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Abstract—Accurate and power efficient determination of 
luminaires dimming level is a challenging issue in smart indoor 
lighting systems, since the lighting system is nonlinear and time 
variant. In this paper, a smart and power efficient control method 
is developed in order to determine luminaires dimming level in an 
indoor environment with multiple work zones. A positive point of 
the proposed control method is that photodetectors are placed at 
the work zones which increase the accuracy. Besides, different 
number of photodetectors can be placed at work zones in the 
proposed control method, since work zones may have different 
dimensions and also accuracy levels may differ. The control method 
takes the advantages of learning method to avoid complexity and 
also increase system reliability. The system can properly work with 
daylight variation during the daytime. Case studies are 
implemented in DIALux and the control method is evaluated in 
MATLAB. It is shown that the error for static condition is below 
1% and for dynamic condition which daylight varies during 
daytime is increases to 5.6%. 

Index Terms—indoor, lighting, smart, neural network, work zone, 
visual task.  

I. INTRODUCTION  
More intelligent smart environments are resulted from 

advancements in Sensing, computation, and communication. 
Smart lighting as major subset of smart environment is 
witnessing large amount of advances these days, since, artificial 
lighting system plays an undeniable role in the amount of 
consumed energy, resident comfort, health, and security. 

 Major fraction of global electrical energy consumption is 
mostly dedicated to artificial lighting. In office buildings, the 
amount of energy consumption due to the artificial lighting can 
be more than 40% of the whole energy consumption [1]. Efficient 
indoor illumination control while maintaining visual comfort is 
an important issue which also can yield to the lower system cost 
[2]. The main focus of this paper is illumination control of indoor 
environments. 

Sensors (photodetector and presence detector), dimmable 
luminaires such as light emitting diodes (LEDs), and controller 
are indoor lighting system elements which affect system 

performance [3]-[5]. Each indoor environment may be partitioned 
into several work areas and a specific visual task is carried out in 
each work zone [6]. The main problem in lighting systems is to 
adjust dimming level of luminaires such that maintaining visual 
comfort without increase in energy consumption. Luminaire’s 
dimming levels are determined by the control algorithm applied 
into the controller and the decisions are made by the visual task 
carried out in the work zone, occupancy condition, and current 
intensities measured by the sensors [7]-[9].  

There are various control methods such as centralized, 
decentralized and distributed, which each has pros and cons in 
system efficiency, performance, and power consumption [9]-[13]. 
Light intensity is measured as Lux (lx) at each point and lighting 
uniformity is defined as the smoothness of lighting distribution 
across the work zone.  

Some research have been done in order to efficiently 
determine luminaires dimming level [8]-[13]. Researchers model 
the photodetector’s output as a function of luminaires dimming 
level, daylight, and sensor’s noise which is known by dark 
current in [8]. The authors in [8] assume linear relation between 
sensor’s output and luminaire’s dimming level. Luminaire’s 
effect on each sensor is modeled by light transport matrix which 
theoretically cannot be computed [9]. Thus, optimization 
problems are used in order to determine dimming levels. In the 
work done in [9], a region is extracted for matrix argument 
which by that, presented control loop is stable and it is 
determined by Gershgorin’s circle theorem. Multiple control 
steps are needed to minimize error to a desired area each time 
that lighting condition varies. Therefore, the designed system is 
not optimized especially in wireless sensor networks (WSNs) in 
on-battery nodes. A method in [10] is presented based on the 
methods applied in [9]. In this work number of photodetectors 
are equal to the number luminaires owing to analytical 
limitations. However, indoor environments can be divided into 
several work zones and each may have multiple photodetectors. 

Some other researches according to the idea that lighting 
system is non-linear and time variant with various types of 
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luminaires proposed control systems to adjust the dimming level 
of light sources [11]-[13]. A control loop has been designed in 
order to adjust dimming level of luminaires with different 
wavelength [11]; where a crucial parameter of zoning effect has 
not been taken into account, and no information on the daylight 
effect on system performance has been reported. In a separate 
study, learning methods is applied in order to develop a smart 
lighting system and the method is applicable for static condition 
where daylight does not vary during daytime and objects are 
constant [12]. Besides, transmission is not considered in the 
discussed methods which is an important parameter [14]. 

In this paper, an indoor environment with multiple work 
zones that different visual task can be carried out in each and 
also variant occupancy condition is considered to design control 
method. Besides, each zone may have various number of 
photodetectors which makes theoretical aspects useless in this 
area of research. The system is also considered dynamic due to 
the daylight variation. The method proposed in this paper 
accurately determines luminaire’s dimming level according to 
the standard requirements and also with low transmission rate.  

II. LEARNING CAPABLE CONTROL METHOD 
The control method is a major subset of indoor smart lighting 

system. The control algorithm which is  applied in the controller 
based on the system inputs determines the dimming level of 
luminaires (output), as shown in Figure 1.  The indoor 
environment is divided into q work zones; thus, the system is 
equipped with q presence detectors. The outputs of presence 
detectors are applied as inputs to the controller (OCq). The 
average value of light intensity and lighting uniformity at ith zone 
should be greater than Em and Um, which is determined by the 
standard [6]. The controller uses the measured intensity of p 
placed photodetectors as feedback to determine dimming level of 
all r luminaires. Inputs and outputs in the lighting system is 
transferred by the communication modules which mostly are 
wireless in indoor smart environments [1] and the communication 
issues are beyond the scope of this paper. 
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Figure 1. The controller inputs and outputs as a subset of indoor smart lighting 

system 
In the system that q≠p≠r theoretical approaches are not 

applicable any more, each zone occupancy affects other zone 
illumination condition due the reflections caused by object 
surfaces [1]. Thus, optimization methods may be considered as a 
useful solution to calculate the luminaire’s dimming level [12], 
[13]. The methods with learning capability are one of these. The 
learning methods is trained once and work with less data 
transmission through the network in static condition, since most 
of smart lighting systems are based on wireless communication 

protocols and in such systems transmission rate is an important 
parameter due to the power consumption. In this paper, daylight 
variation during the daytime is also considered in order to reduce 
power consumption and increase the accuracy of the system. 

The proposed controller in this paper has three main working 
modes, as shown in Figure 2. In this paper, we have assumed that 
the controller has knowledge about the system elements; number 
of zones, photodetectors, luminaires, and driver dimming steps. 
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Figure 2. The controller block diagram with three main working modes 

 
The first mode in the proposed controller is DATA 

GATHERING as shown in gray box in Figure 2. In this state, 
controller request luminaires to dim one by one and in groups and 
after each step controller waits until the photodetector modules 
sends back the measured intensities. Therefore, a loop up table is 
formed in the controller. This mode can be done in an offline 
mode; therefore, on-battery nodes in Wireless Sensor Networks 
(WSNs) is not adversely affected due to the extra power 
consumption. After finalizing this step, the controller changes its 
state to TRAINING mode. The neural network is configured in 
this state. Feedforward neural network is considered for the 
proposed method while other learning methods also can be 
applied. The minimum neuron count is considered for the 
network size, since increase in number of neurons results in 
higher computational power [12]. While network error is beyond 
the desired value, the controller increase the neuron counts, as 
shown in Figure 2. The neural network inputs are Em and Um. 
Thus, the reported intensities from the photodetectors to the 
controller is used to compute these values. 
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where in (1) and (2), the parameter n represents the number of 
photodetectors at the ith zone. Average light intensity (meas_Em) 
and lighting uniformity (meas_Um) are calculated at a pre-block 
to the neural network block as inputs to it.  Average light 
intensity and lighting uniformity is also calculated for all zones. 

After the network is successfully configured, the controller 
changes its state to the OPERATIONAL mode. Initially, 
luminaires dimming level is set. For the zones with no occupancy 
desired average intensity and uniformity is considered the current 
value of the photodectors. As dimming level of the luminaires are 
determined the controller moves to the standby. After 30 minutes, 
the controller checks the error. The average light intensity and 
lighting uniformity of each zone extracted from the sensors are 
compared while the uniformity and average intensity is beyond 
desired values controller goes back to the standby state. The bias 
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which is difference between desired and measured values is 
calculated when the measured values are lower than desired ones.  

imimim EMeasEEbias ,,, __ −=                                 (3) 

imimim EbiasEE ,,, _+=                                  (4) 

The bias_Em,i for the ith zone is calculated through (3) and is 
added to desired value as in (4) and new desired values is 
calculated and it is considered as new inputs to the neural 
network block. It worth noting that the values computed in (3) 
and (4) is for the condition that the measured values for ith zones 
are below the desired values. 

In the proposed novel controller, in this paper, dynamic 
conditions such daylight variation and system element faults are 
taken into account by adding a bias to desired average intensity 
and lighting uniformity in order to improve the accuracy. The 
controller can be applied for different indoor environments with 
multiple number of zones and sensors.  

III. CASE STUDIES AND SIMULATION RESULTS 
The controller proposed in this paper is suitable for indoor 

environments that have multiple works zones, various number of 
photodetectors on each zone of environment, and during the 
daytime photodetectors outputs varies.  

Two test cases are implemented in DIALux in order to 
evaluate the proposed control mechanism. The 3d view of both 
rooms is shown in Figure 3; as shown each room has window 
that enters daylight in the environment. Each desk is considered 
as a single work zone and the zone numbers of are labeled on 
desks in Figure 3. Each has physical parameters which in detail 
are introduced in TABLE I. Zones with unequal number of 
sensors are considered for the case (a) to investigate the effect of 
sensor variations; furthermore, number of luminaires are not 
equal to the number of zones and also photodetectors. Three 
work zones are placed in Case (b) that each receives different 
daylight effect.  

(a) (b)

Z1

Z2

Z1 Z2 Z3

 
Figure 3. 3D view of two test cases with different specifications 

As mentioned in previous section, the network is initially 
configured with minimum size (2 neurons) and its size is 
increased while the network error is in the desired region. Error 
below 1% is desirable for the test cases introduced in Figure 3 

and TABLE I. As Mentioned Earlier, the feedforward neural 
network is considered for configuration as shown in Figure 4. 
The number network inputs are equal to the number of zones 
multiplied by two; average light intensity and lighting 
uniformity are two parameter considered as inputs for each zone. 
The network outputs are dimming level of luminaires and thus 
the network outputs layer size is equal to the number of 
luminaires. The hidden layer size is determined during the 
training mode and it is considered as t in Figure 4. 
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Figure 4. The neural network block with 2q inputs, r output layers which is equal 
to number of luminaires, and t hidden layers that is determined during network 

configuration 
Neural network for Case (a) in Figure 1 is configured for 

different hidden layer sizes with 1096 datasets for training states. 
The network performance is evaluated for 500 datasets for each 
network sizes, as shown in Figure 5. The average intensity and 
uniformity for each test set is calculated and it is compared to 
the desired value, if the desired value is smaller than the 
measured the error is considered as 0. The uniformity mentioned 
in standard is the lowest and higher uniformity value is also 
more desired [6]. If the desired value of average intensity or 
lighting uniformity is lower than desired values, the error is 
recorded in percent. The average calculated error of 500 cases 
for each zone of case (a) is shown in Figure 5. As shown in 
Figure the error is below 1% for both zones. The error histogram 
of neural network for 1096 data for training with network size 
equal to 5 is shown in Figure 6.  

The error histogram of case (b) in Figure 3, is shown in 
Figure 7. 115 datasets is used to train the network and the 
network size of 6 is selected after training status, shown in 
Figure 7. The network error for both average light intensity and 
lighting uniformity of all three zones of case (b) is reported in 
TABLE II. As it is reported, the network error for all zones in 
the case is also converged to desired accuracy.   

In the last step, daylight variation is also added to the 
system, since in real systems daytime variation should be taken 
into account. Daylight effect is considered as bias to the system 
as introduced in (3) and (4). The maximum error for 24 test sets 
in different time of day is 5.6% for case (a) and for the case (b) it 
is reduced to 3.8%. 

Efficient and accurate control system in order to adjust 
luminaires dimming level in smart lighting system has been 
introduced in this section. As the simulation results is shown the 
proposed controller maximum error is 5.6% and for static 
condition (without the daylight variation) it is below 1% with 
optimum number of data transfer through the network.  

TABLE I.  PHYSICAL PARAMETERS OF IMPLEMENTED TEST CASES IN DIALUX 

Case 
Room 
Area 
(m2) 

Room 
Height 

(m) 

Wall 
reflection 

(%) 

Number 
of Zones 

Number of 
Luminaires 

Work zones 
area 
(m2) 

Work zones 
height (m) 

Number of 
sensors per 

zone 

Avg. Daylight 
deviation* 

Sky 
Type 

a 9 2.74 30 2 4 
Z1=1.5×0.8 

Z2=2×1 
0.76 

Z1=9 
Z2=13 

Z1 =83% 
Z2= 49% 

Clear  

b 6.6 2.74 40 3 3 1.5×0.6 0.76 3 Z1=57%, Z2=64% Clear 
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Z3=62% 
* This is reported when all luminaires are off from 8a.m. to 8 p.m. Deviation from maximum received intensity is stored and average deviation from the maximum is then reported. Deviatioin = ((max-

node)/max)*100 

 

 
Figure 5. The average percentage error between desired and measured value 

of average intensity and lighting uniformity in case (a) and two zones in 
variation of hidden layer size from 2 neurons to 5 for 500 datasets 

 

 
Figure 6. The neural network performance for case a with 1096 datasets for 

training and 5 neurons for hidden layer, the network has 4 inputs and 4 
outputs 

 
Figure 7. The neural network performance for case (b) with 115 datasets for 

training and 6 neurons for hidden layer, the network has 6 inputs and 3 
outputs 

 
TABLE II.  AVERAGE OF ERROR PERCENTAGE BETWEEN DESIRED AND 

MEASURED VALUES FOR 40 TEST DATA OF CASE (B)  

Par. 
Average of Error percentage vs. Number of Hidden 

Layer Neurons 
2 3 4 5 6 

Em,1 2.15 1.82 1.00 0.66 0.36 
Um,1 1.65 1.01 0.68 0.13 0.01 
Em.2 1.65 0.98 0.64 0.54 0.24 
Um.2 1.41 0.42 0.32 0.14 0.01 
Em.3 1.63 0.96 0.58 0.43 0.24 
Um.3 1.64 0.51 0.28 0.11 0.01 

IV. CONCLUSION 
Illumination control of indoor lighting offices as an important 
issue is investigated in this paper. The control method 
suitable for indoor environments consisting of multiple work 
zones is presented. In the proposed method control method, 
different zones can have unequal number of photodetectors 

without increase in complexity. Besides, photodetectors are 
placed at the work zones which results in improvement of 
accuracy and also it reduces extra power consumption 
compared to ones that photodetectors are placed adjacent to 
the luminaires. The daylight variation during daytime in the 
office area is also taken into account by the bias calculation 
process. The method is evaluated by linking DIALux and 
MATLAB. The results shown error below 1% for static 
condition. In case of daylight variation, the maximum error is 
5.6% for investigated test cases.  
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