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Abstract 

The physical stability of therapeutic proteins is a major concern in the development of liquid 

protein formulations. The number of degrees of freedom to tweak a given protein’s stability is 

limited to pH, ionic strength and type and concentration of excipient. There are only very few, 

mostly similar excipients currently in use, limited to the short list of substances generally 

recognized as safe for human use by the FDA. Opposed to the limited number of molecules the 

formulation scientist has at hand to stabilize a protein, there is the vastness of chemical space 

which is hypothesized to consist of 1060 compounds. Its potential to stabilize proteins has never 

been explored systematically in the context of stabilization of therapeutic proteins. Here we present 

a screening strategy to discover new excipients to further stabilize an already stable formulation 

of a therapeutic antibody. We use our data to build a predictive model to evaluate the stabilizing 

potential of small molecules. We argue that prior to worrying about the hurdles of toxicity and 

approval of novel excipient candidates, it is mandatory to assess the actual potential hidden in the 

chemical space. 
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Introduction 

Formulation of therapeutic proteins is a field of ongoing research as the proteins can degrade in 

multiple ways. The process of identifying a suitable formulation occurs typically by screening 

solution conditions that vary by pH and ionic strength3. Additionally, stabilizing substances, so 

called excipients are added. These can be categorized as for example surfactants, buffers, amino 

acids, polymers, proteins, metal ions, tonicity modifiers, sugars and polyols, salts, preservatives, 

antioxidants, chelators, antimicrobials. A recent review mentions 57 different substances2. 

Examples include polysorbates, polyethylene glycols, several sugars, several proteogenic amino 

acids or cyclodextrin4–6. The chemical space of molecules consisting of up to 30 carbon, oxygen, 

nitrogen or sulfur atom has been estimated to contain 1060 different molecules7. Taking into 

consideration that many of the aforementioned excipients are structurally very similar, the portion 

of the chemical space covered by currently employed excipients is next to nothing.  

Hurdles in introducing new excipients to formulations of therapeutic proteins are the risk of their 

toxicity and the costly and time-consuming approval process, which for an excipient is as tedious 

as for a drug. Additionally, excipients have to be chemically stable and should have a sufficient 

aqueous solubility. Therefore, industry often limits the arsenal of potential excipients during 

formulation development to the selection of excipients that the FDA generally recognizes as safe 

(GRAS list)8,9. However, there has been no systematic evaluation of possible benefits that may be 

introduced by new excipients. A better understanding of the potential to stabilize proteins hidden 
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in the chemical space could eventually provide a motivation to overcome the aforementioned 

hurdles.  

Monoclonal antibodies (mAbs) represent the most important and best-selling class of therapeutic 

proteins in recent years10. A lot of research effort has been dedicated to optimize their sequences, 

in order to guarantee that their development will not pose a risk to the outcome of any clinical 

trial11. One important strategy in sequence optimization consists in mutating aggregation prone 

regions12. When analyzing 28 therapeutic mAbs using Aggrescan3D, we found that aggregation 

prone moieties are present in the paratope for 20 of them (unpublished data)13. It seems plausible 

that sequence optimization is, among other factors, limited by the required affinity of the mAb to 

its target, often driven by hydrophobic patches in the mAb’s complementarity-determining region. 

New excipients could therefore present a way to push the boundaries of current state formulations 

even with optimized protein sequences. This is desirable to achieve for example formulations that 

are stable at room temperature, making refrigeration and freeze-drying obsolete. 

Besides their application in biopharmaceutical products, new excipients could easily be employed 

to stabilize proteins used for diagnostics or in bioprocesses, where their potential toxicity is less 

of a concern. 

To identify excipient candidates, their effect on protein stability has to be evaluated 

experimentally. In long-term stability studies, formulations are stored for numerous months or 

even years. The formation of aggregates and chemical changes in the formulation are monitored 

for example by chromatographic or microscopic methods. Due to the limited throughput and time-

constraints, this approach is not plausible for the purpose of screening a library of small molecules 

on their effect on protein stability. Instead, forced degradation studies have been developed as 

indicators of long-term protein stability. Differential scanning fluorimetry (DSF) measures 
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changes in extrinsic fluorescence upon unfolding of a protein when exposed to heat. Similarly, in 

nanoDSF the measured changes are of the intrinsic fluorescence of the protein’s tryptophan and 

tyrosine residues. The inflection point (apparent protein melting temperature, Tm) of the 

characteristic unfolding curve serves as a surrogate to measure a protein’s conformational stability. 

As extrinsic dye, SYPRO orange is one of the most common choices. The same method is also 

known as thermal shift assay in the drug discovery community, where it is used to identify new 

small molecular active compounds14. Light scattering, backscattering or optical density is often 

used simultaneously to monitor the formation of aggregates. The derived temperature of onset of 

aggregation (Tagg) is another common stability indicator. While DSF and nanoDSF are excellent 

choices regarding throughput and sample consumption, their correlation with long-time stability 

data is limited15. More recently, the ReFOLD assay has been proposed as stability indicating 

method, showing excellent correlation with long-term stability data16,17. In a first step, the protein 

is chemically denaturated by dialyzing against the formulation buffer containing Urea. 

Subsequently, the Urea is removed by dialyzing against the formulation buffer, leading to a 

refolding of the protein. During the process of Urea removal, the protein will be partially unfolded 

and not fully solubilized, making it prone to aggregate. The degree of aggregation measured for 

example by size exclusion chromatography can then be considered a surrogate for protein stability. 

As the ReFOLD assay relies on dialysis, it requires larger buffer volumes and has a lower 

throughput than for example DSF or nanoDSF measurements. 

In this work we make use of chemoinformatic methods to classify and describe small molecule 

structures for multiple purposes. Very broadly speaking, there are two approaches to classify a 

small molecule in a machine-readable way. This is either through physicochemical descriptors, 

such as for example hydrophobicity, or descriptors of structural features, such as the occurrence 
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of a functional group. Both of these classification approaches have been implemented in a lot of 

different ways for numerous purposes. An excellent overview on the topic is given for example by 

Leach et al.18. One way to define hydrophobicity as physicochemical descriptor is the 

octanol/water partition coefficient of a substance (P). Numerous ways to predict P for a given small 

molecule exist19. Structural features of small molecules are commonly represented by binary 

vectors with multiple implementations. In one approach, each element of the vector corresponds 

to a predefined structural feature or key, as for example in the Molecular Access System keys 

(MACCS) method20,21. If for example the first MACCS key is present in the small molecule, its 

vector’s first element will be set to 1. If the key is absent, the vector element is set to 0. In the case 

of so-called hashed fingerprints such as Morgan or Daylight fingerprints, the vector’s elements do 

not directly correspond to a specific structural element. Instead they are calculated by an algorithm 

that considers connectivity or atom environment within a molecule. 

The machine-readable description of a molecule can be exploited to build models that relate the 

descriptors to experimental observables, often referred to as quantitative structure activity 

relationship (QSAR). In QSAR, each physicochemical descriptor or vector element is considered 

a variable that can be fed to a machine learning algorithm in order to predict an unknown variable 

such as for example the biological activity of a small molecule22. Another example is the use of 

SYPRO Orange based DSF measurements of a mAb to build a QSAR model that predicts the 

effect of 79 osmolytes on the mAbs stability. The substances were similar to currently employed 

excipients, such as amino acids, methylamines and polyols 23.  

Here we present an approach to identify small molecules that stabilize a mAb, starting from the 

selection of a suitable library by a chemoinformatic approach that focuses on compound diversity 

and hydrophobicity. We then screen the selected library by DSF and nanoDSF combined with 
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backscattering to identify hit substances based on Tm and Tagg. After a hit expansion with analog 

substances we use the ReFOLD assay to identify excipient candidates and finally build a predictive 

QSAR model by using multiple regression. 

Results 

Library selection 

Since there are only very few excipients commonly used in protein formulations, it is not possible 

to apply any general rules to the library design such as for example Lipinski’s rule of five known 

from drug discovery11. We therefore opted to screen a library covering as much of the chemical 

space as possible. It was therefore required to be highly diverse. We quantified a library’s diversity 

by considering its median pairwise Tanimoto coefficients calculated based on Morgan and RDkit 

daylight-like fingerprints. Limited lipophilicity was the only additional criterion imposed to assure 

sufficient solubilities. To keep time and cost of the first screening step reasonable, the library’s 

size should be in the range of 1000-2000 compounds. Furthermore, we checked for the presence 

of pan-assay interfering substances (PAINS) and reducing sugars, which, however, were found to 

be very sparse in all cases, and thus not critical to decision making. The cost of the libraries was 

another key aspect since prices ranged from approx. 2000 € to 170000 €.  

In total, we compared 19 different commercially available libraries from different vendors. Their 

median SlogP values ranged from approximately 1.5 to 3.5. Median similarities depended strongly 

on the type of descriptor used. The “Chemspace PPI Modulators library” (D) was found to be the 

least diverse and most hydrophobic library and fragment libraries from Enamine and Compound 

Cloud to be the most diverse and hydrophilic. Being the most cost-effective, we selected the 

“Enamine Golden Fragment Library” (Q). However, other selections would have also been 
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plausible. The library consists of mostly aromatic scaffolds (Figure S 3), does not contain any 

reducing sugars and less than 1% of PAINS. 

Library screen 

The change in thermal stability of protein induced by a small molecule, typically referred to as 

thermal shift, is commonly employed in drug discovery to identify active compounds. It is also an 

indicator of the stability of a protein in a given formulation. A shift towards higher temperature 

corresponds to a binding/interaction of the small molecule with the protein’s native state24,25. 

Based on the same assumption that a stabilizing excipient also binds to the native state of the 

protein (or destabilizes the unfolded state), a positive shift is considered by us an indicator of a 

stabilizing protein formulation. By measuring the thermal shift of a therapeutic antibody (LMU-

01) induced by all 1800 substances from the Enamine GFL we combined the rational from drug 

discovery and protein formulation screening (Figure 2). The stability of a given protein can be 

optimized easily and at low cost by adjusting pH and ionic strength. The use of excipients is 

therefore only meaningful, once these basic formulation properties have been optimized. We 

therefore selected an already optimized starting formulation for our excipient screen. Since our 

screening methods rely on temperature gradients, we limited the buffer choice to phosphate, as its 

pH has a low susceptibility to temperature15. The assay was performed at low protein 

concentrations to ensure an excess of small molecule, whose limited availability in the library 

during the screen was considered a bottleneck.  

The screen was performed in the following way: first all 1800 substances were tested by DSF and 

backscattering measurements. Hits from any of the measurements were then further evaluated by 

the ReFold method.  
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For the DSF screen, Substances exceeding the threshold of 3 °C for ΔTm2 were considered for 

additional orthogonal screening. As 41 substances would exceed our capacities to measure in the 

ReFold assay, they were evaluated in an additional backscattering measurement by their effect on 

the onset of aggregation temperature Tagg compared to an excipient free control. Three substances 

exhibited a Tagg higher than that of all three control measurements (Figure 3). These were then 

considered for the refolding study.  

The backscattering screen yielded 10 substances with a Tagg higher than that of the control. Of 

these, only one substance, 380610-68-4, was affordable in price and selected for the ReFold study. 

Three substances from the DSF screen and one substance from the backscattering screen and six 

analog substances were purchased for further evaluation in the ReFold assay (Table 1). 

ReFold 

The ReFold assay has previously been shown to accurately predict the long-term stability of 

various therapeutic mAb formulations. It is strictly orthogonal to the fluorescence-, light 

scattering- and temperature stress-based methods employed in the first selection steps. It is 

therefore highly suitable to evaluate the candidate excipients and eliminate false positive results. 

Out of the 10 candidates (4 hits and 6 analogs) selected, we identified five that would increase the 

relative monomer area compared to the excipient free formulations and formulations containing 

the standard excipients sucrose, L-arginine or D(+)-trehalose. The substance 1803599-38-3 turned 

out to be a false positive (Figure 4).  

Four out of the five stabilizing compounds show a clear interaction with the protein upon unfolding 

as can be seen in nanoDSF measurements (Figure 5). Control experiments show that the change 

in curve shapes are not caused by a temperature dependence of the small molecules’ fluorescence 
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signals (Figure S 1). A change in curve shape was also observed for compound 127988-21-0 in 

the initial DSF screen, but not for compound 380610-68-4 (Figure S 2), for the other substances 

no DSF data is available since they are analogs purchased after the initial library screen. 

QSAR 

The data from the ReFold assay was used to evaluate the effect of structural features of a small 

molecule on the relative monomer area by constructing a model through multiple regression. The 

model is built from 8 MACCS keys and achieves an R2 of 0.49 and RMSE of 2.13 (Figure 6). We 

found that structures containing MACCS keys 89 and 157 would lead to a decreased relative 

monomer area, while substances containing MACCS keys 91, 100, 117, 131, 132, 150 would 

increase the relative monomer area of the ReFold assay (Table 2). 

Discussion 

The two criteria regarding library selection, diversity and hydrophilicity, allowed us to select a 

compound library covering a broad part of chemical space with substances with a reasonable 

solubility in aqueous formulations. The libraries considered in our analysis were all from 

commercial vendors and designed for the purpose of drug discovery. The selected “Golden 

Fragment Library” has been already used in a thermal shift screen to identify to identify inhibitors 

of bromodomain-containing protein 426. The advantages of selecting a commercial library are that 

the cost per amount of substance is lower and that the libraries are curated and tested. Ideally this 

avoids pitfalls like PAINS, reactive or unstable substances. Substances from commercial libraries 

are furthermore provided pre-dissolved in well plates, allowing for an easy transfer with standard 

multi-pipettes. Typically, the substances found in commercial libraries can also be obtained 
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individually at a reasonable cost, together with analogs, which makes following up on any hit 

molecules straightforward. 

As typically observed for mAbs, the temperature dependent fluorescence signal of LMU-01 shows 

two transitions (Tm1 and Tm2). From measurements of backscattering of light as an indicator of 

aggregate formation, the second transition, corresponding to the unfolding of the Fab fragment, 

has been identified to induce particle formation. The point density from the DSF measurements is 

only 1/K, which results in a considerable level of noise. We therefore selected candidates for 

further exploration based on thermal shifts of Tm2 above 3 °C. 

The selected compounds were then evaluated by simultaneous nanoDSF and backscattering 

measurements, with backscattering being a truly complementary detection method to DSF to 

evaluate actual particle formation. The low working volumes did not allow for pH adjustment at 

this stage, inevitably leading to false positive and negative measurements, since shifts to lower pH 

typically increase the electrostatic repulsion among mAb molecules with pI values between 7-927. 

Selecting a higher buffer concentration may be an approach to mitigate the risk of pH shifts, 

however, at the cost of increased ionic strength, altering the proteins reference stability profile. 

The presence of DMSO as standard solvent known from drug discovery screens was an additional 

source of error which we considered inevitable. For the last step of the screening we adjusted pH 

and worked in DMSO free conditions, leading to reduced solubilities of the candidate compounds 

and an altered protein stability profile. Additional false positive results could therefore be 

identified by the ReFold assay in the last screening step. 

In order to screen the library for its effect on protein stability, we considered three different 

analytical methods. DSF (in the presence of SYPRO Orange), nanoDSF/backscattering and SLS 

(data not shown). By using two fluorescence-based methods, two different excitation and three 
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emission wavelengths are covered. If a compound’s fluorescence happens to interfere in one of the 

assays, this ensured that it would not interfere in the other one. DSF measurements could be 

performed at a high throughput due to its well plate-based format. The use of SYPRO Orange as 

extrinsic fluorescent dye allowed for a very sensitive monitoring of mAb unfolding based on the 

exposure of hydrophobic regions, buried inside the core of the protein’s native conformation. 

Consequently, the presence of extrinsic dye may also interfere in the interaction between the tested, 

partially hydrophobic substances and the protein. Furthermore, the low resolution of the 

measurement introduced a significant amount of noise. Another drawback was the lack of 

dedicated software to analyze the data, requiring the generation of our own script. In contrast, data 

from nanoDSF and simultaneous backscattering measurements had a vastly higher resolution than 

our DSF measurements and the provided software allowed for a straightforward way to handle the 

large amount of data. Since the capillary based system makes sampling loading a time-consuming 

drawback, a capillary-chip-based version of the instrument equipped with an automated sample 

loading device was used in this study. SLS/DLS measurements provide a sensitive way to detect 

the formation of protein aggregates in a well-plate format. Here, in order to prevent evaporation 

of the sample either silicon oil or adhesive films have to be used. Due to the hydrophobic nature 

of some of our substances, only the use of films was plausible for our case. While the method 

requires very low sample volumes, DLS measurement require long measurement times and are 

therefore a limitation to throughput. We therefore tested the use of scattering intensity (SLS) as a 

fast and sensitive readout to detect aggregate formation in isothermal conditions. Whereas this 

experiment would have presented a complementary approach to the DSF and nanoDSF 

experiments, it did not turn out to be sufficiently robust. Possible reasons could be the formation 

of air bubbles during the measurement and detachment of the adhesive film. Further optimization 
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of the assay in terms of adhesive film selection and adhesion process was not feasible in the 

timeframe of this work. One could also consider the method as an intermediate screening step, 

where the number of candidates is already narrowed down and replicate measurements can be 

performed in a reasonable time frame. 

After candidate selection through DSF, nanoDSF and backscattering measurements, we purchased 

the hit substances together with analog compounds. The use of analogs provides a way to identify 

the functional groups responsible for the stabilizing effect and provides a mean to build a robust 

hypothesis.  

The recent development of the ReFold assay presents a straightforward, orthogonal way to 

evaluate the hits. While its throughput is considerably lower and its buffer consumption drastically 

higher than that of the other discussed methods, it requires only a minimum amount of handling, 

is highly parallelizable and relies on methods established in any protein analytics lab.  

We observe that the candidates that positively affect the relative monomer area also change the 

nanoDSF curve shape. The altered shape of the nanoDSF curves could indicate an interaction 

between the stabilizers and the (partially) unfolded species or a change in the unfolding 

mechanism, a bias that is not observed with the ReFold assay. A change in the nanoDSF curve 

shape could be considered an alternative principle for the selection of excipient candidates from 

nanoDSF screens. 

Predicting the effect of a small molecule on protein stability would be highly desirable to facilitate 

the discovery of new excipients. Through multiple regression, a model was constructed from the 

ReFold data using MACCS keys as input features to predict the effect of a substance on the assay. 

Even though it was cross validated by the leave-one-out method, its predictive power, is of course 
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limited to the design space. Nevertheless, it can be considered a starting point for more 

sophisticated models for novel stabilizing substances, as already known from drug discovery. 

More, high quality input data will enable the construction of more general models. While we also 

considered the DSF and nanoDSF screening data for model generation, we found that the signal 

to noise ratio was not sufficient to construct meaningful models. Algorithms other than multiple 

regression were tested but led to overfitting, meaning that they would also fit to the noise in the 

data. 

In this work, we purposely left out toxicity as a factor in excipient selection, but instead we 

considered it the main purpose to explore the vast potential of chemical space for protein 

stabilization. As known from drug discovery, toxicity adds another degree of complexity to the 

endeavor of identifying new substances. We suggest that this factor should be accounted for in the 

candidate optimization stage by eliminating any entities responsible for toxicity from the 

structure28. Additional factors to be considered in the optimization stage are solubility, metabolism 

and the stability of the candidate substance itself. Compatibility with buffers other than phosphate 

is an additional aspect to be taken into consideration. To fully assess the effect of an excipient on 

protein stability, long term stability and additional forced degradation studies paired with analytics 

covering all aspects of protein stability are necessary. 

Conclusion 

In order to assess the potential of substances hidden in the chemical space beyond the GRAS list 

to stabilize a protein, we rationally selected a compound library by its lipophilicity and diversity. 

We screened the library to select stabilizing candidate substances for a mAb using two different, 

complementary, standard stability indicating methods. Both DSF and nanoDSF resulted in 

different hits. Subsequently, the hit substances and analogs thereof were evaluated by the ReFOLD 
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assay, based on chemical denaturation and thus using a different physicochemical principle than 

the thermal screenings. This led to the identification of multiple substances outperforming standard 

excipients and the excipient free formulation. The candidate excipients can be developed and 

investigated further, for example in long-term stability studies and additional forced degradation 

studies. The stability of the excipient candidates themselves has to be tested as well as their 

toxicity. They could also be further optimized by structural modifications. The data was also used 

to generate a MACCS keys-based model that can predict a substance’s effect on the ReFold assay. 

The model can be used to rapidly evaluate a novel substances effect and help to identify additional 

compounds for further studies. Combining high-throughput screening of the chemical space with 

QSAR modeling enables therefore the generation of formulations with novel excipients that 

outperform those containing established GRAS list excipients. 

Methods 

Library selection 

In order to select an appropriate compound library for screening, several commercially available 

libraries were analyzed. A KNIME workflow was set up using RDkit nodes to desalt the structure 

files, calculate SlogP values as a measure of solubility and a similarity matrix by querying 

individual entries from a library against their entire library (Figure S-1). The median values for 

each property was calculated using NumPy (version 1.16.2) and plotted using Matplotlib (version 

3.0.3). 

Sample preparation 

The Enamine Golden Fragment Library was shipped in 29x 96 well plates containing stock 20 µl 

of 50 mM small molecule dissolved dimethyl sulfoxide (DMSO, Sigma-Aldrich). 250 µM stock 
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solutions of small molecules were prepared in 96 well plates (Greiner Bio-One GmbH) with 50 

mM sodium phosphate buffer at pH 6.0 (di-Sodium hydrogen phosphate dihydrate: VWR 

Chemicals, Sodium di-hydrogenphosphate dihydrate: Grüssing GmbH).  

Differential scanning fluorimetry 

LMU-01 solutions containing SYPRO orange were prepared by adding 2 µl of SYPRO Orange 

stock solution to 5 ml 1 mg/ml LMU-01 stock solution. The solution was prepared daily. The 

apparent protein melting temperature (Tm1 and Tm2) was measured with the a qTower 2.2 (Analytik 

Jena) in 96 well plates (). Final working concentrations were 0.5 mg/ml LMU-01, 1:5000 SYPRO 

orange, 125 µM ligand, 0.25% DMSO in 50 mM sodium phosphate buffer at pH 6.0. The data was 

analyzed by calculating the unfloding curves’ first derivative by using a Savitzky-Golay filter as 

implemented in the SciPy library29. The first derivative curve was fitted to a skewed gaussian by 

using the LMFIT module for Python30. 

Backreflection library screen 

Tagg, were measured with the Prometheus NT.Plex, equipped with backreflection optics, in 

standard capillary chips (NanoTemper). Final working concentrations were 0.5 mg/ml LMU-01, 

125 µM ligand, 0.25% DMSO in 50 mM sodium phosphate buffer at pH 6.0. Automated sample 

loading into capillary chips was performed with an NT.Robotic Autosampler (NanoTemper). 

nanoDSF hit confirmation 

Tagg, Tm1 and Tm2 were measured with the Prometheus NT.48, equipped with backreflection optics, 

in standard capillaries (Nano Temper). Final working concentrations were 0.5 mg/ml LMU-01, 

2 mM ligand, 4% DMSO in 50 mM sodium phosphate buffer at pH 6.0. 
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ReFold assay16 

The refolding buffer was prepared by adding a stock solution of 50 mM sodium phosphate buffer 

at pH 6.0 to excipient candidate substances to yield 5 mM solutions thereof. In cases where the 

solubility limit was exceeded, the saturated solution was used. The same procedure was used for 

the unfolding buffer which contained additional 10 M of urea. pH values were adjusted to the 

excipient free reference buffer. The resulting buffers were centrifuged at 15000 rpm. Protein 

solutions were prepared by spiking 3 µl of LMU-01 stock solution to 237 µl of refolding buffer, 

yielding a protein concentration of 1 mg/ml. Duplicates of 100 µl of protein sample were 

transferred into micro-dialysis tubes with a 3.5 kDa cutoff. Dialysis was performed at room 

temperature and unfolding buffer was exchanged after 3 h and 7 h. Refolding commenced after 24 

hs with buffer exchanges after 3 h and 7 h. 

QSAR 

MACCS keys fingerprints of the substances tested in the ReFold assay were built using the Conda 

distribution of RDkit (version 02-2019). Low variance keys were eliminated. Of the remaining 

features, those with regression coefficients close to zero were removed to rule out overfitting and 

obtain a robust model using only 8 MACCS keys. Multiple regression using leave-one-out cross 

validation was performed using Scikit learn (version 0.20.3).  
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Figure 1: Comparison of commercially available libraries. Plotted is the median of the RDkit 

Tanimoto similarity vs. the median of the Morgan fingerprints Tanimoto similarity. The marker 

color indicates the SlogP value and the marker size corresponds to the size of the library. A: 

Chemspace Pre-Plated LeadLike set; B: Chemspace_Lead-Like Compounds 5000 diversity set; C: 

Chemspace Pre-Plated Fragment-like set; D: Chemspace PPI Modulators; E: Chemspace 

General Fragments; F: Chemspace Acid Fragments; G: Chemspace 3D-Shaped Fragments; H: 

Chemspace Singleton Fragments; I: Chemspace Selected Fragments; J: Chemspace Saturated 

Fragments; K: Chemspace Amine Fragments; L: Phenotypic Toolbox; M: BCCDIV14B; N: 

Tocriscreen; O: Enamine Cys focused covalent fragments; P: Enamine DSI poised fragment 

library; Q: Enamine Golden Fragment Library; R: Enamine Fluorinated Fragment Library; S: 

CompoundCloud Selcia. Size of library M: 12030 substances, library G: 337 substances. 
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Figure 2: Thermal shifts relative to control samples from DSF measurements for all 1800 

substances. Markers of the same color correspond to samples being on the same well plate. 
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Formulation Tagg [°C] 

No Excipient 78.7 78.1 78.5 

1181867-71-

9 

79.2 79.1 - 

1803599-38-

3 

79.2 79.0 - 

127988-21-0 78.9 78.9 - 

 

Figure 3: Scattering intensity from backreflection measurements measurements and derived 

onset of aggregation temperature (Tagg) for top 3 candidate substances (n=2) and reference 

sample without excipient (n=3). 
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Figure 4: Relative monomer area after ReFold assay for formulations containing the candidate 

excipients, benchmark excipients and for an excipient free reference formulation (n=2). 

 

Figure 5: First derivative of nanoDSF data for all ReFold stabilizers. All compounds except 

1181867-71-9 significantly alter the shape of the curve in the transition region (n=3). 
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Figure 6: Multiple regression model to predict the effect of a small molecule on the relative 

monomer area determined by the ReFold assay. R2=0.49, RMSE=2.13. MACCS keys used for 

the model: 89, 91, 100, 117, 131, 132, 150, 157. 

Table 1: Overview of candidate structures and their effect on the mAb in the ReFold assay. 

CAS 

number 

Structure 

Mean relative 

Monomer area [%] 

127806-46-6 
 

72.2 

119192-10-8 
 71.7 
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127988-21-0 

 

71.7 

1181867-71-

9  
71.3 

380610-68-4 

 
68.9 

127988-22-1 
 

68.4 

1803599-38-

3  
67.9 

953734-04-8 

 

66.5 

67387-52-4 

 

66.4 

10170-12-06 

 

65.9 

 

Table 2: Visualization and regression coefficient of MACCS keys used to build a regression 

model for the ReFold assay. * represent a wildcard. Unless specified, all bond representations 

are wildcards 

MACCS key Structural feature Regression coefficient 
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89 
 

-3.53 

91 

 

2.52 

100 

 

3.53 

117 
 

2.28 

131 OH > 1 3.17 

132 

 

1.59 

150 
 

any atom – non ring bond - any atom - ring 

bond – any atom – non ring bond – any atom 

4.43 

157 
 

single bond 

-3.72 

 

Supplementary Data 
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Figure S 1: First derivative of Temperature dependent fluorescence signal from nanoDSF 

measurements for protein free control samples. The 350 nm/330 nm fluorescence signal of the 

tested small molecules shows a neglectable temperature dependence. 
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Figure S 2: DSF data for compounds 127988-21-0 (top left), 380610-68-4 (top right), excipient 

free control (bottom) 
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Figure S 3: Most common scaffolds in the Enamine “Golden Fragment Library” 


