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Abstract  

A sparse rain gauge network in dryland regions has been a major challenge for accessing high-

quality observed data needed to understand variability and trends in climate. Gridded 

estimates of weather parameters produced through data assimilation algorithms that 

integrate satellite and irregularly distributed on-ground observations from multiple observing 

networks are a potential alternative. Questions remain about the application of such climate 

data sources for assessing climate variability and crop productivity. This study assessed the 

usefulness and limitations of gridded data from four different sources i.e. AgMERRA, CHIRPS, 

NASA Power, and TAMSAT in estimating climate impacts on crop productivity using 

Agricultural Production Systems Simulator (APSIM). The study used data for 11 locations from 

Africa and India. The agreement between these data sets and observed data both in the 

amount and distribution of rainfall was evaluated before and after bias correction statistically. 

A deviation of more than 100 mm per season was observed in 13%, 20%, 25%, and 40% of the 

seasons in CHIRPS, AgMERRA, NASA Power, and TAMSAT data sets respectively. The 

differences were reduced significantly when data sets were bias-corrected. The number of 

rainy days is better estimated by TAMSAT and CHIRPS with a deviation of 4% and 6% 

respectively while AgMERRA and NASA Power overestimated by 28% and 67% respectively. 

The influence of these differences on crop growth and productivity was estimated by 

simulating maize yields with APSIM. Simulated crop yields with all gridded data sets were 

poorly correlated with observed data. The normalized root-mean-square error (NRMSE) of 

maize yield simulated with observed and gridded data was <30% for two locations in the case 

of AgMERRA and CHIRPS and three locations in the case of NASA Power. The NRMSE was > 

30% for all locations with TAMSAT data. When yields were simulated with data after bias 

correction using the linear scaling technique, results were slightly improved. The results of our 

study thus indicate that the gridded data sets are usefully applied for characterizing climate 

variability, i.e. trends and seasonality in rainfall, however their use in driving crop model 

simulations of smallholder farm level production should be carefully interpreted. 

Keywords 

Gridded data; climate change; climate variability; bias correction; APSIM. 
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1. Background 

Drylands - defined as the areas with a length of growing period (LGP) ranging from 1 to 179 
days (FAO, 2000) – are considered as the hotspots for vulnerability to climate variability and 
change. About 40% of the earth's surface is made up of drylands of which 72% is in the 
developing countries (UNEP, 2007). The percentage of the world’s population living in these 
drylands was calculated to be about 38%, equivalent to 2.3 billion of today’s global 
population of 6 billion (UNDP, 2011). They account for more than 70% of the cropped land in 
Africa (Morris, 2016) and about 60% of cropped land in India (Singh et al., 2004). The 
drylands are further divided into arid, semi-arid, and sub-humid areas based on the aridity 
index (ratio of annual precipitation to potential evapotranspiration or P/PET) varying 
between 0.05 and 0.65 (UNCCD, 2000). This excludes hyper-arid or desert areas with an 
aridity index of < 0.05 which has limited potential for agriculture, except the desert farming 
concept. Though drylands are intensively used for agricultural and pastoral activities, their 
production and productivity are constrained by the amount of moisture available and the 
magnitude of stress that the crop experiences during the growing period which varies 
significantly within and between the seasons. (Koohafkan, 2012). Analysis of 77 series of 
annual data on production and rainfall from various arid zones of the world by Le Houérou 
et al. (1988) had revealed that each mm of rain produces an average of 4 kg of above-
ground dry matter per ha per year while variability in production is, on the average, 1·5 
times greater than variability in rainfall. Hence, a good understanding of local climatic 
conditions is an important pre-requisite to assess the production potential and associated 
risks with farming in dryland areas. 

Good quality long-term station data play a significant role in characterizing the climatic 
conditions and in assessing their suitability for agricultural, livestock, and forestry 
production (Sinclair and Pegram, 2005). Reliable and accurate information about the climatic 
conditions are an important basis for strategic planning and decision making in weather-
sensitive sectors such as agriculture. For calculating a normal or average, the WMO Guide to 
Climatological Practices (WMO, 2011) recommends the use of data for 30 years consisting of 
data for at least 80% of the years and the period of missing data not exceeding three or 
more consecutive years. The availability of such long-term data is a major constraint in the 
case of dryland areas because of the limited number of gauging stations in these areas and 
concerns about the quality of the records maintained including data continuity. Africa has 
one of the very poor observational network systems of any continent and the same is 
reported to be deteriorating gradually (Washington et al., 2006, Dinku et al., 2011). WMO 
estimates that the network is eight times less dense than their recommended level of one 
station per 26,000 km2 across Africa. The few stations that do exist are unevenly distributed 
and suffer from maintenance problems leaving much of the continent unmonitored 
(Washington et al., 2006). 
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Even though gauge measurements of weather stations are considered to be the gold 
standard for meteorological data, they also suffer from several constraints and deficiencies. 
These include measurement accuracy, incomplete areal coverage of sparsely populated 
areas such as drylands, and deficiencies in data quality (Kidd et al., 2017; Rana et al., 2015). 
Gridded estimates of weather parameters—produced through data assimilation algorithms 
that integrate irregularly distributed satellite and on-ground observations from multiple 
observational networks—are considered as one potential alternative to observed data since 
they provide coverage that is more spatially homogeneous and temporally complete (Sun et 
al., 2018, Xie and Arkin, 1996; Daly, 2006). While several such climate data sets of varying 
spatial and temporal resolution have already been constructed and applied in a substantial 
number of studies, the different data sets are not completely consistent (Tapiador et al., 
2017). Studies carried out to assess the quality of these estimates have revealed 
considerable differences between these products and observed station data. Statistical 
comparison of observed data and various gridded data sets by Bandyopadhyay et al. (2018) 
have shown that the rainfall patterns in both amounts and frequencies are well captured by 
gridded data. However, the accuracy of these data sets was found to vary spatially and also 
by the type of gridded data product used (Zambrano et al., 2017). Rainfall estimates from 
many gridded data sources were found to correlate poorly with observed data especially on 
a daily scale (Sun et al., 2018). Most studies on quality assessment were carried out at a very 
coarse scale of global, continental, or regional (Daly et al., 2017, Kotlarski et al., 2014). The 
detailed source-specific assessment showed limitations in the representation of several 
weather patterns by reanalysis data sets partly due to problems with satellite information 
under specific cloud cover conditions (Häggmark, 2000; Bosilovich et al., 2008; Kidd et al., 
2012).  

Despite these problems gridded precipitation data products are often used as 
meteorological input for simulating various ecological processes including hydrological 
modeling exercises at landscape and regional level spatial scales (Nkiaka et al., 2017; Palazzi 
et al., 2013), to study the extreme events such as assessing the ability to reproduce flood 
events in Northern Italy (Mei et al. 2014; Nikolopoulos et al., 2013), to assess impacts of 
climate variability and change (Jones and Thornton, 2003) and to replace the missing values 
or fill the gaps in the station rainfall data which is one of the most common problems with 
observed station data at many locations (Meher and Das, 2019). Despite the mixed results 
from these studies, with some findings showing reasonably good results (Hadjikakou et al., 
2011; Lauri et al., 2014) while others are less encouraging (Roth and Lemann, 2016), these 
studies have demonstrated the advantages and limitations of using these data products for 
different purposes. 

Considering the sensitivity of dryland agriculture to variability and high variability in rainfall 
over spatial scales, the current study had an overall objective to evaluate four widely used 
gridded data sets for their ability to represent actual weather conditions at eleven locations 
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in Africa and India. The hypothesis that we aimed to test is that gridded or derived climate 
data products can be used as valid surrogates, where ground-based measurements are 
unavailable or incomplete. This study uses four gridded weather data products, AgMERRA, 
CHIRPS, NASA Power, and TAMSAT, in various regions of Africa and India mainly focuses on 
answering three major questions. These include how well-gridded data sets capture the 
within and between the year variability in precipitation in different eco-regions, whether the 
accuracy of different data sets can be improved by the application of bias correction 
technique, and how useful these data sets are in simulating the growth and performance of 
different crops and cropping systems using system simulation model APSIM (Agricultural 
Production Systems Simulator) that uses daily climate parameters. 

2. Methodology 
The methodology adopted is aimed at better understanding the similarities and differences 
in the amount and distribution of rainfall from various gridded data sets and between the 
gridded data sets and observed station data. The rainfall from gridded data sets was initially 
compared with the observed data recorded at one of the locations that fall within the grid 
before and after bias correction of gridded data. This was followed by an evaluation of how 
these differences between gridded and observed data manifest in assessing the impacts of 
climate on the performance of agricultural systems. 

2.1 Study locations 

We have selected 11 dryland locations representing semi-arid and sub-humid dryland 
environments from India and Africa for this study. These environments are also described as 
water-stressed environments where the performance of agriculture and allied activities is 
highly dependent and sensitive to the amount and distribution of rainfall during the crop 
season. Five of these locations -three from India and two from Senegal in West Africa are 
located in the northern hemisphere and four locations, two each from Zimbabwe and 
Malawi in Southern Africa are in the southern hemisphere while the remaining two locations 
from Kenya in Eastern Africa are located near the equator (Table 1). These locations cover a 
latitudinal range from -20.50 in the south to 19.30 in the north and an altitudinal range from 
14 to 1377 m above mean sea level (AMSL). The annual rainfall at these locations is at least 
500 mm with maximum temperature varying between 250C and 42oC and minimum 
temperature between 11oC and 280C. Except for the two East African locations near the 
equator – Embu and Kambi Ya Mawe which have bimodal rainfall distribution, with rainy 
seasons from October to December and March to May– all other locations have a single 
rainfall season. 
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Table 1:  Geographical locations selected for this study  
Location Country Latitude (0) Longitude (0) Elevation (m) 
Matopos Zimbabwe -20.506 28.435 1377 
Masvingo Zimbabwe -20.064 30.828 1095 
Chitedze Malawi -13.983 33.633 1149 
Kasungu Malawi -13.035 33.484 1048 
Kambi Ya Mawe Kenya -1.860 37.646 1145 
Embu Kenya -0.531 37.451 1293 
Kolda Senegal 12.880 14.970 10 
Kaffrine Senegal 14.105 15.542 14 
Anantapur India 14.682 77.601 349 
Patancheru India 17.529 78.267 543 
Parbhani India 19.258 76.774 417 

 

2.2 Data 

The study used station data collected from local sources as reference data. Observed rainfall 
data for the period from 1983 to 2010 were collected and necessary quality assessments 
were carried out using WMO recommended procedures (WMO, 2019). Gridded data for 
temperature and precipitation for the same period were extracted for the grid cells in which 
selected weather station falls. The four selected gridded data products are AgMERRA 
(AgMIP Modern-Era Retrospective Analysis for Research and Applications) from National 
Aeronautics and Space Administration, Goddard Institute for Space Studies (Ruane et al., 
2015), NASA Power from the NASA Langley Research Center POWER (Prediction Of 
Worldwide Energy Resources) Project (https://power.larc.nasa.gov/), CHIRPS (Climate 
Hazards Group InfraRed Precipitation with Station data) from the Climate Hazards Center, 
University of California, Santa Barbara (Funk et al., 2015) and TAMSAT (Tropical Applications 
of Meteorology using SATellite data and ground-based observations) from the University of 
Reading (Maidment et al. 2017). Table 2 below describes the gridded data used:  

Table 2: Descriptions of the gridded datasets used in the study from 1983 to 2010.  

Data set Resolution Frequency Parameter(s) 

AgMERRA 0.250X0.250 Daily Rainfall, Min and Max 
temperatures, and solar 
radiation 

CHIRPS 0.050X0.050 Daily Rainfall 
NASA 0.50X0.50 Daily Rainfall, Min and Max 

temperatures, and solar 
radiation 

TAMSAT 0.03750X0.03750 Daily Rainfall 
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2.3 Bias Correction 

Precipitation data from gridded products are known to contain systematic biases relative to 
station data (Parkes et al., 2019) leading to either over or underestimation of the frequency 
and/or intensity of the observed precipitation values (Velasquez et al., 2020). An attempt 
was made to minimize these errors and reduce the differences between gridded and 
recorded observations using bias-correction techniques. Several bias correction methods 
from simple linear scaling methods to complex power transform and quantile mapping were 
considered and used to improve the match between observed and derived weather 
parameters. Comparative assessment of several bias correction techniques has indicated 
that simple bias correction methods such as linear scaling are as good as complex methods 
such as quantile mapping (Shrestha et al. 2017). In the present study, we employed the 
linear scaling technique which uses a scaling factor to correct the derived rainfall amounts 
(Hay et al., 2000). The advantage of this method is its simplicity and modest data 
requirements. In this method, 

𝑃!"#$%,'"(( =	𝑃!"#$%	 ×	
𝑃"*+,!",-.%/	!$0,
𝑃!"#$%,!",-.%/	!$0,

 

Where, Pmodel,corr, and Pmodel are corrected and uncorrected monthly rainfall amounts from 
the model; Pobs, monthly mean and Pmodel, monthly mean are the monthly mean observed and modelled 
rainfall amounts. 

2.4 Error metrics 

To assess the significance of differences between the observed and gridded data sets 
statistically, three different error metrics – Mean Absolute Percentage Error (MAPE), 
Coefficient of Determination (R2), and the Normalized Root Mean Square Error (NRMSE) 
were used. Below is the mathematical formulation of the aforementioned error metrics:  

𝑴𝑨𝑷𝑬 =	
1
𝑁
+|	

𝑋"*+,1 − 𝑋!"#$%,1
𝑋"*+,1

2

134

	 | 	× 100% 

Where, Xobs,i is the actual value for the ith year, and Xmodel,i is the model derived value for the 
same year and N is the total number of observations.  

𝑹𝟐 =	

⎣
⎢
⎢
⎡ 𝑁(∑ 𝑋"#$,&𝑋'"()*,&)+

&,- − (∑ 𝑋"#$,&)(𝑋'"()*,&)+
&,-

-{𝑁∑ 𝑋"#$,&. − (∑ 𝑋"#$,&)+
&,-

.}+
&,- {𝑁 ∑ 𝑋'"()*,&. − (∑ 𝑋'"()*,&)+

&,-
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&,- ⎦
⎥
⎥
⎤
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Where, Xobs,i is the actual value for the ith year, and Xmodel,i is the model derived value for the 
same year and N is the total number of observations. 

𝑵𝑹𝑴𝑺𝑬 =	
𝑹𝑴𝑺𝑬
𝑋"*+,!$0,

 

Whereby 

𝑹𝑴𝑺𝑬 =	4
1
𝑁
+(𝑋"*+,1	 −
2

134

𝑋!"#$%,1)5 

Whereby Xobs, mean is the mean of observed data. RMSE is often expressed as a percentage, 
where lower values indicate less variance better match. 

 These parameters were calculated for precipitation data before and after bias correction 
and maize yields simulated with them. 

2.5 Simulation of crop growth and yield 

One of the questions that this study was aimed to address is related to the usefulness of 
gridded data sets in estimating crop growth and performance. For this, we conducted a 
scenario analysis with system simulation model APSIM using maize as a test crop. APSIM is a 
widely used farming system model that simulates crop growth and development as a 
function of soil, climate, and management variables (Holzworth et al. 2014). APSIM has been 
widely tested in Africa and in India to simulate the performance of maize and other crops 
(Akinseye et al. 2017; Whitbread et al. 2010). In this study, APSIM (version 7.8r3867) was 
configured with maize and a standard soil profile with 91 mm PAWC, 0.52% organic carbon 
to 40 cm depth, and 100 cm rooting depth for all locations. The soil is a loamy sand and 
other parameters are set to match this texture. These include curve number to 85, U or first 
stage evaporation to 3.5, falling rate (Cona) or second stage evaporation to 6, diffusivity 
constant to 250, diffusivity slope to 22, and SWCON to 0.7. Simulations were conducted for 
13 seasons at 11 locations and five climate data sets (AgMERRA, CHIRPS, NASA Power, 
TAMSAT, and Observed) in case of African locations and four in case of Indian locations 
(excludes TAMSAT) using a standard set of crop management practices. Maize sowing was 
triggered by a rainfall criterion which is set to 30 mm rainfall over three days during the 
month in which the rainy season starts. The maize cultivar Katumani which is well-calibrated 
to African locations is used with a plant population of 50,000 plants/ha. Other management 
practices used are one tillage with the disc before the sowing window starts and application 
of 40 kg N as urea N at the time of planting. 
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3. Results 
The ability of AgMERRA, CHIRPS, NASA Power, and TAMSAT gridded rainfall data to replicate 
the trends and variability in observed rainfall recorded at a station located within the grid 
was assessed by comparing the gridded data with observed data directly and also by 
calculating three different statistical parameters to evaluate the level of significance of the 
observed differences. The analysis was carried out on all data sets before and after applying 
the bias correction. 

3.1 Annual rainfall and seasonality 

Initially, the data sets were assessed for their ability to capture the amount and distribution 
of rainfall at annual scales. The rainfall at the selected locations varied from about 550 mm 
at Matopos to 1250 mm at Embu and its coefficient of variation (CV) from 21.5% at Chitedze 
to 48.8% at Masvingo. The gridded data sets differed in their accuracy to estimate the 
amount of rainfall at these locations (Table 3). Among the four sources, CHIRPS performed 
slightly better with a ±10% difference between the estimate and measured station value for 
eight of the eleven stations compared to seven stations with AgMERRA and NASA power. In 
the case of TAMSAT, only four of the eight African locations are having rainfall within ±10% 
of the observed value. The variability in gridded annual rainfall, measured as the coefficient 
of variation (CV), for all locations is lower than that of the observed. At Masvingo in 
Zimbabwe, the CV of observed data is almost double to that measured with AgMERRA, 
CHIRPS and NASA Power estimates while for the Kasungu location in Malawi the difference 
is within the range of 1-5%. The estimates from gridded data sets were found to be better 
for locations in India and Senegal with lower altitudes (<1000 m above MSL) compared to 
those in Eastern and Southern Africa with higher altitudes (>1000 m). 

Table 3: Observed station and gridded annual rainfall amounts (mm) and their coefficient 
of variation (% in parenthesis) at target locations from 1983-2010  

Location Station AgMERRA CHIRPS NASA Power  TAMSAT 

Matopos 551 (27.4) 573 (20.7) 540 (23.6) 562 (23.1)  512 (34.6) 
Masvingo 706 (48.8) 600 (26.0) 541 (25.1) 651 (24.9)  489 (37.0) 
Chitedze 1114 (21.5) 877 (18.1) 857 (18.2) 1108 (22.6)  918 (15.5) 
Kasungu 769 (21.9) 841 (20.4) 1058 (15.9) 1058 (20.1)  702 (22.8) 
Kambi Ya Mawe 580 (39.5) 783 (23.1) 567 (48.9) 626 (25.1)  492 (35.7) 
Embu 1249 (26.6) 1125 (22.4) 1026 (23.3) 984 (20.4)  734 (37.6) 
Kolda 1021 (24.2) 1078 (13.0) 1016 (15.8) 915 (22.5)  977 (14.1) 
Kaffrine 587 (25.8) 580 (20.4) 564 (18.1) 638 (23.9)  540 (14.7) 
Anantapur 587 (35.6) 724 (26.1) 575 (25.3) 603 (23.6)  - 
Patancheru 933 (25.0) 963 (24.4) 840 (25.5) 872 (17.8)  - 
Parbhani 976 (28.8) 944 (18.3) 924 (19.2) 976 (19.1)  - 
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Rainfall seasonality or temporal distribution of rainfall was evaluated by comparing monthly 
mean rainfall estimates from different sources with observed station data (Figure 1). Though 
there are differences in the amount of rain received in different months, all data sets 
represented the temporal distribution of rainfall through the year fairly well. Except for the 
two Kenya locations, Kambi Ya Mawe and Embu which experience bi-modal rainfall 
distribution, all other locations have uni-modal rainfall distribution. In the case of Southern 
African locations from Zimbabwe and Malawi, the rainy season starts in November and ends 
in March and for locations in India and Senegal, the rainy season starts in June and ends in 
September. At Kambi Ya Mawe and Embu, the first season also known as the long rain (LR) 
season starts in March and ends in May and the second season, or short rain (SR) season 
starts is from October to December. The rest of our analysis is focused on characterizing 
rainfall during the rainy season which is important for agricultural purposes.  

 

Figure 1: Distribution of average monthly rainfall (mm) estimates from different sources 
and observed data at study locations. 
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3.2 Crop seasonal rainfall  

The duration and period of occurrence of the rainy season are different for different 
locations. The rainy season for the five locations in India and Senegal is of four-month 
duration from June to September. The four locations in Southern Africa experience a five-
month-long rainy season starting from November while the two locations near the equator 
in Eastern Africa have two short seasons of three months each, one starting in March and 
the other in October. Hence, the analysis was done on rainfall totals of 13 seasons which are 
referred to as locations.  

Seasonal rainfall amounts varied from about 209 mm during the LR season at Kambi Ya 
Mawe to about 1000 mm at Chitedze. The differences between the observed and gridded 
estimates of seasonal rainfall amounts are very similar to those found with annual rainfall 
(Table 3). This is expected since more than 80% of the annual rainfall occurs during the rainy 
season. CHIRPS, AgMERRA and NASA Power estimates were found to be better compared to 
the TAMSAT estimates by differing with observed rainfall by ±50 mm or ±10% for more than 
50% of the locations. Major differences were observed at Chitedze and Embu locations 
where the difference between various estimates and observed is more than 100 mm or 
±20%. Overall, the observed seasonal mean rainfall of 13 locations (582 mm) was 
overestimated by 1.0% by AgMERRA and underestimated by 7.3%, 4.2%, and 17.9% by 
CHIRPS, NASA Power, and TAMSAT data sets. Among the locations, the difference between 
the estimated and observed rainfall was found to be smaller for locations at a lower altitude 
(<500 masl) compared to those located at altitudes higher than 1000 masl. 

Table 3: Observed and gridded estimates of mean seasonal rainfall (mm) and its coefficient 
of variation (% in parenthesis) at target locations. 

Location 
Mean seasonal Rainfall (mm) 

Station AgMERRA CHIRPS NASA Power TAMSAT 

Matopos-NDJFM 468 (36.8) 499 (28.1) 479 (29.2) 490 (29.2) 459 (41.6) 
Masvingo-NDJFM 591 (44.4) 515 (34.0) 484 (31.2) 543 (28.3) 441 (45.3) 
Chitdeze-DJFM 1005 (22.6) 741 (18.3) 757 (16.6) 935 (22.3) 778 (13.5) 
Kasungu-NDJFM 725 (20.5) 798 (15.5) 742 (11.2) 975 (20.3) 681 (21.7) 
Kambi Ya Mawe-MAM 209 (55.9) 266 (34.6) 209 (47.8) 228 (31.3) 208 (42.0) 
Kambi Ya Mawe-OND 281 (45.5) 407 (35.6) 281 (66.3) 270 (42.1) 217 (66.3) 
Embu-MAM 572 (35.4) 525 (25.6) 469 (28.5) 376 (29.5) 432 (44.2) 
Embu-OND 495 (39.4) 396 (38.0) 418 (38.2) 344 (37.9) 211 (72.8) 
Kolda-JJAS 920 (22.5) 960 (13.3) 924 (15.7) 826 (22.5) 866 (14.5) 
Kaffrine-JJAS 534 (28.2) 522 (19.9) 520 (18.1) 586 (24.8) 471 (15.0) 
Anantapur-JJAS 379 (52.9) 351 (38.5) 338 (33.3) 371 (33.9) - 
Patancheru-JJAS 709 (30.8) 771 (29.2) 642 (31.9) 665 (19.4) - 
Parbhani-JJAS 795 (30.9) 799 (19.4) 789 (20.3) 711 (18.1) - 
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Note: Letters following the location name are the months of the rainy season and seasonal rainfall is the sum of 
rainfall during these months. In the case of locations in Southern Africa, seasonal rainfall is computed by adding 
the previous year's November and December rainfall and current year January to March rainfall. The locations in 
Kenya have two seasons. 

Major differences were observed in the variability of seasonal rainfall. The CV of seasonal 
rainfall estimates from different sources except for TAMSAT was found to be lower 
compared to that with the observed data. In the case of TAMSAT, CV was found to be higher 
for six of the 10 African locations and the values are very high for rainfall during the SR 
season at Embu (73%) and Kambi Ya Mawe (66%). The observed all location mean maximum 
station rainfall (1036 mm) is higher than the AgMERRA, CHIRPS, NASA Power, and TAMSAT 
gridded estimates by 7.3%, 10.8%, 5.4%, and 16.4%, respectively (Figure 2). NASA Power and 
AgMERRA provided better estimates of maximum rainfall with an error of less than 10% 
compared to CHIRPS and TAMSAT which deviated by more than 10%. In the case of 
minimum rainfall (209 mm), estimates of TAMSAT and CHIRPS are close to the observed 
with a deviation of 0.4% and 0.1% while AgMERRA, and NASA Power estimates are higher by 
27.3% and 9.4%, respectively. TAMSAT significantly overestimated the lower quartile rainfall 
by 42.9% while other data sets gave a close approximation of less than 10% deviation —
AgMERRA 2.0%, CHIRPS: 4.0%, NASA Power: 9.7%. The upper quartile rainfall is 
approximated fairly well with all the data sets with the highest deviation being 9.8% 
recorded with TAMSAT. On average, the observed maximum rainfall is 5.6 times higher than 
the minimum rainfall. CHIRPS with a ratio of 5.9 is close to the observed while AgMERRA 
with a ratio of 4.2 and NASA power with a ratio of 4.4 underestimated the range. Overall, 
the estimates by CHIRPS and AgMERRA compared better with station data for most 
locations compared to NASA power and TAMSAT 

 

            

Figure 2: Distribution of mean seasonal rainfall of station data and estimates from 
AgMERRA, CHIRPS, and NASA Power (a), and TAMSAT (b). (TAMSAT data compares only 
African locations)  

a) b) 
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3.2.1 Statistical evaluation of gridded data in characterizing rainfall amounts   

Three types of error metrics were used to evaluate the ability of the gridded data sets in 
representing the seasonal rainfall amounts and their variability. The results from the same 
are presented in Appendix A and discussed in the below sections.  

Mean Absolute Percentage Error (MAPE). 

The MAPE values for different data sets used in this study are summarized in Table A1, A2, 
A3, and A4. We considered the MAPE value of less than 20% between the gridded and 
observed station data as an indicator of a good estimate of the seasonal rainfall amounts. 
AgMERRA with 54% of the locations and CHIRPS with 46% of the locations having MAPE 
values less than 20% performed better compared to NASA Power with 23% locations and 
TAMSAT with 20%. Albeit AgMERRA and CHIRPS data predicted the actual rainfall amount 
with higher accuracy at most locations compared to NASA Power and TAMSAT. NASA Power 
did extremely well in estimating rainfall at Chitedze, which is the wettest station with about 
1000 mm rainfall during the season. The error tended to be low for stations located at lower 
altitudes compared to the ones located at higher altitudes. 

Coefficient of Determination (R-Squared). 

The correlation between observed and AgMERRA and CHIRPS gridded data sets was better 
compared to that with NASA Power and TAMSAT data sets. The R2 values are greater than 
0.5 for 62% of the locations with the AgMERRA dataset and 54% of the locations with the 
CHIRPS dataset. The best relationship with an R2 of 0.85 was found between the observed 
and AgMERRA estimates for Anantapur, having a mean seasonal rainfall of 379 mm, and the 
estimates correlated poorly with an R2 of 0.14 for Kaffrine with seasonal rainfall of 534 mm. 
Similarly, the CHIRPS dataset showed a strong correlation with an R2 of 0.79 for Embu during 
SR season with a mean rainfall of 396 mm and correlated poorly with an R2 of 0.29 for Kolda 
having a mean seasonal rainfall of 920 mm. Both AgMERRA and CHIRPS data sets recorded 
better R2 values for the locations with a seasonal mean rainfall of less than 600 mm than 
those with more than 600 mm. Only 33% of the seasons in the TAMSAT dataset and 23% of 
the seasons in the NASA Power dataset had R2 values greater than 0.5.  

Normalized Root Mean Square Error (NRMSE). 

We considered the NRMSE value of less than 0.2 as an indicator for better agreement 
between the gridded and observed data with fewer error residuals. All estimates performed 
poorly when this criterion is applied (Appendix A). NASA power performed relatively better 
with NRMSE values of less than 0.2 for 38% of the locations and less than 0.4 for 85% of the 
locations. The next best was the AgMERRA estimates with 15% of the locations having less 
than 0.2 and 85% of the seasons having less than 0.4 NRMSE values. No major difference 
was observed between CHIRPS and TAMSAT with only one location (<10% of the locations) 
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recording an NRMSE value of less than 0.2 and about 60% of the locations recording less 
than 0.4.  

3.2.2 Gridded data Performance in Characterizing Rainfall Frequencies 

The rainfall frequency or the number of rainy days and its variability is a good indicator of 
the distribution of rainfall wet and dry spells during a season. Rainy days are computed by 
counting the number of days on which daily rainfall amount is equivalent to or more than 2 
mm. In general, the gridded data sets overestimated the number of rainy days compared to 
the actual number of rainy days recorded at the station (Figure 4). Across all stations, the 
average number of rainy days recorded is 37.6 whereas the predicted number of rain days 
varied from 40.5 with CHIRPS to 62.8 with NASA Power. With an estimate of 41.2 rainy days, 
TAMSAT is very close to CHIRPS estimate while AgMERRA is slightly higher with 48.2 days. 
Hence, both CHIRPS and TAMSAT gave better estimates of the number of rainy days with a 
deviation of less than 10% while AgMERRA overestimated them by 28% and NASA Power by 
67%.  

 

Figure 4: Number of rain days in a season recorded at the station and those estimated by 
AgMERRA, CHIRPS, NASA Power, and TAMSAT data sets 

However, major differences were observed at the individual station level (Figure 4). For 
example, at Kasungu the number of rainy days was overestimated by more than 50% by all 
data sets with the biggest difference of more than 100% was observed with NASA Power. 
The best performing data sets of CHIRPS and AgMERRA showed different trends. While 
AgMERRA overestimated the rainy days by 25-78% for all stations except for Chitedze, the 
CHIRPS dataset underestimated the rainy days for six seasons and overestimated for seven 
seasons. NASA Power overestimated the rainy days for all seasons and the overestimate 
varied from 145% at Kafrine to 10% at Parbhani. TAMSAT overestimated the rainy days for 
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five of the ten locations and underestimated for the remaining five locations. Both CHIRPS 
and TAMSAT underestimated the rainy days during both LR and SR seasons at Kampi Ya 
Mawe and Embu, which are located at the equator.  

3.2.3 Probability of Exceedance in Seasonal Rainfall 

The ability of the gridded data sets in capturing the uncertainty associated with seasonal 
rainfall was evaluated by constructing and comparing the probability of exceedance charts. 
For this, the locations are grouped into three depending on the amount of rainfall received 
during the season. The first group included locations with <500 mm rainfall, second group 
locations with > 500mm <750mm, and the third one include stations with >750 mm rainfall. 
The results below describe the trends for one of the locations within the group but the same 
applies to all locations in the group. The selected locations to represent different groups are 
Embu-OND for locations with less than 500mm, Kasungu for the group with > 500mm 
<750mm, and Chitdeze for the group with >750 mm rainfall during the season.  

Locations with mean seasonal rainfall < 500 mm 

The probability distribution of seasonal rainfall estimates from the gridded and observed 
station data are presented in figure 5. The charts indicate that the probability of getting a 
certain amount of rainfall is always lower with gridded data compared to that with observed 
data. For example, the probability to get 400 mm rainfall at this location is 10% with 
TAMSAT, 23% with NASA Power, and 45% with CHIRPS and AgMERRA data sets compared to 
68% with observed data. The distribution of rainfall estimates from AgMERRA and CHIRPS 
data sets is very similar while the distribution of TAMSAT estimates is very different 
compared to the other data sets. 

 

Figure 5: Probability of exceedance of seasonal rainfall estimates by AgMERRA, CHIPRS, 
NASA Power and TAMSAT for locations with less than 500 mm along with observed station 
data.  
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Locations with mean seasonal rainfall > 500 and < 750 mm 

The probability distribution of mean seasonal rainfall at locations with >500 mm and <750 
mm rainfall is very different compared to the <500 mm seasonal rainfall locations. The 
probability to get a certain amount of seasonal rainfall is higher with NASA power and low 
with TAMSAT estimates (Figure 6). The other two data sets, AgMERRA and CHIRPS have 
trends very similar to the observed data up to 700 mm beyond which AgMERRA estimates 
showed higher probability compared to observed and CHIRPS estimates.  

 

Figure 6: Probability of exceedance of seasonal rainfall estimates by AgMERRA, CHIRPS, 
NASA Power, and TAMSAT data sets for locations with >500 and <750 mm rainfall along 
with observed station data. 

Locations with mean seasonal rainfall >750 mm 

The probability distribution of rainfall in this group of locations is somewhat similar to the 
<500 mm group with observed station data showing higher probabilities (Figure 7). 
However, the trend with NASA Power estimates was found to be very close to the observed 
dataset while the remaining three are very similar but significantly different from the 
observed. For example, the probability to get 750 mm rainfall at these locations is 52% with 
AgMERRA, 61% with CHIRPS, and 70% with TAMSAT compared to 89% with observed and 
NASA Power data sets. Though NASA Power and observed data sets have similar trends up 
to 900 mm, NASA Power underestimated the rainfall between 900 and 1200 mm. According 
to the trends, the probability to get 1200 mm rainfall with NASA Power is 25% which is half 
of what the observed dataset is indicating. The highest amount of rainfall recorded is 1500 
mm which is also the estimate by NASA Power. However, the maximum amount of rainfall in 
the AgMERRA, CHIRPS, and TAMSAT estimates is close to 1000 mm. 
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Figure 7: Probability of exceedance of mean seasonal rainfall estimates by AgMERRA, 
CHIPRS, NASA Power, and TAMSAT data sets for locations with more than 750 mm along 
with observed station data. 

3.3 Impact of Bias Correction on Gridded Data 

Considering the significant differences between observed and gridded data sets, efforts 
were made to explore the possibility to reduce the errors and improve the match between 
observed and gridded data sets using the bias correction approach. While several bias 
correction techniques are available, we used the simple linear scaling technique which is 
extensively used to correct the biases in the climate predictions by General Circulation 
Models (GCM). 

3.3.1 Rainfall distribution after bias correction 

The seasonal rainfall amounts from gridded data improved significantly and matched well 
with observed data after bias correction (Figure 8). The mean, minimum, maximum, lower, 
and upper quartile values of seasonal rainfall values from all gridded data sets matched well 
with the observed data after bias correction.  

 

a) b) 
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Figure 8: Comparison of box-plot distributions of observed and AgMERRA, CHIRPS, and 
NASA Power (a), and observed and TAMSAT gridded estimates (b) after bias correction. 
TAMSAT values compare only African locations. 

The improved match between the observed and gridded data sets is also reflected in the 
various statistical indices computed. After bias correction, the number of locations with less 
than 20% MAPE values increased to 69% with both AgMERRA and CHIRPS estimates —a 
significant improvement compared to 54% and 46% before bias correction. Similar 
improvements were also observed with NASA Power from 23% to 38% and with TAMSAT 
from 20% to 30%. Overall, the number of locations with less than 20% MAPE increased by 
16% with bias correction. 

However, the coefficient of determination (R2) has shown very little improvement with 
AgMERRA and NASA Power data sets and deteriorated marginally with CHIRPS and TAMSAT 
data sets with bias correction (Figure 9). The number of seasons with R2 value greater than 
0.5 increased from 8 to 9 or from 62 to 69% with AgMERRA and from 3 to 4 or 23 to 31% 
with NASA Power data sets after bias correction while the same was declined from 7 to 6 in 
case of CHIRPS and from 3 to 2 in case of TAMSAT. 

The average difference in the NRMSE values between the observed and gridded data sets 
has shown a small decline in the error residuals with bias correction (Appendix A). The 
biggest improvement was observed with estimates by AgMERRA which recorded an increase 
in the number of locations with an NRMSE value of less than 0.2 from 2 to 6 or from 15 to 
46%. With CHIRPS, NASA Power and TAMSAT data set a marginal improvement of about 8% 
was observed over the uncorrected data. The NRMSE values for all seasons with the 
AgMERRA dataset are below 0.4. The same is true with the CHIRPS dataset except for the 
two seasons at Kambi Ya Mawe location in Kenya.  

3.3.2 Rainfall frequencies after bias correction 

Since the linear scaling method adjusts the daily rainfall by a factor, any changes to the 
number of rainy days are due to the change in daily rainfall amount after the correction. The 
daily rainfall amount increases when a correction factor of more than one is used and 
decreases if the correction factor is less than one. In general, no major change in the 
number of rain days (days with ≥2 mm) was noted in any of the gridded data sets with bias 
correction.  
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Figure 10: Number of rain days in a season recorded at the station and those estimated by 
AgMERRA, CHIRPS, NASA Power, and TAMSAT data sets after bias correction. 

3.3.3 Probability of exceedance in seasonal rainfall after bias correction 

Probability of exceedance charts were compared to assess the changes in the distribution of 
frequency of occurring different rainfall amounts after bias correction. Significant 
improvement was observed in the frequency distribution of seasonal rainfall estimates by 
AgMERRA, CHIRPS and NASA Power gridded data sets for locations with less than 500 mm 
rainfall and matched well with the trends from observed station data (Figure 11). All the 
three data sets estimated fairly well the upper and lower limits and also the distribution. 
Though improvement was also observed with TAMSAT estimates, it underestimated the 
lower and overestimated the upper end values. While the range of seasonal rainfall varied 
from about 200 to 1100 mm with other data sets including observed station data, in case of 
TAMSAT it varied from about 50 to 1600 mm. The TAMSAT trend matched better with the 
observed trend between 400 and 980 mm after bias correction. Overall, there is a significant 
improvement in the probability distribution of rainfall which matched well with the 
observed trend after bias correction for locations with a seasonal rainfall amount of below 
500 mm.
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Figure 11: Probability of exceedance of bias-corrected seasonal rainfall estimates by AgMERRA, 
CHIPRS, NASA Power, and TAMSAT for locations with less than 500 mm 

For the locations with mean seasonal rainfall of >500 and <750 mm, the probability distribution of 
seasonal rainfall from all gridded data sets matched well with the observed distribution after bias 
correction (Figure 12). Significant improvement was observed in the case of NASA Power which 
overestimated and TAMSAT which underestimated the seasonal rainfall before bias correction.  

 

Figure 12: Probability of exceedance of bias-corrected seasonal rainfall estimates by AgMERRA, 
CHIPRS, NASA Power, and TAMSAT for locations with >500 and <750 mm. 

Significant improvement was also observed in the probability distribution of seasonal rainfall at the 
locations having >750 mm with bias correction (Figure 13). Before bias correction, all data sets 
except for NASA power underestimated the probability of getting rainfall. While the data sets 
matched with the observed in the overall trend, some differences were observed in the estimates of 
lower and upper limits. The observed minimum rainfall is lower compared to the estimate by all 
gridded data sets. The observed maximum rainfall is similar to that estimated by NASA Power and 
AgMERRA but higher than that estimated by CHIRPS and TAMSAT. 
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Figure 13: Probability of exceedance of bias-corrected seasonal rainfall estimates by AgMERRA, 
CHIPRS, NASA Power, and TAMSAT for locations with >750 mm rainfall. 

3.4 Impact of Gridded Data on Crop Productivity 

Considering the differences between the gridded and observed data sets in estimating the amount 
of rainfall and the number of rainy days, an assessment was carried out to examine how these 
differences translate into differences in crop growth and yield. In this assessment, we used a soil 
whose plant available water content and organic matter content were set to represent the 
conditions that are common to the majority of the smallholder farms in these areas. The profile used 
in the simulations has a plant available water capacity of 90 mm to one-meter depth and organic 
carbon content of 0.5% in the top layer. One tillage operation was preceded the sowing operation 
and 40 kg N was applied at the time of sowing. Simulations were carried out with all the climate data 
sets with and without bias correction and crop yields were analyzed to capture the differences. We 
used maize as a test crop because of its sensitivity to soil moisture stress and also because of its 
widespread cultivation in almost all the target locations. 

3.4.1 Simulated maize yield with different climate data sets 

The mean yields were slightly overestimated when simulated with AgMERRA, CHIRPS, and TAMSAT 
data sets and underestimated with NASA Power data compared to the 1964 kg/ha yield simulated 
with observed station data (Figure 14). Simulated yields are higher by 12% with TAMSAT, 11.8% with 
AgMERRA, and 5% with CHIRPS while the yields are lower by 18% with NASA Power compared to 
those obtained with observed data. The difference between the mean yield with AgMERRA and 
observed data was found to be >± 250 kg/ha for 54% of the locations and >± 500 kg/ha for 39% of 
the locations. In the case of CHIRPS, the locations with a difference of >± 250 kg/ha are 23% and 
those with >± 500 kg/ha are 46%. Among the locations, the highest difference of about 1300 kg/ha 
was observed at Embu during the LR season, and the lowest difference of <100 kg/ha was observed 
at Matopos with both AgMERRA and CHIRPS datasets. Though the difference in grain yield simulated 
with AgMERRA and observed climate data for Embu is very high, the difference in the mean season 
rainfall is less than 50 mm. This is attributed to the lower variability in gridded rainfall compared to 
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the observed rainfall (Table 3). The lower difference in the yield at Matopos is in order with the 
difference in seasonal rainfall and its variability at this location. The erratic nature of rainfall 
distribution in NASA Power contributed significantly to the variability in crop productivity including 
the complete failure of the crop in some seasons. 

The box plots indicate a better match between CHIRPS and station data compared to AgMERRA 
which has higher mode and upper and lower quartile values (Figure 14). The lower and upper 
quartile mean yields are overestimated by 3.0% and 8.9% with CHIRPS climate input and by 15.9% 
and 16.0% with AgMERRA climate input. NASA Power underestimated the lower quartile mean yield 
by 8.9% but the upper quartile mean yield with a deviation of 0.05% is very similar to that simulated 
with observed. TAMSAT underestimated the lower quartile mean yield by 5.6% while overestimated 
the upper quartile mean yield by 10.1%. Thus, the percentage deviation in minimum, maximum, 
lower and upper quartile yields is less than 20% with the gridded climate data except for minimum 
and lower quartile yields with NASA Power, which are higher by more than 20%. With CHIRPS, the 
percentage deviation is lower in the minimum and lower quartile yields but higher in the upper 
quartile and maximum yield. This implies that low yields simulated with CHIRPS had lower dispersion 
as compared to that with the observed climate. Yields simulated with AgMERRA climate input had a 
higher deviation in the minimum and lower quartile yields than in the maximum and upper quartile 
yields indicating higher dispersion in the lower yields compared to that in higher yields. In the case 
of TAMSAT data, both smaller and larger yield values had similar dispersion and in the case of NASA 
Power greater dispersion was observed in the lower yields.  

 

Figure 14: Box-plot distribution of simulated maize yields with observed, Ag-MERRA, CHIRPS, and 
NASA Power gridded climate data for all locations (a) and with TAMSAT for African locations (b). 

3.4.2 Statistical assessment of differences in maize yield 

Mean Absolute Percentage Error (MAPE). 

The poor performance of gridded data sets is evident with MAPE values often exceeding 100% at 
many locations (Appendix B). The MAPE of simulated maize yields is less than 20% with AgMERRA, 
CHIRPS, and NASA Power data sets for 13% of the locations and with TAMSAT for 33% of the 
locations. MAPE values of less than 30% were observed for 54% locations with AgMERRA, 31% 
locations with CHIRPS, and NASA Power, and 50% locations with TAMSAT.  

 

a) b) 
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Coefficient of determination (R-Squared). 

Maize yields simulated with gridded climate data sets correlated very poorly with those simulated 
using observed data (Appendix B). Only at Kasungu, the R2 value exceeded 0.5 with AgMERRA, 
CHIRPS, and TAMSAT climate estimates. The R2 is always less than 0.5 with yields simulated for other 
locations. Yields simulated with NASA Power data are very poorly correlated with observed data for 
all the locations. 

Normalized root mean squared error (NRMSE) 

The NRMSE values of maize yields ranged from less than 0.1 to more than 1.0 at different locations 
with different climate data sets (Appendix B). Values of less than 0.3 were observed for only 30% of 
the locations when maize yields were simulated with AgMERRA, CHIRPS, NASA Power, and TAMSAT 
climate data products. Among the locations, higher values were observed for drier locations of 
Anantapur, Matopos, and LR and SR seasons at Kampi Ya Mawe. NRMSE values of more than one 
were found for Anantapur with AgMERRA and CHIRPS data sets and Matopos and Kambi Ya Mawe 
with NASA Power, implying a large deviation from the yield simulated with observed data. 

Overall, significant differences were observed in the maize yields simulated with gridded climate 
data and those simulated with station recorded data. The yields are overestimated by most gridded 
data sets for most locations. This is partly due to the differences in the amount of rainfall received 
during the crop season and partly due to the differences in rainfall distribution as reflected by the 
differences number of rainy days which are higher with gridded data. 

3.4.3 Effect of bias correction 

Maize yields simulated with bias-corrected climate data sets has shown a small reduction in the 
dispersion (Figure 16) and are closer to the yields simulated with observed climate. The difference 
between the mean yields simulated with observed data and bias-corrected AgMERRA data was 
reduced to 4.2% from 11.8% before bias correction. In the other three data sets i.e. CHIRPS, NASA, 
and TAMSAT, the improvement was less than one percent. The bias-corrected gridded climate data 
sets overestimated both maximum and upper quartile yields. However, the estimated maximum 
maize yield is 1.0 to 1.5% lower compared to those obtained with uncorrected climate data sets. 
Similarly, a reduction of about 4.0 to 5.0% was observed in the upper quartile values of the yields 
with bias correction. The difference in minimum yields was also reduced by up to 9% when bias-
corrected data was used in the simulations but no improvement was observed in the lower quartile 
yields. The results indicate that bias correction has helped in reducing the errors in the upper 
quartile values compared to the yields in the lower quartile. 

 

a) b) 
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Figure 16: Box-plot distributions of maize yields simulated with observed and bias-corrected Ag-
MERRA, CHIRPS, and NASA Power for all locations (a) and with TAMSAT for African locations (b). 

The effect of bias correction on simulated yields was also evaluated using the three statistical indices 
that were used for maize yields simulated with bias uncorrected data. 

Mean Absolute Percentage Error (MAPE). 

Though most MAPE values are more than 20%, the bias correction has contributed positively to the 
reduction in the errors. The number of locations with a MAPE value of less than 20% increased from 
13% to 31% of the locations with AgMERRA and from 13% to 23% with CHIRPS. No improvement was 
observed with TAMSAT while a small reduction was observed with NASA Power after bias correction. 

Coefficient of Determination (R-Squared). 

No improvement was observed in the correlation of maize yields simulated with observed data and 
bias-corrected gridded data sets. Most R2 values indicate a poor correlation with values ranging 
between 0.1 and 0.4. Higher correlations were observed only for Kasungu and Chitedze locations 
which are also high rainfall locations.  

Normalized Root Mean Square Error (NRMSE). 

The NRMSE values computed for yields simulated with bias-corrected gridded data are lower 
compared to those obtained with simulations using uncorrected data. About 31% of the locations 
have an NRMSE value of less than 0.3 when yields were simulated with bias-corrected AgMERRA, 
CHIRPS, and NASA Power data sets compared to 23% before the correction. In the case of TAMSAT, 
the number of locations with less than 0.3 NRMSE value increased to 40% from 30% before 
correction. The number of observations with NRMSE values greater than one was also reduced with 
bias correction of gridded climate data.  

4. Discussion 
Good quality precipitation data is not only crucial to understand the trends and variability in the 
climatic conditions but is also important for efficient management of agriculture, water, and other 
natural resources which are highly sensitive to climate variability (Sarojini et al., 2016). Though, 
gauge measurements provide high-quality estimates of rainfall and other weather parameters, their 
availability and access to available data is a major constraint especially in the sparsely populated 
areas such as drylands. As an alternative to gauge data, various large-scale climate data sets with 
varying Spatio-temporal resolutions have been developed which help in overcoming the above 
constraints by providing more homogenous spatial and temporal coverage for most areas across the 
globe (Kidd and Levizzani, 2011; Xie et al., 2003). Some of these data sets are now operationally 
available and are increasingly used in agriculture and related fields. This study made a 
comprehensive assessment of four commonly used gridded precipitation estimates and quantified 
the discrepancies in the precipitation estimates at seasonal timescale. The four data sets evaluated 
are AgMERRA, CHIRPS, NASA Power, and TAMSAT. These data sets vary in their spatial resolution 
from 0.040 X 0.040 with TAMSAT to 0.50 X 0.50 with NASA Power. A total of 11 locations with good 
quality historical observations lying between the latitudes -20.5060 in the south and 19.2580 in the 
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north were selected for this study. The focus is on trends and variability in crop season rainfall which 
varied from about 200 to 1000 mm. 

The comparison of gridded rainfall amounts with observed station level data has yielded mixed 
results. AgMERRA and CHIRPS estimates have matched better with the observed rainfall compared 
to NASA Power and TAMSAT. However, large deviations ranging from -250 to 250 mm were 
observed for some locations. Similar differences were also observed between observed and gridded 
data sets for seasonal rainfall. All data sets predicted the monthly rainfall distribution and 
seasonality fairly well. Several studies have noted such discrepancies between the observed values 
and gridded estimates (Sun et al., 2018). This is attributed to several factors that included the 
reanalysis method combining observations and a numerical model (Bandhopadhyay et al., 2018), 
spatial and temporal distribution and density of the observed data (Taylor, 2001), time of the year 
with higher differences during JJA and MAM seasons compared to other seasons (Sun et al., 2018) 
and local orographic influences (Prakash et al., 2015). Among the four datasets compared in this 
study, the deviations from observed were found to be highest with TAMSAT which is based on high-
resolution thermal-infrared observations and the disaggregation of 10 and 5 days rainfall estimates 
to a daily time-step using daily cold cloud duration. Similar discrepancies with TAMSAT were also 
noted by Maidment et al., (2017) in their assessment of daily estimates using ground-based 
observations from Mozambique, Niger, Nigeria, Uganda, and Zambia. Our assessment further 
indicates that the match between observed and gridded data sets is better for locations with lower 
elevations and poor for locations with higher elevations and also for the locations near the equator. 
A review of Global Precipitation Data Sets by Sun et al. (2018) has also highlighted the difficulties in 
estimating the annual and seasonal rainfall amounts in complex mountain areas, northern Africa, 
and some high-latitude regions due to differences in the number and spatial coverage of surface 
stations, the satellite algorithms and the data assimilation models used in various estimates.  

Another important parameter that we evaluated is the rainfall frequency or the number of rainy 
days which is extremely important for assessing the agricultural impacts of climate. Major 
differences were observed between the rainy days recorded at the station and those estimated by 
various gridded data sets. Among the data sets, rainy days estimated by NASA Power are always 
higher and for some locations, they are more than double the recorded observations. At the daily 
scale, gridded data sets overestimated the low rainfall events (with <5 mm/day) and underestimated 
the high rainfall events with more than 20 mm/day (Ayoub et al., 2020). This lead to more number of 
rainy days and better distribution of rain during the season. This is one potential limitation in using 
the gridded climate data sets for estimating the growth and performance of different crops because 
of its influence in altering the magnitude and distribution of stress that the crops experience. This 
discrepancy is less with AgMERRA and CHIRPS datasets compared to NASA Power and TAMSAT. This 
is more likely due to the smoothening effect of the interpolating technique used in converting the 
station observations to gridded data sets that cover the entire land area (Hegerl et al., 2015; Sun, 
Miao, et al., 2014). Generally, interpolation smooths the extreme values and affects long-term 
trends, especially in regions with limited observations. 

Bias correction using a simple linear scaling method, a technique extensively used to correct the 
systematic biases in the climate predictions by General Circulation Models, has improved the match 
between the observed and corrected rainfall amounts. After the bias correction, the annual and 
seasonal rainfall amounts were found to be very similar to the observed values (Li, W., et al., 2019; 
Yeggina, S., et al., 2020) However, statistical properties of the corrected data have shown marginal 
improvement. In this study, we used three statistics MAPE, R2, and NRMSE to quantify the variability 
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between the datasets and observed. MAPE is a measure of prediction accuracy, R2 indicates how 
well-observed outcomes are replicated by the model, and NRMSE which aggregates the magnitudes 
of the errors into a single measure (Shrestha M., et al., 2017). All the three statistical indices have 
indicated that AgMERRA and CHIRPS estimates have lower errors compared to those of NASA Power 
and TAMSAT, before bias correction. These indices have improved marginally, by about 5-10% after 
bias correction.  

The probability of exceedance charts is extensively used to assess the risks and opportunities 
associated with rainfall in agriculture and other sectors (Nathan, R., et al., 2016) The results from the 
analysis of the probability of exceedance to assess the discrepancy between the observed and 
gridded data sets have indicated major differences in the way gridded data compared with observed 
data in low, medium and high rainfall locations. While the gridded data underestimated the 
probability of occurrence of different rainfall amounts in low and high rainfall locations, a fairly good 
match was observed in the case of medium rainfall locations. These over and underestimates in the 
probability to get rainfall alters the risk profile of the locations with a significant impact on decision 
making especially for locations having a mean seasonal rainfall of less than 500 mm. In these 
locations, the climate is the main source of risk, and risk-averse farmers tend to opt for low-risk 
farming practices which may not help in capitalizing the opportunities offered by good seasons. Bias 
correction of gridded data sets has reduced the errors and made the probability distribution charts 
of gridded data sets comparable with observed data. Similar results were reported in the study by 
Luo, M. et al. (2018) and thus evidenced the benefits of bias correction of gridded products.  

Though fairly good assessment of the amount of rainfall and its frequency distribution is possible 
with bias-corrected gridded climate data products at a seasonal scale, the mismatch in the number 
of rainy days and distribution of rainfall at daily time steps is expected to affect the accuracy of crop 
models in predicting crop growth and yields. This was assessed by simulating maize yields with 
APSIM using both bias-corrected and uncorrected climate data sets. The results indicated that the 
yields simulated with gridded climate data products tend to be higher compared to the ones 
simulated with observed data as it has been found by Van Wart, J., et al. (2013) and Mourtzinis, S., 
et al. (2016). Though the differences in the mean yields simulated by observed and gridded climate 
data are less than 20%, the statistical indices indicate a very poor relationship between them. A 
better correlation was observed for Kasungu and Chitedze locations which are high rainfall locations. 
This indicates that the poor relations in the yields are mainly due to the differences in the amount 
and distribution of rainfall which in the case of gridded data sets is more uniformly distributed 
compared to the observed. Bias correction has not yielded any major change in the trends.  

Our work has established that discrepancies exist in the amount and distribution of rainfall 
estimated by different products and those observed at the station. Several studies indicate that it is 
difficult to attribute these differences to any specific factor (Gampe and Walton and Hall 2018; Beck 
et al. 2018). This may be partly because gridded climate product generation is a complex process 
and there are limitations in understanding the same. Hence, these uncertainties remain until new 
knowledge emerges. Though there is no single product that is superior to others, the AgMERRA and 
CHIRPS data sets were found to be giving better estimates compared to NASA Power and TAMSAT 
data sets. It is more appropriate to assess these products based on the specific application for which 
the data set is used since different applications need different levels of accuracy (Quintero et al. 
2016; Beck et al. 2017; Laiti et al. 2018).  



 

26 
 

5. Conclusions 
This study seeks to explore and highlight the differences across gridded climate data products and 
understand how they influence the performance of climate-sensitive systems such as agriculture. 
This research assumes importance because, in the absence of availability of good quality gauge data, 
researchers and extension agents are increasingly using these data sets to assess the impacts of 
climate variability and change on agricultural systems by overlooking their potentials and limitations. 
Available gridded data sets are developed using the state of the art models and algorithms and by 
integrating ground observations and satellite recorded imageries in multiple wavelengths. The 
advantages of these estimates include adequate spatial and temporal resolution with coverage 
extending to un-gauged regions. The disadvantages are that these are not direct measurements and 
are subject to errors especially in areas where rainfall is controlled by the local orography and 
inability of IR retrievals to capture light precipitation events.  

The gridded data sets used in this study have shown significant differences in estimating climatic 
conditions at different locations. All the data sets predicted the dry and wet periods well at all 
locations but differed in estimating the amount and frequency of rainfall. AgMERRA and CHIRPS 
performed better in estimating rainfall while CHIRPS and TAMSAT performed better in estimating 
rainy days. Bias correction helped in reducing the discrepancies in the amount of rainfall but not in 
the rainy days. Among the factors that influenced the reliability of the estimates are latitude and 
elevation of the location and amount of rainfall that the location receives. However, no clear trend is 
observed. Our results show that the gridded data sets should be used carefully after proper 
validation with observed data and after bias correction. There are differences in the ability of these 
products to represent the actual weather conditions. While the seasonal and monthly amounts and 
their probabilities are well replicated by these data sets, there are limitations with the data at a daily 
time step. The use of gridded data sets for applications such as crop growth and performance should 
be done carefully since the distribution of rainfall plays an important role in these assessments. 
Considering the diversity in the products available, a systematic analysis of individual products or 
product components would help in defining location and application-specific benchmarks for 
acceptable performance.
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7. Appendices 

Appendix A: Statistical evaluation of gridded data in characterizing rainfall amounts  

Table A1: Error metric values i.e. MAPE, R2, and NMRE in the seasonal mean rainfall 

between observed station data AgMERRA data set before and after bias correction.  

Location 
AgMERRA before bias correction AgMERRA after bias correction 
MAPE (%) R2 NMRE MAPE (%) R2 NMRE 

Matopos 16.99 0.59 0.21 17.21 0.56 0.21 
Masvingo 22.57 0.42 0.36 28.68 0.57 0.24 
Chitdeze 34.74 0.43 0.30 14.86 0.43 0.17 
Kasungu 14.17 0.51 0.18 12.8 0.49 0.17 
Kambi Ya Mawe-LR 31.74 0.5 0.48 33.4 0.52 0.38 
Kambi Ya Mawe-SR 34.70 0.33 0.63 31.85 0.33 0.38 
Embu-LR 17.41 0.67 0.22 14.51 0.67 0.20 
Embu-SR 26.91 0.76 0.28 14.05 0.76 0.19 
Kolda 10.11 0.64 0.15 9.32 0.63 0.14 
Kaffrine 28.12 0.14 0.33 27.84 0.17 0.33 
Anantapur 19.06 0.85 0.25 17.78 0.86 0.22 
Patancheru 19.36 0.71 0.24 14.84 0.68 0.19 
Parbhan 16.73 0.56 0.20 16.47 0.58 0.20 

  

Table A2: Error metric values i.e. MAPE, R2, and NMRE in the seasonal mean rainfall 

between observed station data CHIRPS data set before and after bias correction.  

Location 
CHIRPS before bias correction CHIRPS after bias correction 

MAPE (%) R2 NMRE MAPE (%) R2 NMRE 
Matopos 15.92 0.67 0.23 19.8 0.47 0.23 
Masvingo 30.70 0.44 0.41 43.62 0.45 0.27 
Chitdeze 34.94 0.42 0.17 13.44 0.45 0.17 
Kasungu 10.67 0.65 0.42 10.38 0.65 0.14 
Kambi Ya Mawe-LR 43.67 0.48 0.48 46.91 0.48 0.41 
Kambi Ya Mawe-SR 69.31 0.39 0.41 66.95 0.39 0.51 
Embu-LR 25.23 0.76 0.43 13.54 0.78 0.17 
Embu-SR 22.63 0.79 0.39 12.7 0.8 0.18 
Kolda 14.39 0.29 0.23 14.47 0.28 0.19 
Kaffrine 11.58 0.57 0.32 11.72 0.56 0.19 
Anantapur 31.43 0.62 0.26 27.59 0.62 0.33 
Patancheru 15.47 0.67 0.21 17.02 0.6 0.20 
Parbhan 17.18 0.44 0.26 16.98 0.45 0.22 
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Table A3: Error metric values i.e. MAPE, R2, and NMRE in the seasonal mean rainfall 

between observed station data NASA Power data set before and after bias correction.  

Location 
NASA Power before bias correction NASA Power after bias correction 

MAPE (%) R2 NMRE MAPE (%) R2 NMRE 
Matopos 18.83 0.5 0.18 16.69 0.64 0.19 
Masvingo 30.84 0.17 0.37 33.93 0.45 0.26 
Chitdeze 16.51 0.49 0.29 14.66 0.49 0.17 
Kasungu 26.66 0.22 0.14 18.60 0.23 0.22 
Kambi Ya Mawe-LR 38.62 0.29 0.41 37.71 0.41 0.42 
Kambi Ya Mawe-SR 37.05 0.28 0.51 35.48 0.27 0.42 
Embu-LR 54.78 0.48 0.26 20.03 0.5 0.25 
Embu-SR 48.95 0.59 0.24 20.77 0.56 0.27 
Kolda 23.04 0.27 0.19 20.13 0.25 0.22 
Kaffrine 27.65 0.14 0.19 26.47 0.14 0.29 
Anantapur 21.01 0.84 0.36 20.43 0.84 0.25 
Patancheru 16.55 0.62 0.19 14.32 0.59 0.21 
Parbhan 21.62 0.43 0.23 17.45 0.46 0.22 

 

Table A4: Error metric values i.e. MAPE, R2, and NMRE in the seasonal mean rainfall 

between observed station data TAMSAT data set before and after bias correction.  

Location 
TAMSAT before bias correction TAMSAT after bias correction 

MAPE (%) R2 NMRE MAPE (%) R2 NMRE 
Matopos 31.8 0.51 0.28 28.33 0.46 0.30 
Masvingo 59.91 0.25 0.47 34.17 0.43 0.26 
Chitdeze 30.69 0.16 0.29 17.71 0.16 0.21 
Kasungu 23.19 0.22 0.24 21.08 0.21 0.23 
Kambi Ya Mawe-LR 37.04 0.43 0.42 37.04 0.45 0.41 
Kambi Ya Mawe-SR 75.75 0.08 0.61 61.46 0.07 0.68 
Embu-LR 52.79 0.63 0.33 30.93 0.65 0.27 
Embu-SR 87.86 0.4 0.65 52.33 0.39 0.56 
Kolda 14.35 0.43 0.18 13.07 0.43 0.17 
Kaffrine 18.04 0.57 0.23 15.23 0.56 0.19 
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Appendix B: Statistical assessment of differences in maize yield  

Table B1: Error metric values i.e. MAPE, R2, and NMRE in the seasonal mean rainfall 

between observed station data AgMERRA data set before and after bias correction.  

Location 
AgMERRA before bias correction AgMERRA after bias correction 
MAPE (%) R2 NMRE MAPE (%) R2 NMRE 

Matopos 61.42 0.25 0.63 58.96 0.25 0.66 
Masvingo 27.64 0.31 0.43 25.37 0.13 0.77 
Chitdeze 29.74 0.26 0.52 23.47 0.33 0.38 
Kasungu 12.61 0.66 0.16 13.69 0.67 0.17 
Kambi Ya Mawe-LR 93.56 0.28 0.70 39.81 0.37 0.50 
Kambi Ya Mawe-SR 41.72 0.18 0.51 46.21 0.42 0.43 
Embu-LR 22.52 0.09 0.32 14.83 0.5 0.22 
Embu-SR 23.82 0.02 0.33 13.68 0.35 0.22 
Kolda 12.33 0.08 0.17 12.41 0.16 0.18 
Kaffrine 21.82 0.03 0.42 25.32 0.16 0.38 
Anantapur 55.5 0.03 1.26 65.08 0.27 0.87 
Patancheru 102.1 0.03 0.10 94.34 0.14 0.47 
Parbhan 49.12 0.22 0.05 52.95 0.17 0.47 

  

Table B2: Error metric values i.e. MAPE, R2, and NMRE in the seasonal mean rainfall 

between observed station data CHIRPS data set before and after bias correction.  

Location 
CHIRPS before bias correction CHIRPS after bias correction 

MAPE (%) R2 NMRE MAPE (%) R2 NMRE 
Matopos 56.47 0.28 0.61 59.33 0.32 0.62 
Masvingo 35.3 0.15 0.47 37.98 0.14 0.65 
Chitdeze 28.25 0.40 0.47 23.14 0.47 0.32 
Kasungu 10.25 0.54 0.16 14.87 0.58 0.18 
Kambi Ya Mawe-LR 38.34 0.10 0.62 34.04 0.36 0.58 
Kambi Ya Mawe-SR 92.61 0.05 0.58 89.77 0.29 0.57 
Embu-LR 90.85 0.01 0.58 20.28 0.14 0.29 
Embu-SR 115.23 0.04 0.58 16.91 0.16 0,25 
Kolda 11.85 0.13 0.18 12.38 0.16 0.18 
Kaffrine 21.4 0.03 0.40 20.25 0.18 0.41 
Anantapur 52.54 0.07 1.03 52.48 0.15 1.13 
Patancheru 88.61 0.01 0.04 78.31 0.15 0.43 
Parbhan 72.53 0.38 0.42 62.90 0.39 0.41 
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Table B3: Error metric values i.e. MAPE, R2, and NMRE in the seasonal mean rainfall 

between observed station data NASA Power data set before and after bias correction.  

Location 
NASA Power before bias correction NASA Power after bias correction 

MAPE (%) R2 NMRE MAPE (%) R2 NMRE 
Matopos 110.25 0.12 1.13 86.23 0.16 1.14 
Masvingo 40.12 0.23 0.5 43.23 0.12 0.63 
Chitdeze 26.79 0.40 0.36 24.04 0.52 0.28 
Kasungu 19.96 0.47 0.22 21.15 0.21 0.28 
Kambi Ya Mawe-LR 112.4 0.01 1.48 102.44 0.11 1.55 
Kambi Ya Mawe-SR 114.2 0.11 1.07 114.35 0.37 1.15 
Embu-LR 43.25 0.01 0.56 27.99 0.34 0.29 
Embu-SR 96.24 0.10 0.58 53.73 0.14 0.37 
Kolda 12.43 0.39 0.15 11.36 0.25 0.16 
Kaffrine 27.44 0.07 0.38 32.34 0.12 0.37 
Anantapur 106.25 0.18 0.84 99.14 0.18 0.87 
Patancheru 47.96 0.01 0.02 47.96 0.12 0.44 
Parbhan 40.24 0.16 0.46 40.24 0.16 0.46 

 

Table B4: Error metric values i.e. MAPE, R2, and NMRE in the seasonal mean rainfall 

between observed station data TAMSAT data set before and after bias correction.  

Location 
TAMSAT before bias correction TAMSAT after bias correction 

MAPE (%) R2 NMRE MAPE (%) R2 NMRE 
Matopos 69.32 0.04 0.78 67.23 0.15 0.70 
Masvingo 116.25 0.10 0.67 58.72 0.11 0.61 
Chitdeze 29.8 0.40 0.51 24.47 0.41 0.33 
Kasungu 13.53 0.52 0.20 14.29 0.6 0.19 
Kambi Ya Mawe-LR 39.15 0.15 0.67 31.90 0.29 0.58 
Kambi Ya Mawe-SR 103.23 0.34 0.49 50.31 0.29 0.46 
Embu-LR 18.75 0.46 0.24 18.84 0.28 0.25 
Embu-SR 51.4 0.17 0.46 49.35 0.2 0.29 
Kolda 11.12 0.13 0.17 12.08 0.17 0.18 
Kaffrine 27.56 0.01 0.41 21.74 0.1 0.38 

 

 

 

 



The CGIAR Research Program on Climate Change, Agriculture and Food 

Security (CCAFS) brings together some of the world’s best researchers 

in agricultural science, development research, climate science and Earth 

system science, to identify and address the most important interactions, 

synergies and tradeoffs between climate change, agriculture and food 

security. For more information, visit us at https://ccafs.cgiar.org/. 

Titles in this series aim to disseminate interim climate change, 

agriculture and food security research and practices and stimulate 

feedback from the scientific community.

CCAFS research is supported by: 

CCAFS is led by:

Science for a food-secure future

Science for a food-secure future


