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ABSTRACT

Warped accretion discs of low viscosity are prone to hydrodynamic instability due to
parametric resonance of inertial waves as confirmed by local simulations. Global simulations
of warped discs, using either smoothed particle hydrodynamics (SPH) or grid-based codes,
are ubiquitous but no such instability has been seen. Here we utilize a hybrid Godunov-type
Lagrangian method to study parametric instability in global simulations of warped Keplerian
discs at unprecedentedly high resolution (up to 120 million particles). In the global simulations,
the propagation of the warp is well described by the linear bending-wave equations before the
instability sets in. The ensuing turbulence, captured for the first time in a global simulation,
damps relative orbital inclinations and leads to a decrease in the angular momentum deficit.
As a result, the warp undergoes significant damping within one bending-wave crossing time.
Observed protoplanetary disc warps are likely maintained by companions or aftermath of disc

breaking.
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1 INTRODUCTION

Warped accretion discs are common around black holes and stars.
Discs may naturally form warped owing to the accretion of gas
with different angular momenta (see, e.g., Lucas et al. 2013; Bate
2018). Initially planar discs can be warped by external torques, for
example, the Lense-Thirring torque from a misaligned spinning
black hole at the centre of the disc (Bardeen & Petterson 1975)
or the gravitational torque due to the quadrupole moment of the
central body (Tremaine & Davis 2014) or misaligned companions
(Papaloizou & Terquem 1995; Xiang-Gruess & Papaloizou 2013).
Magnetic fields (Lai 1999) and radiation pressure (Pringle 1996)
may also cause disc warps.

A warped disc was first inferred in the binary X-ray source
Hercules X-1 (Katz 1973; Gerend & Boynton 1976), and the super-
orbital modulation of numerous X-ray binaries is now attributed to
precessing warped discs (Kotze & Charles 2012). Warps have been
observed in maser emission from accretion discs around supermas-
sive black holes in the centres of active galaxies such as NGC 4258
(Miyoshi et al. 1995). There is growing indirect observational evi-
dence for warped circumstellar discs around young stars, indicated
by shadows cast by the warps (Rosenfeld et al. 2012; Marino et al.
2015; Casassus et al. 2018; Stolker et al. 2016; Benisty et al. 2018).
A moderate warp has also been directly detected in the young cir-
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cumstellar disc around the protostar IRAS 04368+2557 (Sakai et al.
2019). The growth of well-resolved observations of warped discs
necessitates a comprehensive theory of these objects.

The quantitative study of warped discs subject to external
torques began with Bardeen & Petterson (1975). Petterson (1977)
and others derived partial differential equations governing the evo-
lution of twisted fluid rings. However, these early attempts were
flawed, especially because they considered only the action of vis-
cous stresses and neglected the internal flows driven by pressure
gradients in a warped disc. Papaloizou & Pringle (1983) realized
the importance of angular momentum advection by the oscillatory
horizontal flow whose amplitude is determined by the viscosity.
They derived the equations for the rapid diffusion (at a rate in-
versely proportional to the viscosity) of a small-amplitude warp
in a Keplerian disc when the dimensionless viscosity parameter «
(Shakura & Sunyaev 1973) is larger than the disc’s aspect ratio H/R
(H being the scale-height at radius R). In a low-viscosity Keplerian
disc, the warp behaves instead as a bending wave travelling at a
speed related to the sound speed (Papaloizou & Lin 1995). Based
on angular momentum conservation, Pringle (1992) formulated a
simplified non-linear framework governing the the evolution of the
surface density X and the local orbital tilt vector I(r, ) (see also Pa-
paloizou & Pringle 1983). Ogilvie (1999) derived a fully non-linear
theory of warped discs in the diffusive regime, presenting general
formulae for the torques associated with the internal flows. Two
of the torque components are encapsulated by the simple viscos-
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ity parameters in Pringle (1992), although the coefficients are not
constant, while the third one causes the warp to precess or twist.

The oscillatory horizontal flow in a warped disc can be un-
stable as a result of parametric resonance of inertial waves, as
anticipated by Papaloizou & Terquem (1995) and first shown in
detail for Keplerian inviscid discs by Gammie et al. (2000), using
a local shearing-box model in which the oscillatory flow was ini-
tiated and allowed to decay. Ogilvie & Latter (2013a) developed a
warped shearing box model for slowly evolving warps, in which the
horizontal flow is forced periodically by the local geometry of the
warped disc. The parametric instability was found to be widespread
for warped discs (Ogilvie & Latter 2013b) in the local warped shear-
ing box model, as was further confirmed in numerical simulations
by Paardekooper & Ogilvie (2019), although regimes were found in
which the internal shear flows are so strong that no linear instability
can be clearly identified. For completeness, we also note that strong
magnetic fields can detune the hydrodynamic resonance between
the epicyclic and vertical oscillation frequencies, and that more
complicated resonances may then occur (Paris & Ogilvie 2018).

The dynamic boundary of a warped disc poses a challenge for
grid-based codes. Many previous warped disc simulations employed
Smoothed Particle Hydrodynamics (SPH) (Lucy 1977; Gingold &
Monaghan 1977). As a Lagrangian method, SPH tracks the evo-
lution of fluid elements and naturally adapts to the complex flow
geometry. Nelson & Papaloizou (1999) verified the existence of the
distinct diffusive and bending wave regimes with global SPH simu-
lations. Lodato & Price (2010) carried out a suite of high-resolution
SPH simulations (up to 20 M particles) and found good agreement
between the simulation and the non-linear theory of Ogilvie (1999)
in the diffusive regime. Many other simulations have included more
complex physics, such as companions (Xiang-Gruess & Papaloizou
2013; Facchini et al. 2013; Fragner & Nelson 2010) and Lense—
Thirring torques (Nixon et al. 2012; Nealon et al. 2015). However,
no simulation has reported turbulence induced by the parametric
instability except the dedicated high-resolution local simulations of
Gammie et al. (2000) and Paardekooper & Ogilvie (2019).

We may wonder whether the parametric instability occurs in
a global, evolving warp or exists only in an idealised local model
with periodic radial boundary conditions. If the warp is localized in
radius, or otherwise spatially inhomogeneous, then the global inter-
action of the travelling inertial waves with the warp may need to be
considered. It is also possible that the low resolution and high nu-
merical viscosity of previous global simulations have suppressed the
instability. The grid-based simulations by Fragner & Nelson (2010)
and Sorathia et al. (2013) used fewer than 10 cells per scale-height
compared to 32 or more cells per scale-height in Paardekooper &
Ogilvie (2019). SPH employs artificial viscosity to capture shocks
and prevent particle disorder (see, e.g., the review by Price 2012).
Artificial viscosity can be wrongly triggered and lead to excessive
dissipation (Cullen & Dehnen 2010; Bauer & Springel 2012); many
improvements have been proposed recently (e.g. Rosswog 2015) but
were not used in previous SPH simulations of warped discs.

New hybrid hydrodynamic methods are thriving in computa-
tional astrophysics, e.g. moving mesh methods (Springel 2010) and
Godunov-type Lagrangian methods (Hopkins 2015). Among the
latter, the Meshless Finite Mass (MFM) method has been shown to
be less viscous than SPH with little extra computational cost. MFM
captures shocks without introducing artificial viscosity and thus
shows better angular momentum conservation than SPH (Hopkins
2015; Deng et al. 2017). At sufficiently high resolution it can even
capture turbulence resulting from the magnetorotational instability
while SPH fails and leads to unphysical growth of the magnetic field

(Deng et al. 2019, 2020). MFM appears promising for modelling
low-viscosity warped discs.

‘We apply this novel Godunov-type Lagrangian method to sim-
ulate warped discs, focusing on the development of the parametric
instability. The remainder of the paper is organised as follows. In
Section 2 we recall the bending-wave theory and the disc model we
intend to study. We detail how we realize the disc model with our
code in Section 3. The disc evolution and evidence for the parametric
instability are presented in Section 4. We discuss the astrophysical
implications in Section 5 and conclude in Section 6.

2 DISC MODEL

Ideally we would set up a steady warped disc and look for growing
modes of the parametric instability (Gammie et al. 2000; Ogilvie
& Latter 2013b). Tremaine & Davis (2014) provided a series of
steady-state solutions to the equations for viscous warped discs
subject to quadrupolar or Lense—Thirring torques from the central
body and a tidal torque from an outer companion. Technically, these
solutions are difficult to realise with a Lagrangian code, and the low-
viscosity solutions in which we are most interested are especially
hard to represent with our hydrodynamic code. Physically, we are
more interested in isolated discs around single stars, and no steady
warped state is possible in the absence of external torques. We
therefore choose to set up a freely evolving warp similar to Lodato &
Price (2010). Whether parametric instability happens in an evolving
warp and how it affects the warp evolution have not been explored.
Previous local simulations rely on the assumption that the warp
evolution is much slower than the development of the instability
(Gammie et al. 2000; Paardekooper & Ogilvie 2019).

The problem we study is essentially scale-free. However, we
describe the solutions in physical units with an application to pro-
toplanetary discs in mind. We study a disc of 0.05 solar mass
(0.05 M, although the self-gravity of the disc is ignored) around
a solar-mass star (M = M) with a surface density inversely pro-
portional to the radius (X o R~1). The disc extends from 5-50
au. The disk is vertically isothermal with a constant aspect ratio
H/R = 0.05 (H being the scale-height at radius R). The evolution
of a linear bending wave in an inviscid, Keplerian disc with angular
velocity Q = (GM/ R3)1/ 2is governed by the following equations
(e.g. Ogilvie 1999; Lubow & Ogilvie 2000):
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where I(R, t) and G(R, t) are the horizontal components of the unit
tilt vector and the internal torque, respectively, and P(R) is the ver-
tically integrated pressure, related to the isothermal sound speed
¢s(R) and scale-height H(R) by (P/E)l/2 = ¢y = HQ. These equa-
tions can also be written in a complex form, using the tilt and torque
variables W = Iy +ily and G = Gx +iGy (cf. Pringle 1996), which
are further related to the radial velocity and enthalpy perturbations,
up = Re[Az ¢'?] and w’ = Re[Dz¢'?], through W = —D*/RQ?
and G = %ZH2R2QA*. We solve the equations
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Figure 1. The initial surface density profile and I, profile. There is a diffusive
tail extending to 60 au.

Here we initialize an untwisted warp, i.e. I, = 0 and

0, R< 10,
L= 0.1 [1+sin (B527) |, 10 < R <30,
0.2, R > 30.

The initial condition is depicted in Fig. 1. Note that we apply free
boundary conditions at both radial edges of the disc and thus diffu-
sive tails form naturally (see discussion below).

Equations (1)—(2) can in fact be solved analytically for our
power-law disc model by transforming them into the classical wave
equation. The solution, derived in Appendix A, shows how the initial
condition resolves into inwardly and outwardly propagating bending
waves that reflect repeatedly from the inner and outer boundaries.
Our numerical bending wave solution agrees extremely well with
this analytical solution.

3 NUMERICAL METHOD

The parametric instability is sensitive to resolution and viscosity
and has only been seen so far in local simulations (Gammie et al.
2000; Paardekooper & Ogilvie 2019). We used the Godunov-type
Lagrangian method in the GIZMO code in the Meshless Finite Mass
(MFM) mode (Hopkins 2015). It does not employ the artificial vis-
cosity used in previous warped disc simulations with Smoothed
Particle Hydrodynamics (SPH) and thus shows better conservation
properties than SPH (Hopkins 2015; Deng et al. 2017). As men-
tioned in the Introduction, at sufficiently high resolution, MFM can
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even capture the subsonic turbulence resulting from the magnetoro-
tational instability (Deng et al. 2019, 2020).

A resolution study is necessary before applying MFM for the
first time to the study of warped discs. In Appendix B we estimate
the numerical viscosity by studying the decay of a long-wavelength
bending wave in the local shearing-box model. The numerical o
parameter (Shakura & Sunyaev 1973) is shown to be below 0.001 at
a resolution scale of H/8 in the disc midplane; note that we always
adopt the Wendland C4 smoothing kernel to minimize numerical
noise (Dehnen & Aly 2012; Deng et al. 2019). At this resolution
we can locally resolve the growth of the parametric instability sim-
ilarly well as in the grid-code (ZEUS; see Stone & Norman 1992)
simulations with 32 cells per H used by Gammie et al. (2000) (see
Appendix C). This resolution has never been achieved in previous
global simulations of warped discs.

To save computational resources we utilized the particle split-
ting scheme in the GIZMO code to prepare initial conditions (see
also Deng et al. 2020). We sample the density (Fig. 1) profile by
a Monte Carlo placement method (Deng et al. 2017). Initially, we
build a planar disc model with 2 M particles and relax it to a steady
state by gradually damping radial particle motion. The central star
is treated as a sink particle that accretes any other particle within
5 au. The relaxation was run for 4 outer rotation periods (ORPs)
and we verified that the relaxed disc remained steady for a further
4 ORPs, showing no signs of evolution. The disc’s surface density
beyond 7 au is barely affected by the inner boundary. A low-density
diffusive tail forms beyond 45 au and the density gradually ap-
proaches zero (Fig. 1). We caution that the diffusive tail does not
have Keplerian rotation. We then split the particles several times to
reach the desired resolution, either 14 M or 120 M particles. We
relax the two high-resolution planar discs for a short time to remove
noise introduced by particle splitting. Eventually, we managed to
keep the energy associated with particle noise about 10000 times
smaller than the thermal energy; see Fig. C1. Finally, we apply a
radially dependent rotation matrix to the planar disc to realize the
setup discussed in Section 2.

We achieve a resolution of H/8 in the midplane in the 120 M
particle simulation; note the disc’s aspect ratio is constant so that
the disc is equally resolved at all radii. This simulation was run for
one full bending wave crossing time (7(50)—7(5) in equation A1). It
took 600 K CPU hours on the Piz Daint supercomputer of the Swiss
National Supercomputing Centre (CSCS). For comparison, we also
ran a 14 M particle simulation, which has a resolution scale of H/4
and a numerical « of a few thousandths. We used length, mass and
time units of 1 au, 1 Mg and 1/2n years, respectively. We note
that to maintain a balanced computational domain decomposition
we also clipped particles with a smoothing length larger than 8 au
(equivalent to a density floor of 1071 gecm™!) in the 14 M particle
simulation. We present results at every 430 years (7, about 1/3 of
the bending-wave crossing time or 1.2 ORPs).

4 RESULTS
4.1 Disc evolution

We plot the gas density in a thin slice near y = 0 at different
times in Fig. 2. The vertical (z) axis is parallel to the disc’s to-
tal angular momentum vector. The bending wave travels in both
directions (see Section 2 and Appendix A) and produces shocks
near the disc surface in the strongly warped region (e.g. around
40 au; bottom panel of Fig. 2). We observe weaker shocks in disc
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Figure 2. Side-on volume density slice plots (at y = 0) with labels indicating the total number of particles (14 M or 120 M) in the simulation and the snapshot
time (T equals 430 years). Here the vertical (z) axis is aligned with the disc’s total angular momentum vector.

Figure 3. Zoomed-in plots of the upper two panels of Fig. 2 (left: 14 M,
right: 120 M). Here the vertical (z) axis is parallel to the local angular
momentum vector.

surface than Sorathia et al. (2013) due to our smaller warp ampli-
tude |ROIx(t)/IR| € (0,0.6). During the simulation the magnitude
of the total angular momentum slightly decreases due to particle
clipping (0.6% and 1.2% by mass for the 14 M and 120 M particle
simulations, respectively) at the inner boundary and in the very low-
density regions (see Section 3). More particles are clipped in the
higher-resolution simulation owing to a more dynamic inner edge.
The total angular momentum decreases by 0.8% and 1.6% in the
low- and high-resolution simulations, respectively, while the spe-

cific angular momentum decreases by 0.2% and 0.4%. The angular
momentum conservation is therefore excellent.

The warp also produces oblique shocks in the body of the
disc as seen in the density fields in Fig. 2. We zoom in to show
a spherical shell around 20 au in Fig. 3. The high-resolution sim-
ulation shows a finer structure, which resembles the density fields
in the local simulations of Gammie et al. (2000) and Paardekooper
& Ogilvie (2019). These oblique features are characteristic of the
inertial waves excited by parametric resonance. However, the low-
resolution simulation only vaguely shows some wave activity. The
shocks in disc midplane due to the parametric instability are absent
in the low-resolution global simulation of Sorathia et al. (2013).

To follow the propagation of the warp we solve the linear
bending-wave equations (see Section 2) following Lubow et al.
(2002). We solve these equations in the region 5-50 au with torque-
free boundary conditions, assuming a perfect power-law surface
density profile. We caution that the solution only provides a refer-
ence for the warp evolution before it propagates beyond 50 au. The
non-Keplerian rotation beyond 45 au leads to significant precession
and twisting (see below). We should also bear in mind the sur-
face density depletion near the inner edge (Fig. 1) in the following
interpretation of the results.

We divided the disc into spherical shells of width 0.1 au and
then calculated the total angular momentum (both magnitude and
direction, i.e. tilt vector) of material within each shell. In Fig. 4, we
plot the component [y of the tilt vector at various radii and times
and compare this with the linear bending-wave solution. We note
that in the tilt vector plot we haven’t applied the rotation matrix to
align the disc total angular momentum to the z axis as in Fig. 2.
The linear bending-wave solution (dashed lines in Fig. 4) agrees
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Figure 4. The evolution of /.. The dashed lines show predictions from a linear bending-wave solver while the solid lines are the measured /,, within spherical
shells. The time unit 7 equals 430 years. We caution that the linear solution assumes a perfect power-law density profile from 5-50 au with zero torque
boundaries while the hydrodynamical simulation has a slightly different density profile (see Fig. 1).
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Figure S. The evolution of [y, similar to Fig. 4. The disc is essentially
untwisted, with very small I, before the warp propagates into regions with
non-Keplerian rotation beyond 45 au.

perfectly with the measured I in the hydrodynamic simulations
before the bending wave propagates inwards to 7 au (not shown
in Fig. 4). At time 0.57, the measured [, in the inner region is
larger than the linear solution because the depleted density within
7 au (see Fig. 1) leads to a higher wave amplitude. In general the
warp is damped more efficiently in the high-resolution simulation.
At time 1 T, the low-resolution simulation still agrees reasonably
well with the linear solution. In the 10-20 au region of the high-
resolution simulation, I, is transferred outwards at a faster pace
than the linear solution; the [, excess around 10 au at 0.5 T has
been removed by the outward transport of /. The high-resolution
simulation damps the warp faster than the low-resolution simulation
owing to more vigorous turbulence ensuing from the parametric
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instability. We will make that identification in the following section.
The difference between the two simulations in the 30-40 au region
is more subtle because of the long dynamical time-scale in the
outer disk. This trend remains at 2 T’ even though the bending wave
propagates into the diffusive tail beyond 50 au. We note that in the
region beyond 45 au the non-Keplerian rotation is significant and
our linear solution is not applicable. The non-Keplerian rotation
leads to precession and twisting, which can be seen in the profile of
ly as shown in Fig. 5.

4.2 Parametric instability

Both the density fluctuations and the extra angular momentum trans-
port suggest some instability occurring during the propagation of
the bending wave. In this section, we try to pinpoint it. In Fig. 6,
we plot the Mach number of the vertical motion (parallel to the z
axis) of the gas in the high-resolution simulation of Fig. 2, focusing
on the right half of the slice. The fluid motion is most turbulent
in regions with the largest warp amplitude R|dl,/dR|, i.e. around
20 au at 7 and around 30 au at 27 (see also Fig. 4). The bending
wave also results in shocks in these regions (Gammie et al. 2000)
as shown by the density field in Fig. 2.

The growth of the parametric instability has been studied
through local calculations in both the warped shearing box (Ogilvie
& Latter 2013b) and the standard shearing box (Gammie et al. 2000).
The growth rate is closely related to the vertical shear rate of the
horizontal internal flows in the warped disc. The amplitude of these
flows is strongly affected by the resonance between the orbital and
epicyclic frequencies in a Keplerian disc. In the warped shearing
box model of Ogilvie & Latter (2013b), the amplitude was assumed
to be limited by viscous damping and/or non-Keplerian detuning
of the resonance, so no prediction was made for the growth rate of
the parametric instability in an inviscid Keplerian disc. In a bending
wave propagating in an inviscid Keplerian disc, the amplitude of the
internal flows is governed instead by time-dependence of the warp,
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Figure 6. Vertical velocity map, normalized to the local sound speed, of the high-resolution simulation shown in Fig. 2. We show only the right panels here for
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Figure 7. Growth of the kinetic energy associated with motion parallel to
the local angular momentum vector in thin shells centred at 12, 16 and 20 au.

which provides the necessary detuning, according to equations (1)—
(2). The linear analysis of Gammie et al. (2000) then shows the
growth rate of the parametric instability to be

s = 3V34/16, &)

(the growth rate of energy is 2s) where A (evolving) is the vertical
shear rate as defined in Section 2. We note that this is an approx-
imation that is valid only to first order in A/Q. Their numerical
simulation shows a slightly smaller growth rate, either because of
insufficient resolution or because A/Q is not < 1 in all cases.

We carried out a local analysis of the growth of the vertical
kinetic energy (see Appendix C) by dividing the disc into spherical
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Figure 8. The asterisks indicate the fitted mean growth rates of the vertical
kinetic energy (t<100 years in figure 7) at various radii. The curves show
predicted instantaneous growth rate at various times based on the shear rate
(evolving with time) of the internal horizontal flows (see text). The mean
growth rates are in the right range.

shells (of width 1 au) centred at certain radii. We subtracted the
mean motion of the shell and aligned its angular momentum to the
z axis (see, e.g., Fig. 3). We find exponential growth and saturation
of the total vertical kinetic energy similar to local shearing-box
simulations (see Fig. 7 and Fig. C1). We fit an exponential function
to the time series in figure 7 over the first 100 years. The measured
growth rates are plotted as asterisks in figure 8. In that case we
should expect the measured growth rates to be a time-average of
the (evolving) theoretical growth rates. We plotted the theoretical
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Figure 9. Eccentricity and inclination of particles in the high-resolution
simulation (zoomed-in plot corresponding to Fig. 3). Note that the inclination
is shown with respect to the local angular momentum.

growth rate (equation 5) at various times using the vertical shear
rate in our bending-wave solution in Fig. 8 as well. Note we use
the local dynamical time-scale, which is radius-dependent, as a unit
in Fig. 8. The curves agree qualitatively, especially regarding the
peak in the growth rate, indicating that the parametric instability is
at work here.

4.3 Angular momentum deficit

The angular momentum deficit (AMD) is widely used in celestial
mechanics (Laskar 1997; Laskar & Petit 2017). It is a measure of
the orbital excitation and is defined, for a system of n particles, as

n
C:ZAk(l—,/l—eicosik), (6)
k=1

where e and ij are the eccentricity and inclination (with respect
to the total angular momentum vector) of the k th particle, and
Ag = mp(GMay)'/? is the angular momentum that the k th particle
would have if it had a circular orbit with the same semimajor axis
ay. AMD is conserved in the secular theory of celestial mechanics,
i.e. when mean-motion resonances are unimportant. Under these
circumstances, each particle preserves its orbital energy (and there-
fore a; and Ay ) but eccentricity and inclination can be exchanged
between particles in such a way that C is conserved.

AMD has also been found to be relevant in describing warped
and eccentric fluid discs in which inclination and eccentricity can
propagate, on timescales much longer than the orbital time-scale,
by means of pressure and/or self-gravity. For example, in the linear
theories of Lubow & Ogilvie (2001, appendix A) and Teyssandier
& Ogilvie (2016, section 3.1), we see conservation laws for AMD
in systems involving slowly evolving warped or eccentric fluid discs
interacting with planets. In a non-dissipative fluid disc, and in the
absence of mean-motion resonances, AMD is conserved because
of the conservation of both the orbital energy and the total angular
momentum. However, shocks and turbulence can lead to AMD loss.
Therefore AMD appears a good indicator for turbulence and shock
dissipation.

In Fig. 9, we plot the local eccentricity and inclination of
fluid particles. In a warped disc, the particle orbits can be viewed
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Figure 10. The evolution of the averaged AMD, i.e., the total AMD divided
by the number of particles. The AMD is conserved before the turbulence
saturates and dissipates the orbital energy.

as a stack of rings that are circular in the midplane but have an
eccentricity that increases with altitude. The eccentricity is related
to the radial velocity described by the variable G in equations (1)—
(2). In a bending wave in a Keplerian disc, both inclination and
eccentricity contribute to the AMD, even though the eccentricity
vanishes at the midplane; this is seen in equation A2 of Lubow &
Ogilvie (2001). We can also verify directly from equations (1)—(2)
the conservation law for AMD in the linear regime,

0|1

g [—ERZQ (|l|2 + |e|2)

10
a |2 " Ror TG D=0 @

where [ contains the (small) horizontal components of the unit tilt
vector, and |e| = 2H|G|/PR> = H|A|/RQ is the (small) eccentric-
ity at one scale-height.

The parametric instability leads to interactions between orbits
of different shape and orientation in Fig. 9. In Fig. 10, we plot the
AMD evolution in our warped disc simulations. Despite having a
lower intrinsic numerical dissipation, the high-resolution simulation
shows a faster and stronger AMD decay. During this simulation, the
parametric instability leads to shocks and turbulence (Gammie et al.
2000) and thus AMD loss (Fig. 10). The high-resolution simulation
shows an earlier and more pronounced AMD decay as a result of a
better-resolved parametric instability.

5 DISCUSSION

We find fast bending wave decay due to the parametric instability.
With an initial inclination of 11.5° between the inner and outer parts
of the disc, the warp is significantly reduced within one bending-
wave crossing time. In a test with an initial inclination of 36.9°,
the AMD decreases by 50% in only one-third of a bending-wave
crossing time. This result is in tension with the large group of warped
protoplanetary discs indicated by their shadows.

In young circumstellar disc, gravitational instability and mag-
netohydrodynamic turbulence can generate a relatively large «
(Deng et al. 2020) leading to diffusive evolution of warps. In the dif-
fusive regime with @ > H/R one would expect fast warp diffusion
on the timescale of a(R/H)?>Q ™! (Papaloizou & Pringle 1983). We
caution that self-gravity and magnetic fields are likely to affect the
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warp evolution directly (Papaloizou & Lin 1995; Paris & Ogilvie
2018) instead of providing just an effective viscosity, i.e., @. In the
protoplanetary disc stage, « is then expected to be small in the body
of the disc and accretion is likely to be powered by magnetic winds
(Bai & Stone 2013). We would expect parametric instability to oc-
cur in warped discs and to cause a rapid damping of the warp. Any
initial warp is likely to be damped within a few crossing times, so
the observed warps are probably maintained by a misalignment in
the system, e.g. with a companion.

Another possibility is disc breaking. A strongly warped disc
may break into independently tilted rings with or without external
torques (Lodato & Price 2010; Nixon et al. 2012; Xiang-Gruess
& Papaloizou 2013; Nealon et al. 2016; Zhu 2019). After disc
breaking, the inner and outer part mainly communicate angular mo-
mentum through gravitational torques with low efficiency. Indeed
some of the observed warped protoplanetary discs are strongly mis-
aligned, suggesting that disc breaking may have occurred (see, e.g.
Marino et al. 2015; Kraus et al. 2020).

6 CONCLUSION

We have carried out unprecedentedly high-resolution simulations of
inviscid warped Keplerian discs to explore hydrodynamic instability
caused by the warp. The propagation of warps in the disc is well
described by the linear bending-wave equations in the early stages.
Parametric instability then develops quickly even in the evolving
warp, and the local instability growth rate agrees with previous local
studies. The ensuing turbulence leads to rapid angular momentum
exchange and damps the warp significantly in one bending-wave
crossing time. Angular momentum deficit (a measure of orbital
excitation) is damped by turbulent motions and the high-resolution
simulation with more vigorous turbulence sees faster damping than
the equivalent low-resolution simulation. Our results suggest that
free warps in protoplanetary discs damp rapidly; observed warps
are likely to be maintained by companions or are the aftermath of
disc breaking.
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APPENDIX A: ANALYTICAL SOLUTION FOR THE
BENDING WAVE

Equations (1)—(2) for a small-amplitude bending wave in an inviscid,
Keplerian disc can be solved analytically for our disc model with
H/R = € = 0.05 and XH = constant (cf. Ogilvie 20006). Let

2 4

T= —dR

= — Al
Cs 3eQ) (AD

be the time for a bending wave (which travels at speed cg/2) to
reach radius R from a virtual source at the origin. Then W and G
each satisfy a classical wave equation in the variables (7, ) and the
general solution is

W= f(r+1t)+g(t—1), (A2)
6= fw v - gr -0, (A3

where f and g are functions to be determined, representing in-
wardly and outwardly propagating bending waves, respectively. If
the boundary conditions are that the torque G vanishes at 7 = 1j,
and 7 = Tout, then the boundaries reflect the bending waves and
the relevant solution, corresponding to an initial warp Wy(7) at
t = 0 for i < 7 < Tou and no initial torque, and valid up to one
bending-wave crossing time, is

1
W= E(WL + WR), (A4)
GMXH
G= 7 (WL — WR), (A5)
where
_ Wo(t +t), 0<t<tTou—T1, (A6)
Wotout =7 —1), Tout — T <t < Tout — Tin,
_ Wo(r —t), 0<t<T1-Tp, A7)
WoQtin —7+1), T—Tin <t < Tout — Tin-
(A)

The long-term solution after multiple reflections at boundaries is
less elegant and solved numerically in Section 2.

APPENDIX B: NUMERICAL VISCOSITY

The bending-wave evolution is sensitive to viscosity, of either phys-
ical or numerical origin. We performed shearing-box (Goldreich &
Lynden-Bell 1965) simulations as described in Deng et al. (2019) to
evaluate the level of numerical viscosity at the resolution employed
in the global simulations described in the main text. We initialized
a bending wave (travelling at half the sound speed) in an isother-
mal stratified shearing box (Gammie et al. 2000) using the initial
condition

_(z = acos(kx))*

=pp €X s B1

£ =po exp 22 BD

Vi =%Q cos(kx), (B2)
3 laz _ .

vy =— EQX + EEQ sin(kx), (B3)

v, =aQsin(kx). (B4)

Here p, a, H and Q are the density, warp amplitude, scale-height
and local angular velocity, respectively. Velocities and coordinates
have their usual definitions. We set the wavenumber k = 27/Ly =
0.28/H, where the box with (Ly, Ly, L;) = (16V2 H,2V2 H,8 H)
is resolved by 1 million particles. The midplane particle separation
and resolution scale are 0.06 H and H/8 using the Wendland C4
kernel (Dehnen & Aly 2012; Deng et al. 2019).

In the long-wavelength limit, the theoretical bending-wave
decay rate is @Q/2. However, to simulate a very long bending
wave with our three-dimensional code would be very expensive.
In Fig. B1, we compare the evolution of a bending wave with

MNRAS 000, 1-10 (2018)
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Figure B1. Bending-wave decay (k = 2n/Lx = 0.28/H and a/H = 0.1)
with and without explicit viscosity.

k =0.28/H and a/H = 0.1 in an inviscid simulation and a simula-
tion with shear viscosity @ = 0.001 in the full Navier-Stokes equa-
tions (Hopkins 2017). The amplitude of the m = 1 Fourier mode of
the complex warp amplitude, z + iv;/Q, is shown in Fig. B1. The
inviscid bending wave decays more slowly than in the @ = 0.001
simulation and we hence conclude that we have numerical viscosity
a < 0.001 at a resolution of H/8 in the midplane of the vertically
stratified simulations. We note that a similar simulation with half
the linear resolution (1/8 the number of particles) decays slightly
faster than the @ = 0.001 curve.

APPENDIX C: LOCAL SIMULATION OF PARAMETRIC
INSTABILITY

Our Lagrangian method has an adaptive resolution so that the denser
regions are sampled with more particles and thus better resolved. A
dedicated resolution study is needed instead of using grid-code res-
olution criteria. We ran the fiducial local simulation of parametric
instability in Gammie et al. (2000). We sample a box of dimension
(Lx, Ly, Lx) = (4H,16 H,8 H) with 1 million particles. The mid-
plane resolution scale is again H /8. A radial velocity vy = Qz is ini-
tialised and the parametric instability develops quickly. In Fig. C1,
we plot the evolution of vertical kinetic energy normalised to half
the internal energy. Our Lagrangian code has larger initial noise in
the velocity field than the grid simulations of Gammie et al. (2000).
However, we measured a numerical parametric instability growth
rate of 0.51Q as in the fiducial model of Gammie et al. (2000)
(who used a finite difference method at a resolution of H/32) at a
disc midplane resolution of only H/8. We note that the numerical
growth rate is smaller than the theoretical prediction (see equation
5 and related comments).
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