no critical layer. Therefore, Lindzen’s wave over-reflection hypothesis for the
mechanism of stratified shear instabilities, as well as other interpretations based on the
existence of a critical layer, such as the wave-particle interaction described by Churilov
(2019), cannot apply. This is in contrast with the viscous instability described by Miller and
Lindzen (1988), in which the viscosity was thought to enable over-reflection at the critical
layer. As discussed by Smyth and Peltier (1989), it could be possible that the instability is
associated with over-reflection of a wave with a different phase speed, which therefore could
itself have a critical layer, but this makes an intuitive explanation much harder. Since the wave
over-reflection theory is not a predictive explanation of the instability in this case, it does not
seem useful here, though it has certainly proven important in many other circumstances.

Under carefully controlled parameters, we have been able to show significant nonlinear
growth of the viscous Holmboe instability at R = 1.5 and Re = 4000, from initial noise,
leading to secondary instabilities and transition to disorder. This primary instability has no
critical layer. Nevertheless, most of the regions of instability we have studied, with R < 2,
have much lower growth rates. We conclude that the viscous Holmboe instability is unlikely
to be particularly significant in physical processes. In addition to this, for typical values of
Prandtl number in the atmosphere (Pr ≈ 0.7) we see very small growth rates and for typical
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values of Pr ≈ 7 in the oceans, we see the full classical HWI, since in this case R is usually
large.

Despite these caveats, we have demonstrated the definite existence of an instability
which bears a striking resemblance to HWI, but violates many of the supposed prerequisite
conditions. We therefore suggest that any instability in a stratified shear layer be considered
Holmboe instability if it manifests as propagating vortices on either side of the shear layer,
regardless of the relative width of the density interface, the presence of critical layers or the
minimum value of the gradient Richardson number.



Chapter 4

The effects of Prandtl number on the
nonlinear dynamics of Kelvin-Helmholtz
instability in two dimensions1

1This chapter is a slightly modified version of Parker, J. P., Caulfield, C. P., & Kerswell, R. R., The effects
of Prandtl number on the nonlinear dynamics of Kelvin-Helmholtz instability in two dimensions. In review in
Journal of Fluid Mechanics.





Abstract

It is known that the pitchfork bifurcation of Kelvin-Helmholtz instability occurring at mini-
mum gradient Richardson number Rim ≃ 1/4 in viscous stratified shear flows can be sub-
critical or supercritical depending on the value of the Prandtl number, Pr. Here we study
stratified shear flow restricted to two dimensions at finite Reynolds number, continuously
forced to have a constant background density gradient and a hyperbolic tangent shear profile,
corresponding to the ‘Drazin model’ base flow. Bifurcation diagrams are produced for
fluids with Pr = 0.7 (typical for air), 3 and 7 (typical for water). For Pr = 3 and 7, steady
billow-like solutions are found to exist for strongly stable stratification of Rim up to 1/2
and beyond. Interestingly, these solutions are not a direct product of a Kelvin-Helmholtz
instability, having too short a wavelength, but can give rise to Kelvin-Helmholtz states of
twice the wavelength through subharmonic bifurcations. These short-wavelength states can
be tracked down to at least Pr ≈ 2.3 and act as instigators of complex dynamics even in
strongly stratified flows when the flow is unforced.

4.1 Introduction

Kelvin-Helmholtz instability (KHI) is believed to be important in geophysical flows found in
both the oceans (Smyth and Moum, 2012) and atmosphere (Fukao et al., 2011; Sun et al.,
2015). Of particular importance is the generation of abyssal oceanic turbulence by the break
down of shear instabilities, which is an area of significant uncertainty in climate modelling
(Gregg et al., 2018b). Direct observations in the atmosphere, such as of sheared clouds,
are relatively straightforward to perform, whereas only a few studies have observed Kelvin-
Helmholtz billows in the abyssal ocean (Van Haren and Gostiaux, 2010). Amongst other
parameters, the Prandtl number Pr := ν/κ (the ratio of kinematic viscosity ν to thermal
diffusivity κ), involved in these two settings is different making it important to understand
any resulting differences in the dynamics. In the atmosphere, Pr ≃ 0.7 whereas in the
ocean Pr ≃ 7 and when the diffusion of salt is important (described by a diffusivity κs), the
equivalent Schmidt number Sc := ν/κs ≃ 700 (Thorpe, 2005).
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Several simple models of stratified mixing layers have been proposed which exhibit KHI.
The two most common, the Drazin (1958) and Holmboe (1960) models, are both found
to be linearly stable in the inviscid case when the minimum gradient Richardson number
Rim (as defined below) is greater than one quarter. This observation led to the celebrated
Miles-Howard theorem (Miles, 1961; Howard, 1961), which shows that inviscid flows are
always linearly stable when the gradient Richardson number is everywhere greater than
one quarter. A longstanding challenge has been to determine whether significant nonlinear
dynamics are also precluded for Rim > 1/4.

With viscosity, the Prandtl number enters the problem and there is a body of evidence
suggesting this parameter has a significant impact on the behaviour of KHI (Salehipour et al.,
2015; Rahmani et al., 2016). In particular, it has been shown that the bifurcation of KHI near
(minimum gradient) Richardson number 1/4 is subcritical when Pr > 1 and supercritical
when Pr < 1 (Brown et al., 1981; Churilov and Shukhman, 1987; Lott and Teitelbaum,
1992; Mkhinini et al., 2013). (In this chapter we use the dynamical systems convention that
‘subcritical’ refers to the stable region Rim > Ric and ‘supercritical’ to the unstable region
Rim < Ric.) Despite this, most simulations studying the nonlinear behaviour of KHI have
concentrated on the degenerate value Pr = 1 (Klaassen and Peltier, 1985; Caulfield and
Peltier, 2000; Mashayek and Peltier, 2011; Kaminski et al., 2017), which allows a coarser
computational grid to be used compared with higher Pr.

Although the effect of Pr on the sub/supercriticality of the bifurcation is well documented,
this gives only a weakly nonlinear understanding beyond classical linear stability analyses,
and cannot predict the full nonlinear effects. It could be the case that full turbulence is possible
through subcritical transition for flows with high minimum Richardson numbers, substantially
above 1/4, where turbulence is usually assumed to be suppressed (Thorpe, 2005), or it could
be that non-trivial, nonlinear states do not exist in flows with Rim significantly larger than
1/4, and that the behaviour is simple and transient, as was found for Pr = 1 in chapter
2.Below, we argue for the former scenario by presenting direct evidence that 2-dimensional
finite-amplitude billow-like states exist for Rim ≳ 0.4 - i.e. substantially above 1/4 - for
Pr ≳ 2.3 and indirect evidence that this situation continues below this threshold. Importantly,
this implies that complicated temporal dynamics are possible for flows generally considered
inert due to a lack of a Kelvin-Helmholtz linear instability.

To establish this key result, the chapter proceeds as follows. In §4.2, the equations of our
forced model and numerical methods are briefly presented while in §4.3, bifurcation diagrams
of the forced two-dimensional flow are given for Pr ∈ {0.7,3,7}, and the differences and
continuous change between these two values is discussed. Finally, §4.4 considers the time
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evolution of the equivalent unforced systems by performing a 2D direct numerical simulation
of the flow at various Richardson numbers, before concluding remarks are made in §4.5.

4.2 Methods

We study the Boussinesq equations for velocity u and buoyancy b:

∂u
∂ t

+u ·∇u =−∇p+Ribbez +
1

Re
∇

2u, (4.1a)

∂b
∂ t

+u ·∇b =
1

RePr
∇

2b, (4.1b)

∇ ·u = 0. (4.1c)

The non-dimensional parameters are the Reynolds number Re, quantifying the relative
importance of inertia to viscosity, the Prandtl number Pr, quantifying the relative importance
of diffusion of buoyancy to viscosity, and the bulk Richardson number Rib, quantifying the
relative importance of buoyancy to shear. With a gravitational acceleration g, shear layer
depth 2d∗, velocity difference 2U∗, reference density ρ∗, reference density gradient ∆ρ∗/d∗,
and diffusivities ν and κ for momentum and density respectively, these are calculated as

Re :=U∗d∗/ν , Pr := ν/κ and Rib :=
g∆ρ∗d∗

ρ∗U∗2 . (4.2)

In this chapter we consider the evolution of perturbations away from the flow u= tanhzex,
b = z. This is the so-called ‘Drazin model’ of a mixing layer, for which weakly-nonlinear
analyses have been performed (Churilov and Shukhman, 1987). Unlike the perhaps more
commonly considered ‘Holmboe model’ with b = tanhz, the Drazin model does not exhibit
the viscous Holmboe instability discussed in chapter 3, which would complicate our picture.
Using the Drazin model, the gradient Richardson number of the flow Rig is bounded below
by Rib, since

Rig(z) := Rib
db/dz

(du/dz)2 ≥ Rim = Rig(0) = Rib. (4.3)

Therefore, for this flow, the dynamically significant minimum gradient Richardson number
Rim corresponds to the bulk Richardson number Rib which appears as a coupling parameter
in the governing equations. Furthermore, the Miles-Howard theorem thus implies linear
stability for Rib > 1/4 at infinite Re.

For finite Re, these choices of velocity and buoyancy profiles are not steady solutions of
(4.1), but will diffuse away on an O(Re) timescale. Nevertheless, the background profiles
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can be considered steady for perturbation dynamics over a shorter timescale. Therefore,
when finding bifurcation diagrams (which require a non-decaying base state from which
finite-amplitude states can bifurcate), we study solutions of the related forced equations

∂u
∂ t

+u ·∇u+ tanhz
∂u
∂x

+wsech2z =−∇p+Ribbez +
1

Re
∇

2u, (4.4a)

∂b
∂ t

+u ·∇b+ tanhz
∂b
∂x

+w =
1

RePr
∇

2b, (4.4b)

∇ ·u = 0, (4.4c)

where now u, b and p represent the (possibly large) disturbances away from the background
flow. Throughout, we take Re = 1000 which is relatively low compared with most modern
direct numerical simulations, (see for example Salehipour et al. (2015)) but the high Pr
combined with the computational intensity of the state tracking means that higher Re are not
at present feasible. This limitation is discussed in §4.5.

The equations are solved on a two-dimensional domain periodic in the x direction with
length Lx. Stress-free boundary conditions are imposed at z =±Lz. Both the solution of these
equations and the finding and tracking of states and bifurcations largely uses the procedures
presented in chapter 2.The key difference is that the non-uniform vertical grid has been
modified to give a broader region of high resolution in the centre of the domain, in that we
now use grid points located at

zn =
Lz

3

[
2
(

2n−Nz −1
Nz −1

)7

+

(
2n−Nz −1

Nz −1

)]
.

States are converged using Newton-GMRES, then followed as parameters vary using pseudo-
arclength continuation. The bifurcation analysis of §4.3 uses a grid with Nx = 64 horizontal
grid points and Nz = 512 vertical grid points, which was shown to be sufficiently accurate by
reconverging some of the points at Nx = 256, Nz = 768. For the direct numerical simulations
of §4.4, for which much more complex spatial structures are possible, Nx = 256 and Nz = 768
is used.

For a state X = (u,b), we define the (energy-like) norm

∥X∥ :=

√
1
Lx

∫ Lz

−Lz

dz
∫ Lx

0
dx(|u|2 +Ribb2). (4.5)
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Fig. 4.1 Linear stability diagrams of the flow at Re = 1000 for (a) Pr = 0.7 (b) Pr = 7,
given as contours of the growth rate σ plotted against the wavenumber k and Rib, where the
fastest growing mode of the form eik(x−ct)+σt û(z) has been found. The vertical line marks
the wavenumber corresponding to a mode-1 disturbance in our domain of length 2

√
2π . Note

that mode-n, n ≥ 2, are all stable for all Rib. The dashed line shows the stability boundary
calculated by Drazin (1958) for Re → ∞. Here, as with all the nonlinear calculations, the
domain half-height is Lz = 10.

We also define a second function m(X) of a given state, a measure of the component of the
vertical velocity in the first Fourier mode

m(X) :=
1
Lx

∫ Lz

−Lz

dz
∫ Lx

0
dx uz sin

2πx
Lx

. (4.6)

4.3 Bifurcation diagrams

Figure 4.1 shows the linear stability, calculated using a code from Smyth and Carpenter
(2019), of the flows considered. The shape of the stability boundary is very close to the
inviscid analytical result Rib = k2(1− k2) (Drazin, 1958), which is overlaid. One curious
difference is the presence of bands of instability at low wavenumbers. These have nonzero
phase speed, and are similar to the ‘Holmboe instability’ mentioned in passing by Smyth
and Peltier (1989) for a linear stratification and piecewise linear shear. The exact structure
of these unstable bands is highly sensitive to the domain height, and they are believed to
be caused by a resonance between discretised internal waves and the shear. This diagram
varies little as Pr is changed. However, as we demonstrate below, the nonlinear behaviour is
strongly affected by Pr.
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Henceforth we concentrate on the case of a domain of fixed streamwise length Lx =

2
√

2π . This is the wavelength of the marginally unstable mode at Rib = 1/4 in the inviscid,
unbounded case, which is little modified in our viscous domain of finite height. The associated
wavenumber k1 := 1/

√
2 is marked on figure 4.1 as a vertical line. For 0.7 ≤ Pr ≤ 7 the

critical Richardson number Ric is close to, but slightly less than 1/4 due to viscous effects:
Ric ≈ 0.246 for Pr = 0.7 and Ric ≈ 0.248 for Pr = 7. Note that for this choice of domain size,
only mode-1 disturbances (i.e. those which have one wavelength in the domain) are linearly
unstable, as any mode with k ≥ 2k1 (so two or more wavelengths in the domain) is linearly
stable. A domain height of Lz = 10 was chosen, as this was assumed to be sufficiently large
compared with Lx that the behaviour at large Rib is not significantly altered, while still being
computationally efficient. At low Rib, this choice of Lz becomes significant, as discussed a
little later.

Figure 4.2 shows the primary branch of steady KH states at Pr = 0.7 which bifurcates
from the background flow at Rib ≈ 0.246, in agreement with the linear stability analysis of
figure 4.1a. The branch was found to be stable at Rib = 0.24, and a state was converged here
using a simple timestepper. The rest of the branch was traced out using pseudo-arclength
continuation. The pitchfork bifurcation is clearly supercritical, in agreement with weakly-
nonlinear theory. Figure 4.2 also shows the bifurcation curve at Pr = 1 described in chapter
2. This is close to the degenerate case between super- and sub-criticality; it can just be made
out that this case is very slightly subcritical.

Figure 4.3 shows the much more complicated situation at Pr = 7. The pitchfork bifur-
cation P0 at Rib ≈ 0.247 of the background flow is subcritical, in agreement with weakly
nonlinear theory. The state which arises is therefore unstable, and was converged by a
conventional edge-tracking procedure (e.g. Schneider et al., 2007). Edge-tracking was per-
formed at Rib = 0.26, applying interval bisection with initial conditions of the upper branch
state with wavenumber k = k1 (see below), scaled to have lower amplitudes. At P1, two
symmetric branches of wavenumber k1, which differ in phase by π/2, collide to give a state
with wavenumber k2 := 2k1. The saddle-node bifurcations S1, S2 and S3 indicate the location
of this mode-2 branch.

Separately to this, a stable upper branch state from Pr = 3 (where the system gives
a simpler subcritical bifurcation, see below) was continued up in Pr to give rise to the
mode-1 states of wavenumber k1 which join at the pitchfork P2. At this value of Pr, none of
this branch is stable. In fact, numerous other pitchfork and Hopf bifurcations, the precise
locations of which were not determined, were found to exist on all branches, so that only a
small section of the k2 branch is stable. These secondary bifurcations give rise to the complex
and apparently chaotic behaviour of the system discussed in §4.4.
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Fig. 4.2 Bifurcation diagram for the Drazin model with a domain width of 2
√

2π , with
Re = 1000 and Pr = 0.7 (blue) and Pr = 1 (pink). The line represents a steady state solution
with magnitude shown on the vertical axis. The crosses mark points reconverged at a higher
resolution.

As the states in figures 4.2 and 4.3 are traced to lower Rib and their amplitude and
therefore physical extent becomes sufficiently large, the states begin to ‘feel’ the effects of
the boundaries at z = ±Lz = ±10. At this point, the structure changes dramatically, with
the branches folding back to higher Rib, and the results are no longer physically relevant to
unbounded flows. We have therefore chosen to exclude these sections from the diagrams.
In an unbounded or sufficiently tall domain, the unstable states presumably continue past
Rib = 0, as the unstratified Kelvin-Helmholtz instability saturates as a finite-amplitude
‘billow’, although whether this also occurs for the k2 branch is unclear.

Figure 4.4 depicts three low amplitude states on the branch between the pitchfork bifur-
cations P0 and P1. Figure 4.4a is relatively close to the primary pitchfork P0, and shows a
clear mode-1 structure of wavenumber k1, in agreement with the unstable eigenmode of the
background flow, which the structure closely resembles. Figure 4.4b is further along the
branch and there is now a noticeable mode-2 signal, manifesting as a structure emerging
between the two ‘billows’. The amplitude has also increased. There is a natural transition
therefore between the eigenmode and the pure mode-2 structure at P1, as shown in figure 4.4c.
A similar transition, at significantly higher amplitude, with structures much more closely
resembling classic KH billows, is observed on the upper branch, as Rib increases towards P2

(figure 4.5).
Figure 4.6 shows the mode-2 structures, i.e. those with wavenumber k2, at the three

saddle-node bifurcation points. They are all qualitatively different. S1 and S3, in figures
4.6a and 4.6c respectively, are both highly reminiscent of classical KH billows, with a clear
elliptical vortex. At S1 the billows are significantly separated spatially, but at S3 they are
much more closely backed, but still with a distinctive ‘braid’ region connecting them. At S2,
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Fig. 4.3 Top: As for figure 4.2, but with Pr = 7. Bottom: the same data, showing the
contribution of the first Fourier mode in the streamwise direction to the states. The blue lines
shows states with wavenumber k1 := 1/

√
2, in agreement with the linear instability of the

background flow. The red lines shows states with wavenumber k2 := 2k1, which arise at the
pitchfork bifurcation P1. The crosses mark points reconverged at a higher resolution.
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(a) (b) (c)

Fig. 4.4 Vorticity fields of the steady perturbation states at Pr = 7 on the mode-1 branch
connecting P0 and P1. (a) Rib ≈ 0.3, (b) Rib ≈ 0.4, (c) at P1, Rib ≈ 0.41. Here, and in all
other such figures, two domain widths have been plotted to show the periodic structure.

(a) (b) (c)

Fig. 4.5 Vorticity fields on the upper mode-1 (k = k1) branch at Pr = 7. (a) Rib ≈ 0.34, (b)
Rib ≈ 0.38, (c) at P2, Rib ≈ 0.39.

a low amplitude state intermediate between S1 and S3, the structure is different again, and
much less familiar.

The bifurcation points labelled in figure 4.3 can themselves be converged using a Newton-
GMRES method, and tracked as Pr is varied, in a way identical to the tracking of bifurcation
points as Re varies in chapter 2.The basic (mode-1) saddle-node bifurcation found in that
chapter, which we call S0, was continued to larger values of Pr just as those of figure 4.3 were
continued to smaller values of Pr. The primary pitchfork P0, which exists for Pr < 1 too,
can be found using this method or from linear stability analysis of the background flow. The
results are shown in figure 4.7. S1 and S3 were found to be difficult to converge and continue,
due to the presence of several marginally stable eigenvalues nearby, but were located directly
at Pr = 7 and Pr = 3. S0 could not be continued beyond Pr = 3.8, and there is no obvious
bifurcation point which corresponds to S0 in figure 4.3. P1, P2 and S2 all stopped converging
below Pr = 2.3 and they appear to collide and disappear.

To clarify the situation, the intermediate value Pr = 3 was studied in detail (figure 4.8).
The main (mode-1) branch, with k = k1 and which connects to the fundamental pitchfork
P0, is a simple subcritical curve, extending up to Rib ≈ 0.3. Completely disconnected from
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(a) (b) (c)

Fig. 4.6 Vorticity fields of the mode-2 (k = k2) steady states at Pr = 7 at the saddle-node
bifurcations (a) S1, (b) S2, (c) S3.
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Fig. 4.7 Tracking of the various bifurcation points shown in figures 4.2 and 4.3 as Pr varies.
S1 and S3 were not tracked, but their locations at Pr = 3 and Pr = 7 have been marked and
interpolated with dashed lines.
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Fig. 4.8 As for figure 4.3, but with Pr = 3.

this, extending to higher Rib, is a mode-2 loop (with k = k2), which is a continuation of the
similar curve shown in figure 4.3. There is also a mode-1 branch (k = k1) connected to this,
which links P1 and P2. Between Pr = 3 and Pr = 7, this mode-1 branch collides with the
fundamental mode-1 branch to give the situation in figure 4.3. Below Pr = 3, it appears
that this disconnected curve closes at Pr ≈ 2.3, though the picture is incomplete, since the
behaviour of the states at high amplitude is unknown. The most natural explanation would be
that the k2 branch is a closed loop, but no evidence of this has been found up to amplitudes
for which the finite vertical domain size becomes important and obscures the results.

4.4 The unforced dynamical system

As mentioned in §4.2, the equations (4.4) are an approximation for large but finite Re, which
ignores the fact that the background profiles diffuse. This is not a problem for rapidly
changing perturbations to the background flow, but many of the connections between the
steady states found in §4.3 appear to be very slow dynamically. In particular, although the
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KHI grows rapidly from small disturbances to the background, it took exceptionally long
time integrations, of non-dimensional times an order of magnitude larger than Re, before
the billow states were steady enough for the Newton iteration to converge on the stable
states. For this reason, it is difficult to draw conclusions about the unforced system directly
from the results of §4.3. The steady states of the forced system do not correspond to steady
states in the unforced system, and a bifurcation analysis in the same way is not possible.
Therefore, we explore the behaviour of the unforced system (4.1) using (two-dimensional)
direct numerical simulation.

Direct numerical simulations started from noise follow chaotic trajectories and visit states
much more spatially complex than the simple steady states discussed in §4.3. Therefore,
a much higher resolution is required to avoid ‘ringing’ artifacts and be confident that the
equations are being solved accurately. It was found to be sufficient to use 256 horizontal
modes and 768 grid points vertically. Eight different simulations were performed, at Re =
1000, with a domain half-height Lz = 10, in agreement with the calculations of section
4.3. We study the cases of Pr = 0.7 and Pr = 7, modelling air and water; Rib = 0.1 and
Rib = 0.3 for the supercritical and subcritical regions; and initial disturbance wavenumbers
k1, for which the linear instability is approximately maximised, and k2, for which no linear
instability is predicted but for which we found nonlinear steady states. The simulations of
equations (4.1) are started from the Drazin model plus a random perturbation,

u = tanhzex +u′, b = z+b′, (4.7)

where the perturbation X = (u′,b′) has components only in the first 42 Fourier modes
horizontally (with even numbered modes only for k2) and first four Hermite polynomials
vertically, as in chapter 3. The initial perturbations are scaled to have amplitude ∥X∥= 0.3,
which is greater than that of the lowest branch of states in figure 4.3.

For perturbations with k = k2 at Pr = 0.7, no significant nonlinear behaviour was ob-
served at either value of Rib. Figures 4.9a and 4.9c both show S-shaped vorticity streaks
characteristic of the transient, linear Orr mechanism at t = 20. By t = 100, as shown in
figures 4.10a and 4.10c, these have diffused away to give simple shear layers, which are
slightly asymmetric due to the random nature of the initial perturbations. These results are
unsurprising, since no linear instability exists at this wavelength and we did not detect any
nonlinear modes at this Pr either.

For perturbations with k = k1 at Pr = 0.7, nonlinear billow structures are observed at
both Rib = 0.1 and Rib = 0.3. The former is to be expected since a linear instability exists,
but the latter is more surprising, as the base flow is linearly stable and the results of §4.3
show the bifurcation to be a simple supercritical one. The existence of a finite-amplitude
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steady state in the forced model should be expected to imply non-trivial dynamics in the
unforced simulations, but the converse is not necessarily true. We speculate further on this
case in §4.5.

The k = k2 simulations at Pr = 7 show what we believe to be the most novel result
reported here, namely that Kelvin-Helmholtz-like billows can exist in domains too narrow
to support a linear instability. Figure 4.11a with Rib = 0.1 appears to just show the results
of the Orr mechanism on the initial perturbation, but by t = 100 shown in figure 4.12a one
can just discern a long-lived, low-amplitude structure which is highly reminiscent of the
lower branch of solutions found in §4.3, as shown in figure 4.6b. Figures 4.11c and 4.12c at
Rib = 0.3 show the slow development of a higher amplitude state, which is very similar to
the exact solution show in figure 4.6a.

Figures 4.11b and 4.12b show the large billow which develops at Pr = 7 and Rib = 0.1.
This is despite the fact that we also found steady states with double this wavenumber in
the forced model, but since all the states we found at these parameters were unstable, it
is difficult to draw conclusions. Similarly at Rib = 0.3 in figures 4.11d and 4.12d, a small
billow of wavenumber k1 is observed. It could be the case that the initial perturbation
determines whether a mode-1 or mode-2 structure develops in the wider domain, since the
initial amplitude is rather large and the results are noisy, or this could be evidence that the
mode-1 structure is, in some sense, more stable.

Movies of all eight of these simulations are available in the supplementary material. We
note that in some situations the billows are observed to propagate through the domain; this is
not evidence of a Holmboe wave type instability, but rather a consequence of the large initial
amplitude perturbation having a net effect on the mean flow.

4.5 Conclusion

This chapter presents a systematic study of the nonlinear behaviour of the Drazin model of a
two-dimensional finite Reynolds-number stratified shear layer - a hyperbolic tangent shear
and constant density gradient - at three different values of Pr, using both the tracking of exact
coherent structures in the forced system and direct numerical simulations of the unforced
system.

In the Pr = 0.7 case, we found a simple, supercritical pitchfork bifurcation, with the
resulting steady-state Kelvin-Helmholtz billows increasing in amplitude as (minimum)
Richardson number is decreased, so far as we could track them. This agrees with weakly-
nonlinear results which predict a supercritical bifurcation for Pr < 1. Despite the fact
that we have found no finite-amplitude steady states at Rib > 1/4 when Pr = 0.7, the
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(a) Rib = 0.1, k = k2. (b) Rib = 0.1, k = k1. (c) Rib = 0.3, k = k2. (d) Rib = 0.3, k = k1.

Fig. 4.9 Total vorticity field of the unforced flow at time t = 20 for the Drazin model plus a
random perturbation. Parameter values: Re = 1000, Pr = 0.7.

(a) Rib = 0.1, k = k2. (b) Rib = 0.1, k = k1. (c) Rib = 0.3, k = k2. (d) Rib = 0.3, k = k1.

Fig. 4.10 Vorticity at Re = 1000 and Pr = 0.7 at t = 100.

(a) Rib = 0.1, k = k2. (b) Rib = 0.1, k = k1. (c) Rib = 0.3, k = k2. (d) Rib = 0.3, k = k1.

Fig. 4.11 Vorticity at Re = 1000 and Pr = 7 at t = 20.

(a) Rib = 0.1, k = k2. (b) Rib = 0.1, k = k1. (c) Rib = 0.3, k = k2. (d) Rib = 0.3, k = k1.

Fig. 4.12 Vorticity at Re = 1000 and Pr = 7 at t = 100.
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unforced simulations of §4.4 showed clear nonlinear billow-like structures at Rib = 0.3. This
could mean that there are additional steady states which are either connected to the primary
instability by a bifurcation of the upper branch, or disconnected, perhaps through a homotopic
continuation of the disconnected states found at Pr = 3 (see figure 4.8). It could also be
the case that these structures appear on trajectories which do not have an associated steady
state, but rather represent an excitable system, for which the base state is stable but fast/slow
dynamics nevertheless allow rapid transient growth. The observation of this structure means
we are unable to state categorically whether significant nonlinear behaviour, which could
lead to turbulence and mixing in the three-dimensional case, is likely to occur for Rib > 1/4
in gases, although these results and the work of Kaminski et al. (2017) are highly suggestive
that there is more to discover at Pr ≲ 1.

We observed a strongly subcritical pitchfork bifurcation in the flow modelling water
with Pr = 7, as expected from the weakly-nonlinear predictions. Significantly, states were
found to exist well above Rib = 0.5. Moreover, the fact that the mode-1 structure bifurcated
in a subharmonic instability from a hitherto-unknown mode-2 structure implies that billow
structures exist at wavelengths which are linearly stable. This striking result was corroborated
by direct numerical simulations of the unforced model, with observations of such billows
at both Rib = 0.1 and Rib = 0.3. These results clearly indicate that in oceanic flows, the
Miles-Howard criterion for linear stability does not preclude complicated mixing dynamics
on times short compared to viscous diffusion.

The transition between Pr = 0.7 and Pr = 7 was studied in the forced model, to under-
stand how the structures relate to one another. Pr = 1 and Pr = 3 both show the primary
branch of billow states to be a simple subcritical one, but at Pr = 3, disconnected mode-1
states were also found, connecting to the mode-2 states at Pr = 7, and apparently disappear-
ing below Pr = 2.3. Increasing the Prandtl number above 3, the disconnected mode-1 branch
collides at some point (< 7) with the primary mode-1 branch to fundamentally change the
mode-1 solution topology. Given this microcosm of behaviour, it is entirely plausible that
(a) further loops of mode-1 solutions exist off the mode-2 branch and survive down below
Pr ≈ 2.3 as well as (b) the mode-2 branch itself reaches to much lower Pr. In fact, it is
not inconceivable that the mode-2 branch exists at Pr = 1 but is not at all connected to the
primary mode-1 branch of Kelvin-Helmholtz instability tracked in chapter 2.

It should be clear that there are numerous natural extensions to the present study. It
would be of interest to see how the results vary with Re, as Re = 1000 is much lower than in
geophysically relevant flows. It is assumed that if complex behaviour exists at Re = 1000 for
given Pr and Rib, it will also do so for higher Re - in chapter 2 it was shown that increasing
Re corresponds to an increase in the maximum Rib of steady states, at least for Pr = 1. Much
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higher values of Pr, as would be relevant to salt-stratified water, could also be an area for
future study. Our results suggest that the dynamics only get more complex with increasing Pr,
and higher Rib can give rise to steady states. Increasing either Re or Pr significantly would
require a finer discretisation of the domain, necessitating either much more computational
resources or a different strategy from that pursued here.

Even at the parameters we studied, much remains unclear. To what other states do the
secondary bifurcations give rise? Hopf bifurcations were detected, so periodic orbits as well
as steady states are expected. What new dynamics does a third, spanwise dimension add to
the flow? Certainly all 2-dimensional states we have found will exist in three dimensions,
but many more secondary instabilities will exist and we expect those states found to be
stable in two dimensions to become unstable in three. From direct numerical simulations,
three dimensional flows prone to primary Kelvin-Helmholtz instability are known to behave
very differently, quickly breaking down into turbulence, without long-lived coherent billows;
most of the mixing associated with KHI is due to this billow breakdown in three dimensions.
Finally, how do the steady states we have found relate to the chaotic behaviour of the
unforced problem? We have demonstrated a similarity between the dynamics, but it is not
clear that exact steady states in the forced model correspond to any particular trajectories in
the unforced case.



Chapter 5

Optimal perturbation growth on a
breaking internal gravity wave





Abstract

The breaking of internal gravity waves in the abyssal ocean is thought to be responsible
for much of the mixing necessary to close oceanic energy budgets. It has been speculated
that Kelvin-Helmholtz type shear instabilities are the primary mechanism of transition
to turbulence in this breaking. However, recent evidence has suggested that convective
instability of the statically unstable density distributions which can arise could instead be
responsible when the mean Richardson number is high. We perform a systematic analysis
of the stability of internal gravity waves in a background shear flow, using direct-adjoint
looping to find the perturbation giving maximal energy growth on this evolving flow. We find
that in all cases, three-dimensional, convective mechanisms produce greater energy growth
than their two-dimensional counterparts. This is particularly pronounced when the energy is
maximised at larger target times.

5.1 Introduction

Energy budgets of the global oceans suggest that turbulence, on scales too small to simulate
directly in computational models, is an important element to dissipate energy and close
the budget (Wunsch and Ferrari, 2004). The existence and behaviour of such turbulence
is crucial to understanding the mixing of different waters, which has implications for the
storage of heat and carbon dioxide in the oceans. Observations (Baker and Gibson, 1987;
Alford and Pinkel, 2000) have shown that such turbulence is intermittent and localised, and
the nonlinear breaking of internal gravity waves has been proposed as a likely candidate for
the main source of the turbulence.

Such wave breaking could be caused by a number of mechanisms. Lombard and Riley
(1996) used linear stability analysis to show that instabilities on an internal wave are strongly
dependent upon both the amplitude and the propagation angle of the wave, with strongly
three-dimensional and two-dimensional modes being dominant in different cases. One
imporant effect, not taken into account in these analyses, is the amplification of waves as
they approach critical layers within the flow (Booker and Bretherton, 1967), where the flow
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velocity matches the phase speed. Motivated by these observations, Howland et al. (2020)
set up an idealised flow to numerically model an internal gravity wave incident on a shear
flow: a superposition of a plane internal wave in a constant density gradient, and a simple
sinusoidal shear profile. We exactly recreate the basic flow used in that work, but study it
from a more theoretical viewpoint.

The default first step in understanding instabilities of a steady flow is to perform a normal
mode stability analysis, i.e. to discover which infinitesimal disturbance grows at the fastest
exponential rate. The form of this disturbance is often closely related to the finite-amplitude
structures which arise as the flow evolves. However, the flow model used by Howland
et al. (2020) is not a steady one, and so different structures will grow fastest at different
points in the evolution of the basic flow. One approach would be to perform linear stability
analyses on ‘frozen’ background flows at different times, which has been done extensively,
for example, on Kelvin-Helmholtz billows (Klaassen and Peltier, 1985; Caulfield and Peltier,
2000; Mashayek and Peltier, 2012a,b, to name but a few). This is a valid strategy for slowly
varying background flows, or for quickly growing instabilities, but otherwise just gives a hint
on the possible nonlinear behaviour.

The approach we take in this chapter is to ask, over a fixed finite time, which initial,
infinitesimal perturbation is amplified by the greatest amount. This is still an entirely linear
approach, but typically requires a lot more computation than traditional linear stability
analyses. Indeed, even for a steady background flow, the finite time ‘optimal growth’ is still
an interesting problem, since for non-normal linear operators such as in the Orr-Sommerfeld
equations, the most unstable normal mode is not necessarily the one that grows the most
over a finite time interval (Schmid, 2007). This problem can be studied via a singular value
decomposition of the time-integrated evolution operator (Schmid and Henningson, 2001).
However, with an evolving background flow, this integrated operator is incredibly complex,
so some form of iterative method is required, based on a DNS of the equations.

The method we employ, direct-adjoint looping (DAL) (Luchini, 2000; Corbett and
Bottaro, 2000), is derived in section 5.2.1, and is essentially equivalent to that used by Arratia
et al. (2013) to study optimal growth on a 2D, time-evolving Kelvin-Helmholtz billow. It is
an iterative method, with each solution of the Navier-Stokes equations followed by a solution
of the corresponding adjoint equations, which gives a sensitivity with respect to a given
quantity of interest, allowing one to optimise, for example, the time-integrated energy, the
mixing, or the difference from a particular state. In this chapter we optimise the energy
at time T of a infinitesimal perturbation at time t = 0, which gives a particularly simple
formulation. It is also the objective functional which is easiest to compare with a traditional
linear stability analysis.
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When studying shear flows, recourse is often made to Squire’s theorem (Squire, 1933),
and its stratified equivalent proven by Yih (1955) (see Smyth et al. (1988) for a detailed
discussion and proof), which implies that in most circumstances, the primary instability is a
two-dimensional one. However, this only applies for a strictly parallel, steady flow, which is
not the case here. For the flow studied herein, we have no reason a priori to assume that the
fastest growing disturbance is a two-dimensional one, and indeed we shall see that it is not.
However, it is sufficient to consider separate individual Fourier modes in this direction, since
the background flow is two-dimensional and the disturbances are treated as infinitesimal. This
means that there is no nonlinear interaction between the disturbance and itself. Furthermore,
we are considering unbounded flows in the additional, spanwise direction.

The remaining three sections of the chapter are as follows: §5.2 gives the precise flow
we are considering, and gives the derivation and implementation details of the direct-adjoint
looping algorithm. §5.3 presents our results for different target times and discusses in detail
two different cases, and §5.4 gives concluding remarks. Appendix 5.A presents the derivation
of the adjoint equations which are stated in §5.2.

5.2 Methods

The Boussinesq equations consist of the Navier-Stokes equation, the advection-diffusion
equation for buoyancy and the incompressibility condition

∂u
∂ t

+u ·∇u =−∇p+Ribbez +
1

Re
∇

2u, (5.1a)

∂b
∂ t

+u ·∇b =
1

RePr
∇

2b, (5.1b)

∇ ·u = 0. (5.1c)

These equations have been non-dimensionalised using a typical length scale L, velocity U ,
gravitational acceleration g, density ρ , density gradient ρz, kinematic viscosity ν and density
diffusion coefficient κ to give the nondimensional Reynolds number Re = ρUL/µ , Prandtl
number Pr = ν/κ , and bulk Richardson number Rib = gρzL2/ρU2.

Following Howland et al. (2020), we consider an internal gravity wave with wavevector
k = (k1,0,k3) (and define k = ∥k∥) and ‘wave steepness’ s incident on a background flow
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that is uniformly stratified and has a sinusoidal velocity profile, so that at time t = 0

u = sinz+
sω

k1
sin(k ·x), (5.2a)

w = − sω

k3
sin(k ·x), (5.2b)

b = z +
s
k3

cos(k ·x). (5.2c)

where ω2 = Rib
k2

1
k2 is the (squared) frequency of the internal wave, so that the phase speed of

this wave in isolation is given by kω/k2. The evolution of this two-dimensional background
flow is complex, as will be seen in section 5.3.

An infinitesimal (now three-dimensional) perturbation to equations (5.1) satisfies the
linear PDEs (the primes denote the perturbation)

∂u′

∂ t
+u ·∇u′+u′ ·∇u =−∇p′+Ribb′ez +

1
Re

∇
2u′, (5.3a)

∂b′

∂ t
+u ·∇b′+u′ ·∇b =

1
RePr

∇
2b′, (5.3b)

∇ ·u′ = 0. (5.3c)

In these equations, u and b evolve with time according to (5.1).

5.2.1 Direct-adjoint looping

Consider the space of state vectors X = (u′
X ,b

′
X) satisfying ∇ ·u′

X = 0 (p′ can be determined
from these by solving a Poisson equation). Let us define a linear operator ΦT acting on this
space, defined as the solution of (5.3a)-(5.3c) up to time t = T . Further, we define an inner
product ⟨X ,Y ⟩= 1

LxLyLz

∫
(u′

X ·u′
Y +Ribb′X b′Y )dV , so that an energy for the perturbation X is

given by 1
2 ⟨X ,X⟩. We wish to find the maximum possible energy growth of a perturbation of

fixed energy over a time T , i.e. to maximise the Lagrangian

L =
1
2
⟨XT ,XT ⟩+λ

(
1
2
⟨X0,X0⟩−

1
2

)
+
〈
X̃ ,XT −ΦT X0

〉
. (5.4)

Here, λ is a Lagrange multiplier that enforces the normalisation of the initial state X0. The
precise choice of this initial energy is irrelevant, since the system is linear and we are only
interested in the energy gain, i.e. the ratio of final energy to initial energy, but for a well-posed
problem we nevertheless must constrain the initial energy. X̃ is a Lagrange multiplier state
we call the adjoint state – for reasons which will become clear below – that enforces that
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XT = ΦT X0. At an optimal, all variations of the Lagrangian vanish, so that

0 =
δL

δλ
=

1
2
⟨X0,X0⟩−

1
2
, (5.5a)

0 =
δL

δ X̃
= XT −ΦT X0, (5.5b)

0 =
δL

δX0
= λX0 −Φ

†
T X̃ , (5.5c)

0 =
δL

δXT
= XT + X̃ , (5.5d)

where Φ
†
T is the adjoint operator to ΦT with respect to our inner product. The precise

definition of Φ
†
T is the solution of the so-called adjoint equations

−∂ ũ
∂ t

−u ·∇ũ+ ũ · (∇u)T +Ribb̃∇b = ∇ p̃+
1

Re
∇

2ũ, (5.6a)

−∂ b̃
∂ t

−u ·∇b̃ = w̃+
1

Re
Pr∇

2b̃, (5.6b)

∇ · ũ = 0, (5.6c)

integrated backwards in time from t = T to t = 0. The derivation of these is given in appendix
5.A. Equations (5.5) can be solved to give

X0 =
Φ

†
T ΦT X0√〈

Φ
†
T ΦT X0,Φ

†
T ΦT X0

〉 (5.7)

at an optimal, which suggests the iterative method

Xn+1 =
Φ

†
T ΦT Xn√〈

Φ
†
T ΦT Xn,Φ

†
T ΦT Xn

〉 . (5.8)

This is in fact precisely the power iteration eigenvalue algorithm to find the eigenvalue
of greatest modulus of the linear operator Φ

†
T ΦT , and so will converge given a unique

such eigenvalue. Since Φ
†
T ΦT is self-adjoint, the eigenvalue will be real. The value of the

eigenvalue is given by

lim
n→∞

〈
Xn,Φ

†
T ΦT Xn

〉
= lim

n→∞
⟨ΦT Xn,ΦT Xn⟩ (5.9)
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which is exactly (twice) the energy growth we wish to maximise. Therefore, so long as
the initial guess state has a component in the direction of the optimal, (5.8) will find the
maximum energy growth and the state needed to excite it.

5.2.2 Algorithm implementation

Because of the large storage requirements of the two dimensional background state (u,b),
which must be known at every point in time, the following algorithm is used, which employs
‘checkpointing’:

1. The two dimensional background state is evolved according to (5.1) from t = 0 to
t = T . Every 100 timesteps, the state is stored to disk.

2. An initial perturbation state X1 is generated randomly. Set n = 1.

3. Xn is scaled to have unit energy (required by (5.5a)).

4. The perturbation state Xn is evolved from t = 0 to t = T in blocks of 100 timesteps
(required by (5.5b)):

(a) The background state is loaded at the start of the block, and evolved by 100
timesteps according to (5.1), with results at each timestep stored in memory.

(b) The perturbation state is evolved from the start to the end of the block according
to (5.3), using the background states stored in memory.

5. The adjoint state X̃n is initialised as the negative of the result of step 4 at t = T (required
by (5.5d)).

6. The adjoint state is evolved from t = T to t = 0 in blocks of 100 timesteps (required
by (5.5c)):

(a) The background state is loaded at the start of the block, and evolved by 100
timesteps according to (5.1), with results at each timestep stored in memory.

(b) The adjoint state is evolved from the end to the start of the block according to
(5.6), using the background states stored in memory (in reverse order).

7. The next state Xn+1 is initialised to be the negative of the result of step 5 at t = 0.

8. Repeat from step 3 with n → n+1 until the residual ⟨Xn+1 −Xn,Xn+1 −Xn⟩/⟨Xn,Xn⟩
is less than 10−6.
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5.3 Results

The equations (5.1), (5.3) and (5.6) are solved on a triply-periodic grid with a pseudo-spectral
method. We use 2048 gridpoints in the streamwise (x) direction, with a domain length
Lx = 8π , and 512 gridpoints in the vertical (z) direction, with a domain height of Lz = 2π .
The resolutions in these directions match those employed in the non-turbulent phase of
the flow evolution by Howland et al. (2020). In the spanwise (y) direction, only the first
two Fourier modes are evaluated, allowing mode-0 (i.e. spanwise independent, exactly two
dimensional) disturbances, and mode-1 disturbances, with a wavelength that matches the
domain depth Ly. We vary Ly to determine the spanwise wavelength of the fastest growing
disturbance. This is a straightforward way of simulating a single Fourier mode with a full
pseudo-spectral DNS code (with dealiasing deactivated in this direction) by using only three
gridpoints in this direction, and has the added benefit of determining for which wavelengths
the spanwise independent optimal grows faster than the mode-1 optimal.

All calculations employ Re = 5000, the lowest used by Howland et al. (2020) for com-
putational efficiency and direct comparison; we used Pr = 1, again for comparison but also
motivated by the fact that in chapter 4 we showed that varying Pr has almost no effect on the
linear results; and we used Rib = 1. In the initial conditions (5.2) we took the wave steepness
to be s = 0.75 and the wave vector to be k = (1

4 ,0,3). With this choice, one wavelength in
the streamwise direction and three wavelengths in the vertical direction fit within the periodic
box.

With this choice of parameters, the phase speed of the wave in the streamwise direction
is k1ω/k2 = 4

145
√

145
≈ 0.0023, which gives two critical layers in the flow, one just below the

midline of the domain at z = π and the other just above the bottom at z = 0. This is just an
approximation to the critical layers within a non-uniform flow, see Howland et al. (2020) for
a more precise derivation and discussion. Figure 5.1 shows the complex, nonlinear evolution
of this flow. A clear amplification of the wave near the central critical layer is apparent, as
predicted by classical wave theory. Regions with negative vertical buoyancy gradient are
visible near the critical layer after approximately t = 5.

We perform direct-adjoint looping with target times T ∈ {5,10,20,30} and Ly ∈ [0.1,1.6]
(initially with increments of 0.2, with additional calculations where necessary to smooth the
curves). The results are shown in figure 5.2. In each case, when the spanwise domain size Ly

is sufficiently small, the optimal structures become entirely 2D, and this result is shown as a
horizontal line. Howland et al. (2020) used a periodic domain of size Ly = π/2, so assuming
a normal mode structure in this direction, wavelengths π/2, π/4, π/6, etc. are permissible,
as well as purely two-dimensional structures. The first six of these possible wavelengths are
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(a) t = 0

(b) t = 5

(c) t = 10

(d) t = 20

(e) t = 30

Fig. 5.1 The complex two-dimensional evolution of the background flow, a superposition
of an internal gravity wave and a sinusoidal shear. Left: vorticity ∂u/∂ z−∂w/∂x. Right:
buoyancy gradient ∂b/∂ z.
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shown as vertical lines on the figures, with the observed wavelength from Howland et al.
(2020) shown in red – π/8, corresponding to a pair of streamwise rolls repeated four times.

Figures 5.3 and 5.4 show the development of the optimal for target time T = 30 (see
figure 5.2d), in both the 2D case (which was found by the 3D computations for Ly ≤ 0.1),
and the maximal growth case with Ly = 0.4. The two figures are typical of the 2D and 3D
mechanisms respectively, which are qualitatively completely different from one another.

The 2D optimals, exemplified by figure 5.3, exploit the Orr mechanism, the transient
amplification of elongated spanwise vortices as they are rotated by a shear. In this case,
two patches of alternating-signed vortices are visible, at locations of high shear within the
background flow. These grow in both spatial extent and amplitude as they are sheared and
advected by the background. Compared with the 2D optimal for lower target times, the
vortex pattern visible is of particularly high wavenumber, which allows the Orr mechanism
more time to amplify the disturbance. There does not appear to be any component, in these
optimals, of a Kelvin-Helmholtz-type shear instability – which would manifest as spanwise
vortices of only one sign which are not visibly sheared as the flow evolves – as opposed to the
transient Orr process. At the end of the simulation, the patch of vorticity is located at an area
of negative buoyancy gradient in the background flow, and the optimal is therefore exploiting
the unstable stratification for energy growth via spanwise counterrotating convective rolls.
This was confirmed by the observation that a significant proportion of the energy change (see
figure 5.5) was contributed by buoyancy flux in the second half of the simulation.

The 3D optimals, exemplified by figure 5.4, show no evidence of any Orr mechanism,
and instead take the form of a single patch of quasi-streamwise-independent, counterrotating,
streamwise aligned vortices. As the flow evolves, this patch is advected and significantly
amplified. The patch exactly aligns with one of the regions of negative buoyancy gradient
in figure 5.1, strongly suggesting that these are indeed convective rolls, being amplified by
the statically unstable stratification, though it is likely that the lift-up mechanism (Landahl,
1980) is also being exploited, a viscous algebraic instability of shear flows. Figure 5.5 shows
that a large component of the energy growth is driven by the vertical rearrangment of the
negative buoyancy gradient, as dense fluid moves down and less dense fluid moves up.

Figure 5.6 shows the energy growth for both of these T = 30 optimals. Both optimals,
after some initial waviness, show apparently exponential energy growth, suggesting the
dominant mechanism in each case is a convective instability, rather than the transient Orr
mechanism or the algebraic lift-up mechanism. The 3D optimal is many orders of magnitude
more energetic.
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Fig. 5.2 Maximum possible final energy of a linear perturbation with initial energy 1
2 , as

the spanwise wavelength varies. The vertical lines mark the possible (low wavenumber)
wavelengths in the finite-sized periodic box employed by Howland et al. (2020), with the
observed wavelength in red. The horizontal line shows the 2D result, which is independent
of Ly.
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(a) t = 0

(b) t = 5

(c) t = 10

(d) t = 20

(e) t = 30

Fig. 5.3 x− z plane slices of the perturbation spanwise vorticity field ∂u′/∂ z−∂w′/∂x for
the 2D optimal (calculated using Ly = 0.1) with T = 30. Alternating spanwise vortices are
tilted by the background shear, as is typical of the Orr mechanism.
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(a) t = 0

(b) t = 5

(c) t = 10

(d) t = 20

(e) t = 30

Fig. 5.4 Slices of the perturbation buoyancy field b′ for Ly = 0.4 with T = 30. On the left,
y− z plane slices with x = 0, on the right, x− z slices with y = 0. The streamwise-aligned
vortices are greatly amplified as they are advected.
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Fig. 5.5 A measure of the relative importance of convection in the energy change. The values
on the vertical axis are

∫
Ribb′w′ dV/ d

dt
∫ (∥u′∥2 +Ribb′2

)
dV , i.e. the proportion of total

energy change contributed by the buoyancy flux. This measure can be both greater than one
and less than zero depending on other contributions to the energy change. These are for the
T = 30 optimals (see figure 5.2d). Blue: the 3D optimal computed with Ly = 0.4. Pink: the
2D optimal, using Ly = 0.1. In both cases, convective effects make a significant impact on
the energy growth of the perturbation (see figure 5.6).
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Fig. 5.6 The evolution of the energy for the T = 30 optimals (see figure 5.2d). Blue: the
3D optimal computed with Ly = 0.4. Pink: the 2D optimal, using Ly = 0.1. Both display
exponential growth over the time interval, but the 3D is amplified significantly more.
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5.4 Conclusion

Our results provide an explanation of the early phase of the simulations described by Howland
et al. (2020). For target time T = 20, around which time the DNS of Howland et al. (2020)
begins to break down into turbulence for the matching parameter values, we see a clear
optimal wavelength which matches that found in the DNS (figure 5.2c). The magnitude of
the amplification we found, with more than 106 times the energy of the original disturbance
at t = 20, indicates why streamwise rolls are apparent in the simulations: if the initial
disturbance has any component of this wavenumber, it is so massively amplified it will
necessarily be visible as the simulation progresses. As turbulence develops as a result of this
energy growth, the rolls break down and are no longer visible.

We have shown that both spanwise-independent and fully three-dimensional perturbations
are able to exploit negative buoyancy gradients which arise in the background flow as the
internal wave is amplified near the critical layer, despite the high value of Rib which was
used. The 3D optimal at the ideal spanwise wavelength of around 0.4 (with T = 30) was
found to be many orders of magnitude more energetic than the equivalent 2D optimal.

An obvious next step is to repeat the computations at a lower bulk Richardson number
Rib, which would have the effect of reducing the gradient Richardson numbers within the
flow and thereby make shear instabilities, rather than the convective instabilities and transient
mechanisms we have observed, more likely.

This study can easily be extended to explore other parameters. The wave steepness s and
wavevector k can both be varied to see the effect. Howland et al. (2020) investigated different
s and saw some differences, but those results could be illuminated by repeating our work
at the same parameters. Of particular interest is the Prandtl number Pr. We postulate that
since the calculations are linear, this will have little effect, as was seen in chapter 4, but there
is nevertheless nonlinear interaction with the background flow, so it is worth investigating.
This study has focussed on the case of a shear and wave aligned in the same 2D plane, but
for a wave coming in obliquely we may well have a qualtitatively different background flow
evolution, and thus the optimal perturbations could be quite different. In this oblique case,
shear instabilities in particular would be altered. All pertubations were applied at t = 0, when
the background state is an exact superposition of wave and shear. It would be possible, and
perhaps of interest, to instead apply the perturbation at a later time, when the background flow
has already evolved in a complex and nonlinear manner. This may give different behaviour,
for the same initial pertubation amplitude, if for example, the background flow has already
developed a statically unstable region.
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Appendix 5.A Derivation of the adjoint equations

Recalling the definitions of the state vectors and operators, equation (5.4) may be rewritten as

L =
1
2

1
LxLyLz

∫ (
u′

T ·u′
T +Ribb′T b′T

)
dV +λ

(
1
2

1
LxLyLz
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u′

0 ·u′
0 +Ribb′0b′0

)
dV − 1

2

)
+
∫ T

0
dt
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∫
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[
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∇
2u′
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(
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RePr
∇

2b′
)
+ p̃

(
∇ ·u′)] , (5.10)

where the adjoint state
(
ũ, b̃
)

is now treated as a time-varying Lagrange multiplier state which
enforces the evolution of (u′,b′) from

(
u′

0,b
′
0
)

to (u′
T ,b

′
T ) according to (5.3), including the

addition of an adjoint pressure p̃ to enforce incompressibility.
Computing the variations of (5.10) with respect to u′, b′ and p′ we are now able to derive

the adjoint equations:

δL

δu′ =−∂ ũ
∂ t

−u ·∇ũ+ ũ · (∇u)T − 1
Re

∇
2ũ+Ribb̃∇b−∇ p̃, (5.11)
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=−Ribw̃−Rib

∂ b̃
∂ t

−Ribu ·∇b̃−Rib
1

Re
Pr∇

2b̃, (5.12)

δL

δ p′
=−∇ · ũ. (5.13)

Equating these expressions with zero quickly gives (5.6).





Chapter 6

Conclusion

6.1 Summary

This thesis has explored some aspects of stratified shear instabilities, particularly motivated
by modern issues in oceanography, but from a theoretical and idealised perspective. All
four chapters loosely relate to the following question: does the Miles-Howard criterion –
the use of Ri = 1/4 as a stability boundary – have a theoretical justification when applied
in problems of abyssal ocean mixing? Of course, none of this work attempts to check
whether it is actually useful in practice, and it could empirically work without a mathematical
justification. Nevertheless, the Miles-Howard theorem, from which the criterion is derived,
requires several strict restrictions in order to be proven. When these restrictions are relaxed,
we have explored whether the criterion is still relevant. Chapters 2, 3 and 4 focused in
particular on whether instability, in a loosely defined sense, is possible in stratified shear
flows when the minimum Richardson number Rim > 1/4.

Chapter 2 focused on the most obvious limitation of applying any theorem based on
linear stability theory: that in reality no perturbations are infinitesimal, and a finite sized
perturbation can lead to complex, chaotic and turbulent behaviours even when the background
state is linearly stable. This is the case, for example, in the classical fluid dynamical problem
of pressure-driven pipe flow, which is linearly stable (Meseguer and Trefethen, 2003) and yet
was famously studied by Reynolds as a simple example of transition and turbulence.

In the chapter, we presented the first direct state tracking and bifurcation analysis in
a simple unbounded stratified shear flow, subject to Kelvin-Helmholtz instability. With
the introduction of an artificial forcing – as is also implicitly done for any linear stability
analysis of this class of viscous flows – we made steady the background flow and tracked
the states that arise as a result of the pitchfork bifurcation, with the aim of determining
whether this bifurcation is subcritical or supercritical, at Pr = 1. It has previously been
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shown to be supercritical for Pr < 1 and subcritical for Pr > 1; in the transition between
these we described a complex degenerate dynamical system, which did indeed show finite-
amplitude, Kelvin-Helmholtz-like billow states to exist above Rim = 1/4, therefore directly
demonstrating that the Miles-Howard criterion does not guarantee simple dynamics in the
stable regime.

However, the finite-amplitude states found in chapter 2 extended only very slightly into
the linearly stable regime, and therefore the results are of limited relevance to practical
geophysical applications; these results are certainly not evidence that KHI-like behaviour
can exist significantly above Rib = 1/4 at Pr = 1, though the work of Kaminski et al. (2017)
seems to imply it can. The chapter nevertheless presented an interesting application of the
state tracking and bifurcation tracking tools which are relatively unknown to this community,
and paved the way for the more novel results of chapter 4.

Serendipitously, in the process of chapter 2 we additionally discovered what we have
come to call the viscous Holmboe instability, which was studied systematically and described
in detail in chapter 3. Since VHI is only present when viscosity is introduced, this instability
gives an ideal opportunity to explore another of the Miles-Howard theorem’s restrictions,
that the flow is inviscid. Although VHI was found in a well-studied model flow, the Holmboe
model, it does not exist in the inviscid case, and is very slowly growing once viscosity is
introduced. This may explain why it has not been described before, as it could appear to be
merely numerical noise at sufficiently high Re.

Crucially we found that, for much of parameter space, VHI has no critical layer, which
sets it apart from all inviscid instabilities of simple stratified shear flows. This fact clearly
demonstrates that the wave overreflection interpretation of shear instabilities must be incom-
plete, since this relies on the existence of a critical layer, and yet in many other respects
the viscous Holmboe instability is similar to classical shear instabilities and so one would
expect the physical mechanisms to be the same. In particular, the system still has a density
interface and two vorticity interfaces, and the resonant interaction of these, which has been
proposed as a different physical interpretation of shear instabilities, could certainly apply in
this case. Why a sharp density interface leads to instability in the inviscid limit but viscosity
is necessary with a broader interface remains an open question. We demonstrated, through
an asymptotic analysis, that the viscous Holmboe instability is a viscous destabilisation of a
neutral wave at infinite Re, but exactly how this comes about is unclear.

Though we found that VHI exists with broad density interfaces, it is incredibly weak
compared with HWI with sharper density interfaces. We were able to demonstrate that it can
manifest nonlinearly in carefully controlled situations, but overall VHI is not likely to be
found in geophysical situations, and is mainly of academic interest through the light it sheds
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on other instabilities. VHI was indeed found to exist in regions for which the Miles-Howard
criterion would predict stability, but again, does not violate the criterion in a way of practical
importance to oceanography.

Chapter 4 revisited the results of chapter 2, but now with Pr ̸= 1. Despite the relatively
small range of Pr considered, 0.7 ≤ Pr ≤ 7, very large differences in the dynamical system
were found, which was hinted at by the results of weakly-nonlinear studies by Churilov and
Shukhman (1987) and others. When considering temperature stratified flows in the oceans,
for which Pr ≈ 7, this model showed significant nonlinear behaviour for Rim > 1/4, and
indeed as high as Rim = 0.65. Most intriguingly, we found states with half the wavelength
of the most unstable mode at the bifurcation point, a wavelength for which there is no
linear stability for any value of Rim. Direct numerical simulations of an unforced version
of the same flow recreated these results, from which we conclude that the structures are not
merely a consequence of the artificial forcing. With a qualitatively very similar appearance
to classical Kelvin-Helmholtz billows, these structures must presumably form based on the
same physical mechanism which gives rise to Kelvin-Helmholtz instability, but nevertheless,
for some reason, does not give an instability of the background flow in this case. Unlike in
chapters 2 and 3, at Pr = 7, which is the relevant case for oceanography, we not only predicted
in a theoretical sense but also demostrated using DNS significant KHI-like behaviour well
into regions of parameter space for which the Miles-Howard criterion predicts stability. If this
behaviour persists in three dimensions it could be of enormous relevance to shear instability
in the oceans.

Chapter 5 takes a broader perspective, asking whether we should be thinking about
shear instabilities at all. In the specific case of an internal wave approaching a critical
layer, where the amplitude is expected to grow and the wave to break, we showed that the
dominant energy growth mechanism is a convective one rather than a shear instability. This
very closely matched the DNS results of Howland et al. (2020), who nevertheless observed
billows reminiscent of KHI later on in the same simulations. Those results suggest that KHI
may still be relevant at later times, but we confirmed and distilled the initial instability as a
three-dimensional, convective one. Indeed, we showed that even when finding the maximal
energy gain at very short target times, the fastest growing three-dimensional structure is
highly reminiscent of streamwise-aligned convective rolls near the critical layer, which grow
faster than the two dimensional, structure which exploits the Orr mechanism and spanwise
convective rolls. At longer target times (on timescales comparable to those observed by
Howland et al. (2020)), the 3D optimal gives nearly a factor of 107 more energy growth
than the 2D optimal. This certainly explains why, so long as initial perturbations exist
with sufficiently low wavenumber, streamwise convective rolls are observed in the DNS.
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If a convective instability is indeed the primary mechanism for internal wave breaking, a
Richardson number test like the Miles-Howard criterion is not at all relevant, rather a criterion
based on the local Rayleigh number should be adopted – but of course, this criterion would
only ever be satisfied on very small scales, as large scale unstable stratifications do not persist.

6.2 Extensions

Chapters 2, 3 and 4 are restricted to the two-dimensional dynamics that arise from a one-
dimensional background flow. Though KHI is an entirely two-dimensional instability,
HWI has been found to be three-dimensional in certain circumstances (Smyth and Peltier,
1990). Furthermore, several authors, culminating in Mashayek and Peltier (2012a,b), have
catalogued the secondary instabilities which exist on a Kelvin-Helmholtz billow, including
many important three-dimensional ones. This, and much DNS evidence, shows that a third
dimension is crucial to understand the dynamics following the initial rollup of a billow in
KHI. Therefore, there would be great benefit in extending the work of chapters 2 and 4 into
three dimensions and tracking the resulting branches, to better understand the dynamics.
This would require significantly more compute power, but this is by no means infeasible: the
bifurcation analysis was performed on a single CPU of 18 cores, with multiple CPUs used to
trace multiple branches concurrently. With a 3D flow, parallelisation becomes more efficient,
and this could be scaled up to multiple CPUs used together to trace each branch.

Looking further ahead, the Reynolds number and/or Prandtl number of the calculations
could be increased by orders of magnitude to match physical values in the oceans, and even
higher Re in the atmosphere. There is accumulating evidence that the nature of the instabilites
investigated changes dramatically when Re ≳ 4000 (Mashayek and Peltier, 2013; Mashayek
et al., 2013). It is certainly infeasible to do this using iterative timestepping methods within
the next decade or so without access to enormous computational resources and carefully
optimised code, but simple DNS studies have shown that the behaviour does indeed increase
in complexity (Rahmani et al., 2014; Salehipour et al., 2015), and so when possible, this will
be worthwhile.

In chapters 2 and 4 of this thesis we have examined the nonlinear behaviour of Kelvin-
Helmholtz instability, and in chapter 3 we studied the linear behaviour of Holmboe instability
(and its viscous counterpart). One natural extension would be a bifurcation analysis of HWI
and tracking of the exact coherent structures thereof. The nonlinear behaviour of HWI
has been studied using DNS (Smyth and Winters, 2003; Alexakis, 2009; Carpenter et al.,
2010a; Salehipour et al., 2015) and is has been argued that it could be of great significance
in oceanography (Gregg et al., 2018a). Since HWI is a propagating instability, with a non-
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zero phase speed, the resulting exact coherent structures from the bifurcation, which in this
case is a Hopf bifurcation, are periodic orbits. The tracking of periodic orbits is certainly
possible using a timestepping approach very similar to that employed in chapters 2 and 4 (it
would not be possible to extend a method which directly solves for steady state solutions
to the differential equations), but would necessarily be more computationally intensive.
The principal model shear flow subject to HWI, the Hazel model, introduces an additional
parameter R, the height ratio of the shear layer to the density interface. Tracking of states as
both Rib and R vary would be of interest. It is conceivable that, nonlinearly, HWI dominates
in regimes where the primary linear instability is KHI, or vice versa. This would alter our
understanding of such flows in practical GFD applications.

One initial aim of this PhD project was to use nonlinear direct-adjoint looping to study
shear instabilities. Nonlinear DAL allows one to interrogate, over finite time intervals and
for fixed initial perturbation energy, which disturbances maximise a given quantity, such
as energy growth. This in turn allows the distillation and examination of the mechanisms
and dynamics which govern a flow, as well as more direct applications such as optimisation
and control in engineering problems. A combination of code bugs and lack of interesting
results (which may have been due to the bugs) meant that this was sidelined in favour of
the results presented in the preceding chapters, but this remains of much interest. Several
different questions now present themselves for exploration with this technique.

Nonlinear DAL could be applied to determine which mechanisms give the most energy
growth (or the most mixing or other relevant metrics) in shear flows which are susceptible to
both KHI and HWI. This would add evidence to the arguments about their relative importance
in oceanography. In particular, in regions of parameter space where VHI exists, we have a
linear instability, which one would normally expect to dominate for sufficiently long target
times, but in this case it is so weak that other mechanisms not associated with a linear
instability could become important.

Chapter 4 highlighted the importance of carefully considering the value of Pr in nonlinear
calculations, in contrast to previous work nonlinear direct-adjoint looping in stratified flows
(Eaves and Caulfield, 2015; Kaminski et al., 2017; Marcotte and Caulfield, 2018). With
Pr > 2.3, it would be of particular interest to see whether the dominant mechanism for energy
growth is that of the wavelength predicted by the linear instability, or half this wavelength, as
both structures were found to exist in chapter 4. Furthermore, chapter 4 showed complex
behaviour in the subcritical Rib > 0.25 regime, and it would be of great interest if these
dynamics were shown to be efficient at mixing when the Miles-Howard criterion implies
stability. Necessarily when questions of mixing arise, three-dimensional calculations must



86 Conclusion

be employed, though breakdown to full turbulence means that DAL cannot be relied upon
(Pringle et al., 2012), so care would have to be taken in this case.

In chapter 5 we employed linear DAL, but this could easily be extended to the nonlinear
version. Indeed, the main difference normally required, the use of checkpointing and
reading back the direct field when the adjoint evolution is computed, is also necessary
in the case of an evolving background flow, and so is already implemented. It would,
however, require the use of a full resolution grid in the spanwise direction, since the Fourier
decoupling argument would no longer apply. Introducing nonlinearity in this work would
allow use to investigate not only the primary instability mechanism, which we identified
as a three-dimensional convective structure, but also the breakdown of this via secondary
instabilities. The work which inspired the chapter, Howland et al. (2020), highlighted the
development of KH-like billows after the initial convective behaviour, which we would hope
to capture through nonlinear DAL. By varying the objective function, we could determine
whether the convection, the KHI or the transient Orr mechanism is best at optimising energy
growth, mixing etc. One problem to be overcome would be the choice of initial perturbation
magnitude, which is usually applied as a constraint in DAL. When nonlinearity is introduced,
the magnitude has a material impact on the results, and a value would have to be chosen with
some geophysical justification.

6.3 Outlook

Ultimately, one assumes that computers will become sufficiently powerful that it is trivial to
perform very high resolution DNS, so that any specific physical scenario, as well as large
scale climate and ocean modelling, can be calculated with ease. This may seem to remove
the need to use algorithmic approaches on idealised models, such as those presented in this
thesis. Even when this becomes possible however, idealised situations are still useful to
distill the physics, in order to understand the mechanisms at play. However, such computing
power is almost inconceivable at the time of writing.

In a shorter time frame, over the next decade or so, the use of machine learning is
expected to expand in almost all areas of science, including physical oceanography. Instead
of carefully devising parameterisations for abyssal ocean turbulence, on scales too small
to be captured by ocean simulations, one could simulate, at very high resolution, a large
number of instances of flows, for example near the generation and breaking of internal gravity
waves. One could then train a deep neural network to recognise the different situations and
output the required metrics such as mixing. This is an immensely powerful tool, but it has
the significant disadvantage that it does not enable human understanding of the governing
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processes, but rather acts as a ‘black box’ which just outputs a number. This, and the fact
that neural networks perform badly when tested on data very different from that on which
they have been trained, mean that this approach will not be so helpful in predicting extreme
events and changes of behaviour that may be expected as the climate changes. For this reason,
theoretical, mathematically grounded work like this thesis will remain important for many
years to come.





References

Alexakis, A. (2005). On Holmboe’s instability for smooth shear and density profiles. Phys.
Fluids, 17(8):084103.

Alexakis, A. (2007). Marginally unstable Holmboe modes. Phys. Fluids, 19(5):054105.

Alexakis, A. (2009). Stratified shear flow instabilities at large Richardson numbers. Phys.
Fluids, 21(5):054108.

Alford, M. H. and Pinkel, R. (2000). Observations of overturning in the thermocline: The
context of ocean mixing. J. Phys. Oceanogr., 30(5):805–832.

Arratia, C., Caulfield, C. P., and Chomaz, J.-M. (2013). Transient perturbation growth in
time-dependent mixing layers. J. Fluid Mech., 717:90–133.

Baines, P. G. and Mitsudera, H. (1994). On the mechanism of shear flow instabilities. J.
Fluid Mech., 276:327–342.

Baker, M. A. and Gibson, C. H. (1987). Sampling turbulence in the stratified ocean: statistical
consequences of strong intermittency. J. Phys. Oceanogr., 17(10):1817–1836.

Betchov, R. and Szewczyk, A. (1963). Stability of a shear layer between parallel streams.
Phys. Fluids, 6(10):1391–1396.

Bewley, T. R. (2012). Numerical Renaissance: simulation, optimization, and control.
Renaissance Press.

Booker, J. R. and Bretherton, F. P. (1967). The critical layer for internal gravity waves in a
shear flow. J. Fluid Mech., 27(3):513–539.

Boyd, J. P. (2001). Chebyshev and Fourier spectral methods. Courier Corporation.

Brown, S. N., Rosen, A. S., and Maslowe, S. A. (1981). The evolution of a quasi-steady
critical layer in a stratified viscous shear layer. Proc. Royal Soc. A, 375(1761):271–293.

Browning, K. (1971). Structure of the atmosphere in the vicinity of large-amplitude Kelvin-
Helmholtz billows. Q. J. R. Meteorol. Soc., 97(413):283–299.

Cairns, R. A. (1979). The role of negative energy waves in some instabilities of parallel
flows. J. Fluid Mech., 92:1–14.

Carpenter, J., Tedford, E., Rahmani, M., and Lawrence, G. (2010a). Holmboe wave fields in
simulation and experiment. J. Fluid Mech., 648:205.



90 References

Carpenter, J. R., Balmforth, N. J., and Lawrence, G. A. (2010b). Identifying unstable modes
in stratified shear layers. Phys. Fluids, 22(5):054104.

Carpenter, J. R., Tedford, E. W., Heifetz, E., and Lawrence, G. A. (2013). Instability in
stratified shear flow: Review of a physical interpretation based on interacting waves. Appl.
Mech. Rev., 64(6). 060801.

Caulfield, C. P. (1994). Multiple linear instability of layered stratified shear flow. J. Fluid
Mech., 258:255–285.

Caulfield, C. P. and Peltier, W. R. (2000). The anatomy of the mixing transition in homoge-
neous and stratified free shear layers. J. Fluid Mech., 413:1–47.

Caulfield, C. P., Peltier, W. R., Yoshida, S., and Ohtani, M. (1995). An experimental
investigation of the instability of a shear flow with multilayered density stratification. Phys.
Fluids, 7(12):3028–3041.

Chandler, G. J. and Kerswell, R. R. (2013). Invariant recurrent solutions embedded in a
turbulent two-dimensional Kolmogorov flow. J. Fluid Mech., 722:554–595.

Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. International series
of monographs on physics. Clarendon Press.

Churilov, S. M. (2019). Holmboe instability beyond the Boussinesq approximation revisited.
Phys. Fluids, 31(9):094104.

Churilov, S. M. and Shukhman, I. G. (1987). Nonlinear stability of a stratified shear flow: a
viscous critical layer. J. Fluid Mech., 180:1–20.

Churilov, S. M. and Shukhman, I. G. (1996). The nonlinear critical layer resulting from
the spatial or temporal evolution of weakly unstable disturbances in shear flows. J. Fluid
Mech., 318:189–221.

Corbett, P. and Bottaro, A. (2000). Optimal perturbations for boundary layers subject to
stream-wise pressure gradient. Phys. Fluids, 12(1):120–130.

Crowe, M. N. and Taylor, J. R. (2019). The evolution of a front in turbulent thermal wind
balance. part 2. numerical simulations. J. Fluid Mech., 880:326–352.

Defina, A., Lanzoni, S., and Susin, F. M. (1999). Stability of a stratified viscous shear flow
in a tilted tube. Phys. Fluids, 11(2):344–355.

Dijkstra, H. A., Wubs, F. W., Cliffe, A. K., Doedel, E., Dragomirescu, I. F., Eckhardt, B.,
Gelfgat, A. Y., Hazel, A. L., Lucarini, V., Salinger, A. G., et al. (2014). Numerical
bifurcation methods and their application to fluid dynamics: analysis beyond simulation.
Commun. Comput. Phys., 15(1):1–45.

Drazin, P. G. (1958). The stability of a shear layer in an unbounded heterogeneous inviscid
fluid. J. Fluid Mech., 4(2):214–224.

Eaves, T. and Caulfield, C.-c. P. (2015). Disruption of SSP/VWI states by a stable stratifica-
tion. J. Fluid Mech., 784:548–564.



References 91

Eaves, T. S. and Balmforth, N. J. (2019). Instability of sheared density interfaces. J. Fluid
Mech., 860:145–171.

Eaves, T. S. and Caulfield, C. P. (2017). Multiple instability of layered stratified plane Couette
flow. J. Fluid Mech., 813:250–278.

Eckhardt, B., Schneider, T. M., Hof, B., and Westerweel, J. (2007). Turbulence transition in
pipe flow. Annu. Rev. Fluid Mech., 39:447–468.

Edwards, W. S., Tuckerman, L. S., Friesner, R. A., and Sorensen, D. C. (1994). Krylov
methods for the incompressible Navier-Stokes equations. J. Comput. Phys., 110(1):82–102.

Fukao, S., Luce, H., Mega, T., and Yamamoto, M. K. (2011). Extensive studies of large-
amplitude Kelvin–Helmholtz billows in the lower atmosphere with VHF middle and upper
atmosphere radar. Q. J. Roy. Meteorol. Soc., 137(657):1019–1041.

Garcia, R. V. (1956). Barotropic waves in straight parallel flow with curved velocity profile.
Tellus, 8(1):82–93.

Gregg, M., D’Asaro, E., Riley, J., and Kunze, E. (2018a). Mixing efficiency in the ocean.
Annu. Rev. Mar. Sci., 10:443–473.

Gregg, M. C., D’Asaro, E. A., Riley, J. J., and Kunze, E. (2018b). Mixing efficiency in the
ocean. Annu. Rev. Mar. Sci., 10:443–473.

Grossmann, S., Lohse, D., and Sun, C. (2016). High–reynolds number Taylor-Couette
turbulence. Annu. Rev. Fluid Mech., 48.

Haines, P. E., Hewitt, R. E., and Hazel, A. L. (2011). The Jeffery-Hamel similarity solution
and its relation to flow in a diverging channel. J. Fluid Mech., 687:404–430.

Hazel, P. (1972). Numerical studies of the stability of inviscid stratified shear flows. J. Fluid
Mech., 51(1):39–61.

Heifetz, E. and Guha, A. (2018). A generalized action-angle representation of wave interac-
tion in stratified shear flows. J. Fluid Mech., 834:220–236.

Heifetz, E. and Guha, A. (2019). Normal form of synchronization and resonance between
vorticity waves in shear flow instability. Phys. Rev. E, 100:043105.

Hogg, A. M. and Ivey, G. N. (2003). The Kelvin-Helmholtz to Holmboe instability transition
in stratified exchange flows. J. Fluid Mech., 477:339–362.

Holmboe, J. (1960). Unpublished lecture notes.

Holmboe, J. (1962). On the behavior of symmetric waves in stratified shear layers. Geophys.
Publ., 24:37.

Howard, L. N. (1961). Note on a paper of John W. Miles. J. Fluid Mech., 10(4):509–512.

Howland, C. J., Taylor, J. R., and Caulfield, C. P. (2018). Testing linear marginal stability in
stratified shear layers. J. Fluid Mech., 839.



92 References

Howland, C. J., Taylor, J. R., and Caulfield, C. P. (2020). Shear-induced breaking of internal
gravity waves. arXiv e-prints, page arXiv:2007.09942.

Jones, C. A. (1977). The onset of shear instability in stars. Geohpys. Astrophys. Fluid Dyn.,
8(1):165–184.

Kaminski, A. K., Caulfield, C. P., and Taylor, J. R. (2014). Transient growth in strongly
stratified shear layers. J. Fluid Mech., 758.

Kaminski, A. K., Caulfield, C. P., and Taylor, J. R. (2017). Nonlinear evolution of linear
optimal perturbations of strongly stratified shear layers. J. Fluid Mech., 825:213–244.

Keller, H. B. (1977). Numerical solution of bifurcation and nonlinear eigenvalue problems.
In Rabinowitz, P. H., editor, Applications of Bifurcation Theory, pages 359–384. Academic
Press.

Klaassen, G. P. and Peltier, W. R. (1985). Evolution of finite amplitude Kelvin-Helmholtz
billows in two spatial dimensions. J. Atmos. Sci., 42(12):1321–1339.

Kunze, E., Williams III, A., and Briscoe, M. G. (1990). Observations of shear and vertical
stability from a neutrally buoyant float. J. Geophys. Res. Oceans, 95(C10):18127–18142.

Kutz, J. N., Brunton, S. L., Brunton, B. W., and Proctor, J. L. (2016). Dynamic Mode
Decomposition. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Landahl, M. (1980). A note on an algebraic instability of inviscid parallel shear flows. J.
Fluid Mech., 98(2):243–251.

Lasserre, J. B. (2001). Global optimization with polynomials and the problem of moments.
SIAM J. Optim., 11(3):796–817.

Lindzen, R. S. (1988). Instability of plane parallel shear flow (toward a mechanistic picture
of how it works). Pure Appl. Geophys., 126(1):103–121.

Lohse, D. and Xia, K.-Q. (2010). Small-scale properties of turbulent Rayleigh-Bénard
convection. Annu. Rev. Fluid Mech., 42.

Lombard, P. N. and Riley, J. J. (1996). Instability and breakdown of internal gravity waves. i.
linear stability analysis. Physics of Fluids, 8(12):3271–3287.

Lott, F. and Teitelbaum, H. (1992). Nonlinear dissipative critical level interaction in a
stratified shear flow: Instabilities and gravity waves. Geophys. Astrophys. Fluid Dyn.,
66(1-4):133–167.

Luchini, P. (2000). Reynolds-number-independent instability of the boundary layer over a
flat surface: optimal perturbations. J. Fluid Mech., 404:289–309.

Mack, S. and Schoeberlein, H. (2004). Richardson number and ocean mixing: Towed chain
observations. J. Phys. Oceanogr., 34(4):736–754.

Mallier, R. (2003). Stuart vortices in a stratified mixing layer: the Holmboe model. J. Eng.
Math., 47(2):121–136.



References 93

Marcotte, F. and Caulfield, C. P. (2018). Optimal mixing in two-dimensional stratified plane
poiseuille flow at finite péclet and richardson numbers. J. Fluid Mech., 853:359–385.

Mashayek, A., Caulfield, C., and Peltier, W. (2013). Time-dependent, non-monotonic mixing
in stratified turbulent shear flows: implications for oceanographic estimates of buoyancy
flux. J. Fluid Mech., 736:570–593.

Mashayek, A. and Peltier, W. (2012a). The ‘zoo’of secondary instabilities precursory
to stratified shear flow transition. part 1 shear aligned convection, pairing, and braid
instabilities. J. Fluid Mech., 708:5.

Mashayek, A. and Peltier, W. (2012b). The ‘zoo’of secondary instabilities precursory to
stratified shear flow transition. part 2 the influence of stratification. J. Fluid Mech., 708:45.

Mashayek, A. and Peltier, W. (2013). Shear-induced mixing in geophysical flows: does the
route to turbulence matter to its efficiency? J. Fluid Mech., 725:216–261.

Mashayek, A. and Peltier, W. R. (2011). Three-dimensionalization of the stratified mixing
layer at high Reynolds number. Phys. Fluids, 23(11):111701.

Maslowe, S. A. (1973). Finite-amplitude Kelvin-Helmholtz billows. Bound.-Layer Meteorol.,
5(1):43–52.

Maslowe, S. A. (1977). Weakly nonlinear stability theory of stratified shear flows. Q. J.
Royal Meteorol. Soc., 103(438):769–783.

Maslowe, S. A. (1986). Critical layers in shear flows. Annu. Rev. Fluid Mech., 18(1):405–432.

Mellor, G. L. and Yamada, T. (1982). Development of a turbulence closure model for
geophysical fluid problems. Reviews of Geophysics, 20(4):851–875.

Meseguer, A. and Trefethen, L. N. (2003). Linearized pipe flow to reynolds number 107. J.
Comput. Phys., 186(1):178–197.
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Appendix A

The design and validation of Stratiflow

Stratiflow is the direct numerical simulation code, and the various high level algorithms
which sit on top of it, written for, and as part of, this PhD. It was specifically designed for
handling stratified shear flows in two and three dimensions. The code itself is entirely new,
written in C++, using the matplotlibcpp (https://github.com/lava/matplotlib-cpp) and FFTW
(http://www.fftw.org/) external libraries for plotting and Fourier transforms respectively, with
OpenMP multithreading. The design is object-oriented and modular, so that the DNS code
can be modified without altering the Newton solver, or vice versa, for example. Multiple
executables can be compiled at the same time for different purposes, such as straightforward
simulation, Arnoldi iteration or simply measuring metrics of saved states. The code is
designed so that different cases can be run without recompiling the code (except for changes
in grid size, which for efficiency reasons is hard-coded at compile time). The latest version
of the code is available on GitHub (https://github.com/Jezz0r/Stratiflow).

The DNS code evolved over the course of the PhD, but essentially two versions were
used. In chapters 2, 3 and 4, the streamwise (and, where used, the spanwise) direction is
periodic and handled pseudospectrally, switching between a Fourier modal and spatially
nodal representation as necessary. The vertical direction in these chapters, which is finite with
stress-free, insulating boundaries some distance above and below the shear, is handled with
finite differences. This was chosen, over a Chebyshev pseudospectral method, because of the
ability to concentrate gridpoints near the centre of the domain, which is particularly useful for
situations studied which model unbounded flows, where boundary effects are unimportant. In
chapter 5, a different version of the code, which uses a Fourier pseudospectral representation
in all three directions, was employed. Here we present a validation against a reference case
for the doubly-periodic version, the triply-periodic case just replicates this code in the final
direction.

https://github.com/lava/matplotlib-cpp
http://www.fftw.org/
https://github.com/Jezz0r/Stratiflow
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The design of the solver is based heavily on that described in Bewley (2012). The
temporal discretisation uses a third-order Runge-Kutta-Wray (RKW3) algorithm (Wray,
1986) which requires relatively low memory usage for the accuracy of the algorithm. The
viscous terms are handled implicitly using the Crank-Nicolson method at each RKW3 substep,
the pressure is implicit via a projection method, and nonlinear and forcing terms are handled
explicitly, all as described by Bewley (2012).

The vertical discretisation makes use of ‘quasi-second-order’ derivatives, i.e. schemes
which would be exactly second-order on a uniform grid, but a non-uniform grid are strictly
only first order. This is done so that mass, momentum and energy are all explicitly conserved
numerically. The vertical velocity is stored on a grid which is staggered with respect to
the other variables, to avoid checkerboarding artifacts. In all cases, homogeneous Dirich-
let boundary conditions are applied to the vertical velocity, and homogeneous Neumann
boundary conditions are applied to the other variables. In the case of a linear background
buoyancy stratification, this is handled via a body force rather than being captured in the
variables, and where necessary is added back for visualisation. The spectral dimensions
employ a ‘two-thirds rule’ (Boyd, 2001) for filtering, to remove aliasing artifacts which arise
from nonlinear terms, though this is disabled on the spanwise direction in chapter 5, as there
are no nonlinear terms in this linearised version.

Stratiflow was validated against DIABLO (Taylor, 2008), a FORTRAN code also based
upon the algorithms given in Bewley (2012), which has been used in a number of publications,
both in simple stratified shear flows (Kaminski et al., 2014, 2017; Howland et al., 2018) and
other areas of physical oceanography (e.g. Taylor and Ferrari, 2009; Stamper and Taylor,
2017; Crowe and Taylor, 2019). Though the timestepping algorithms are designed to be the
same between Stratiflow and DIABLO, there are a number of differences in the test cases.
The DIABLO reference was run using a fixed small timestep, whereas Stratiflow uses its own
adaptive timestepping. Although both codes use finite differences in the vertical direction, the
precise grid is different, with Stratiflow using the gridpoints described in chapter 4. Another
key difference is that in Stratiflow, background one-dimensional velocity and buoyancy
profiles are handled separately from the perturbation flow fields, so that these can be held
steady or allowed to diffuse as necessary.

The test flow used for validation was chosen arbitrarily as an easy-to-implement initial
condition which gives complex flow evolution. The initial conditions are:

u = tanhzex,

b = z+ cos(2y)cos(0.5x)sechz.
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Fig. A.1 Comparison of the kinetic energy (with the one-dimensional component removed)
between Stratiflow test cases and the DIABLO reference. The variability in the latter half
of the simulations shows the complex nature of the flow here, but nevertheless, the high-
resolution case is indistinguishable from the reference.

This can be viewed as the Drazin model (see chapters 2 and 4) with a large finite-amplitude
perturbation in the buoyancy field. The flow parameters used are as follows: Re = 1000,
Lx = 4π , Lz = 10, Ly = π , Ri = 0.1, Pr = 1.5. It is important here to use Pr ̸= 1, since values
of unity can hide code bugs. At these values, the basic flow is unstable to KHI, though the
dynamics are largely caused by the perturation. The flows were simulated to t = 50, during
which time there is an initial high-energy ‘roll-up’ and subsequent complex (and probably
chaotic) behaviour.

For the DIABLO reference case, we used Nx = 256, Ny = 64 and Nz = 256 (using the
notation followed throughout this thesis, rather than the DIABLO convention which has y
and z exchanged), and a fixed timestep of 0.005, which gives a CFL number much lower
than strictly necessary. Stratiflow was run at (Nx,Ny,Nz) = (64,16,64), (128,32,128), and
(256,64,256), which we will call respectively low-, mid- and high-resolution, with the
variable timestepping, based on a CFL condition, as used in the rest of the thesis.

Figure A.1 shows a comparison of the results. The metric used, for ease of comparison
between the different codes, is the kinetic energy of the flow with the one-dimensional means
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Fig. A.2 Comparison of the buoyancy fields (with the one-dimensional component removed)
at t = 50. Left: DIABLO reference. Centre: High-resolution Stratiflow. Right: Difference.

subtracted, i.e.

1
LxLy

∫ Lx

0
dx
∫ Ly

0
dy
∫ Lz

−Lz

dz
1
2
(
(u−U)2 +(v−V )2 +(w−W )2) ,

where U(z) = 1
LxLy

∫ Lx
0 dx

∫ Ly
0 dyu(x,y,z) etc. Though this metric does not include the buoy-

ancy field or the background profiles, the tight coupling between these variables in the
equations means that if this metric agrees, the others certainly will also. The high-resolution
results are indistinguishable from the DIABLO reference, despite the complex nature of
the flow, and the differences in the DNS algorithms. The mid-resolution run shows some
differences late in the simulation but broadly agrees. Even the low-resolution results, which
is on a much coarser grid than any used in the preceding chapters, captures the general
behaviour of the flow.

Figure A.2 shows a comparison of the buoyancy field, at the end of the simulation,
between the high-resolution run and the reference. Visually, the two would seem to be
identical, but upon subtracting them, relatively large errors (up to 20 percent) are apparent
in the field. Here, for comparison, both results have been linearly reinterpolated from their
non-uniform grids on to a grid which is uniformly spaced in z. In areas of high gradient in
the field, this reinterpolation can introduce large differences, which appears to be what is
happening in the figure.

Overall, Stratiflow shows good agreement with the mature DIABLO code, in a complex,
three-dimensional case, and therefore can certainly be trusted in the simpler two-dimensional
cases, often at higher resolution, which are discussed in the thesis.

Two other versions of the DNS were developed. A linearised version, which removes
nonlinear interactions between the perturbation and itself, was validated against very low
amplitude perturbations in the full nonlinear DNS. The adjoint equations, as discussed in
chapter 5, were implemented in their own solver (which shares most of the code with the
main solver). This is harder to validate, though we are confident the implementation is
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correct, as the power-iteration algorithm converges and the expected objective functional
obeys the expected convergence properties. Therefore, we deduce that the adjoint code we
have implemented is indeed the adjoint of the main code.





Appendix B

Koopman analysis of isolated fronts and
solitons1

1This chapter is a slightly modified version of Parker, J. P. & Page, J., Koopman analysis of isolated fronts
and solitons. To appear in SIAM Journal on Applied Dynamical Systems.





Abstract

A Koopman decomposition of a complex system leads to a representation in which nonlinear
dynamics appear to be linear. The existence of a linear framework with which to analyse
nonlinear dynamical systems brings new strategies for prediction and control, while the
approach is straightforward to apply to large datasets using dynamic mode decomposition
(DMD). However, it can be challenging to connect the output of DMD to a Koopman analysis
since there are relatively few analytical results available, while the DMD algorithm itself is
known to struggle in situations involving the propagation of a localised structure through
the domain. Motivated by these issues, we derive a series of Koopman decompositions for
localised, finite-amplitude solutions of classical nonlinear PDEs for which transformations
to linear systems exist. We demonstrate that nonlinear travelling wave solutions to both the
Burgers and KdV equations have two Koopman decompositions; one of which converges
upstream and another which converges the other downstream of the soliton or front. These
results are shown to generalise to the interaction of multiple solitons in the KdV equation.
The existence of multiple expansions in space and time has a critical impact on the ability
of DMD to extract Koopman eigenvalues and modes – which must be performed within
a temporally and spatially localised window to correctly identify the separate expansions.
We provide evidence that these features may be generic for isolated nonlinear structures by
applying DMD to a moving breather solution of the sine-Gordon equation.

B.1 Introduction

Dynamic mode decomposition (DMD), invented by Schmid (2010), has emerged as an
increasingly popular linear tool with which to analyse nonlinear dynamical systems. The
DMD algorithm yields a representation in which the state of the system is expressed as a
superposition of fixed coherent structures (DMD modes) with an exponential dependence
on time. DMD has primarily been applied in fluid mechanics (e.g. Schmid et al., 2010;
Jovanović et al., 2014; Kutz et al., 2016) but is also increasingly being used in other areas,
for example in neuroscience (Brunton et al., 2016a). While the output of the DMD algorithm
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is straightforward to interpret, it has additional theoretical significance owing to a connection
with the Koopman operator (Koopman, 1931; Mezić, 2005) for the underlying dynamical
system. Through this connection, DMD modes can be shown to be related to simple invariant
solutions of the system (e.g. equilibria, periodic orbits Mezic, 2017; Page and Kerswell,
2018, 2020). The objective of this paper is to establish some generic rules for applying DMD
to spatially-extended nonlinear systems by deriving analytical Koopman decompositions for
the state variable in some classical integrable nonlinear PDEs.

The Koopman operator (Koopman, 1931) is a linear operator acting on the space of
observables for nonlinear systems, allowing us to perform spectral decompositions in the
usual way (Rowley et al., 2009; Mezić, 2013). The resulting Koopman decompositions (or
expansions) of observables, and in particular the state of the system, cast the evolution as a
sum of spatial Koopman modes with exponential temporal behaviour. This is possible via
a projection of the observable of interest onto Koopman eigenfunctions (strictly speaking,
eigenfunctionals, though we follow the standard nomenclature here), scalar functionals of
the state of the system which have a ‘linear’ evolution despite the underlying nonlinear
dynamics. In this perspective, the fixed Koopman modes assume a secondary importance
despite their physical significance, and can be regarded as the coefficients in the expansion
(Rowley et al., 2009; Mezić, 2013). In a series of important contributions, various authors
have identified strict requirements under which DMD is capable of performing a Koopman
mode decomposition (Rowley et al., 2009; Tu et al., 2014; Williams et al., 2015; Brunton
et al., 2016b; Rowley and Dawson, 2017).

The DMD algorithm is straightforward to apply to very complex systems since it requires
only a sequence of snapshot pairs as input. However, it is often difficult to verify that the
low-rank dynamics identified in DMD correspond to a Koopman decomposition due to a
lack of analytical results beyond ODE model problems (e.g. Bagheri, 2013; Brunton et al.,
2016b; Rowley and Dawson, 2017). Some of these ODE results have allowed extraction of
Koopman modes in more complex nonlinear PDEs, e.g. the Stuart-Landau equation describes
the transient collapse of unstable flow past a cylinder onto a limit cycle, and this connection
allowed Bagheri (2013) to find the corresponding Koopman modes for the velocity field.
Certain nonlinear PDEs can also be rendered linear under a transformation of the state
variable which allows for identification of Koopman eigenvalues (e.g. Page and Kerswell,
2018; Kutz et al., 2018; Nakao and Mezić, 2020). Page and Kerswell (2018) exploited the
linearising transform to derive a full Koopman decomposition for the velocity field in the
Burgers equation. In this work we exploit a similar feature in the KdV equation to derive
Koopman decompositions there.
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Beyond DMD, a variety of alternative methods to extract Koopman decompositions
have been proposed. For example, Sharma et al. (2016) have found a connection between
Koopman modes and the ‘response modes’ of the resolvent operator. In statistically station-
ary flows, Arbabi and Mezić (2017) have demonstrated an approach motivated by signal
processing to allow for extraction of Koopman modes and eigenfunctions. Other approaches
involve altering the snapshots on which DMD is applied, by adding additional functionals
(observables) of the state of the system (Williams et al., 2015) or by ‘stacking’ snapshots of
the state equispaced-in-time along the trajectory to form a single large observable (Brunton
et al., 2017).

However, despite this progress there are still open questions as to how Koopman and
DMD should be applied to systems which transit between multiple simple invariant solutions
(Brunton et al., 2016b; Page and Kerswell, 2019). In fact, Koopman analysis applied to a
simple ODE with a pair of fixed points (Page and Kerswell, 2019) has shown that each simple
invariant solution has an associated Koopman expansion. Each expansion is convergent
up to a crossover point along the heteroclinic connection between the fixed points. This
introduces a critical constraint on DMD, which to function as a proxy for Koopman must
be performed on an observation window in which there is a single valid decomposition. In
addition, it is known that the DMD algorithm struggles when applied to localised travelling
waves (e.g. Kutz et al., 2016) both in providing a low rank approximation to the dynamics
and in extrapolating beyond the observation window. Our analysis of the KdV equation
suggests that these two behaviours may be related, as we show that localised nonlinear waves
possess multiple Koopman decompositions, each of which converges in different regions of
space-time. For DMD to extract the different expansions, observations must be restricted in
both time and space to a region where a single expansion holds.

The remainder of this paper is structured as follows. In section B.2 we introduce the
Koopman operator and derive a pair of Koopman decompositions for a travelling-front
solution of the Burgers equation. In section B.3 we perform a similar analysis for a one-
soliton solution of the KdV equation, before using the inverse scattering transform to derive
Koopman eigenfunctions, eigenvalues and modes for general (non-dispersive) solutions to the
KdV equation, establishing the need for potentially many different Koopman decompositions
in a generic case. The consequences of these decompositions for DMD are examined in
section B.4, and an observable that can robustly determine Koopman eigenvalues and modes
is defined. We then apply DMD to find Koopman decompositions of the sine-Gordon
equation, where the analytical decomposition is unknown. Finally, concluding remarks are
provided in section B.5.
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B.2 Koopman decompositions of nonlinear dynamics

In this paper we will consider nonlinear PDEs of the form

∂tu = F(u), (B.1)

for some F , with time forward map f t(u) = u+
∫ t

0 F(u)dt ′. At a given time, u : R → R
describes the current state of the system, and is a member of the relevant Sobolev solution
space W for the given PDE.

The (one parameter family of) Koopman operator(s) K t acts on the vector space of all
nonlinear functionals g well defined on the solution space of the PDE, so that g : W → R.
Such functionals are often termed ‘observables’. The Koopman operator acts by shifting
observables along a trajectory of eq. (B.1),

K tg(u) := g( f t(u)). (B.2)

This perspective is useful due to the linearity of the Koopman operator. In particular, the
eigenfunctions of K t are scalar observables with an exponential dependence on time,

K t
ϕλ (u) = ϕλ ( f t(u)) := ϕλ (u)e

λ t , (B.3)

and therefore constitute a coordinate system for representing arbitrary observables in which
the nonlinear evolution appears to be linear,

K tg(u) = g( f t(u)) =
∞

∑
n=0

ϕλn(u)e
λnt ĝn, (B.4)

where ĝn are Koopman modes for the observable g.
Often the desire is to find a representation like eq. (B.4) for the function describing the

state itself, u, so that for equation eq. (B.1),

u(x) =
∞

∑
n=0

ϕλn(u)ûn(x). (B.5)

In this notation, u is viewed as a family of observables parameterised by x.
Though u ∈ W , there is no guarantee that the Koopman modes ûn : R→ R satisfy the

smoothness conditions for W or that such a sum will converge for all of R. The recent work
by Page and Kerswell (2019) demonstrated that separate Koopman decompositions eq. (B.5)
can be constructed around simple invariant solutions of eq. (B.1), and in general multiple
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decompositions will be required for a given trajectory as it wanders between unstable exact
solutions. In this work our focus is on spatially localised dynamics, which typically require
multiple Koopman decompositions in both time and space to represent the full nonlinear
evolution.

B.2.1 Motivating example: a front in the Burgers equation

The Burgers equation was considered by Page and Kerswell (2018), who used the Cole-Hopf
transformation to derive a Koopman decomposition for the state variable u. In that study,
only trajectories running down to the trivial solution were considered. Here, our focus is on
travelling waves. The Burgers equation is defined by,

F(u) :=−u∂xu+ν∂
2
x u, (B.6)

and supports a variety of equilibria and travelling wave solutions (Benton and Platzman,
1972). We consider boundary conditions u(x →−∞) =U∞ and u(x → ∞) = 0, which admits
a solution of a right-propagating front

u(x, t) = c
[
1− tanh

( c
2ν

(x− ct)
)]

, (B.7)

where the propagation speed c :=U∞/2.
In the approach of Page and Kerswell (2018), Koopman eigenfunctions for the Burg-

ers equation were obtained by exploiting the Cole-Hopf transformation and performing a
Koopman mode decomposition (KMD) of the linearising variable. A KMD for the velocity
field was then found by inverting this transformation. While such an approach should also
be possible here, we instead derive the KMD(s) for the propagating front via a Laplace
transform approach (Page and Kerswell, 2019). This approach is more appropriate here, as it
identifies regions in the x− t plane where a particular KMD is convergent.

In Page and Kerswell (2018) it was shown that the Koopman eigenvalues of the Burgers
equation are all real. We adopt the following ansatz for the velocity field:

u(x, t) =
∫

∞

−∞

v(−λ ;x)ϕ−λ (u)e
−λ tdλ , (B.8)

where v(λ ;x) is a Koopman mode density for the observable u, which is parameterised by x.
In dynamical systems evolving on an attractor, our approach can be modified by assuming λ

to be purely imaginary. In this approach, the Koopman mode density is simply the Fourier
transform of the state variable (Mezić, 2013).
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Equation eq. (B.8) is a bilateral Laplace transform with time as the transform variable.
The Koopman mode density can be obtained by inverting the transform by integration along
a Bromwich contour in the complex-t plane,

v(−λ ;x)ϕ−λ (u) =
1

2πi

∫
γ+i∞

γ−i∞
u(x, t)eλ tdt

=
c
πi

∫
γ+i∞

γ−i∞

eλ t

1+ exp
[ c

ν
(x− ct)

]dt. (B.9)

For this inversion to be possible, u must have a valid analytic continuation into the complex
plane, which is the case for this example. We note that we are using the time variable of the
dynamical system as the transform variable in the Laplace transform, which is the opposite
of the usual approach.

For unilateral Laplace transforms, convergence is assured by selecting γ to lie to the right
of the singularities of the integrand. For the bilateral transform, γ can be selected to the right
or left of the singularities (the contour then closed to the left or right respectively) provided
that the Koopman mode density vanishes below or above a critical value of λ respectively
(Page and Kerswell, 2019). This results in two possible Koopman mode densities. In
practice, one is associated with exponentially decaying Koopman eigenvalues, the other with
exponential growth.

The inversion integrand eq. (B.9) has simple poles at tn = x/c+ iπ(2n+1)ν/c2, n ∈ Z.
The inversion can therefore be accomplished by selecting either γ > x/c and closing to right
or γ < x/c and closing to the left, a choice which yields a convergent KMD either upstream
(x < ct) or downstream (x > ct) of the front. The solution procedure is almost identical for
both cases, and we discuss only the upstream calculation in detail.

For the upstream expansion, γ > x/c, we close the contour in a large semicircle to the
left. The contribution to the integral from the semicircular contour vanishes for λ >−c2/ν ,
hence the corresponding Koopman mode density has support for λ ∈ (−c2/ν ,∞) and the
upstream KMD is

u(x, t) =
∫

∞

−c2/ν

v−(−λ ;x)ϕ−λ (u)e
−λ tdλ , (B.10)

where

v−(−λ ;x)ϕ−λ (u) =
c
πi

∮
C

eλ t

1+ exp
[ c

ν
(x− ct)

]dt

= 2c
∞

∑
n=−∞

Res

(
eλ t

1+ exp
[ c

ν
(x− ct)

] , tn) ,

(B.11)
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where C is the closed contour built from the Bromwich contour and the large semicircle.
Evaluating the residues at the poles, we find

v−(−λ ;x)ϕ−λ (u) = 2c
∞

∑
n=−∞

ν

c2 exp
[
λ

(x
c
+ iπ(2n+1)

ν

c2

)]
=

2ν

c
(−1)λν/c2

exp
(

λx
c

)
∞

∑
k=−∞

δ

(
k− λν

c2

)
,

(B.12)

using the identity for generalised functions ∑n e2πint = ∑k δ (k− t). Inserting the upstream
density in eq. (B.10) yields the upstream KMD,

u(x, t) = 2c
∞

∑
k=0

(−1)k exp
[

kc
ν
(x− ct)

]
, (B.13)

valid for x < ct, with Koopman eigenvalues −kc2/ν .
A similar approach with γ < x/c yields

v+(−λ ;x)ϕ−λ (u) =−2ν

c
(−1)λν/c2

exp
(

λx
c

)
∞

∑
k=−∞

δ

(
k− λν

c2

)
, (B.14)

with the KMD for the velocity downstream

u(x, t) =
∫ 0

−∞

v+(−λ ;x)ϕ−λ (u)e
−λ tdλ

=−2c
∞

∑
k=1

(−1)kexp
[
−kc

ν
(x− ct)

]
, (B.15)

valid for x > ct. Both the downstream expansion eq. (B.15) and the upstream expansion
eq. (B.13), truncated at N = 10 terms, are overlayed onto the true travelling front solution in
figure fig. B.1. The loss of convergence in both expansions at x− ct = 0 is clear.

There is a simple dynamical systems interpretation to the results above: under the
ansatz of travelling-wave dynamics u = f (x− ct), the Burgers equation with these boundary
conditions reduces to a simple one-dimensional (nonlinear) ordinary differential equation
f ′ = 1

2ν
f 2 − c

ν
f . The front depicted in fig. B.1 is a heteroclinic connection between the

(unstable) trivial solution at f = 0 and the (stable) equilibrium f = U∞ = 2c. The pair of
Koopman decompositions found above thus corresponds to expansions about these two
equilibria, which both breakdown at the same “crossover point” in state space (see also
Page and Kerswell, 2019). These equilibria have one-dimensional linear subspaces, and
the associated Koopman decompositions begin with eigenvalues corresponding to these
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Fig. B.1 Simple travelling wave solutions to the Burgers (left) and KdV (right) equations
visualised in a co-moving frame along with the respective upstream (blue) and downstream
(red) Koopman expansions. Series are truncated at N = 10 in all cases.

unstable/stable linear dynamics, ∓c2/ν . The higher order terms in the expansion then
correspond to integer powers of the associated Koopman eigenfunction.

B.3 Koopman decomposition of Korteweg-de-Vries equa-
tion

The Korteweg-de-Vries (KdV) equation is the canonical and simplest example of a nonlinear
dispersive wave equation. It is defined by

F(u) :=−∂
3
x u+6u∂xu. (B.16)

The term ∂ 3
x u makes this a dispersive wave equation, and u∂xu is a nonlinear self-advection

term. Equation eq. (B.16) naturally arises as the inclusion of simple nonlinearity in a number
of wave phenomena, including internal waves in a stratified fluid. We consider the KdV
equation on the real line with boundary conditions u → 0 as x →±∞.

In an early example of the numerical solution of PDEs, Zabusky and Kruskal (1965)
simulated the KdV equation and discovered the rich behaviour of so-called ‘solitons’. These
exact coherent structures of the PDE are strongly stable. They can interact with one another
and preserve their form post-interaction. The behaviour of solitons led to the development of
the inverse scattering transform (IST), which can be used to analytically solve KdV as well
as a number of other, more complicated, so-called ‘integrable’ equations.
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B.3.1 Single-soliton solution

The canonical one-soliton solution to KdV is given by

u(x, t) =−2sech2 (x−4t) , (B.17)

which is a simple travelling wave propagating to the right. Note that u < 0, which is the case
for all soliton solutions of eq. (B.16).

We will follow the methodology outlined for the front in the Burgers equation in sec-
tion B.2.1 and assume that the Koopman eigenvalues required to described the evolution
of eq. (B.17) are real. This assumption will be justified section B.3.3, where we derive the
Koopman eigenfunctions required to describe arbitrary soliton evolutions.

Expressing the evolution as an integral over a Koopman mode density (see section B.2.1),
v(λ ;x),

−2sech2 (x−4t) =
∫

∞

−∞

v(−λ ;x)ϕ−λ (u)e
−λ tdλ . (B.18)

This Laplace transform (transform variable t) can be inverted in the normal way to give

v(−λ ;x)ϕ−λ (u) =
1

2πi

∫
γ+i∞

γ−i∞
−2sech2 (x−4t)eλ tdt

=− 1
πi

∫ x−4γ+i∞

x−4γ−i∞

eλ (x−ξ )/4(
eξ + e−ξ

)2 dξ ,

(B.19)

where ξ := x−4t. Similar to the Burgers equation example presented in section B.2.1, we
can close the contour for this integral in two different directions, yielding a pair Koopman
decompositions which hold upstream/downstream of the soliton.

Closing the contour to the left, we label the Koopman modes as v+, with v+(λ ;x) = 0
for λ > 2. Then eq. (B.18) becomes

−2sech2 (x−4t) =
∫ 2

−∞

v+(−λ ;x)ϕ−λ (u)e
−λ tdλ . (B.20)

Equation eq. (B.19) has second order poles at ξn = iπ(2n+ 1)/2, n ∈ Z. The residue
theorem gives, for λ < 2,

v+(−λ ;x)ϕ−λ (u) =−2
∞

∑
n=−∞

Res

(
eλ (x−ξ )/4(
eξ + e−ξ

)2 , iπ(2n+1)/2

)

=−λeλx/4e−iπλ/8
∞

∑
k=−∞

δ (8k−λ ) .

(B.21)
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Substituting this into eq. (B.20), we find a decomposition

−2sech2 (x−4t) =
∞

∑
k=1

8k(−1)ke−2kxe8kt . (B.22)

This expansion involves Koopman eigenvalues {8k : k ∈ N}, with corresponding Koopman
modes e−2kx. In this derivation, it is not possible to determine the Koopman eigenfunctions
{ϕλ (u)} in their general form.

Equation eq. (B.22) is a convergent expansion for x > 4t, i.e. downstream of the peak
of the soliton. Analogous behaviour was seen in the front solution to Burgers equation (e.g.
eq. (B.13)), which suggests that the need for multiple Koopman decompositions to describe
nonlinear wave evolution is generic. The upstream expansion for the one soliton solution to
KdV can be obtained by closing the contour to the right, which yields

2sech2 (x−4t) =
∞

∑
k=1

8k(−1)ke2kxe−8kt , (B.23)

which could also be anticipated from symmetry. The upstream expansion is convergent for
x < 4t and involves Koopman eigenvalues {−8k : k ∈ N} – temporally decaying modes.

Similar to the Burgers equation, there is a simple dynamical systems interpretation
to these results which rests on the fact that Koopman expansions appear to be defined
about simple invariant solutions of the governing equation, and connecting orbits between
such solutions contain a crossover point where one expansion fails and another takes over.
Supposing that u = f (x− ct) for some c, the KdV equation with u → 0 as x → ∞ boundary
conditions reduces to the two-dimensional ODE

f ′ = g, (B.24a)

g′ = 3 f 2 + c f , (B.24b)

where we have defined g = f ′. For c > 0, this system has a centre at f =−c/3, g = 0, which
does not satisfy our boundary conditions, and a saddle point at f = 0, g = 0, the trivial zero
solution of KdV. The one soliton solution for this particular value of c is a homoclinic orbit
from the latter fixed point back to itself, encircling the centre at f =−c/3. The crossover
point at x = ct divides the trajectory into a ‘repelling’ and an ‘attracting’ section. The
Koopman expansions for these sections of the orbit are built from eigenfunctions which are
integer powers of the Koopman eigenfunctions associated with the linear subspace around
u = 0 and have eigenvalues ±√

c (i.e. ±c3/2 in the lab frame)



B.3 Koopman decomposition of Korteweg-de-Vries equation 115

These effects have interesting consequences for describing more complex dynamics –
soliton interactions – in terms of Koopman expansions. In order to generalise the approach
above, we will use the inverse scattering transform (e.g. Drazin and Johnson, 1989) to derive
Koopman eigenfunctions for the KdV equation in their general form, which will allow us to
examine these more interesting situations.

B.3.2 Inverse scattering method

The inverse scattering method is one the most celebrated results of twentieth century math-
ematics. It can be used to solve a variety of nonlinear PDEs, including the nonlinear
Schrödinger equation and the sine-Gordon equation (Ablowitz et al., 1974). In the inverse
scattering approach, the solution to the nonlinear PDE, u(x, t), is treated as a potential in
a linear scattering problem in which time appears parametrically. It can be shown that the
scattering data (the eigensolutions of the scattering problem) evolve linearly as u(x, t) evolves
according to its nonlinear evolution equation. Therefore, the scattering data can be obtained
for all time from the initial condition u(x,0) alone. The solution to the nonlinear PDE at any
time can then be extracted from the scattering data via an inverse scattering transform, which
amounts to the solution of a linear integral equation. The existence of a linearising transform
allows us to derive Koopman eigenfunctions, which can then be used to construct Koopman
decompositions for the state variable itself.

Here we concentrate on the specific case of KdV, for which the inverse scattering method
was first developed (Gardner et al., 1967). Throughout, we follow the notation and conven-
tions of Drazin and Johnson (1989). Let u0(x) be some initial condition for the KdV equation
on the real line, with u0(x)→ 0 as x →±∞. The time evolution can then be obtained as
follows:

1. Solve the eigenvalue Sturm-Liouville scattering problem ψxx +(λ −u0)ψ = 0. The
eigenvalue spectrum has a discrete negative part λ =−κ2

n for n= 1,2, . . . ,N, and a con-
tinuous positive part λ = k2. The eigenvalues and their corresponding eigenfunctions
are called the ‘scattering data’.

2. It is then possible to predict how the scattering data will evolve as u evolves from u0

according to the KdV equation. In particular, it is sufficient to consider the ‘reflection
coefficient’ b(k) for the continuous spectrum and {cn} for the discrete spectrum. These
are defined by requiring that the eigenfunctions ψ ∼ e−ikx +b(k)eikx or ψ ∼ cne−κnx

as x → ∞. The latter (discrete) case is normalised so that
∫

∞

−∞
ψ2dx = 1.
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The scattering data evolve according to the linear equations

db
dt

= 8ik3b, (B.25a)

dcn

dt
= 4κ

3
n cn, (B.25b)

as the potential u(x) evolves according to the KdV equation.

3. Given the scattering data at initial time, one can then calculate u(x, t) at some future
time t through ‘inverse scattering’, which amounts to solving the Marchenko equation,

K(x,z, t)+F(x+ z, t)+
∫

∞

x
K(x,y, t)F(y+ z, t)dy = 0, (B.26)

for K, where

F(x, t) =
N

∑
n=1

c2
n exp(8κ

3
n t −κnx)+

1
2π

∫
∞

−∞

b(k)exp(8ik3t + ikx)dx.

In all but the simplest cases, this must be done numerically. The velocity is then
obtained via u(x, t) =−2(∂xK(x,z, t)|z=x +∂zK(x,z, t)|z=x).

B.3.3 Koopman eigenpairs of the KdV equation

With the inverse scattering transform in mind, we now define a family of observables cκ(u),
where κ is a positive real number, on the state space for the unbounded KdV equation. The
value of cκ(u), a real number, can be computed as follows: First, determine whether the
ordinary differential equation ψxx − (κ2 +u(x))ψ = 0 has a non-trivial, square-integrable
solution, with ψ decaying exponentially as x →±∞. If it does, the solution is made unique
by requiring

∫
∞

−∞
ψ2dx = 1. In the limit x → ∞, ψ ∼ Ae−κx for some A, which allows us to

define cκ(u) = A. If there is no solution to the Sturm-Liouville problem, define cκ(u) = 0.
Although this does not give a closed-form, explicit expression for cκ in terms of u, it defines
a functional valid for any state in the solution space of the equation.

Due to their linear evolution equations eq. (B.25b), it is clear that the scattering data are
Koopman eigenfunctions of the nonlinear KdV equation,

K tcκ(u) = cκ( f t(u)) = e4κ3tcκ(u), (B.27)

i.e. cκ(u) = ϕλκ
(u), the Koopman eigenfunction with Koopman eigenvalue λκ = 4κ3.
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We note that the same approach can be used to construct a family of Koopman eigen-
functions with purely imaginary Koopman eigenvalues from the reflection coefficients b(k)
associated with the continuous spectrum of the scattering problem. Because of difficul-
ties solving the integral equation in cases where b(k) ̸= 0, we consider only ‘reflectionless
potentials’ where b(k)≡ 0.

Since the scattering data are sufficient to reconstruct the whole solution to the KdV equa-
tion, we therefore assume that these Koopman eigenpairs, and their products, as discussed
below, are sufficient to find decompositions.

B.3.4 Single-soliton revisited

Before examining soliton interactions, we will first revisit the one soliton solution of the
KdV equation considered in section B.3.1,

u(x,0) =−2sech2 x, (B.28)

and use knowledge of the Koopman eigenfunctions and the inverse scattering approach to
construct the Koopman decompositions. From our family of Koopman eigenfunctions cκ ,
only c1(u) is non-zero in this case, with c1(u0) =

√
2, and there is no continuous spectrum

in the scattering problem. However, note that cκ can be raised to any power a to give a
Koopman eigenfunction with Koopman eigenvalue 4aκ3 (Mezić, 2013).

Initially, we introduce as an ansatz a Koopman decomposition using only positive integer
powers of c1(u) – i.e. one associated with exponential growth in time. We will see that this
approach yields the upstream expansion eq. (B.22) found via the Laplace transform approach
in section B.3.1. Rather than seeking a decomposition for u(x) directly, we first decompose
K(x,z), the solution to the Marchenko equation described in section B.3.2. With our ansatz,
we write

K(u;x,z) =
∞

∑
n=1

K̂n(x,z)cn
1(u) =

∞

∑
n=1

K̂n(x,z)cn
1(u0)e4nt , (B.29)

where cn
1(u0) = 2n/2. Note the change in notation to reflect that K is an observable of the

state, u, parameterised by x and z. The Marchenko equation eq. (B.26) now reads

∞

∑
n=1

K̂n(x,z)cn
1(u0)e4nt +2e8t−x−z +

∫
∞

x

∞

∑
n=1

K̂n(x,y)cn
1(u0)e4nt2e8t−y−zdy = 0.
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Examining the z dependence of the terms, it is apparent that K̂n(x,z) = L̂n(x)e−z for some
L̂n(x). We can therefore perform the integration, to give

∞

∑
n=1

L̂n(x)cn
1(u0)e4nt +2e8t−x +

∞

∑
n=1

L̂n(x)cn
1(u0)e(8+4n)t−2x = 0.

Comparing coefficients of e4pt , we have

L̂p(x)c
p
1(u0)+ L̂p−2(x)c

p−2
1 (u0)e−2x =

−2e−x, p = 2,

0, otherwise.

Assuming that the Koopman modes associated with the exponentially decaying eigenfunc-
tions not included in the ansatz (c−n

1 (u0)) are zero, L̂n(x) = 0 for n < 0, this recurrence may
be solved directly to give

L̂n(x) =

0, n odd,

(−1)n/221−n/2e−(n−1)x, n even.
(B.30)

The resulting Koopman decomposition for K is then

K(u;x,z) =
∞

∑
n=1

(−1)n21−ne−(2n−1)x−zc2n
1 (u0)e8nt , (B.31)

and a Koopman decomposition for u can be obtained from u = −2(∂xK|z=x +∂zK|z=x),
giving

u(x, t) =
∞

∑
n=1

(−1)n23−ne−2nxc2n
1 (u0)e8nt ,

=
∞

∑
n=1

(−1)n8ne−2n(x−4t). (B.32)

This is a Koopman decomposition, using Koopman eigenfunctions c2n
1 (u) with Koopman

eigenvalues 8n, and Koopman modes û2n(x) = 8n(−1/2)ne−2nx.
Equation eq. (B.32) matches that found in section B.3.1 using the inverse Laplace

transform eq. (B.22). To find the second Koopman expansion, valid downstream of the
soliton, we would begin with the ansatz,

K(u;x,z) =
∞

∑
n=1

K̂n(x,z)c−n
1 (u), (B.33)
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i.e. an expansion in exponentially decaying Koopman eigenfunctions.
In summary, we have used the inverse scattering transform approach to identify Koopman

eigenfunctions and eigenvalues of the KdV equation and shown how different sets of eigen-
functions are required in different regions of space-time to express localised nonlinear wave
evolution in the form of a Koopman decomposition. We now extend this approach to exam-
ine more complex dynamics involving soliton interactions, where the number of possible
Koopman decompositions increases dramatically. Selecting the appropriate decomposition
for a given region of the x− t plane depends on the relative positions of all solitons.

B.3.5 Multiple solitons

The method presented in section B.3.4 can be generalised to an arbitrary but finite number of
solitons, so long as the initial condition has no continuous spectrum in the scattering problem.
To demonstrate the approach, we examine in detail the interaction of two solitons.

With two solitons, we now have two non-zero scattering eigenvalues κ1 and κ2, with
corresponding Koopman eigenfunctions cκ1(u) and cκ2(u) and Koopman eigenvalues 4κ3

1

and 4κ3
2 . The eigenfunctions cκ1(u) and cκ1(u) can be raised to arbitrary powers to produce

further Koopman eigenfunctions, but we can now also multiply them (Mezić, 2013). As was
found in the one-soliton case, only even powers are required, since c2

κ rather than cκ appears
in the Marchenko equation. The possible combinations of cκ1(u) and cκ2(u) thus yield a set
of Koopman eigenfunctions of the form

c2 j
κ1(u)c

2k
κ1
(u), ( j,k) ∈ Z2,

with corresponding Koopman eigenvalues 4κ3
1 ·2 j+4κ3

2 ·2k = 8(κ3
1 j+κ3

2 k). If κ1 and κ2

are both rational numbers then the Koopman eigenvalues will be degenerate, an effect that has
also been observed in Koopman decompositions of the Burgers equation (Page and Kerswell,
2018).

With two scattering eigenvalues, the Marchenko equation eq. (B.26) becomes

K(x,z, t)+ c2
κ1

exp(8κ
3
1 t −κ1(x+ z))+ c2

κ2
exp(8κ

3
2 t −κ2(x+ z))

+
∫

∞

x
K(x,y, t)c2

κ1
exp(8κ

3
1 t −κ1(y+ z))dy

+
∫

∞

x
K(x,y, t)c2

κ2
exp(8κ

3
2 t −κ2(y+ z))dy = 0.

(B.34)
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The z-dependence of the terms in eq. (B.34) implies K(x,z, t) is of the form

K(x,z, t) = L(1)(x, t)e−κ1z +L(2)(x, t)e−κ2z, (B.35)

which reduces eq. (B.34) to a pair of coupled equations:

L(1)(x, t)+ c2
κ1

e8κ3
1 t−κ1x +

1
2κ1

L(1)(x, t)c2
κ1

e8κ3
1 t−2κ1x

+
1

κ1 +κ2
L(2)(x, t)c2

κ1
e8κ3

1 t−(κ1+κ2)x = 0,
(B.36)

L(2)(x, t)+ c2
κ2

e8κ3
2 t−κ2x +

1
κ1 +κ2

L(1)(x, t)c2
κ1

e8κ3
1 t−(κ1+κ2)x

+
1

2κ2
L(2)(x, t)c2

κ1
e8κ3

1 t−2κ2x = 0.
(B.37)

We propose Koopman decompositions for the observables L(1) and L(2) of the form

L(1,2)(u;x) = ∑
j
∑
k

L̂(1,2)
j,k (x,z)c2 j

κ1(u0)c2k
κ1
(u0)e8(κ3

1 j+κ3
2 k)t . (B.38)

As found in the single soliton case, the range of values over which we sum j and k, or
equivalently whether the expansion is constructed using exponentially growing or decaying
modes (or a combination), implicitly selects a region of space-time in which the expansion
converges.

Substituting eq. (B.38) into eq. (B.36) and comparing coefficients of exponentials (as-
suming no degeneracy) yields the recurrence relations

L̂(1)
j,k +

1
2κ1

L̂(1)
j−1,ke−2κ1x +

1
κ1 +κ2

L̂(2)
j−1,ke−(κ1+κ2)x

=

−e−κ1x, j = 1,k = 0,

0, otherwise,

(B.39)

L̂(2)
j,k +

1
κ1 +κ2

L̂(1)
j,k−1e−(κ1+κ2)x +

1
2κ2

L̂(2)
j−1,ke−2κ2x

=

−e−κ2x, j = 0,k = 1,

0, otherwise.

(B.40)

With some rearrangement, these can be solved straightforwardly for j and k either increasing
or decreasing, and various boundary conditions are therefore possible. The solutions are
too complicated to include here, but can be found using a computer algebra system. As
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described previously in the one soliton calculation, the Koopman decomposition for the pair
of observables L(1,2)(u;x) can be converted into a Koopman decompositions for K(u;x,z)
via equation eq. (B.35), before the decomposition for the velocity is obtained from u(x, t) =
−2(∂xK(x,z, t)|z=x +∂zK(x,z, t)|z=x) (Drazin and Johnson, 1989).

The various possible boundary conditions, which we now discuss in more detail, are
based on the interpretation of an isolated soliton as a homoclinic orbit. The two-soliton
decompositions are somewhat analogous to what one would expect for trajectories shadowing
two orthogonal homoclinic orbits connected to the origin, each with a crossover point. In
that scenario we anticipate three decompositions: one using (products of) the attracting
eigenfunctions of both orbits (downstream of both solitons); one using the eigenfunctions
associated with the repelling halves of each homoclinic orbit (upstream of both solitons); one
using the eigenfunctions of the attracting half of one orbit and the repelling half of the other
(between the solitons). This analogy is not quite complete as the origin is not a fixed point
– there is no frame in which the dynamics are steady. Furthermore, the expansion between
the solitons will change when the faster structure overtakes the slower, yielding a fourth
Koopman decomposition. However, we will see that these intuitive arguments do result
in a set of four Koopman decompositions that together describe the entire spatio-temporal
dynamics.

First, we seek an expansion valid downstream of both solitons by assuming that L̂(1)
j,k and

L̂(2)
j,k are zero for j < 0 and k < 0, or equivalently seek to build a solution using only temporally

growing modes. The velocity field resulting from this solution for L(1,2) is reported in fig. B.2
(the red curves) for a particular choice of κ1 and κ2 which is discussed further below.

On the other hand, if both L̂(1)
j,k and L̂(2)

j,k are assumed to be zero for j > 0 and k > 0,
an expansion is obtained which converges upstream of both solitons and involves only
temporally decaying modes. This decomposition is also show in fig. B.2 (blue curves). Note
that, for both the temporally decaying and growing expansions, the inclusion of products of
the Koopman eigenfunctions allows the ‘linear’ Koopman decompositions to represent the
dynamics upstream and downstream of the solitons during their interaction. As shown in
fig. B.2, these expansions apply both before and after the faster soliton overtakes the slower.

The more interesting case is the expansion between the solitons. One possibility is to
assume L̂(1)

j,k = 0 and L̂(2)
j,k = 0 for j < 0 but k > 0. This amounts to a decomposition involving

growing modes associated with the κ1 eigenvalue (i.e. those that describe the evolution
upstream of soliton 1) but decaying modes associated with the κ2 eigenvalue (describing
the evolution downstream of soliton 2). An example of this expansion, which describes the
evolution between the solitons up to (and including part of) their interaction, is shown in
fig. B.2 (green curves). The products in the Koopman expansion of the form c j

κ1(u)c
k
κ2
(u)
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Fig. B.2 Truncated Koopman decompositions with 10 modes for the 2-soliton solution
eq. (B.42) (shown as dashed line), at different times. For t < 0, the decomposition with
Koopman eigenfunctions c j

1ck
2 with j ≤ 0 and k ≥ 0 (in green) must be used between the

solitons, whereas k ≥ 0 and j ≤ 0 (in pink) does not converge, and is completely off the scale
of the plot. The reverse is true for t > 0. The j ≤ 0, k ≤ 0 expansion (blue) and j ≥ 0, k ≥ 0
(red) are needed at all times, upstream and downstream, respectively, of both solitons.
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allow for a ‘linear’ representation of the strongly nonlinear dynamics between the solitons as
they interact.

However, as the faster soliton approaches the slower, the region of space in which this
decomposition holds shrinks and eventually vanishes. For a Koopman decomposition which
holds between the solitons post-interaction, it is necessary to instead assume L̂(1)

j,k = 0 and

L̂(2)
j,k = 0 for j > 0 and k < 0, i.e. an ansatz using the unstable eigenvalues for the κ2 soliton

and the stable eigenvalues associated with the κ1 soliton. This expansion is shown in pink in
fig. B.2.

The particular two soliton interaction reported in fig. B.2 is the ‘classical’ two soliton
solution (see e.g. Drazin and Johnson, 1989) defined by the initial condition,

u(x,0) =−6sech2 x, (B.41)

for which the KdV equation has the known analytical solution,

u(x, t) =−12
3+4cosh(2x−8t)+ cosh(4x−64t)

(3cosh(x−28t)+ cosh(3x−36t))2 . (B.42)

This solution is particularly useful when assessing the crossover between the multiple
Koopman decompositions owing to the fact that the initial condition eq. (B.41) corresponds
to the temporal “midpoint” in the interaction between the two solitons which separate as
t → ±∞. In fact, precisely when t = 0, neither of the interior decompositions (the green
and pink curves in fig. B.2) are valid, and they are nowhere pointwise convergent to a finite
value (not shown). When t is very small, a very large number of terms is required for the
expansions to well approximate the true solution near the solitons.

Another consequence of using the solution defined by eq. (B.42) is the occurrence of
degeneracy in the Koopman eigenvalues. The scattering problem for this potential gives
discrete eigenvalues of κ1 = 1 and κ2 = 2. These values correspond to Koopman eigenvalues
4κ3

1 = 4 and 4κ3
2 = 32 and normalisation coefficients (Koopman eigenfunctions) c1(u0) =√

6 and c2(u0) = 2
√

3 respectively (Drazin and Johnson, 1989). The fact that the two
Koopman eigenvalues are both proportional to perfect cubes, coupled with allowance for
both exponentially decaying and growing modes, causes the degeneracy. For example,
the combinations ( j,k) = (0,2) (eigenfunction c4

2(u)) and ( j,k) = (8,1) (eigenfunction
c16

1 (u)c2
2(u)) both share the eigenvalue 128. In the degenerate case, the recurrence relations

presented above eqs. (B.39) and (B.40) are now only one possible solution to the Marchenko
equation. However, considering the nondegenerate situation with κ1 = 1 and κ2 = 2+ ε as
ε → 0, which does not become invalid, implies that our solution is the correct one.
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To summarise, we have demonstrated that four Koopman decompositions are required
to describe the interaction of a pair of solitons in the KdV equation. Each expansion is
convergent in a particular region of space-time, either: (i) upstream of both solitons, (ii)
downstream of both solitons, (iii) between the solitons with the slower wave upstream of
the faster or (iv) between the solitons with the faster wave upstream of the slower. There
is a simple logic to selecting the eigenfunctions required for any given expansion: Alone,
any individual soliton has a pair of Koopman decompostions; an expansion describing
the solution upstream of the soliton requires exponentially growing eigenfunctions while
temporally decaying eigenfunctions are needed downstream. In the two-soliton interaction,
this continues to apply. However, products of the two sets of eigenfunctions must also be
included to account for interaction between the solitons.

The approach outlined above naturally extends to arbitrary numbers of solitons, where
construction of a Koopman decomposition at any point in space requires products of all the
growing eigenfunctions for any solitons downstream of that point and all of the decaying
eigenfunctions from the upstream solitons. For N solitons, this would involve the solution of
N recurrence relations similar to eqs. (B.39) and (B.40) simultaneously. The existence of
multiple Koopman decompositions which partition the spatiotemporal domain to describe
the full solution to a nonlinear PDE has important consequences for DMD, which we now
examine.

B.4 Dynamic mode decomposition

Dynamic mode decomposition (DMD) can be an effective way to extract Koopman eigen-
values, modes and eigenfunctions from numerical data. A rigorous connection between
Koopman decompositions and DMD has been established under certain conditions (Williams
et al., 2015; Rowley and Dawson, 2017). The key requirements are (i) that the Koop-
man eigenfunctions can be expressed as a linear combination of the elements of the DMD
observable vector, {gi(u)}, and (ii) that sufficient data is available.

A variety of methods have been proposed to augment DMD and aid its ability to extract
Koopman eigenfunctions from data. For example, in ‘extended’ DMD, the observable vector
g is built from a dictionary of functionals of the state. For the nonlinear PDEs considered
in this paper, we will see that standard DMD (where the observable is simply the state
variable itself, gi = u(x = xi)), is sufficient to perform numerical Koopman decompositions,
provided that the observations are restricted to a particular region of space-time where a
single Koopman decomposition holds.
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Fig. B.3 Two soliton solution to the KdV equation eq. (B.41) visualized with contours of −u.
Dashed lines identify DMD observation windows A1 = (π,2π) and A2 = (−2π,−π).
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Fig. B.4 Real part of eigenvalues obtained in DMD calculations with a windowed observable
g(u) = u(x ∈ Ai) against the end time, tF , of each DMD computation. Each DMD calculation
is performed within a time window of length Tw = 0.4 with snapshots available at a resolution
of δ t = 0.005. The DMD timestep separating snapshots is δ tDMD = 0.01 and M = 50
snapshot pairs are used. Left: observation window A1. Right: observation window A2. Note
that blue circles identify purely real eigenvalues, red squares are complex conjugate pairs.
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As a first example, consider the two-soliton KdV dynamics in fig. B.3. The parameters
match those considered in §3. Two groups of DMD calculations are considered with a
windowed observable

g(u) = u(x ∈ A j), (B.43)

where the elements of u are observations of the state u at the grid points, (u)i := u(x = xi),
and the choices for the window A j are identified in fig. B.3. The DMD methodology is as
described in (Tu et al., 2014).

For each of the two observation windows A j, we perform many DMD calculations over
short time intervals Tw = 0.2. The real parts of the eigenvalues obtained in these calculations
are reported in fig. B.4, as a function of the final time of each individual DMD computation.
For the window A1, while tF ≲ 0, the DMD identifies eigenvalues λn = 8n, n ∈ N. This
corresponds to the analytical prediction for the Koopman decomposition upstream of both
solitons, where the set of Koopman eigenvalues required to correctly describe the time
evolution is the product of the unstable eigenvalues associated with each individual soliton.

Near tF = 0, complex-conjugate pairs of eigenvalues (shown in red in fig. B.4) emerge and
DMD is unable to find a robust representation that remains consistent between subsequent
calculations. This behaviour coincides with the observation window viewing regions of the
solution which are expressed in terms of multiple Koopman decompositions; namely the top
of the faster soliton is included in the observation window. In this case, DMD is unable to
build a consistent linear representation for the dynamics.

When 0.5 ≲ tF ≲ 1, the observation windows occupy a region of space-time between the
two solitons, and the DMD algorithm is able to correctly identify the exponentially growing
and decaying eigenvalues required in one of the central Koopman decompositions. As well
as the exponentially growing terms associated with being upstream of the slower soliton,
λn = 8n, n ∈ N, the rapidly decaying eigenvalue λn = −64 is also obtained. This is the
slowest-decaying eigenvalue associated with being downstream of the faster soliton. Note
that the other visible decaying eigenvalue (λn =−56) in this region is associated with the
product of the first unstable Koopman eigenfunction associated with the slower soliton and
the first stable Koopman eigenfunction connected with the faster wave, ϕ8(u)ϕ−64(u) (see
§3). Other decaying eigenvalues λn =−8n n ∈ N are also anticipated based on interactions
ϕ

j
8ϕk

−64, though these terms are all much smaller in amplitude and are not picked up by the
DMD. These results are quickly contaminated with pairs of complex-conjugate modes that are
associated with the appearance of the second crossover point – the top of the slower soliton –
in the observation window. Finally, towards the end of the later-time DMD calculations for
window A1, DMD starts to recover the purely decaying Koopman eigenvalues associated
with the expansion downstream of both solitons.
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Similar behaviour is observed for observation window A2, which also shows evidence
of three expansions. In this instance, the eigenvalues identified between the solitons are
similar to those seen for window A1, but appear to be flipped about λr = 0 as the observation
window is upstream of the faster solution and downstream of the slower wave. Therefore,
while the upstream-of-both and downstream-of-both results are unchanged, the Koopman
decomposition between the the two solitons involves the product of the unstable eigenvalues
associated with the faster soliton and the stable eigenvalues of the slower pulse, i.e. the
opposite of window A1.

These observations suggest that the use of a spatially-restricted observable is a sensible
choice in nonlinear problems involving spatially-localised dynamics. This observable choice
will allow individual Koopman eigenvalues and modes to be extracted by avoiding the
inclusion of crossover points between multiple decompositions, for which DMD is unable to
build a consistent linear operator. In order to demonstrate the utility of such an approach, we
examine a solution of the sine-Gordon equation,

∂
2
t u = ∂

2
x u− sinu, (B.44)

which arises in a variety of physical situations, including the propagation of dislocations
through a crystal and as a unitary theory for elementary particles (Scott et al., 1973). Though
analytical solution of the sine-Gordon equation is possible via the inverse scattering method
(Ablowitz et al., 1973), we do not attempt to analytically find Koopman decompositions.
Instead, we will use the rules of thumb developed above for KdV to use DMD to identify
Koopman eigenvalues.

As an example, we focus on the moving breather solution (Drazin and Johnson, 1989),

ub(x, t) = 4arctan

[√
1− l2

l
sin(γl(t −V x))

cosh(γ
√

1− l2(x−Vt))

]
, (B.45)

where γ := 1/
√

1− l2. This solution is shown in fig. B.5 for l =V = 1/2, and is a localised
relative periodic orbit.

Based on our analysis of both the Burgers and KdV equations, we anticipate the existence
of a pair of Koopman decompositions upstream/downstream of the breather in terms of
exponentially decaying/growing eigenvalues respectively. In order to extract these represen-
tations, we conduct a pair of DMD computations with our observations restricted to windows
upstream or downstream of the breather (marked in fig. B.5).

The output of these calculations is reported in fig. B.6. As anticipated, the calculations
produce robust results both upstream and downstream of the oscillating pulse in terms of
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Fig. B.5 Moving breather solution to the sine-Gordon equation eq. (B.45). Contours of u,
with the observation windows for the DMD calculations in fig. B.6 identified by black boxes.
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Fig. B.6 DMD applied to the sine-Gordon upstream (left) and downstream (right) of the
breather (see fig. B.5). In each calculation the observable is the state vector for x ∈ (−π,π)
and the time window length Tw = 5. M = 400 snapshot pairs are used with δ t = 0.1.
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(temporal) exponential growth and decay. Note that, unlike the Burgers and KdV equations,
the eigenvalues are complex. The upstream and downstream spectra are related via a reflection
through λr = 0.

In the one soliton solution of KdV, we demonstrated in a reduced dynamical system
that the soliton may be regarded as a homoclinic connection from the zero state to itself,
with a crossover point in the middle. We can interpret the results of the calculation on the
sine-Gordon dynamics similarly: in a co-moving coordinate, the moving breather may be
interpreted as a homoclinic orbit about the trivial solution u = 0, and the DMD calculations
identify the Koopman decompositions associated with the ‘repelling’ and ‘attracting’ halves
of this trajectory.

B.4.1 Periodic computational domains

All of the problems studied so far in this work have been classical analytical solutions of in-
tegrable nonlinear PDEs on infinite domains. However, studies of localised solutions to more
complex systems (e.g. the Navier-Stokes equations (Schneider et al., 2010)) are conducted in
large periodic computational domains. As pointed out by Sharma et al. (2016), Koopman
decompositions for exact coherent structures in spatially-periodic problems naturally take
the form of travelling waves and the (temporal) Koopman eigenvalues should all be purely
imaginary. This should be contrasted with the Koopman decompositions presented in this
paper, which have all involved Koopman eigenvalues with non-zero real part.

To examine the connection between the assertions of Sharma et al. (2016) and the
analytical Koopman decompositions derived in this paper, we consider again the one-soliton
solution to the KdV equation (see section B.3.1 and section B.3.4). Here, we supply the
soliton u = −2sech2x as an initial condition in a numerical simulation where the KdV
equation is solved numerically on a periodic domain of length 8π . A Fourier transform is
applied in x; the nonlinear terms are evaluated in physical space before the transform is
applied. For time advancement, explicit Adams-Bashforth is used for the nonlinear terms
and implicit Crank-Nicolson is used for the dispersive term. The domain is long enough such
that the error between the periodic numerical simulation and the true one-soliton solution,
∥uper −usol∥2/∥usol∥2, is about 4×10−4 after ≳ 3 flow-through times.

In fig. B.7 we report the results of two sets of DMD calculations on this one soliton KdV
evolution. In the first, a single computation, we perform standard DMD on the full state
vector (i.e. over the entire spatial domain) for a time window spanning many flow-through
times. As anticipated, the DMD eigenvalues are all purely imaginary and are multiples of a
fundamental harmonic ω = 1 (on this domain the flow-through time of the isolated soliton is
T = 2π). The DMD modes (not shown) are Fourier modes.
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Fig. B.7 Two alternative DMD computations for the ‘one soliton’ solution of the KdV equa-
tion evolving in a periodic computational domain of length L = 8π . Top: full (unwindowed)
state observable, g = u, observed over a time window Tw = 15 with M = 400 snapshot pairs.
Vertical dashed lines identify multiples of the first non-zero frequency (ω = 1). Bottom: win-
dowed state observable, g = u(x ∈ A), where A = (7π/2,4π). Multiple DMD computations
are performed with time window length Tw = 0.2 and the real part of the DMD eigenvalues
are plotted against the start time of their respective DMD calculation. M = 40 snapshot pairs
are used. Throughout, δ t = 0.0125.
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In the second set of calculations, we adopt the approach we have advocated for the
infinite domains. We perform DMD on a windowed observable g(u) = u(x ∈ A), where
A=(7π/2,4π), conducting a sequence of DMD calculations on short time windows Tw = 0.2.
The real part of the eigenvalues obtained in each calculation are shown in the lower panel
of fig. B.7. As the soliton repeatedly passes through the domain, the DMD calculations
continually pick up the upstream/downstream eigenvalues associated with the solution on an
unbounded domain (i.e. one of λn =±8n, n ∈ N).

In this problem the “correct” decomposition is the one involving purely imaginary eigen-
values, regardless of domain length (as long as it remains finite). This can be demonstrated
explicitly by considering the periodic ‘cnoidal’ solutions of the KdV equation (Korteweg and
de Vries, 1895),

u(x, t) = A−Bmcn2 (C(x− ct)) , (B.46)

where cn is the Jacobi elliptic cosine function with modulus m ∈ [0,1], and we require
B

2C2 = 1 and c =−2(3A−2Bm+2C2) to be a solution to KdV (Drazin and Johnson, 1989).
Equation eq. (B.46) is a right-moving travelling wave with phase speed c, and is spatially
periodic with period 2K/C, where K = K(m) is the complete elliptic integral of the first kind
(Abramowitz and Stegun, 1965). Concentrating on the special case A =−2

3 (1+(1−2m)p),
B = 2p and C =

√
p, where p := 1/

√
1−m+m2, in the limit as m → 0, eq. (B.46) becomes

the small-amplitude solution to the linearised KdV, a pure cosine. As m → 1 however, the
peaks become repeated copies of the one-soliton solution, very widely separated in x: on any
finite spatial interval at fixed t, eq. (B.46)→eq. (B.17) as m → 1.

The Fourier series for eq. (B.46) can be calculated using the series for dn2 given by
Oberhettinger (1973) and the identity dn2(x) = 1−m+mcn2(x), giving

u(x, t) = A−B
(

E
K
+m−1

)
− 2Bπ2

K2

∞

∑
n=1

nqn

1−q2n cos
(

nπC
K

{x− ct}
)
, (B.47)

where E is the complete elliptic integral of the second kind, and q(m) = e−πK(1−m)/K(m) is
the ‘nome’ (Abramowitz and Stegun, 1965).

Viewing eq. (B.47) as a Koopman mode decomposition by writing the cosine in terms
of exponentials, we identify Koopman eigenvalues inπcC/K for n ∈ Z. These are purely
imaginary (or zero), as anticipated from periodicity, and should be contrasted to the purely
real Koopman eigenvalues found for the single soliton in isolation eq. (B.17).

Despite the correspondence between the one-soliton solution to KdV and the limiting
form of the periodic cnoidal wave, the isolated soliton Koopman decomposition is not
obtained in the large-domain limit due to the fact that an infinite domain is required to
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obtain the scattering data that define the Koopman eigenfunctions. Furthermore, in contrast
to Koopman decompositions constructed in section B.3 for solitons on infinite domains,
the Koopman modes and eigenvalues obtained in this periodic example are dependent on
the domain length rather than being purely tied to the soliton itself. There are additional
numerical issues too – the periodic Koopman decomposition can be difficult to obtain in the
large-domain limit since very many Fourier modes are required to resolve the evolution (see
Appendix).

The striking difference between the periodic Koopman decomposition and the decompo-
sition for a truly localised structure is somewhat disconcerting, since simulations of localised
structures are often conducted on large periodic domains under the assumption that the true
isolated structure is well approximated. However, the windowed DMD results reported in
fig. B.7 indicate that the Koopman decompositions for the localised structure can still be
obtained in periodic computations by using a spatially localised observable. The reason
for this is clear if we return to the simplified system describing travelling wave solutions
to KdV, eq. (B.24). There is a continuous family of periodic orbits around the centre – the
cnoidal waves – contained within a homoclinic orbit from the saddle, which corresponds to
the one-soliton solution. The periodic configuration described here corresponds to one of
these periodic orbits. As m → 0, the orbits are close to the centre, and as m → 1, the orbits
approximate the homoclinic orbit, but with finite period. DMD on the short time windows
identifies the eigenvalues of the nearby homoclinic orbit, instead of the much longer periodic
orbit it is actually computed on.

These results suggest that the two alternative strategies for DMD are both equally valid,
depending on what the computation is designed to find: (i) the ‘standard’ approach using the
full state vector which will identify purely imaginary, domain-dependent Koopman eigen-
values (if the structure is allowed to pass through the entire domain) and (ii) the windowed
observable which can identify the growing/decaying Koopman eigenvalues associated with
upstream/downstream expansions for a truly localised structure.

B.5 Conclusions

In this paper, we have derived Koopman decompositions in a number of problems involving
the propagation and interaction of isolated structures, namely a front in the Burgers equation
and solitons in the KdV equation. The results indicate that isolated nonlinear waves require
two Koopman decompositions to describe their evolution, which converge either upstream of
downstream of the structure. In many-soliton interactions, multiple Koopman decompositions
are required, and selecting the convergent expansion at any point requires knowledge of
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the relative positions of all solitons (i.e. whether they are upstream or downstream of the
observation point).

We proposed a simple modification to the standard DMD methodology that allows
allows the algorithm to identify the individual Koopman decompositions around the isolated
structures. This approach was used to identify the various Koopman decompositions in a
two-soliton interaction solution of KdV, before we applied it to the sine-Gordon equation
where the analytical eigenvalues are at present unknown. The results suggest that the need
for multiple Koopman decompositions to cover the full spatio-temporal domain may be a
generic feature of nonlinear PDEs.

Further work is required to assess the extent to which these results extend to more
complex systems, such as the full Navier-Stokes equations. As a starting point, the windowing
approach could be applied to some of the known localised relative periodic solutions in
pipe flow (Avila et al., 2013). In addition, our analysis of the KdV equation was restricted
to pure soliton evolution – i.e. dispersive effects were absent. The inclusion of dispersion
will introduce a continuous spectrum of purely imaginary Koopman eigenvalues. It would
be of interest to know how the presence of these effects impacts the capability of DMD to
identify the eigenvalues associated with the coherent structures, and whether some of the
recent proposed modifications to the algorithm, such as augmenting the observable with other
functionals, can help.

B.6 Appendix: Further details on the cnoidal wave

In this appendix we briefly discuss the behaviour of the Koopman decomposition for the
cnoidal wave eq. (B.47) in the large-domain limit.

In the limit m → 1, the elliptic integral K(1−m)→ π/2, so q ∼ e−π2/2K and

K ∼− π2

2logq
. (B.48)

Therefore the nth Fourier coefficient from eq. (B.47) obeys

− 2Bπ2

K2
nqn

1−q2n ∼−8B(logq)2

π2
nqn

1−q2n . (B.49)

Since q → 1 as m → 1, we expand with ε = 1−q to give

−2Bπ2

K2
nqn

1−q2n ∼−8B(−ε)2

π2
n

2nε
→ 0. (B.50)
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Since every Fourier coefficient approaches 0 as m → 1, but the cnoidal wave peaks tend to
a fixed height of −2, an increasing number of Fourier modes (which are Koopman modes
here) must be used to approximate the solution. This means that for very isolated solitons in
a periodic domain, a large number of DMD modes will be required.
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Appendix C

A sum-of-squares optimisation method
for studying the double pendulum1

1This chapter is a slightly modified version of a paper in preparation with D. Goluskin and G. M. Vasil.





Abstract

We propose a method, exploiting sum-of-squares optimisation of polynomials, to study the
behaviour of chaotic trajectories in the double simple pendulum, given stationary initial
conditions. We find open subsets of the initial condition space for which the double pendulum
is guaranteed not to ‘flip’ within a given time period. This provides guidance for how similar
methods may be applied to more complex systems of ordinary differential equations.

The study of complex and chaotic dynamical systems using computational
methods usually involves direct numerical solution of the governing differential
equations. This involves not only the discretisation of time, introducing errors,
but also the discretisation of state space. This paper takes an alternative, com-
plementary approach of computationally studying the governing equations by
rearranging them into polynomial form and applying polynomial sum-of-squares
optimisation.

C.1 Introduction

A chaotic dynamical system is defined by sensitivity to initial conditions, such that a small
change at one time leads to a large change at a later time. This defining characteristic means
that understanding the behaviour of such systems is hard. Despite knowing exactly the
governing ordinary (or partial) differential equations of a chaotic system, any numerical
solution of the equations must be treated with caution, since numerical errors will necessarily
lead to large errors in the final result. Not only this, but when trying to understand the
behaviour of sets of initial conditions, one must discretise the set over a sample of solution
trajectories. As the dynamics are chaotic, it is not always clear that other trajectories starting
within the set will not diverge drastically from those studied.

For these reasons, when dealing with chaotic systems, it may be useful to study the
equations directly rather than individual numerical solutions. For example, in the case of
Hamiltonian systems, such as the double pendulum studied herein, it is enlightening to find
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conserved quantities of the dynamics and consider the foliation of phase space that this
causes.

Recent advances in computing power and algorithms mean that it is now possible to
computationally study polynomial dynamical systems. There are many methods which
require the finding of a function on phase space satisfying certain equality and inequality
constraints, for example Lyapunov functions in stability analysis. In looking for such
functions, we may restrict ourselves to polynomials; the inequality constraints will then
amount to finding one or more non-negative polynomials. In general this is hard, but it is
sufficient to find polynomial sums-of-squares (SOS), which is computationally tractable. For
an in-depth explanation, see ?. Multiple software packages are now available both to convert
the SOS program into a semidefinite program (SDP), and to solve the SDP. In principle,
this can be performed analytically to make proofs of SOS rigorous, but the large number of
coefficients to be determined makes this practically impossible for all but the simplest cases.

The method employed in this paper, which can be used for any polynomial dynamical
system for which one is interested in the time until which a certain criterion is met, is closely
related to the method described in Henrion and Korda (2013).The method works by finding a
(polynomial) function, the ‘barrier function’, increasing along trajectories, which is greater
than a certain value on an initial set, but is always less than a certain value on a ‘target’ set.
If such a function can be found, no trajectory starting from the initial set may enter the target
set. We call this the barrier function method.

As an example of this method, we study the double pendulum. As a Hamiltonian system
with no long-time attractor, the methods using SOS to find bounds mentioned above are
not useful. Though the system has two Hamiltonian degrees of freedom, it is very easy
to visualise and understand, but the chaotic nature means it is nevertheless an interesting
system. Despite the fact it is often used as an example of a chaotic system in introductory
texts, it has been the subject of relatively little serious study. Poincaré sections, periodic
orbits and Lyapunov exponents were found by Stachowiak and Okada (2006). Through
some substitutions and tricks, which can be applied to more complex systems, we are able to
transform the governing equations into a polynomial system which enables application of
the barrier function method. A fractal pattern has been observed and studied Heyl (2008);
Palace and Emmert (2016); Elinson (2013) in diagrams showing the time until the first flip
for different initial conditions. The barrier function method then allows us to determine, for
finite target times, which regions of this fractal do and do not flip.

The paper proceeds as follows: in section C.2.1, we present the general barrier function
method, formulated as a SOS program; in section C.2.2 we derive the polynomial governing
equations for the double pendulum system; in section C.2.3 we define the flip time and the
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problem to be studied; in section C.2.4 we give the full SOS program for this system; in
section C.3 we give the results of our calculations; and in section C.4 we discuss these results
and possible future applications of the method.

C.2 Problem formulation

C.2.1 Barrier function method

Suppose we have a dynamical system in one variable x,

dx
dt

= f (x). (C.1)

To guarantee that trajectories starting in some initial set given by g(x) ≤ 0 do not enter a
target set h(x) = 0 within a time T , it is sufficient to find a function V (x, t) such that

∂V
∂ t

+ f (x)
∂V
∂x

≥ 0 when 0 ≤ t ≤ T, (C.2a)

V > 0 when t = 0, g(x)≤ 0, (C.2b)

V ≤ 0 when 0 ≤ t ≤ T, h(x) = 0. (C.2c)

The first inequality states that the time derivative of the function moving along a trajectory
is positive, and therefore V increases in time. These inequalities are only required to hold
over the restricted sets given, rather than all values of x and t (as is the case for polynomial
SOS). With the introduction of some auxiliary functions, the inequalities can be converted to
inequalities ofver all space by the following method (variously known as the S-procedure or
weighted SOS).For example, if σ1 is a non-negative function and σ2 is an arbitrary function,

−V −σ1(x, t)t(T − t)−σ2(x, t)h(x)≥ 0 ∀x, t (C.3)

implies (C.2c). If f , g and h are polynomials then these conditions can be formulated as a
sum-of-squares optimisation program.

It is straightforward, if notationally clunky, to extend this method to systems of more
than one variable, and to arbitrary semialgebraic initial and target sets. We note also that h
could be a function of time, in general.
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Fig. C.1 The conventions used for the double simple pendulum in this work.

C.2.2 The double pendulum polynomial system

The double simple pendulum, shown in figure C.1, of two equal unit masses, connected by
light, frictionless, rigid rods, is described by the Lagrangian

L =
1
2
(
ẋ1

2 + ż1
2 + ẋ2

2 + ż2
2)− z1 − z2

− 1
2

τ1
(
x2

1 + z2
1 −1

)
− 1

2
τ2
(
(x2 − x1)

2 +(z2 − z1)
2 −1

)
.

(C.4)

Here, the masses are located at (x1,z1) and (x2,z2), the dots denote time derivatives, and τ1

and τ2 are Langrange multipliers which constrain the length of the rods, but also function as
the tension in the rods.

The usual Euler-Lagrange equations Landau and Lifshitz (1969) give

ẍ1 =−τ1x1 + τ2(x2 − x1),

ẍ2 =−τ2(x2 − x1),

z̈1 =−1− τ1z1 + τ2(z2 − z1),

z̈2 =−1− τ2(z2 − z1),

1 = x2
1 + z2

1, 1 = (x2 − x1)
2 +(z2 − z1)

2.

(C.5)

Though the right-hand sides of these equations are polynomial expressions, the equations are
second order and so we would have to introduce four velocity variables to apply the barrier
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function method. The ‘flip condition’ (see section C.2.3) is also difficult to implement in
these variables. For these reasons, we choose to make a change of variables to the angles θ1

and θ2, as per figure C.1, and their respective angular velocities ω1 and ω2. This removes the
need for the length constraints. We could have used these variables initially, which would
have eliminated the tensions and resulted in more complicated trigonometric expressions,
but the present method allows a polynomial formulation. We arrive at a first order system in
four dynamical variables and two Lagrange multipliers

θ̇1 = ω1, θ̇2 = ω2,

ω̇1 = τ2 sin(θ2 −θ1)− sinθ1,

ω̇2 =−τ1 sin(θ2 −θ1),

(C.6)

with two constraints

0 = τ1 − cos(θ2 −θ1)τ2 −ω
2
1 − cosθ1,

0 = 2τ2 − cos(θ2 −θ1)τ1 −ω
2
2 .

(C.7)

Several methods are available for handling trigonometric functions within SOS programs. We
make use of the substitutions c1 = cosθ1, s1 = sinθ1, c2 = cos(θ2−θ1) and s2 = sin(θ2−θ1).
Using the more obvious variables cosθ2 and sinθ2 would result in polynomials of degree 3.
We arrive at a system in six dynamical variables

ω̇1 = s2τ2 − s1, ω̇2 =−s2τ1,

ċ1 =−ω1s1, ṡ1 = ω1c1,

ċ2 =−(ω2 −ω1)s2, ṡ2 = (ω2 −ω1)c2,

(C.8)

and we now have four constraints, including the normalisation of the sines and cosines,

c2
1 + s2

1 = 1, c2
2 + s2

2 = 1, (C.9)

τ1 − c2τ2 −ω
2
1 − c1 = 0, 2τ2 − c2τ1 −ω

2
2 = 0. (C.10)

The total energy of the system is given by

E = 3−2c1 − c2c1 + s2s1 +ω
2
1 +

1
2

ω
2
2 + c2ω1ω2, (C.11)

which is a conserved quantity, and can be used to reduce the scope of the problem (see section
C.2.4).
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C.2.3 Definition of time-to-flip

Various different definitions of when the system ‘flips’ are possible, and it is not obvious
which best fits one’s intuition. It seems natural that the minimum energy flip is when θ2 = π

and θ1 = 0. The requirement that the energy be greater than this gives rise to the clear ‘lens’
shape visible in all figures of the θ1-θ2 plane. Heyl (2008) and Elinson (2013) define a flip as
when either of the rods becomes vertical, so that θ1 =±π or θ2 =±π . This is unappealing
for our method as there are two different possibilities which would need to be separately
tested against. Palace and Emmert (2016) considered only when θ2 =±π , so the outer rod is
vertical. This is a clean and computationally efficient definition but leads to ‘flips’ which
may be counter intuitive, as large amplitude quasi-periodic swings can briefly satisfy this
condition before reversing.

We choose to define a flip as when θ2 − θ1 = ±π , which is easy to implement as
c2 = −1 with the trigonometric variables. This does however exclude ‘flips’ where both
masses together pass above the pivot. Figure C.2 shows the time-to-flip for stationary initial
conditions, as a function of the initial angles. This two dimensional slice through phase space
makes it possible to use a brute force method for finding trajectories. Despite this, the figure
still needs to be relatively low resolution, and noise is apparent from the chaotic nature of the
system. The direct solutions used in figure C.2 were calculated in MATLAB by solving (C.6)
and (C.7) using the ode45 solver, with an absolute tolerance of 10−10 and a relative tolerance
of 10−7.

Any sensible definition of a flip should be symmetric under a reflection of the pendulum
in the vertical axis: the inversion θ1 →−θ1 and θ2 →−θ2, which is clearly satisfied in figure
C.2. In our trigonometric variables, this symmetry corresponds to invariance under s1 →−s1,
s2 → −s2, ω1 → −ω1, ω2 → −ω2, with the other variables unchanged. Additionally in
figure C.2, there is a distinct diagonal line θ2 −θ1 = π (and its symmetric equivalent) for
which the flip condition is instantaneously satisfied at t = 0. Immediately above this line, the
time-to-flip is very low.

C.2.4 Sum-of-squares program

To implement the barrier function method as described in section C.2.1, with six dynamical
variables and four constraints, a large number of additional arbitrary polynomials are required.
In the following, σ1,...,6 are polynomials in the dynamical variables plus τ1, τ2 and t; σ7,...,9 are
polynomials in the dynamical variables only; and σ10,...,14 are polynomials in the dynamical
variables plus t.
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Fig. C.2 Time until first flip (truncated at t = 100) for all possible stationary initial conditions.
The black curves enclose the region for which flipping is energetically infeasible. Outside
this region, a fractal pattern is apparent.

The following expressions are all required to be polynomial sums of squares:

∂V
∂ t

+ f ·∇V −g1σ1 −g2σ2 −h1σ3 −h2σ4

− t(T − t)σ5 −bEσ6,

(C.12a)

V |t=0 −b0σ7 −ω
2
1 σ8 −ω

2
2 σ9 − ε, (C.12b)

−V −g1σ10 −g2σ11

− t(T − t)σ12 −bEσ13 − (c2 +1)σ14,
(C.12c)

σ5, σ6, σ7, σ12. (C.12d)

Expression (C.12a) enforces V to increase along trajectories of the dynamical system within
the time interval (0,T ), and incorporates the governing ODEs as well as the necessary
constraints. Expression (C.12b) enforces V to be greater than 0 at t = 0 when ω1 = ω2 = 0
and b0 ≥ 0 (see below). ε is a small constant (10−3) to enforce a strict inequality for (C.12b).
Expression (C.12c) enforces V to be less than for equal to 0 when c2 =−1, i.e. the ‘flipped’
state, in the time interval. Since this expression includes the variables c1, s1, c2 and s2, we
must also enforce the normalisation condition here.

The vector f in (C.12a) is formed of the right hand sides of (C.8), and the operator
∇ represents the first derivative with respect to each of the dynamical variables, so that
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∂V
∂ t + f ·∇V is the total derivative of V with respect to t. The constraints (C.9) and (C.10)
are imposed by requiring V to increase along trajectories only when g1 = g2 = h1 = h2 = 0,
where

g1 = c2
1 + s2

1 −1, g2 = c2
2 + s2

2 −1, (C.13)

and

h1 = τ1 − c2τ2 −ω
2
1 − c1,

h2 = 2τ2 − c2τ1 −ω
2
2 .

(C.14)

Given an upper bound on the energies we are considering, we restrict the scope of the
problem by requiring V to decrease only when

bE = Eu −
(

3−2c1 − c2c1 + s2s1 +ω
2
1 +

1
2

ω
2
2 −ω1ω2

)
(C.15)

is non-negative. This restriction greatly reduces the complexity of the SOS program and
means much lower order polynomials are required for the same T . No improvement was
found when further enforcing a minimum energy.

The equations so far are invariant under the symmetry action mentioned in section C.2.3.
In order to exploit this numerically, we must ensure that the initial region also shares this
symmetry. The simplest region to implement, though counter-intuitive when thinking in
terms of θ1 and θ2, is closed balls in c1, s1, c2, s2 space, mirrored about the symmetry, giving
an indicator function

b0 =−
((

c1 − cosθ
0
1
)2

+
(
s1 − sinθ

0
1
)2

+
(
c2 − cos(θ 0

2 −θ
0
1 )
)2

+
(
s2 − sin(θ 0

2 −θ
0
1 )
)2
)

×
((

c1 − cosθ
0
1
)2

+
(
s1 + sinθ

0
1
)2

+
(
c2 − cos(θ 0

2 −θ
0
1 )
)2

+
(
s2 + sin(θ 0

2 −θ
0
1 )
)2
)

(C.16)

These sets manifest as pairs of diagonal ovals in the θ1 −θ2 plane. It can be shown, in an
argument analogous to theorem 2 in (?), that given a solution V to the SOS program (C.12)
which is not invariant under the symmetry transformation, it is possible to find an equivalent
one which is. This means that we are able to restrict our problem to consider only V (and
σ1,...,14) which are invariant, and so reduce the dimensionality of the problem.

For reasons of numerical conditioning, it was found to be necessary to keep the variables
provided to the SOS solver in the range [−1,1], as has been found by other authors (Goluskin,
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2020). This prevents high powers of variables from producing very large values. Clearly c1,
s1, c2, and s2 will automatically satisfy this property. If we consider only those trajectories
which start from rest (ω1 = 0, ω2 = 0), we must therefore have E ≤ 6, and by construction,
E ≥ 0. Certainly then, ω1 and ω2 must lie within the region with boundary

ω
2
1 +

1
2

ω
2
2 +ω1ω2 = 6. (C.17)

By extremising this expression, we find that |ω1| ≤ 2
√

3 and |ω2| ≤ 2
√

6. Solving (C.10) for
τ1 and τ2, we subsequently find |τ1| ≤ 50 and |τ2| ≤ 37. Numerically, we therefore choose
to work with the scaled variables ω̃1 =

ω1
2
√

3
, ω̃2 =

ω2
2
√

6
, τ̃1 =

τ1
50 and τ̃2 =

τ2
37 . We also use a

rescaled time t̃ = t
T .

C.3 Results

Initial sets described by balls in c1 − s1 − c2 − s2 space do not obviously lend themselves to
a systematic exploration of the θ1 −θ2 plane in which we are interested. We employed the
following iterative process to map out the plane:

1. Divide the region −π ≤ θ1 ≤ π , 0 ≤ θ2 ≤ π into a grid of squares.

2. For each square, using a simple SOS program, find the smallest ball in c1− s1−c2− s2

space which encloses the square.

3. Attempt to guarantee no flips before time T for this ball, using the program given in
section C.2.4.

4. If we are unable to guarantee this, subdivide the square into four smaller squares, and
repeat from step 2.

This process effectively builds up a quadtree for the entire set of initial conditions.
The programs are implemented in MATLAB, using the YALMIP Löfberg (2004) SOS

parser and the Mosek Andersen and Andersen (2000) SDP solver. Each region was run as
a separate program. The Mosek solves used 18 Intel Skylake cores, requiring about 60GB
of RAM and 8-16 hours of wall time to run per region. It was observed that those regions
close to the boundaries between flipping and not flipping required the most Mosek iterations
to converge, and so took the longest. Each of the unknown functions to be determined by
the program, V and σ1,...,14, are taken to be polynomials of degree 6 in the state variables
multiplied by a polynomial of degree 6 in t. As T is increased and the trajectories become



148 A sum-of-squares optimisation method for studying the double pendulum

-3 -2 -1 0 1 2 3

1

-3

-2

-1

0

1

2

3

2

Fig. C.3 Regions guaranteed not to flip before T = 6, after two iterations of the grid refinement
procedure. Red: guaranteed by barrier function method not to flip. Black: found not to flip
by direct numerical solution. White: found to flip by direct numerical solution.

more complex, higher degree polynomials are required to solve the SOS program, but
increasing the degree corresponds to increases in the number of unknown coefficients. Both
memory usage and computation time scale poorly with the number of coefficients. The
number can be approximately halved from 161238 to 81735 by exploiting the symmetry
inherent in the system, which means that odd degree terms in the variables s1, s2, ω1 and ω2

do not appear.
Figure C.3 shows those regions of the stationary initial condition space which we were

able to guarantee did not flip before T = 6, after three grid refinement iterations. Even on
this relatively short time interval, the beginnings of the fractal structure are apparent, with
some regions appearing to flip while others do not. Though the regions appear solid from the
direct solutions, it is not a priori clear that within the (black) regions which do not flip there
are trajectories which do.

Figure C.4 demonstrates this point: here fine filaments are visible which are barely
perceptible on figure C.3. At this degree of polynomial, we are able to certify as non-flipping
some regions within the broader filament, but not the very fine filament. This is due to the
fact that very close to the boundaries of the regions, higher degree polynomials are required
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Fig. C.4 Enlargement of region near θ1 = π , θ2 = π , showing the fine filamentation as the
fractal begins to develop, visible even at T = 6.

to describe trajectories which come very close to flipping but ultimately do not within the
finite time window.

C.4 Conclusions

In this work we have performed, to our knowledge, the first application of the barrier function
method to a chaotic system. We have been able to guarantee results that were implied
by direct solution of the governing equations, namely that specific regions of the initial
condition space in the double pendulum system do not ‘flip’ within a certain time. This was
computationally very costly, as many individual solutions of the sum-of-squares program
were required for the complex shape of the region. In this second degree polynomial system
in only 6 variables, it was much more efficient to calculate through brute force a large
number of trajectories, even at rather high temporal resolution, than to perform the barrier
function method. However, we deliberately constrained our problem to consider only a
two-dimensional slice of the initial condition space, so that results could easily be compared
against the brute force approach. As the dimensionality of the space one explores increases,
brute force methods become prohibitively expensive, as the number of trajectories required
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increases exponentially. Conversely, it is no more expensive to apply the barrier function
method to a 10 dimensional ball than a 2 dimensional one.

Despite the modest results, this study has provided useful insight into the application
of SOS methods for dynamical systems. We have introduced some ideas of how to deal
with trigonometric functions in such systems, and demonstrated the importance of carefully
choosing the variables from which the polynomials are constructed to minimise both the
number of variables and the degree of the polynomials.

The field seems still to be a long way from using methods such as the one presented
in this paper to analyse physically relevant high-dimensional systems, as more computing
power and memory may be needed. Nevertheless, a first order contribution to computation
time was found to be the construction of the SDP, which could certainly be optimised.
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