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Abstract—One of the key challenges for data analytics de-
ployment is configuration tuning. The existing approaches for
configuration tuning are expensive and overlook the dynamic
characteristics of the analytics environment (i.e. frequent changes
in workload due to receiving evolving input sizes or change in
the underlying cluster environment). Such workload/environment
changes can cause significant performance degradation, with
retuning the configuration to accommodate those changes can
yield up to 85% potential execution time saving.

We propose SimTune, an approach that accommodates such
changes through efficient configuration tuning. SimTune com-
bines workload characterization and Multitask Bayesian opti-
mization to identify similarity across workloads and accelerate
finding near-optimal configurations. Our experimental results
show that SimTune reduces the search time for finding close-
to-optimal configurations by 56-73% (at the median) when
compared to existing state-of-the-art techniques. This means that
the amortization of the tuning cost happens significantly faster,
enabling practical tuning in the rapidly changing environment
of distributed analytics.

I. INTRODUCTION

With the ever growing data volume [1], the timely extraction
of useful insights from data remains a challenge. The need
to analyse large datasets has led to the wide adoption of
Data Intensive Scalable Computing (DISC) Systems such as
Hadoop [2], Spark [3] and Flink [4]. These DISC systems
enable the manipulation and analysis of large amounts of data
by distributing work over a cluster of machines. They are used
to help organizations make better and faster decisions, as well
as in research areas that range from biology [5] and physics [6]
to astronomy [7].

One of the challenges in setting up DISC systems is to
identify the right configuration in order to optimize pro-
cessing speed. Misconfiguration can lead to either resource
contention/exhaustion or under-utilization, with the former
potentially triggering errors hours after the start of execution.
Consequently, developers spend significant time and resources
identifying the appropriate configuration for their workload.
This laborious effort motivated work towards the automation
of configuration tuning [8]–[13].

Generally, such explorations follow one of two strategies:
either search based or model-based, wherein the latter a
performance prediction model is built to guide the tuning.
Both strategies require hundreds of executions to perform high
dimensional configuration tuning [14], [15], with the cost of

performing the optimisation itself starting to amortize as a
function of both how fast the algorithm converges to very
good configurations and how many bad (slow) configurations
are explored in order to get there.

Virtually all of the existing work for DISC systems config-
uration tuning assume a static environment, such as a stable
workload running in a fixed underlying cluster. Therefore,
it is assumed that changes in the workload/environment are
infrequent enough that re-tuning from scratch is cost effec-
tive. Re-tuning happens either by re-learning the models or
restarting the search algorithm, which is slow and prohibitively
expensive. Ignoring any prior knowledge acquired during
workload tuning poses poor adaptivity to such changes and
slows down the tuning process, incurring high re-tuning costs.

In a rapidly changing environment such as big data systems,
it is crucial to perform tuning/retuning efficiently using a small
number of executions, which eventually will accelerate the
amortization of tuning costs. We propose solving this problem
using a similarity-aware multitasked tuning approach (Sim-
Tune). We leverage neural encoding of workload execution
metrics to detect workload similarities, then share the tuning
knowledge gained previously across the similar workloads
using multitask Bayesian Optimization (BO). Our main focus
is on how to leverage workload similarity to accelerate the
configuration tuning. We consider an existing base tuner and
address accelerating this base tuner using our proposed tuning
approach. The key contributions of this work are:

• Detecting workload similarity using a novel representa-
tion learning approach that transforms workload execu-
tion metrics into a low dimensional space using nonlinear
neural encoding and minimizes the information loss com-
pared to earlier work.

• Tuning the configuration parameters incrementally using
a small number of workload executions, by employing
multitask BO to share the gained tuning knowledge across
the similar workloads.

• Obtaining comparable configurations to prior work but
converging to those significantly faster, enabling a quicker
amortization of the tuning costs.

SimTune is the first work to study how to share the tun-
ing knowledge across similar workloads to enable data-
efficient [16] tuning of DISC systems configurations. The



source code and experiment dataset is available at [17].

II. BACKGROUND

BO [19] is a method for minimizing blackbox functions f
iteratively, using a limited number of samples. This is useful
when it is expensive to evaluate f at a given point (such as
running a big-data workload with a given configuration). BO
is characterized by its prior model and acquisition function:
the prior model represents a space of possible target functions
f , and the acquisition function guides the selection of the next
evaluation point based on the prior knowledge.

One of the widely accepted prior models for BO is Gaussian
Process (GP). It represents a distribution over functions (a
sample drawn from this process is a function) with given mean
and covariance. Here, the mean function describes expected
values at each point and the covariance function defines the
smoothness of the functions which can be drawn as samples,
encoding prior assumptions about the data that we want to
model [20]. The GP maintains a probabilistic belief about
what functions f are possible, given known characteristics
and already seen data. This belief is updated by using an
acquisition function, which determines the best point of f to
sample next. After sampling, the prior belief about possible
functions f is updated and a new sampling decision can be
made, iteratively. At each step, the posterior distribution has
filtered-out functions not consistent with the sampled data and
will ideally have a narrower candidate function space. The
GP acquisition function represents the metric by which the
GP picks the next input sample to improve the probabilistic
model function. It is typically a function that is cheap to
evaluate at a given point x and its value is proportional to how
useful evaluating f(x) would be for the optimisation problem.
Various acquisition functions have been proposed to define the
way the GP samples the input space, e.g., random, sequential,
Probability of Improvement (PI), and Expected Improvement
(EI) [21]–[23].

Multitask Bayesian Optimization (MTBO) is an extension
of the standard BO to enable modelling and minimizing
different tasks. This modelling principally relies on defining
a covariance function between input-task pairs. While the
covariance function of the standard GP defines the relationship
between inputs, the covariance function of Multitask GP
(MTGP) defines the relationship between inputs and tasks. It
learns the degree of correlation between tasks and utilizes this
information to guide the search for the best point to sample.
Figure 1 shows an example MTGP with three tasks, 1(a)
shows the actual functions of the three tasks. Task 2 and
3 are strongly correlated, 1 and 3 are anti-correlated, and 1
and 2 are not correlated. The goal is to model task 3, the
dots represent observations and the dashed lines represent the
predictive mean function. The curve at the bottom represents
the acquisition function(e.g., Expected Improvement(EI)) for
each input location on Task 3, the next point to sample is
the one with the maximum acquisition (maximum EI). The
confidence interval indicates the range that the actual function
should fall in with a high probability, the narrower the better.

Whereas the independent GP in 1(b) has a wide confidence
interval and optimizing EI leads to a false minimum as the
next point to sample, the multitask GP in 1(c) leverages the
correlation across the tasks, thus the confidence interval is
improved (narrowed) and the maximal EI point corresponds to
the true minimum. We discuss MTGP as it applies to SimTune
in § III.

III. SIMILARITY-AWARE MULTITASK TUNING

To accommodate the need for efficient configuration tuning,
we propose a similarity-aware tuning approach that leverages
the tuning knowledge between similar workloads and effec-
tively accelerate the tuning process.
Assumptions: We assume the existence of readily available
workloads tuned using a base tuner.

We are building upon our prior work on Tuneful [24], which
we use as our base tuner, since it finds configurations compa-
rable to the state-of-the-art using significantly fewer workload
executions. Moreover, it tunes the configurations using single
tasked GP (STGP), which has been widely adopted in several
configuration tuning systems ( [12], [25]).

While tuning, Tuneful also determines workload-specific
significant configuration parameters that we can leverage in
our similarity-aware tuning.

Our work addresses how to define similarity across work-
loads and efficiently leverage this similarity in twofold: 1)
tune a new similar workload, 2) retune already seen workload
to accommodate the ever growing input sizes. We start with
learning how to characterize workloads to detect workload
similarity, then employ MTBO to accelerate the tuning of these
similar workloads.

A. Workload Characterization

As a first step, we identify the main components dis-
tinguishing each workload so that we detect the similarity
across workloads. To achieve this, we monitor the workload’s
execution metrics then learn the main aspects that represent
each workload.

1) Workload Monitoring:: We capture metrics that involve
CPU time, number of tasks per stage, number of stages per job,
input and output size, Garbage Collection (GC) time, execution
time, data serialization/deserialization time, the size of shuffled
data, memory spilled data and disk spilled data. We collect all
the numeric metrics that relate to those workload execution
features (a total of 24 metrics). The overhead of collecting
these metrics is minimal as we leverage the existing Spark
logs.

To build representative statistics of each metric, for each
stage in the analytics workload, we calculate the 95% quantile
of the metric across the tasks of the stage. Then, we average
the captured metric across all the stages and represent them
in terms of ratios. For example, we consider the amount of
GC time relative to the total CPU time and the amount of
shuffled data with respect to the total input data, rather than
the quantitative values of each metric. This is useful since we
ultimately use the characterization to detect similarity between



(a) Multitask GP sample functions (b) Independent GP Modelling (c) Multitask GP Modelling

Fig. 1: (a)The actual functions of a Multitask GP with three tasks. Task 2 and 3 are strongly correlated, 1 and 3 are anti-
correlated, and 1 and 2 are not correlated. (b) Independent single tasked GP modelling for Task 3. (c) Multitask GP modelling
for Task 3, utilizing the other tasks (figure source is [18] with minor edits applied for more clarity).

workloads, and in our context two workloads are similar if they
inherit similarity in terms of their relative resource usage- not
the quantitative resources usage. Intuitively and supported by
our experiments, the workloads that are similar in their relative
resource usage are expected to also have similar significant
configuration parameters.

2) Workload Representation Learning:: The existing work
on detecting similarities relies on first projecting the workload
execution features in a low dimensional space then calculating
the distance within this space. This is due to the fact that
distance metrics such as Lp norm become less informative in
the high dimensional space [26]. We embrace the same ap-
proach but differentiate in the way we represent the workload,
by leveraging neural encoding to encode workload execution
features in a low dimensional space. Previous work employs
PCA for this purpose. However, by projecting the data in a
linear space some of the nonlinear dependencies in the latent
space are lost, leading to a higher data reconstruction loss.
We instead use a nonlinear neural autoencoder to lower this
loss. More details on evaluating workload representation are
in § IV-B.

An autoencoder (AE) is a neural network that learns how
to represent data in a low dimensional space. It has been
widely adopted to encode data in different domains such
as image processing, natural language processing and signal
compression. It consists of two components: encoder and
decoder, the encoder is a neural layer(s) learns f(x), which
transforms input x ∈ Rd into h ∈ Rn latent space, such that
n < d. The decoder learns g(h), which reconstructs the latent
low dimensional h back to x̂ of the same dimensionality as the
original input space. The AE compares the decoder’s output
(reconstructed input) x̂ to the encoder’s original input x and
update the neurons’ weights accordingly to minimize the loss
of the re-constructed input L as shown in Equation 1, where
L is a function that penalizes g(f(x)) for not being similar to
x (e.g., the mean square error).

L(x, x̂) = ||x− g(f(x))||2 (1)

As illustrated in Figure 2, our AE learns the workload
representation as an offline phase. We use a one layer nonlinear

AE to encode the execution features into a low dimensional
latent space. We made this decision as it minimizes the re-
construction error compared to linear AE and PCA, moreover
it has a smaller number of model parameters compared to
multilayer AE.

3) Similarity Analysis:: The aim of the similarity Analysis
is to find a source – already tuned – workload and share its
significant configuration parameters with the target workload
(the one under tuning). The source workload is the most
similar one based on the Manhattan distance between the
encoded execution features h. We use Manhattan distance as
it provides more contrast compared to other Lp norm distance
metrics [26].

The distance is calculated between workloads running under
the same configuration. We use a fixed representative con-
figuration to run the workload once and extract workload
execution metrics using the learnt workload representation
(this works as workload fingerprint). We then match the
workload fingerprint to one of the seen workloads. We ex-
perimented with varying the number of workload executions
used for workload fingerprinting and how this influences the
accuracy of workload matching. Using a single representative
configuration was enough to provide the same matching as
multiple executions, so we opted to use a single execution
to limit the cost of workload fingerprinting. Two workloads
are considered similar if they have the smallest distance in
terms of their relative resource usage, since this implies that
they have similar influential parameters. Figure 2 shows how
the similarity analysis happens online, upon receiving a new
target workload. As a first step, the Tuning Manager checks if
this workload has a known similar workload or not. If not, it
suggests the fingerprinting configuration to the Spark driver,
which then forwards it to the Spark workers for execution.
After the workload execution, the Tuning Manager provides
the collected metrics to the Similarity Analyzer, which encodes
the execution metrics of this workload, leveraging the learned
workload representation from the offline phase. The workload
with the smallest distance is selected as the source workload
and we start tuning its significant parameters for the target
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Fig. 2: SimTune in the offline and online phases to tune Spark

workload.

B. Multitask Configuration Tuning

After finding a similar source workload – tuned using a base
tuner – we address accelerating it using SimTune. We transfer
the knowledge gained during tuning the source workload to the
target workload. This knowledge includes: 1) the significant
configuration parameters already determined for the source
workload. 2) the execution samples evaluated during tuning
this source workload. We assume that two workloads identified
as similar will share the same significant parameters, but that
the actual values they take in an optimal configuration of the
target workload might be different.

The Tuning Manager passes the tuning knowledge of the
source workload to the MTGP Optimizer to reuse the sig-
nificant configuration parameters and leverages the previously
seen execution samples. This knowledge guides the MTGP
Optimizer to suggest the next configuration sample, with
the highest potential to maximize the EI. In the beginning,
it suggests the configuration samples that help learning the
covariance across the different workloads (modelled as tasks).
Then it decides the next sample to try based on this covariance
(i.e. if the covariance is strong, it picks the sample that
maximizes the EI of the source task, otherwise it picks the
sample that maximizes the EI of the target task). More details
on how MTGP works is in [18].

In Alg. 1, we show the steps of our multitask configuration
tuning, its input arguments are as follows:

• w target workload;
• Wseen = {w1, w2, ..} the matrix of the encoded execution

features for the seen workloads;
• α the acquisition function;
• GP = {GP1, GP2, ..} the Gaussian process models of

the seen workloads;

Algorithm 1: Similarity-aware Multitasked configura-
tion tuning
Input : α,w,Wseen, GP

1 forall xi ∈Wseen do
2 calculate distance d between wmetrics and xi;
3 Find workload s with the smallest d ;
4 Transfer s significant parameters to w ;
5 Add new task tj for workload w to GPs ;
6 Find config: xi ← arg

x
max α(GPs(x, tj)) ;

7 Evaluate config: yi ← Cw(xi) ;
8 Update: GPs ← GPs|(tj , xi, yi) ;

Upon receiving a new target workload w and following
fingerprinting it to find its execution metrics wmetrics (as
described in § III-A3), the algorithm works as follows: We
start at line 2 with calculating the distance between the
execution metrics of the target workload wmetrics and the
auxiliary workloads Wseen, the distance is calculated based
on the learnt low dimensional encoding of workload execution
metrics. We then select workload s with the smallest distance
to use as the source task for the multitask tuning at line 3.
The significant parameters of s is reused to tune w and a new
task tj is added to the GP of s for w (line 5). At line 6, we
leverage the GP of s to select the next configuration to execute
w, the next configuration is selected so that it maximizes
α acquisition function over task tj . Lastly, workload w is
executed using the selected configuration (line 7) and the
execution cost C is used to update the GP model of task tj(
line 8).

Figure 2 shows how the tuning takes place online during the
normal workload executions. The MTGP Optimizer suggests
the next configuration to explore, then the Tuning Manager
feeds the execution cost1 back to the MTGP optimizer to
update the MTGP model. The MTGP optimizer detects if it is
time to stop the optimization. It stops modelling a workload
after suggesting a minimum of n samples (e.g 10 samples) and
then after the expected improvement (EI) drops below 10%.
A decision made to make sure that we balance between the
exploration of the tuning space and exploitation of the best
configuration found.
Resilience to workload mismatching: we can detect inac-
curacies in workload matching through monitoring the gap
between the predicted execution time by the MTGP model
and the actual execution time. If a continuous degradation
takes place, then we trigger workload matching again (given
that we have seen sufficient workloads, otherwise we perform
a standalone tuning for this workload using the base tuner).
Even if a workload mismatching happens due to the limited
number of seen workloads, SimTune guarantees that the found
configuration is not worse than the reused state-of-the-art’s
configuration, which implies reusing the configuration sug-

1We focus on execution time through the paper, but the algorithm works
similarly for any defined cost function.



Application Abbr. Input data sizes (DS)
Pagerank PR 5, 10, 15, 20, 25 (million pages)

TPC-H benchmark TPCH 20, 40, 60, 80, 100 (compressed GB)
Terasort TR 20, 40, 60, 80, 100 (GB)

Bayes Classifier Bayes 5, 10, 30, 40, 50 (million pages)
Wordcount WC 32, 50, 80, 100, 160 (GB)

TABLE I: The set of applications and input sizes used to learn
workload representation.

gested by the state-of-the-art for a similar workload (we refer
to this as Direct Transfer and illustrate that more in § IV).

SimTune is implemented on top of Spearmint [27], a Python
BO framework that implements MTBO based on [18].

IV. EVALUATION

A. Experimental setup

Cluster and configuration specification: We use a cluster of
4 AWS h1.4xlarge instances with 16 vCPUs, 64 GB memory,
and 2TB storage each. We use HDFS [28] version 2.7 for
accessing the shared data and Spark version 2.2.1 as the system
under tuning. Our base tuner tunes 30 configuration param-
eters, with approximatively 2 · 1040 configurations possible
in total (this represents the size of the search space), a list
describing each configuration parameter and its range can be
found in the project repository [29]. We use the same ranges
when evaluating the other tuning approaches.

We start with evaluating the workload representation learn-
ing then evaluate SimTune effectiveness and efficiency.

B. Workload Representation Learning

Environment setup: We used Keras v2.3.0 to build the AE,
with epoch (the number of complete passes over the dataset to
update the internal model parameters) of 300 and a sigmoid
activation function. We tried the other possible nonlinear
activation functions and selected the one with the minimal
information loss. For setting the epoch, we searched till 1000
and the information loss converged at 300, we use the same
number of epoch for the linear AE.
Dataset: We built a dataset of execution metrics using two
well known big data benchmarks (Hibench [30] and TPC-
H [31]). We selected five applications of heterogeneous char-
acteristics from these benchmarks. For each application we
experimented with five different input sizes, we captured the
execution metrics of each application and input size pair under
100 random configurations for the 30 configuration parameters
in [29], with a total of 2200 application executions that took
2188 compute hours to execute. We do not consider this time
as an overhead of our tuning approach as this data will be
readily available over time in a deployed system. Table I
lists the applications and input sizes, the dataset is publicly
available at the project repository [17].

To evaluate the accuracy of learning how to represent
workload’s execution features in a low dimensional space, we
compare the loss of our representation using nonlinear AE
against PCA and linear AE. Figure 3 shows the reconstruction
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(left) and test dataset of 500 workloads execution metrics
running on a different cluster (right).

loss over the number of components/encoded dimensions
during learning the representation using PCA, linear AE and
nonlinear AE at the median, 90th and 10th percentile. The
nonlinear encoder can represent the execution metrics using a
smaller number of components/dimensions while maintaining
less reconstruction loss compared to PCA and the linear AE.
For example, at the 90th percentile the nonlinear AE can
encode the execution metrics using 5 dimensions with a loss
less than PCA and linear AE using 6 dimensions, since they
restrict the encoding of data into a linear space that does
not capture the nonlinear relationships across the execution
metrics. We chose to represent the workload execution metrics
using 5 dimensions, representing a good compromise between
the reconstruction loss and the number of components for all
the three approaches (e.g., PCA represents 92% of the data
variance using 5 components).

We excluded 20% of the dataset as a hold out valida-
tion dataset to evaluate the learnt representation. Further, to
evaluate the generalization of the learnt representation in a
different environment, we built a test dataset that includes
execution metrics of 5 applications running on a cluster of
a different characteristics: a 20 Google Compute Engine [32]
instances (1 driver + 19 workers), with the driver being an
n1-highmem-8 instance and the 19 workers being n1-standard-
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Workload Bayes-DS2 Bayes-DS3 Bayes-DS4 PR-DS2 PR-DS3 PR-DS4
RandomSearch 12 1915 769 330 3147 4265

Tuneful 12 1168 684 416 1261 2452
SimTune 5 511 46 229 258 739

Workload WC-DS2 WC-DS3 WC-DS4 TPCH-DS1 TS-DS1
RandomSearch 2351 452 1161 151 423

Tuneful 719 452 952 54 180
SimTune 111 612 1247 208 117

TABLE II: The median search time (m) till finding 10% of the optimal configuration using Tuneful, Random search and
SimTune. The green values represent the total search time when a configuration within 10% of the optimal is not found.

16 instances. The dataset contains the execution metrics of
500 executions of TPC-H, PR, bayes, WC, TR and kmeans
workloads. Figure 4 shows the reconstruction loss for the
validation and test dataset. The nonlinear AE maintains the
lowest loss for the validation dataset at the 90th percentile
and generalizes better than the other approaches for the test
dataset, with a smaller reconstruction loss at the median.

C. Tuning Effectiveness and Efficiency

We compare the configurations picked by our approach with
the configuration tuned by: 1)Direct transfer, which implies
transferring the tuned configuration from the source workload
directly to the target workload. We compare against this to
show the importance of retuning the configuration. 2)Tuneful,
our base tuner and the state-of-the-art GP-based DISC system
tuning approach, it starts with detecting workload-specific
significant parameters then tunes them using single tasked
GP [33]. We chose Tuneful to assess the accuracy of reusing
the significant parameters of a similar workload against per-
forming an independent detection of the significant parameters
and tuning. 3) Transfer learning and single tasked GP tuning
(TL+STGP), which implies transferring the significant param-
eters from a similar workload then performing configuration

tuning using Single Tasked Gaussian Process (STGP). We
compare against this approach to evaluate the benefits of using
MTGP against STGP. 4) For the sake of completeness, we also
compare the tuned configuration against RandomSearch, with
a budget of 100 execution samples and the random configu-
rations are generated using low-discrepancy sequences [34],
since they cover the search space quicker and more evenly
than the standard random numbers.

Metrics: We use three metrics to evaluate our proposed ap-
proach: 1) The execution time of the tuned configuration, akin
to the running cost of the tuned configurations. The target here
is to obtain tuned configurations similar to what state-of-the-
art achieve. 2) Search Cost, the amount of time and actual cost
(in $) required by each approach to find good configurations
while repeatedly running workloads in a cloud environment.
The target is to get close-to-optimal configurations (within
10% of the estimated best configuration) significantly faster
than the state-of-the-art. 3) Amortization speed, the number of
needed workload executions to amortize the tuning cost. The
target is to amortize the tuning cost after a small number of
workload executions.

The results are always presented as the median of 10
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experiments, bars represent the 10th and 90th percentile.
Methodology: To mimic the big data analytics environment
when they receive similar workloads or growing input sizes,
we consider a set of Auxiliary workloads that represents the
seen workloads, then evaluate tuning a set of similar workloads
with evolving input sizes.
Auxiliary workload set: consists of three workloads from
three applications (bayes-DS1, PR-DS1 and WC-DS1), each
tuned using Tuneful [33] (our base tuner), which performs
an independent significant parameter detection and tuning for
each workload. We excluded two applications (TPC-H and TS)
from the auxiliary set workload to evaluate the effectiveness
of tuning unseen applications.

To evaluate the effectiveness of SimTune in finding good
configurations, for each application in the auxiliary workload
set, we tune three workloads of evolving input sizes using
SimTune and compare against direct transfer, Tuneful, and
RandomSearch. We also consider tuning two workloads of two
applications that were not included in the auxiliary workload
set (TPC-H-DS1 and TS-DS1).
SimTune finds configurations comparable to the state-
of-the-art outperforming the direct transfer by 32% at
median and 79% at the 90th percentile: Figure 5 shows
the execution time of the configurations found by the different
tuning approaches, the direct transfer of the configurations
does not guarantee near-optimal performance, with a potential
performance degradation of up to 85% compared to retuning
the configuration. Across all workloads, SimTune finds on
average a configuration with an execution time within 8%
of Tuneful’s and 12% of RandomSearch’s. This average is
computed over the difference in median execution times for
each workload that are shown in Figure 5.

However, for some workloads (e.g., Bayes-DS3 and WC-
DS4) Tuneful found configurations outperform the ones found
by SimTune by up to 36%. This is due to the limited set of
auxiliary workloads. The next section describes how this can
be mitigated through extending the set of auxiliary workloads.

To evaluate differences in time taken to find configurations
close-to-optimal, we allow each approach to execute work-
loads until it finds the first configuration resulting in a runtime
within 10% of the one produced by the estimated optimal
configuration. This is defined as the best configuration ever

found across all our tests for each workload, irrespective of
the tuning approach or experiment. Table II shows the search
time of each approach. Since for some workloads SimTune
and Tuneful do not find a configuration within 10% of the
estimated optimal configuration, we color these workloads in
green in the table, the value for those workloads represent the
total search time to find configuration has the execution time
shown in Figure 5.
The median search time for the-state-of-the-art is 2.3-3.7X
longer when compared to SimTune: Table II shows that
overall and given this limited auxiliary workloads, SimTune
significantly accelerate the search time of 6 workloads while
finding a configuration within 10% of the estimated optimal.
For the remaining workloads, the total search time of Sim-
Tune is still considerably smaller than the other approaches,
while not only notably outperforming direct transfer, but also
finding a configuration comparable to Tuneful for most of the
workloads and within 17%-37% of RandomSearch.

This suggests that a significantly shorter search phase is
possible even with a limited number of source workloads to
transfer tuning data from. However, in around 45% of the
cases this also means that the reached configuration is slightly
further away from the optimum. This can be mitigated when a
larger set of ”auxiliary workloads” exists as shown in Figure 6.
Extending the tuning knowledge for SimTune enables a
faster and more effective tuning: Table II shows that Tuneful
takes 2.5X longer time than SimTune for Bayes-DS3, while
finding configuration outperforms direct transfer by 54% and
saves execution time by 36% compared to the one found by
SimTune. This is due to the limited set of auxiliary workloads,
resulting SimTune to find configuration not within 10% of
the optimal and the time in the table represents the total
search time for this workload. However, Figure 6 shows the
convergence speed of SimTune when extending the auxiliary
workload set to tune the Bayes-DS3 workload. The area
between the 90th and 10th percentile of execution time is
shaded, and the line shows the median of 10 experiments.
We plot the minimum execution time found by the tuning
algorithm until each execution sample on the x axis. Extending
the auxiliary workload set to include Bayes-DS2 workload
allows SimTune to select Bayes-DS2 as the source workload,
this enables the tuning to happen using 38% less search time
compared to using a smaller auxiliary workload set, while
finding a configuration comparable to Tuneful’s outperforming
the direct transfer by 54%. In comparison, the one found using
a smaller auxiliary workload set outperforms direct transfer by
19%.

To evaluate the amount of cost saving, we estimate the
search cost based on AWS [35] per-second pricing. SimTune
saves the median tuning cost by 3.3X and 4.7X compared to
Tuneful and RandomSearch.

Finally, the algorithm overhead is negligible: a few seconds
to select the most similar workload, transfer the significant
parameters and pick the next configuration during tuning. This
is due to the small number of samples that we use during the
MTGP optimization.
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Fig. 7: Convergence speed of transfer learning and STGP against SimTune. The shaded area represent the space between the
90th and 10th percentile of execution time.

Single tasked versus multitasked tuning: In order to eval-
uate the benefits of MTGP over STGP, we experiment with
TL+STGP for three evolving input sizes of the Bayes work-
loads. This is to show the benefits of sharing the tuning
experience (execution samples tried during tuning) of a similar
workload in limiting the exploration time. By leveraging
similarity-aware MTGP optimization, as shown in Figure 7,
at the 90th percentile TL+STGP tries configurations that are
more costly with a wider search interval. SimTune finds
configuration close to the ones found by TL+STGP (within
10%) while not only avoiding the cold start problem of
TL+STGP but also bounding the search interval overall. It
is worth noting that the closer the source workload is from
the target workload (e.g., Bayes-DS2), the smaller the inter-
percentile range of SimTune and the faster the convergence
to near-optimal configuration. This suggests that having more
seen workloads in the auxiliary set has the potential to save
more search time.

Our similarity-aware tuning accelerates the amortization
of tuning costs: the previous experiments do not show the full
story on how the different approaches compare in behaviour
as they perform incremental tuning from one execution to the
next. For that, it is useful to have a timeline view. Figure 8
shows the cumulative execution time of running Bayes-DS3
workload over multiple configurations, as determined itera-
tively by the tuning algorithms considered. Here, we compare
against using the directly transferred configuration from the
source workload, since it represents the static tuning approach
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Fig. 8: Amortization speed of the different tuning approaches
(Bayes-DS3 workload).

followed by existing tuning approaches, in which the configu-
ration is tuned once and reused- ignoring the need for config-
uration retuning. The dotted line shows cumulative execution
time for this configuration without any tuning. The dynamic
tuning ”pays off” only after the lines intersect the dotted line,
even if good configurations were found much earlier (finding
them required exploring some worse configurations). Better
configurations are shown as lines with shallower slopes (e.g.
SimTune-extended, while equivalent configurations appear as
parallel lines (e.g. SimTune and Tuneful). Our proposed tuning



approach runs a fingerprinting execution sample once and
tunes the configurations incrementally within 15 executions,
then picks the best configuration it found and continues only
using that.

As shown in Figure 8, it takes less than 5 executions
to amortize the tuning cost using SimTune. This enables a
quicker adoption of the need for workload retuning in a rapidly
changing environment such as the big data environment. On
the other hand, other approaches have higher tuning cost and
need higher number of executions to amortize this cost (e.g.
60 executions).

This suggests that cloud providers, if able to observe execu-
tions similarity across clients, would be in the ideal position to
offer tuned-configuration-as-a-service in a way that minimizes
costs, even for workloads that are repeated just a couple of
times.

V. RELATED WORK

Some work has been proposed to characterize workloads,
aiming to either detect similarity across workloads [36], come
up with representative benchmarks of workloads [37], or reveal
existing performance issues [38]. Recently, a few work has
been proposed to characterize and cluster Hadoop and Spark
analytics workloads, with the majority of work employing
PCA to identify the most important metrics to lower the
dimensionality of the captured execution metrics [37]. Besides
finding the important execution metrics, some work has been
proposed to cluster the workloads using KMeans, grouping
the various workloads based on their execution patterns [36],
[37]. Jia et al. [39] characterize data analytics workloads (most
of them are Hadoop based workloads) in data centers based
on their microarchitectural characteristics (e.g., L1 instruction
cache misses per thousand instructions). They concluded that
data analytics workloads have inherent different characteristics
from traditional workloads (e.g., HPC workloads). Similarly,
some work has been proposed characterizing in-memory ana-
lytics workloads [40], [41]. Jiang et al. [40] characterize Spark
workloads and compare them against Hadoop and traditional
HPC workloads. Their work shed light on the significant
differences in Spark in terms of memory utilization, memory
access and disk I/O frequency. Awan et al. [41] highlight
thread scalability issues in Spark (i.e., Spark does not scale
linearly when more than twelve threads are running). Chiba
et al. [38] characterize the memory, network, JVM, and GC
usage to tune the performance TPC-H workloads on Spark.

On the configuration tuning front, several solutions have
been proposed for tuning the configurations of Spark and
Hadoop workloads. These solutions are either search-based
leveraging techniques such as hill climbing [10] and genetic al-
gorithm [8], or model-based, wherein a performance prediction
model is built to guide the tuning using SVM [11], regression
trees [42], or hierarchical models [15]. Some configuration
tuning systems have leveraged similarity to accelerate the
tuning process: AROMA [11] clusters the Hadoop workloads
then builds a performance model that guides the tuning of each
workload cluster. Scout [43] and Vanir [44] exploit workload

similarity to explore the search space more effectively for
tuning cloud configurations (number of instances and their
resource allocation). Ultimately, a joint solution for optimizing
cloud instance and DISC framework configurations will be
needed. Lastly, OtterTune [45] utilizes similarity to guide the
tuning of similar workloads in DBMS.

None of the existing work studied the need for configu-
ration retuning in a dynamic rapidly changing environment
and how to address that efficiently in the high-dimensional
configuration space of in-memory data analytics such as
Spark workloads. We differ from this earlier work since we
go a step further than characterizing the big data analytics
workloads or tuning the configurations. Our work focuses on
how to utilize similarity to accelerate the configuration tun-
ing/retuning of in-memory data analytics workloads. SimTune
shares a wider tuning knowledge across similar workloads
and compares against existing similarity-aware solutions that
are either based on static tuning (direct transfer) or transfer
learning (TL+STGP).

VI. CONCLUSION

We presented SimTune, an approach for similarity-aware
configuration tuning through leveraging workload characteri-
zation and MTBO. We showed that SimTune significantly re-
duces the exploration cost and accelerates the amortization of
tuning costs, while finding configurations that are comparable
the ones from the-state-of-the-art. We illustrated how SimTune
works both when limited tuning knowledge is available and
after extending the tuning knowledge, enabling the configura-
tion tuning to happen faster while finding configuration closer
to the optimal.
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