

Project Information				
Project full title	EuroSea: Improving and Integrating European Ocean Observing and Forecasting Systems for Sustainable use of the Oceans			
Project acronym	EuroSea			
Grant agreement number	862626			
Project start date and duration	1 November 2019, 50 months			
Project website	https://www.eurosea.eu			

Deliverable information	Deliverable information				
Deliverable number	3.2				
Deliverable title	Observing Networks initial Assessment				
Description	Report on assessment of the EuroSea observational (and thematic) networks coordination				
Work Package number	3				
Work Package title	Network Integration and Improvement				
Lead beneficiary	GEOMAR				
Lead authors	Johannes Karstensen, George Petihakis, Vicente Fernandez				
Contributors	Leaders of Tasks 3.1-3.7				
Due date	31 Oct. 2020				
Submission date	30 Oct. 2020				
Comments	All WP3 partners contributed to this deliverable by providing most informative input to the self-assessment questionnaire				

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 862626.

https://doi.org/10.3289/eurosea d3.2

Table of contents

Exe	cutive Summary	1
1.	Introduction	1
2.	Main Objective of this study	3
3.	Assessment of the Networks	4
	3.1. Observational Networks	6
	3.1.1. Internal Organization	6
	Website	6
	Institutions involved (incl. outside EuroSea)	6
	Terms of Reference	8
	Governance structure	9
	Self-assessment on representing of the respective European observing efforts via the network	9
	Linkages to the global observational networks	10
	3.1.2. Observational Network Internal Performance and Targets	11
	Sensor/Instrument/Hardware Best Practices availability	11
	Data Quality assurance (QA) established	11
	Data Quality Control (QC) strategy	12
	Are you considering international data format standards?	12
	Exchange of metadata and data with European data centers	13
	3.1.3. Visibility of the observational network operations	
	Metadata availability	14
	Best Practice Documentation accessibility	
	Network Key Performance Indicators (KPIs)	14
	Data availability on Global Telecommunication System (GTS)	
	Data policy	15
	3.1.4. Coverage and Facilities for observational networks	16
	Primary drivers for the observational activities	
	Drivers for observational plans	
	Dialogue with "Thematic networks"	17
	3.1.5. Future Aspirations of observational networks	17
	Practices in developing future operations	17
	Where do you see the network in 2030?	
	Major challenges and opportunities for the operation of future operations	
	3.1.6. Observational networks in EuroSea	
	Objectives of the Task	19

EureSea

Obser	rvational networks cross cutting activities	21
What	workshops/meetings are scheduled (subject, dates)	21
Comm	non issues with other observational networks (task)	22
3.1.7. Su	ummary Table	23
3.2. Then	natic Networks	24
3.2.1. In ⁻	ternal Organization	24
Webs	ite	<u>2</u> 4
Institu	utions (incl. outside EuroSea)	24
Terms	s of Reference - ToR (provide link)	24
Gover	rnance structure (provide link)	24
Embe	dding the operations into European observing initiatives	24
Embe	dded in global observing thematic initiatives?	25
3.2.2. Ne	etwork Internal Performance, Targets	25
Numb	per of science cases covered by the thematic network and respective documentation	25
Data I	Requirements document (incl. link to the relevant Best Practices link)	25
Consid	dering international standards (when possible)	25
3.2.3. Vi	sibility of the thematic network	26
Link to	o EuroSea observational networks (task 3.1-3.7)	26
Link to	o international observational networks	26
Link to	o international or even global thematic networks (if exists)	27
3.2.4. Co	overage and Facilities	27
Cover	rage of thematic network applications	27
Them	atic network dialogue/exchange with "observational networks"	27
3.2.5. Fu	uture Aspirations	27
Practi	ices in developing future operations	27
Major	r challenges and opportunities for future operations	28
3.2.6. Su	ummary table	28

Executive Summary

This Deliverable serves to present the initial situation, in terms of coordination, of the observation and thematic networks in EuroSea represented in work package 3 (WP3). The networks include the networks represented in EuroGOOS and additional ones. The study is based on a comprehensive questionnaire that was answered by all EuroSea WP3 tasks. In addition, information from the Global Observing Networks of GOOS was considered. An important basis for the questionnaire was the list of "Network Attributes, Commitment and Benefits -What it means to be an OPA network" which was compiled by the Observation coordination group (OCG) of GOOS. This deliverable is linked to the deliverable D3.10 that will repeat the assessment at the end of the EuroSea project to assess the evolution of the coordination over the period of the EuroSea project.

The present study shows that the observation and thematic networks in EuroSea all have highly developed coordination mechanism elements, except for task 3.7 - ASV, which represents a new network to be established. Given the spectrum of coordination themes and envisioned targets significant heterogeneity across the networks is also evident. The coordination of ship-based observations is not fully represented in EuroSea (and thus in EuroGOOS) and ideally this task should have been divided into research vessels and commercial vessels (container ships, ferries) but as it stands currently is dominated by one technology only (Ferrybox). This reflects the situation in EuroGOOS. For the thematic networks it is interesting to note that the observatories that are operated in task 3.8 (Augmented observatories) are not represented in the observational networks (task 3.1-3.7).

The assessment presented in this deliverable has its focus on the status quo. It does not question or analyze the necessity for individuals, institutions and countries to be represented in a network - "Why should individuals, institutions or countries feel a need or a motivation to engage with the networks?". It seems logical that networks are only founded, maintained and developed when individuals see an advantage in their involvement in a network – for themselves, their institution or a country. The "characteristics" of the apparent advantage of contributing to a network is likely of central importance. For example, if the advantage is only that there are no disadvantages (e.g. fines), a further development and improvement of the network is questionable. This important investigation of the motivation of individuals will be part of final assessment prepared in D3.10.

1. Introduction

One component of ocean observing systems are observational platforms, used to acquire data. Maybe two groups of observational platforms can be distinguished: 1) satellite and air-borne remote sensing which provide data from scanning the sea-surface/upper ocean, and 2) in-situ observations providing data from the ocean interior. A most efficient operation of observational devices from the two groups requires coordination with other components of ocean observing systems, first of all with data centers which make the observational data accessible for yet other parts of ocean observing systems such as data integrators e.g. assimilation and forecast systems for use in ocean product generation.

In EuroSea the focus of WP3 is on observational platforms that record in-situ ocean and eventually metocean¹ data. The platforms considered include vessels (commercial and research), autonomous floats, underwater gliders, fixed-point observatories, sea level stations, high frequency radar and autonomous surface vehicles. The operations of the in-situ ocean observational platforms are often controlled or impacted by heterogenic groups of actors comprising research institutes, governmental agencies and the private sector (e.g. ferry companies).

Over the last few decades we have seen significant innovation in ocean observing capacity in respect to innovative sensors and observational platforms, and ocean observing now can include a wide spectrum of biogeochemical and biological sensors, and operations of autonomous platforms can last over long periods of time. These innovations have improved the data sampling component of ocean observing systems. Several of the sensors and platforms already at technology readiness level (TRL²) 6, or higher.

The TRL scheme was adopted to be applicable to an ocean observing system view, and which goes beyond technological aspects, in the Framework for Ocean Observing (FOO; Lindstroem et al. 2012)³ by means of Readiness levels (RLs). According to the FOO the RL scheme can be applied to (1) Requirement Processes, (2) Coordination of Observational Elements, and (3) Data Management and Information Processes in order to assess the status ("readiness") of the processes. Relevant in the context of this deliverable is the Framework Process 2 "Coordination of Observational Elements". This process is categorized in nine RL, grouped into 3 groups: Concept, Pilot, Mature and outlined in the following table:

Group	Readiness Level	Description				
Concept	Level 1 "Idea"	System Formulation:				
		Sensors				
		Platforms				
		Candidate technologies				
		Innovative approaches				
	Level 2 "Documentation"	Proof of Concept:				
		Technical capability				
		Feasibility testing				
		Documentation				
		Preliminary design				
	Level 3 "Proof of concept"	Proof of Concept Validated:				
		Technical review				
		Concept of operations				
		Scalability (ocean basin)				
Pilot	Level 4 "Trial"	Pilot project in an operational environment				
	Level 5 "Verification"	Establish:				
		 International commitments and governance 				
		Define standardized components				
	Level 6 "Operational"	Implementation Plans Developed:				
		Maintenance schedule				
		Servicing logistics				

¹ Metocean data stands for data from close to or at the ocean atmosphere interface that is of relevance for both – atmospheric monitoring and ocean monitoring

 $^{^2 \} Website: ec. europa.eu/research/participants/data/ref/h2020/other/wp/2016_2017/annexes/h2020-wp1617-annex-g-trl_en.pdf$

³ Lindstrom, E., Gunn, J., Fischer, A., McCurdy, A. and Glover, L.K. (2012) A Framework for Ocean Observing. By the Task Team for an Integrated Framework for Sustained Ocean Observing. Paris France, UNESCO, 25pp. (IOC/INF-1284,) doi: 10.5270/OceanObs09-FOO

Mature	Level 7	Fitness-for-Purpose of Observation:
	"Fitness for purpose"	Full-range of operational environments
		Meet quality specifications
		Peer review certified
	Level 8	System "Mission Qualified:"
	"Mission qualified"	Regional implementation
		Fully scalable
		Available specifications and
		documentation
	Level 9 "Sustained"	System in Place:
		Globally
		Sustained indefinitely
		Periodic review

When it comes to a real RL assessment the FOO concept is only of strategic help and further refinements are needed. The EuroSea WP3 assessment used as a strawman for the assessment, a recent document from the GOOS Observing Coordination Group (OCG) group "Network Attributes, Commitment and Benefits - What it means to be an OPA network"⁴ and created list of some high-level objectives to be directly or indirectly addressed in the assessment:

- Long term (>10 years) sustained observing needs are defined
- Network coordinates a community of Best Practice around a specific technology
- Best Practices for each network, addressing the EOV specification sheets, are documented and deposited at oceanbestpractices.org
- Networks are open to all operators of the respective observing technology
- Improve internal coordination within the observational networks, guided by scientific/engineering expertise and supported by a technical coordinator
- Network data policy is defined and comply with FAIR principles (findable, accessible, interoperable, re-usable
- Network specification and governance structure is articulated (e.g. Terms of Reference)

For the assessment this list was used to request information from the networks in WP3 (observation networks task 3.1 to task 3.7 and thematic networks task 3.8, 3.9).

2. Main Objective of this study

The primary objective of WP3 is to assess the current status of the coordination of observational networks and of (two) thematic networks (Figure 1). The assessment in this deliverable and its dissemination shall create a dialogue inside the networks as well as among the networks in order improve (if needed) the structures and their operations. The intention is that through these dialogues the networks are in an improved (if needed) state to better serve the observing requirements articulated as part of the European observing systems such as EOOS or EuroGOOS but also in global observing systems (e.g. GOOS). This activity will result in an improvement in the RL.

⁴ https://www.goosocean.org/index.php?option=com_oe&task=viewDocumentRecord&docID=24002

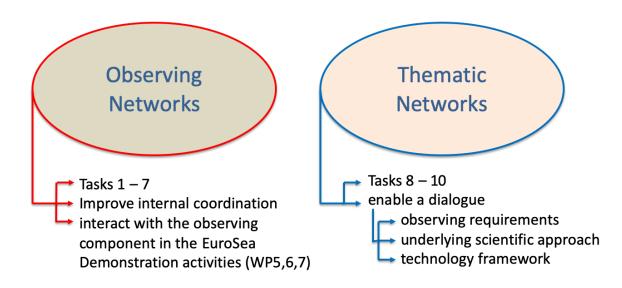


Figure 1: Schematic showing the two types of networks and associated tasks as represented in WP 3

The WP3 observational networks are grouped around observing technology platforms such as profiling floats, underwater electric gliders, research and commercial vessels, fixed-point observatories, sea level gauges, HF radar observations and autonomous surface vehicles as an emerging observing technology. The thematic networks include augmented observatories (i.e. genomic-enabled multidisciplinary observatories), multiplatform sampling (undefined) and data management. In EuroSea instruments and platforms with high TRL are mostly used and pilot action (executed in the demonstration missions in WP5 to 7) are executed to show that new sampling schemes may provide improved observational products. The thematic networks aim on enabling a dialogue between observing requirements and the underlying scientific approach and the technology framework that is coordinated by the observational networks. Moreover, one thematic network shall ensure that the data delivery according to standards including communication pathways between platform operators, observational networks and data centers is realized.

This Deliverable will be in conjunction with the Observational Networks Final Assessment Deliverable (D3.18) the means to assess progress and provide future directions.

3. Assessment of the Networks

The assessment of the two networks types (Figure 1) was based on the following list of topics. Through a questionnaire, that was provided to the tasks of WP3, information was acquired. Moreover, information was added by considering information on the OCG observational networks from their respective websites (see also website links given in the table under subsections 3.1 and 3.2).

Observational networks (task 3.1-3.7)

- Internal organization
 - o Website
 - Institutions (incl. outside Europe)
 - Terms of Reference (ToR)
 - o Governance structure established and documented

- Self-assessment on representing of the respective European observing efforts via the network
- Linkages to the global observational networks
- Network Internal Performance and Targets
 - Sensor/Instrument/Hardware Best Practices availability
 - Data Quality assurance (QA) strategies
 - Data Quality Control (QC) strategies
 - Exchange of metadata and data with European data centers
- Visibility of the network
 - Metadata (location, time period, instrument types used, data archives, PI, ...) delivery to European or international data base
 - Best Practice Documentation accessibility
 - Key performance indicators (definition and monitoring)
 - Data availability on Global Telecommunication System (GTS)
 - Data policy
- Coverage and Facilities
 - Primary drivers for the network operations
 - Primary drivers for the observational activities
 - Dialogue with "thematic networks"
- Future aspirations
 - Practices in developing future operations
 - Where do you see your network in 2030?
 - Major challenges and opportunities for the operation of future operations
- EuroSea Activities
 - Task objectives
 - Observational networks cross cutting activities
 - Workshops and Meetings
 - Common issues with other observational networks/tasks

Thematic networks (note, only two are represented in WP3 – task 3.8 & task 3.9)

- Internal Organization
 - o Website
 - Institutions involved
 - Terms of Reference
 - o Governance Structure
 - Embedding the operations into European observing initiatives
- Network internal performance, Targets
 - Number of science cases covered by the thematic network and respective documentation
 - Data Requirements document (incl. link to the relevant Best Practices/SOP)
 - Considering international standards (when possible)
- Visibility of the thematic network
 - Link to EuroSea observational networks (Task 3.1-3.7)

- Link to international observational networks (Argo, GO-SHIP, GLOSS, ...)
- Link to international or even global thematic networks (if exists)
- Coverage and Facilities
 - Coverage of thematic network applications
 - Dialogue with "observational networks"
- Future aspirations
 - Practices in developing future operations
 - Major challenges and opportunities for future operations

3.1. Observational Networks

3.1.1. Internal Organization

Website

Network	Global Website 1	European Website 2	Metadata access Website 3
Argo	http://www.argo.net	https://www.euro-	https://www.oceanops.org/board?t=
Aigo		argo.eu/	argo
Gliders	https://www.oceangliders.	https://www.ego-	http://www.oceanops.org/board?t=
Gliders	org	<u>network.org</u>	<u>oceangliders</u>
	https://www.go-ship.org/	http://eurogoos.eu/f	http://www.oceanops.org/board?t=s
		errybox-task-team	<u>ot</u>
Vessels			
VE33E13			http://www.oceanops.org/board?t=
			<u>go-ship</u>
	www.oceansites.org	http://eurogoos.eu/	https://tinyurl.com/yy9v56mu
Eulerian		emso-task-team/	
Eulerian			http://www.oceanops.org/board?t=
			<u>dbcp</u>
Sea Level	http://eurogoos.eu/tide-	<u>https://www.gloss-</u>	http://www.oceanops.org/board?t=
	<u>gauge-task-team</u>	sealevel.org/	<u>gloss</u>
	http://global-hfradar.org/	http://eurogoos.eu/	http://global-hfradar.org/
HF-Radar		high-frequency-	
		radar-task-team/	
	http://www.oceanops.org/		Via DBCP
ASV	dbcp/overview/evaluation		https://tinyurl.com/y635eptm
	<u>usv.html</u>		

Six out of seven have a website and 3 of them they have more than one. Only one network (the ASV) does not have a website at the moment but this is expected in the framework of the project.

Institutions involved (incl. outside EuroSea)

Network	European Partners	
Argo	12 European countries more than 20 institutes (<u>https://www.euro-</u>	
Argo	argo.eu/About-us/Partners/Partners-list)	

Gliders	21 European Institutions in the EUROGOOS Glider Task Team, (Gothenburg University, FMI, Tallinn University (TTU), HZG, GEOMAR, Marine Institute, SAMS; UEA, NOC, MARS, LOCEAN, CNRS/DTINSU, PLOCAN, SOCIB, OGS, CNR, CMRE, HCMR, Cyprus University, IOLR, Universidad do Porto)
Vessels	12 European institutions in the Ferrybox part (NIVA, HZG, SMHI, HCMR, CEFAS, SYKE, MSI, IMR, IFREMER); The Cruise summary reports from the National Oceanographic data centers report that 31 Countries do operate research vessels.
Eulerian	GOOS OCG (OceanSITES) 11 European countries (27 institutions); EMSO ERIC: 8 European countries (17 institutions) but only 6 overlap/report to OCG
Sea Level	EuroSea: Puertos del Estado (Spain), UKRI-NOC (UK), MI (Ireland), CNRS- SONEL (France). Outside EuroSea, members of the Task Team: SHOM (France), SMHI (Sweden), UIB-IMEDEA (Spain), BSH (Germany), CNR- ISMAR (Italy), NHS (Norway), JRC-EC, VLIZ (Belgium), DTU (Denmark), DMI (Denmark), ISPRA (Italy), IZOR (Croatia), University of La Rochelle (France). With contribution from all European tide gauge operators.
HF-Radar	Global network: 43 countries; 23 European institutions (AZTI, ISMAR, SOCIB, PdE, NMI, Marine Scotland, HZG, Univ. Plymouth, UNICAEN, IFREMER, MIO, INTECMAR, SHOM, PLOCAN, HI, NIB, OOdM, EUSKALMET, OGS, CALYPSO, Univ. Palermo, HCMR, CNRS)
ASV	Currently forming; process lead by Uni. Bremen, Uni. Porto, PLOCAN and UKRI

The following table shows the participation per European country. The table is compiled from input to the survey and investigations from the GOOS networks that fall under the OCG umbrella and report metadata to <u>www.OceanOPS.org</u>.

Country	Argo	Underwater Gliders	Research (R) & Commercial Vessels (c) ⁵	Sea Level	Eulerian (EMSO x)	HF-Radar ⁶	ASV
Albania							
Belgium							
Bosnia							
Bulgaria							
Croatia						х	
Cyprus							
Denmark							
Estonia			С				
Faroer							
Finland			с			х	
France			R		х	х	

⁵ Including the Information from the Cruise Summary Reports submitted to the countries National Oceanographic Data Centre (from

https://csr.seadatanet.org/)

 $^{^{\}rm 6}$ Including the listing from http://global-hfradar.org

Germany			R <i>,</i> c			х	
Greece			R, c		х	х	
Iceland						х	
Ireland					х	х	
Italy					х	х	
Latvia							
Lithuania							
Malta						х	
Monaco							
Montenegro							
Netherlands						х	
Norway			С			х	
Poland							
Portugal					х	х	
Romania					х		
Russia							
Slovenia						х	
Spain					х	х	
Sweden			С			х	
Turkey							
Ukraine							
United					х	х	
Kingdom							
TOTAL	12	13	31	27	11 (8)	31 (16)	9

This table represents information from a mix of different sources.

Terms of Reference

Network	ToR	Document
Argo	Yes	https://www.euro-argo.eu/About-us/The-Research-
Argo	res	Infrastructure/Statutes
Gliders	Yes	https://www.oceangliders.org/wpcontent/uploads/2018/06/OceanGli
Gliders	res	ders-sttor.pdf
		FerryBox (not available online)
Vessels	Yes	SOT (<u>https://tinyurl.com/yynlx5ac</u>)
		GO-SHIP (<u>https://www.go-ship.org/About.html</u>)
E ularian Vee		EMSO (no reference provided)
Eulerian	Yes	OceanSites (http://www.oceansites.org/documents/index.html)
Cas Lavel Vac		http://eurogoos.eu/tide-gauge-task-team/.
Sea Level	Yes	GLOSS (https://unesdoc.unesco.org/ark:/48223/pf0000217832)
HF-Radar	Yes	not available online
ASV	No	no

Terms of Reference (ToR) describe the scope and limitations for each network and are important documents. They define the purpose and structure of the network, the goals and the means towards achieving. Most of the ToRs are available either online or on request (HF Radar & Vessels).

Governance	Sovernance structure			
Network	Gove	Document		
	rnan			
	се			
Argo	Yes	https://www.euro-argo.eu/About-us/The-Research-Infrastructure/Statutes		
		OceanGliders Steering Team (<u>https://www.oceangliders.org/about-</u>		
Gliders	Yes	us/organization/)		
		EuroGOOS Glider Task Team (<u>http://eurogoos.eu/gliders-task-team/</u>)		
Vessels	Yes	FerryBox: Chair and co-chair		
vessels	163	Others – no information provided		
		Members organization for EUROGOOS (ROOS);		
Eulerian	Yes	EMSO (CMO, ExCom, AoM) http://emso.eu/organization/ ;		
		OceanSites (<u>http://www.oceansites.org/documents/index.html</u>)		
		EuroGOOS Tide Gauge Task Team, with a Chair and a Vice-chair,		
		committed to support (among other international programs) the		
		implementation of the global sea level network (GLOSS) in the region,		
Sea Level	Yes	although not all the tide gauges operated in Europe do contribute or		
		belong to the GLOSS Core network. GLOSS governance structure includes a		
		GLOSS Technical Secretary at the Intergovernmental Oceanographic		
		Commission (UNESCO), in Paris, and a chair.		
		EuroGOOS Task Team. Nevertheless, the overall governance of the		
HF-Radar	Yes	European HF Radar community will be reviewed (D3.4 M18) clarifying the		
	103	role of each HF Radar operator and the endorsement of the EU HF Radar		
		Node.		
ASV	No	Work in progress under OceanGlider initiative and EuroGOOS Glider TT		
7.5 V		Global: DBCP		

Six out of the seven networks have a governance structure while ASV is in the process of establishing mainly through EuroGOOS Task Team. Moreover, there is 1 ERIC with a legal structure, 1 Global (Gliders), 4 EuroGOOS Task Teams which basically are characterized by a Chair and a Vice-Chair.

Network	Representation of EU efforts	Comment		
Argo	High	Euro-Argo ERIC coordinate all the European contribution to the Argo international network		
Gliders	Medium - High	By providing metadata ingestions into the JCOMMOPS (now: OceanOPS) metadata base; RT and DM of several parameters that contribute to EOVs for European coastal and open seas. Representation in International OceanGliders inititives (Science teams, data teams)		
Vessels	Medium	Coordinates European Ships of Opportunity activities, links to European and international research infrastructures and initiatives		
Eulerian	Medium	Currently 8 sites are registered as EMSO ERIC regional ocean/coastal facilities and 5 of those have registered metadata to the global system (OceanSites). However, in the		

Self-assessment on representing of the respective European observing efforts via the network

		global system 13 European institutions registered > 50 sites as		
		being currently in operation.		
		Delegates/representatives from the most relevant actors, for		
		all European basins: main national network operators and sea		
Cooloud	Medium - High	level scientists involved, considering all different		
Sea Level		approaches/applications of tide gauge observations: experts		
		from oceanography, geodesy, hydrographers, storm surge and		
		tsunami warning, meteotsunamis and harbor users.		
UE Dadar	Madiuma Lligh	The observational network attempts to have all the European		
HF-Radar	Medium - High	HF Radar operators involved		
		EuroGOOS Task Team (gliders), Ocean Glider group at GOOS		
ASV	Low - Medium	and JCOMOPPS level. No connection made to provisional		
		global network (DBCP ASV action group)		

Linkages to the global observational networks

Network	Links to Global	Comment		
	Observing Efforts			
Argo	Strong	It's the European contribution to Argo international		
Gliders	Strong	OceanGliders is an associated program of the GOOS.		
	Ferrybox:	Ferrybox: Some links to SOT		
	Medium	MetOcean: Embedded in SOT		
Vessels	Underway	Research cruises: links to GO-SHIP		
vessels	metocean: Strong			
	Research cruises:			
	medium			
		EUROGOOS exchange with EU research infrastructure		
Eulerian	Medium	initiatives EMSO, EURO-Argo, EMBRC, ICOS and international		
		networks (OceanSites, OOI, ONC, IMOS)		
		With a clear vocation from start of contributing to an		
		improved implementation of the GLOSS network in Europe, as		
		reflected in the Terms of Reference. The EuroGOOS Tide		
		Gauge Task Team activities are regularly presented at the		
Sea Level	Strong	GLOSS Group of Experts meetings since 2016. GLOSS		
		representatives in Europe have been invited to participate in		
		several actions and meetings. The chair of the task team has		
		recently reported on recent activities at the last GLOSS data		
		centers meeting.		
		a) Reporting and contributing in the GEO HF Radar Network,		
		b) Technical exchanges for establishing a European standard		
		on data management based on existing Best Practices at		
HF-Radar	Strong	Global level, c) European contribution in Best Practices on		
	5 5 5	Operations based on existing material available at Global		
		level, d) Organizing the ingestion of Global data through the		
		EU HF Radar Node (Pilot with US data in 2020)		
		No connection made to provisional global network (DBCP ASV		
ASV	low	action group)		

Bi- or multilateral collaboration between institutions (MBARI, SAEON, UCSD, LAMMA, CEFAS, GEOMAR, PROOCEANO,
Memorial University, GOOS-OceanGliders Group, IOOS, IMOS, Marine Robotics Consortium (EUMR), etc.

There is a significant EU contribution through the networks to global observing efforts such as, Argo, OceanGliders, OceanSites, GLOSS and GEO HF-Radar.

3.1.2. Observational Network Internal Performance and Targets

Sensor/Instrument/Hardware Best Practices availability

Network	BP	Comment		
Argo	Yes	Argo has defined a set of EOV and endorsed sensors to measure them		
		and defined a process to accept new sensors		
		(http://www.argo.ucsd.edu/Argo_Framework.html)		
Gliders	No	Work in progress. Available but fragmented. OceanGliders has a Best		
		practice Task Team		
Vessels	Yes	JERICO-RI Deliverable, unclear; GO-SHIP manuals		
Eulerian	Yes	a) Some best practices are available for sensors and EOV (e.g. DOXY), b) FIXO3 legacy BP available on OBPS and published on Marine Frontiers (Pearlman et al., 2019), c) EMSO ERIC BP on DO and Underwater Intervention to be released in Feb 2020 and made available on OBPS.		
Sea Level	Yes	The ones defined for and by the GLOSS (Global Sea Level Observational System) global network, GLOSS manuals, oceanbestpractices.org: IOC Manuals and Guides No.14, Volumes I,II,III,IV,V (IOC, 1985,1994, 2002, 2006, 2016)		
HF-Radar	Yes	JERICO-NEXT Deliverable "D2.4: Report on Best Practice in the implementation and use of new systems in JERICO-RI. Part 1: HF-radar systems" "Best practices on High Frequency Radar deployment and operation for ocean current measurement" C.Mantovani et al., 2020 Accepted in Frontiers Best Practices in Ocean Observing.		
ASV	Yes	Ocean Best Practice Portal IODE		

Six out of Seven networks have established some Best Practices or SOPs. For the Gliders it is among the highest priorities. Moreover, XXXX are in the OceanBestPractice repository.

Network	QA	Comment		
Argo	Yes	Metadata are quality controlled (Format checker at GDAC) and checked		
		regularly against JCOMOPS data base Both RT and DM Quality		
		assessment procedure are defined		
		(http://www.argodatamgt.org/Documentation)		
Gliders	Yes	QA on delayed mode QC data		
Vessels	Yes	via CMEMS-INSTAC		
Eulerian	Yes	For water column EMSO follows OceanSites QA and QC (GDAC CORIOLIS):		
		PAP, DYFAMED, E1-M3A.		

Data Quality assurance (QA) established

		International Metadata (JCOMMOPS) lags regular update		
Sea Level	Yes	The ones defined for the GLOSS global network at different GLOSS manuals, and adopted by the different GLOSS data centers. Available in oceanbespractices.com. Other sea level data portals may have, or not, their own QA standards, that ideally should converge to those defined for GLOSS		
HF-Radar	Yes	Included in C.Mantovani et al., 2020. Accepted in Frontiers Best Practices in Ocean Observing		
ASV	No	work on it during the project - QARTOD		

Six out of seven networks have Data Quality Assurance

Data Quality Control (QC) strategy

Network	QC	Comment			
Argo	Yes	All document related to QC in Near Real Time and in Delayed mode are			
		described in the QC manuals			
		(http://www.argodatamgt.org/Documentation)			
Gliders	Yes	OceanGliders v1.0 data format dissemination includes RT QC for T, S, O2			
Vessels	Yes	via CMEMS-INSTAC			
Eulerian	Yes	OceanSites has some QC procedures for T, S and currents. EMSO is following the same procedures with GDAC and plan to go further by integrating BGC variables like O2, pCO2, pH (link to ICOS and ARGO cookbooks)			
Sea Level	Yes	GLOSS QC recommendations have been progressively updated according to changes in data requirements and data flow of sea level data in recent years, and included in deliverables of different European projects (e.g: MyOcean, AtlantOS) and in the EuroGOOS DATAMEQ document on QC. Today, a new upgraded GLOSS QC manual is being drafted by members of the EuroGOOS TGTT, Permanent Service for Mean Sea Level, NOAA and the Hawaii Sea Level Center experts, among others, to compile existing approaches now available, not only in Europe, but also in the global community.			
HF-Radar	Yes	JERICO-NEXT Deliverable "D5.14: Recommendation Report 2 on improved common procedures for HFR QC analysis, including recommended common metadata and data model for HFR current data for HFR data implementation in European marine data infrastructures" + Best Practices included in above references			
ASV	No	work on it during the project - QARTOD			

Six out of seven networks have Data Quality Assurance and work is ongoing in updating them (SeaLevel). Some are project deliverables and an update mechanism must be thought.

Are you considering international data format standards?

Network	Int. Stand	Comment	
Argo	Yes	All data are available through GDAC in Netcdf format CF compliant,	
		used SeaDataNet Vocabularies for variable names, institution code	

		and is setting up a Vocab to manage all the Argo reference tables (link ENVRI-FAIR project)		
Gliders	Yes	OceanGliders standards (close to Argo and OceanSites)		
Vessels	No			
Eulerian	Yes	EMSO ERIC: OGS/SWE - OceanSites specifications (report). JCOMMOPS delivers metadata through WMO/WIGOS compliant format		
Sea Level	Yes	Contribution to their definition and improvement in collaboration with GLOSS experts, e.g: Netcdf format CF compliant is already used in Europe (CMEMS) and is being adopted as well by GLOSS data centers.		
HF-Radar	Yes	existing international standards have been considered for establishing the European ones. Regular communication with GEO HFR Network is taking place.		
ASV	Yes	ISO and OGC, among other possibilities.		

Six out of seven networks today explicitly considering international standards.

Exchange of metadata and data with European data centers

Network	SeaDataNet	CMEMS	Emodnet	Comment
Argo	Yes	Yes	Yes	All data are available through GDAC in
				Netcdf format CF compliant, used
				SeaDataNet Vocabularies for variable names,
				institution code and is setting up a Vocab to
				manage all the Argo reference tables (link
				ENVRI-FAIR project)
Gliders		Yes		through glider GDAC Coriolis
Vessels	No	Yes	Yes	
Eulerian	Yes	Yes	Yes	SEANOE and CORIOLIS (OceanSites and
				EMSO GDAC) exchange with SeaDataNet &
				EMODnet
Sea Level	No	unclear	unclear	data exchange is ad hoc and on a country-
				by-country basis, with no formal reciprocal
				agreement. GLOSS data centres do not
				submit data to SeaDataNet on behalf of
				other countries.
HF-Radar	Yes	Yes	Yes	the standards are including all the
				Seadatanet requirements and the EU HF
				Radar Node will feed the SeaDataNet archive
				system.
ASV	No	No	Yes	ISO and OGC, among other possibilities.

Mixed picture towards the three main data aggregators although considering operationality all networks exchange metadata with CMEMS.

3.1.3. Visibility of the observational network operations

Metadata availability

Network	Intl. Data	Comment
	Base	
Argo	Yes	All European data available at Argo GDAC (Ifremer/France) and
		operated by the French NODC (National Data Center). Data also
		available through CMEMS in situ products, SeaDataNet , EMODnet
		and World Ocean DataBase (WOD) and GEOSS on international level.
Gliders	Yes	part of the OceanGliders data format
Vessels	GO-SHIP,	Research cruises are reported to National Oceanographic data centers
	CSR	via the CSRs (former ROSCOP)
Eulerian	Yes	GDAC and DAC
Sea Level	Yes	EuroGOOS Tide Gauge Task Team is in fact working actively now, one
		of the actions in EuroSea, in improving access to metadata in the
		region, and to make it available to GLOSS and CMEMS data portals.
HF-Radar	Yes	through the EU HF Radar Node, these metadata will be available both
		in EU marine data infrastructure and Global Network
ASV	na	Network to be defined

Best Practice Documentation accessibility

Network	OBP	Comment
Argo	Yes	There is an Argo community Section in OBPS repository
Gliders	No	In process
Vessels	Yes	GO-SHIP manuals (research vessels), RVOSP developing
Eulerian	Yes	Several in OBPS repository
Sea Level	Yes	GLOSS Manuals are already included in the in OBPS repository
HF-Radar	No	Ongoing, through JERICO-RI outputs & Peer Review Paper just submitted
ASV	No	Priority

The majority of the networks (4 out of 7) haven't made their Best Practices available through the OBP repository but all mention this as a priority.

Network Key Performance Indicators (KPIs)

Network	KPIs	Comment
Argo	Yes	Argo Network is monitored carefully through JCOMMOPS which
		generates indicators on network implementation and data
		processing
		The Euro-Argo ERIC generate additional KPI to monitors the
		European contribution to Argo and publish them in the Euro-Argo
		Annual report.
Gliders	No	Under definition
Vessels	Ferrybox:	
	No	
	MetOcean:	

	No	
	Research Vessels: Yes	For GO-SHIP and via Seadatacloud
Eulerian	No	In progressSome are defined at JOMMOPS and in EMSO but not yet for all networks. Implementation Targets needed first
Sea Level	No	Not yet
HF-Radar	No	Some Indicators are defined through the ingestion of EU HF Radar Node outputs into INSTAC Global Production Unit. More KPIs will be developed on JERICO-S3
ASV	No	Not yet

In terms of KPIs besides the two ERICs (EuroArgo and EMSO) none of the other networks have.

Network	NRT to	Comment
	GTS	
Argo	Yes	All data are transmitted within less than 12 hours from acquisition.
Gliders	Yes	
Vessels	All: No	
Eulerian	Partly	For some nodes: ANTARES, PAP,
Sea Level	Partly	In Europe only SHOM tide gauge network and some stations from UK network are today transmitting to GTS. The reason: in the past this was facilitated via the meteorological agencies, not always easy in some countries, and also due to the lack of personnel and funds to upgrade to GTS properly. Today this is one goal for the whole tide gauge network, especially after requirements defined by the new Tsunami Warning Systems implemented in the region.
HF-Radar	No	The organization of the data management is recent. Discussions are on going.
ASV	No	No because we haven't had any access to WMO, that is going to be changed to web services like WIS 2.0. Then, what we expect is to release data but not though GTS

Data availability on Global Telecommunication System (GTS)

Data policy

Network	Comment
Argo	Open and free data policy
Gliders	Open and free data policy
Vessels	
Eulerian	For most of the sites the data are free and in open access through GDACs (legacy of FIXO3 for data policy)
Sea Level	Open and free data policy, as for the GLOSS global network: IOC Oceanographic Data Exchange Policy: <u>https://www.iode.org/index.php?option=com_content&view=article&id=51&Itemi</u> <u>d=95</u>). However, there are still some countries in the region that do not share tide gauge data yet (especially North of Africa stations, important in the Mediterranean Sea)

HF-Radar	Open and free data policy	
ASV	no	
North active descents under an even and free date valia, basing fully adapted events and		

Most networks operate under an open and free data policy having fully adopted operational characteristics.

3.1.4. Coverage and Facilities for observational networks

Primary drivers for the observational activities

Network	Drivers for Operational Activities	
Argo	a) near-real time data for ocean and atmospheric services,	
	b) high quality data for climate research,	
	c) measure biogeochemical parameters to address oceanic uptake of carbon,	
	acidification and deoxygenation	
Gliders	Science	
Vessels	Research and development	
Eulerian	EMSO Science service groups: climate change, geohazard, operational	
	oceanography, MSFD etc.	
Sea Level	a) National services for tides, storm surge and tsunami monitoring,	
	b) Harbour authorities (navigation),	
	c) Geodetic services and national datum definitions,	
	d) Science	
HF-Radar	a) Science,	
	b) Capacity for model assessment and data assimilation,	
	c) Search and Rescue,	
	d) Response to pollution events (Oil spills)	
ASV	a) Science projects	
	b) Monitoring /weather service data	

Given the research framework that is around many of the observational efforts one can see that science is a major driver for the observational activities for all networks.

Drivers for observational plans

Network	Drivers for observational plans		
Argo	a) Component of GOOS OCG (or integrated long-term Ocean observation,		
	b) GODAE/OceanPredict:		
	a. operational service		
	b. enhance knowledge on ocean circulation		
	c. climate research		
	d. enhanced knowledge on ocean health and carbon cycle for ecosystem		
	modelling		
Gliders	a) science projects,		
	long term observation,		
) monitoring		
Vessels	Science projects,		
	b) monitoring,		
	in situ validation for remote sensing		

Eulerian	a) Science		
	b) services (operational models & collectivities)		
Sea Level	a) Monitoring		
	b) services		
HF-Radar	a) Operational services,		
	b) Science and model assessment and improvement		
ASV	a) Technology,		
	b) science		
	c) monitoring services		

Science and Operational services are strong drivers

Dialogue with "Thematic networks"

Network	Dialogue	Comment
	Exchange	
Argo	Yes	a) Link with GOOS as one of the networks of JCOMM,
		b) Link with IOCCP for the development of BGC-Argo,
		c) Link with GCOS.
Gliders	No	Through individual partners only. Need for better coordination
Vessels	Yes	ICOS Ocean Thematic Centre
Eulerian	Yes	a) EMSO is involved in acidification issues by providing pH, pCO2
		data through fixed observatories (surface and deep waters) –
		ICOS,
		b) EMSO has started some dialogue with Augmented Observatories
		(e.g. genomic sampling in NW MedSea) - EMBRC
Sea Level	No	Not formally yet, but individual experts are integrated in the task
		team. Not a particular reason for that, this is something we could
		improve in the future (e.g. the hydrographic offices in our case)
HF-Radar	No	Only isolated connection, no connection at network level
		implemented yet, because the first steps has been focused on internal
		organization (relatively new network: 2014)
ASV	No	We don't have yet an observational network. We are working to setup
		the network. In the meantime, however, there is already specific
		activity/applications with ASV technologies trying to cover needs for
		all these science aspects and more (i.e. ICOS for CO2 measurements,
		EMSO for cross-calibration, MARCET for Marine Mammal monitoring,
		FRONTEX – Border surveillance, etc.)

3.1.5. Future Aspirations of observational networks

Practices in developing future operations

Network	Future Plans Process		
Argo	 a) Extend to create a fully global, top-to-bottom, dynamically complete, and multidisciplinary Argo program, 		
	b) Extend the Euro-Argo contribution to maintain ¼ of the new Argo Design		
Gliders	Organically around the OceanGliders Themes (Task Teams) and through the EuroGOOS Glider Task Team		

Vessels	Current plans are to expand to provide better regional coverage of European seas						
	(Mediterranean and Arctic) and further develop use/validation of biogeochemical						
	and biological sensors.						
Eulerian	a) Implement more biological sensors (imagery, genomics),						
	b) Develop integration with others infrastructures (EURO-ARGO, ICOS, EMBRC)						
Sea Level	Aligned with GLOSS plans, and based on new needs derived from the increasing						
	demand of tide gauge data today, required for diverse services and challenges						
	mean sea level rise and monitoring of extreme events. To fulfil this, the network						
	continuously being upgraded						
HF-Radar	a) Integrating National plans,						
	b) Establishing Requirements driven plans at Regional levels,						
	c) Contributing in integrated approaches for developing the coastal network						
ASV	Setup a task team in order to identify activities to be covered according the needs						
	by different end-users and stake						

Where do you see the network in 2030?

S floats 1200 Deep float (4000/6000), 1000 BGC, good coverage of n marginals seas including high latitude (partially ice-covered areas) and closer to the coast d and significant EU contribution to the 100 glider endurance lines			
closer to the coast			
d and significant EU contribution to the 100 glider endurance lines			
n by OceanGliders in 2030 (see OceanObs'19 CWP)			
be defined			
s on EuroGOOS and EU visions, members involvement;			
European players not involved in EuroGOOS drafted a vision as "A truly global			
network for Eulerian Time series stations that is fully embedded in the Global			
Ocean Observation System and provide interoperable data considering latest			
c understanding"			
gauge network is already well consolidated and a key element of the			
bserving system for coastal sea level observations, and this will be so for			
he future.			
component of the coastal ocean observing systems (like Met radars in			
works)			
idated network at EU level, fully operational providing services according			
s, and with strong international links (IOOS-US, Canada, IMOS-Australia,			
rica, South America, etc.). Network acting as POC for current uses and			
I future ones of this technology as strong component of Digital Ocean			

Answers are a mix from a "device centred vision" (target is to have x devices in the water by 2030) to vision that target the success of coordination.

Major challenges and opportunities for the operation of future operations

Network	Challenges and Opportunities					
Argo	a) The new design is cost 3 times the original one,					
	b) Challenges in term of technology/sensors for deep measurements,					

	c) Challenges in term of QC for BGC measurements and coastal observations				
Gliders	a) Major challenges: integration in the EU MRI landscape; system consolidation				
	and sustainability (persons, infrastructures, vehicles),				
	b) Major opportunities: integration with the other observational networks;				
	biological EOVs; regional/coastal operational oceanography; services for public				
	policies, market and innovation				
Vessels	 All partners are busy with funding issues and project commitments at home institutes 				
	b) we have to inspire more cooperation and involvement from partners to be				
	able to push progress and innovation				
Eulerian	a) Challenges: sensors and technology for deep water observation, cost				
	maintenance for cabled observatories, integration of biological sensors (e.g.				
	eDNA), harmonization of best practices and establishment of label;				
	 b) Opportunities: better integration with ERIC and global networks, metadata distribution. 				
	c) International: Creating and evolving a coordination framework that keeps to				
	be attractive for the contributors without centralized funding				
Sea Level	a) Increasing requirements on data sampling and precision, and access to real time data, requires adapting the management of data and the tools for quality control and quality assessment (this has already started).				
	b) The network has evolved over the years and we foresee as well new				
	improvements and technologies for coastal sea level measurements and data flow, including iOT and machine learning techniques.				
	c) Adaptation of existing stations to these improvements may be a difficult challenge in most countries.				
	d) Finally, as mean sea level rise continues to be a problem, the use of this data in platforms integrating models and altimetry data for helping in the decision- making process will be essential and will require adaptation of tide gauge operations.				
HF-Radar	a) Integration with water column monitoring from fixed platforms,				
	b) Integration with Satellite products,				
	c) Ingestion into modelling capacities,				
	d) Integration with BGC & Biological monitoring				
ASV	Identify and provide true support services to end-users in regards common long term goals at both scientific and technology level (CHALLENGE) + Gliderport and endurance-line network implemented at EU level (OPPORTUNITY)				

For the networks, more challenges exist than opportunities. This is expected as in order to be able to see opportunities, appropriate mechanisms inbuilt the network structure are necessary. Foresight exercises, efficient connections with other global networks and with the decision centres are all required.

3.1.6. Observational networks in EuroSea

Objectives of the Task

Network	Objectives within EuroSea						
Argo	To coordinate the development of the Argo extensions, deep - below 2000m						
	(DEEP) and biogeochemical (BGC), in liaison with the Euro-Argo-Rise (Technology)						
	and the ENVRI-FAIR (data interoperability) projects, and in close link with the Argo						
	international network. Interoperability with other observations that acquire similar						

	observations within the EOOS framework will also receive attention (with applications in WP7):
	operations strategy (Atlantic, MedSea) considering input from CMEMS,
	EMODnet and the EuroSea demonstrator projects most critical weaknesses
	(applications and budget);
	b) develop Best Practices for DEEP & BGC Argo operations and data management
	via workshops and WP7 feedback, and upload to OceanBestPractices.org;
	c) support interested countries to engage with Argo in the Atlantic and
	Mediterranean Sea in partnership with Euro-Argo;
	d) enhancement of the Euro-Argo Eric and international BGC,
	website/newsletters to highlight Euro-Argo ERIC progress in EuroSea.
Gliders	a) Contribution to OceanGliders and EuroGOOS Glider Task Team activities,
	b) Best practices publications in peer-review journal and on IODE repository,
	c) Elaboration of EU long term glider plans for EOOS,
	d) Support to EuroSea demo activities.
Vessels	To improve SOOP & RV coordination in Europe by:
* 533513	
	join;
	b) linking regional/global efforts (ICOS ERIC, SOCAT, JCOMMOCG-SOT);
	c) re-evaluate/finalize Best Practices (in dialogue with SOT); 4) formulate Terms
	of Reference for the network;
	d) provide cost assessments for operations, data management according to FAIR,
	and evaluation for game-changing technologies (autonomous sampling
	systems, nutrient analyzer/sensors, towed device technology).
Eulerian	a) Upgrade pH sensor on EMSO-DYFAMED node (WP6 and WP7),
	b) Harmonize Best Practices OceanSites & EMSO,
	c) Progress on metadata catalogue for Eulerian observatories with JCOMMOPS
Sea Level	a) Establishment of an integrated European Tide Gauge Network as part of EOOS,
	b) Improve connection of the European and global community (GLOSS), by means
	of the following actions/activities:
	Improve metadata inventory of stations based on current user
	requirements (e.g. JCOMMOPS, CMEMS, Tsunami Warning Systems)
	 Analyze gaps/duplicity in data portals providing tide gauge data and design
	a new strategy for data flow for tide gauge data storage, quality control
	and distribution
	Assess/compile an on-line portal in PSMSL (Permanent Service for Mean See Level) of unlift (unbridge as lend data, including new Multiagth
	Sea Level) of uplift/subsidence land data, including new Multipath
	Reflectometry of land-based Global Navigation Satellite Systems (GNSS-
	MR) technology.
	Organization of two workshops involving the global community
HF-Radar	a) Enhance use of HFR surface current data and added value products,
	b) Push the availability of FAIR HFR data and implement Best Practices of HFR
	operations and maintenance,
	c) Define a governance structure that ensures long-term sustainability,
	d) Guide the development of the network with a prioritization performed at Sea-
	basin scale.

ASV	a)	ASV-Network definition and roadmap addressed to cover current and future
7.5 0	α,	user's needs, including access to infrastructures, community roadmap
		monitoring, promoting knowledge exchange, enhancement and partnership
		worldwide with the establishment of an ASV User Group;
	b)	improvements on Standard Operating Procedures (SOP) for derived BP
		implementation on operational protocols, data management, knowledge
		transfer, risk assessment, legislation, etc. in order to properly improve the ASV
		technology, contributing to the EOOS implementation plan;
	c)	Perform 2x workshops aiming at ASV technology - challenges, opportunities
		and user engagement, and ASV technology - Best-practices implementation.
		All to support the EuroSea demonstrator activities, in particular WP7 that will
		provide important feedback on ASV usage.

Observational networks cross cutting activities

Cross cutting actions							
a) Cross cutting with GOSHIP, and EMSO for Deep measurement,							
b) Cross-cutting with GOSHIP, ICOS, EMSO, Gliders, Ferrybox and JERICO for BG							
measurement,							
c) Cross-cutting with EuroFleets for operation at sea							
Best practices on EOV basis and design of EOOS							
Sensor data QC/QA and data handling.							
EMSO ERIC, OceanSITES, ICOS, EURO-ARGO (BGC variables)							
Most of the actions are focused on specific needs of the tide gauges network,							
except perhaps the approach followed for the new metadata inventory. Possible							
collaboration during workshops							
Contribution to the multi-platform approach of Task 3.9 Integrating science							
Sharing facilities and infrastructures, payload, cross-calibration, multiplatform							
experiments, technical support, data formats, some operation procedures,							
training, legislation, end-user and applications							

Data management and data flow (Task 3.9) as well as Interoperable data (Best Practices and standards/reference material).

What workshops/meetings are scheduled (subject, dates)

Network	Workshops	Month
Argo	 One international DEEP-Argo workshop in collaboration with Argo International, 	M18
	2. One international BGC-Argo workshop in collaboration with Argo International,	M24
	For both workshops, aims are:	
	a) engaging with more countries around Atlantic and Med Sea,	
	b) Develop cross-cutting links with other platforms listed in the previous point	

Gliders	1. Best practices, likely to be postponed by a couple of months.	2020	
	 Second WS will be organized in line with progress made 	2021	
Vessels	FerryBox Task Team workshop addressing EuroSea	November 2020	
	objectives		
Eulerian	1. Best Practices	M12	
	2. Metadata	M36	
Sea Level	1. Europe-GLOSS collaboration, review of data flow	January 2021	
	between data portals and requirements on metadata		
	2. New automatic QC algorithms and products from tide	November 2022	
	gauge data.		
	Other meetings will be held between partners, date to be		
	defined.		
HF-Radar	1. Inviting all the European operators and key Global	M9	
	actors. Support for EUROGOOS Task Team (review of the		
	status of the implementation of Best Practices; Review		
	of priorities driven by ROOSs requirements; Joint		
	Research and Operational Services)		
	2. Jointly organized with other observational networks.	M36	
	Main Objective: INTEGRATION		
ASV	1. WS (not defined)	Fall 2020	
	2. WS (not defined)	Fall 2022	

Common issues with other observational networks (task)

Network	Common Issues
Argo	a) QA/QC procedure,
	b) Deployment and float recovery,
	c) Design of multiplatform network,
	d) Harmonization of data services to users
Gliders	Inclusion in European/national roadmaps
Vessels	See answer to cross cutting actions.
Eulerian	a) QC and QA of BGC data; Metadata information and traceability/quality
	(JCOMMOPS); databases interoperability; traceability of dataset provided by
	EMSO RF (DOI is not enough),
	b) Maintain expertise and staff in regional facilities for long term observing
	system (depend on country and institutes policies)
Sea Level	a) Documentation on Best Practices
	b) Requirement of metadata inventory/update tools
HF-Radar	To share methodologies and establishing integrated approach for defining
	priorities in the future development of the observing system at Regional level
ASV	Routine operation, subsystem failure, TRL, sensor drift, identification of synergies,
	partnership to improve operational efficiency, data formats, legislation, end-user
	engagement and new applications for marine-maritime sectors beyond science.

This is indicative of possible areas for cooperation especially in the framework of common workshops.

EuroSea

3.1.7. Summary Table

OBSERVING NETWORKS	Argo	Gliders	Vessels	Eulerian	Sea Level	HF-Radar	ASV
Website	yes	yes	yes	yes	yes	yes	no
No. of Institutions involved	20	21	9	>25	16	24	4
Terms of reference	yes	yes	yes	yes	yes	yes	no
Governance Structure	yes	yes	yes	yes	yes	yes	no
Representation of EU efforts	High	Medium-High	Medium	High	Medium-High	Medium-High	Low-Medium
Links to Global Observing efforts	Strong	Strong	Medium	Strong	Strong	Strong	Medium
Sensor/Instrument/Hardware Best Practices	yes	no	yes	yes	yes	yes	yes
Data Quality assurance (QA)	yes	yes	yes	yes	yes	yes	no
Data Quality Control (QC)	yes	yes	yes	yes	yes	yes	no
International standards	yes	yes	no	yes	yes	yes	yes
Exchange of metadata and data with data aggregators							
SeaDataNet	yes	???	no	yes	no	yes	no
CMEMS	yes	yes	yes	yes	???	yes	no
Emodnet	yes	???	yes	yes	???	yes	yes
Metadata fed to EU or Intl data base	yes	yes	???	yes	yes	yes	???
Best Practices available at IODE/UNESCO	yes	no	no	yes	yes	no	no
Key Performance Indicators defined	yes	no	no	no	no	no	no
Data to GTS	yes	no	no	partly	partly	no	no
Data Policy	Open	Open	???	Open	Open	Open	???
Drivers for observational activities	Sci, Serv	Sci	R&D	Sci, Serv	Sci, Serv	Sci, Serv	Sci, Serv
Drivers for observational plans	Sci, Serv	Sci, Mon	Sci, Mon	Sci, Serv	Sci, Mon	Sci, Serv	Sci, Serv, Tech
Dialogue/exchange with "thematic networks"	yes	no	yes	yes	no	no	no
Future plan process							
The network in 2030							
Challenges and Opportunities							
Objectives within EuroSea							
cross cutting actions with different observing networks							
workshops/meetings	M18, M24	2020 & 2021	Nov-20	M12, M36	2021 & 2022	M9, M36	Fall20 & Fall22
common issues with other observing networks							

3.2. Thematic Networks

3.2.1. Internal Organization

Website

Network	Website
Augmented Obs.	http://glomicon.org/
Interface with In Situ	http://eurogoos.eu/data-management-exchange-quality-working-
data integrators	group-data-meq/

Institutions (incl. outside EuroSea)

Network	Partners	
Augmented Obs.	50 organizations are networked, as well as other networks and consortia	
Interface with In Situ	EU integrators (CMEMS, SeaDataNet, EMODnet mainly Physics and	
data integrators	Chemistry Emodnet), H2020 projects, EuroGOOS TT's	

Terms of Reference - ToR (provide link)

Network	ToR	Document
Augmented Obs.	No	Under discussion: GLOMICON is a grassroots initiative,
		but will be formalizing under GEO BON as an Omic
		BON, which will require a ToR
Interface with In Situ	Yes	http://eurogoos.eu/data-management-exchange-
data integrators		quality-working-group-data-meq/

Governance structure (provide link)

Network	Governance	Document
Augmented Obs.	Yes	Coordination provided by AWI, UC Berkeley –
		governance is bottom-up
Interface with In Situ	Yes	EuroGOOS Task Team
data integrators		

Embedding the operations into European observing initiatives

Network	Representation of EU efforts	Comment
Augmented Obs.	Yes	Multiple established marine observatories (e.g. FRAM) have an omics component, EuroSea will upgrade this through the SZN
Interface with In Situ data integrators	Yes	EU integrators (CMEMS, SeaDataNet, EMODnet), H2020 projects, EuroGOOS TT's

Embedded in global observing thematic initiatives?

Network	Links to Global Observing Efforts	Comment
Augmented Obs.	Medium	Feeding in expertise and advice to the GOOS BioEco Panel EOVs, we will also attempt to federate under GEO BON (initial discussions already completed)
Interface with In Situ data integrators	Strong	Argo, OceanSITES, GOSUD, OceanGLIDERS, Drifter/DBCP

3.2.2. Network Internal Performance, Targets

Number of science cases covered by the thematic network and respective documentation

Network	Science Cases		
Augmented Obs.	Each node pursues multiple scientific cases in its normal operation, there is (currently) no network-wide scientific mission, but this is being formulated pending improved coordination and interoperation of the nodes		
Interface with In Situ data integrators	There is no network-wide documentation available		

Data Requirements document (incl. link to the relevant Best Practices link)

Network	Data Requirements		
Augmented Obs.	 a) At the node level – projects in data exchangeability are underway for microbial biodiversity at the taxonomic level which will become a best practices recommendation b) Recommendations on metadata handling and standards compliance being drafted with the GSC c) Core data (i.e. sequence data) management at high readiness thanks to the field's use of INSDC norms d) Prototype exchanges and interfaces with OBIS and GBIF/ELIXIR/ENA 		
Interface with In Situ data integrators	 a) Capitalizing on European initiative + existing standards b) Started first with physical parameters and extending to Biogeochemistry c) Provided as recommendations to the EuroGOOS communities and presented in EuroGOOS General Assembly d) For EuroSea integration starting point the AtlantOS WP7 deliverables also delivered to OBPS 		

Considering international standards (when possible)

Network	Intl. Standards	Comment
Augmented Obs.	Yes	Through coordination with the Genomic Standards
		Consortium and INSDC. We aim to significantly
		contribute to these and promote interoperability

		with other standards in the marine observatory space
Interface with In Situ data integrators	Yes	 a) Link with Research Data Alliance (link ODIP series of projects) including SeaDataNet Vocabularies and CF conventions, b) DMPA (Data Management Panel area) and (Observation Panel Area) JCOMM coordination activities

3.2.3. Visibility of the thematic network

Link to EuroSea observational networks (task 3.1-3.7)

Network	Links with	Comment
	EuroSea Obs.	
	Networks	
Augmented Obs.	Few	via observatories that have eDNA/omics capacities
		and also contribute to core oceanography
Interface with In Situ	Efficient	a) Well linked to the EuroSea observational
data integrators		networks that have set up or are setting up
		integrated services in Europe (Argo, Gliders, HF
		Radars, ICOS for Carbon) or are willing to
		enhance data interoperability in Europe (Sea
		Level, Ferrybox) or integrated at international
		level (OceanSites for Eulerian Observatories,
		Argo, Drifters/CBCP, Vessels underway data
		GOSUD).
		b) For vessels it's also done through SeaDataNet
		for research cruises
		c) Autonomous Surface Vehicles in link with
		SAILDRONES company

Link to international observational networks

Network	Links with Intl. Obs. Networks	Comment
Augmented Obs.	Efficient	 a) Well linked to the GOOS, but more work is needed to transition data products from "conceptual" and/or unconsolidated to operational b) Some omics observers have existing links to GO SHIP and GEOTRACES which we hope to interface with
Interface with In Situ data integrators	Efficient	Argo, OceanSITES, GOSUD, OceanGLIDERS, Drifter/DBCP

Link to international or even global thematic networks (if exists)

Network	Links with Intl. & Global Thematic Networks	Comment
Augmented Obs.	Poor	thus, our objective to form an Omic BON under GEO BON for improved coordination of large- to small-scale projects
Interface with In Situ data integrators	Efficient	 a) Contributing to Data Management cooperation and Operating GDACS for Argo, GOSUD, OceanSITES, b) Contributing to Data Management cooperation and setting GDACS for OceanGliders, Drifters

3.2.4. Coverage and Facilities

Coverage of thematic network applications

Network	Application coverage	
Augmented Obs.	 The coverage in the EU is patchy at best, both temporally and spatially. The primary issue is a lack of standardized methodology and best practices and funding structures that are often difficult to link with long-term, observatory-grade monitoring Even a set of local but interoperating observatories would have high impact on the status quo 	
Interface with In Situ data integrators	 DATAMEQ doesn't operate observing systems Issues on data policy and unlocking access to existing data critical areas: Arctic, Eastern Mediterranean and South Med, Black Sea Easier for physical than BGC Essential Ocean Variables 	

Thematic network dialogue/exchange with "observational networks"

Network	Dialogue / Exchange	Comment
Augmented Obs.	Yes	several nodes in the network are embedded within observational networks, offering a biological dimension. However, these are poorly coordinated, preventing truly global impact.
Interface with In Situ data integrators	Yes	they are involved in the DATAMEQ working group

3.2.5. Future Aspirations

Practices in developing future operations

Network Future Plans Process	
------------------------------	--

Augmented Obs.	Through the GLOMICON coordination (now merged with the Genomic Observatories Network) via mailing lists and focus groups (multipliers, leadership) – coalition of willing participants
Interface with In Situ data integrators	EUROSEA should rely on existing data management infrastructures and enhance them for a sustain set of services after the end of EuroSea

Major challenges and opportunities for future operations

Network	Challenges and Opportunities	
Augmented Obs.	Transitioning from a network of primarily academic institute motivated by "impact" and journal articles, to a fully-fledged observatory community – the reward structures must be realigned. The opportunity now is to leverage the high global interest in eDNA/omic observing (diverting the risk of siloed activity) and the GOOS BioEco Panel's link to the Decade	
Interface with In Situ data integrators	 Challenges are more political than technical: Need big push from stakeholders to support open data polic Importance a dedicated sufficient funds for data manageme attached to observation network set up and maintenance New services based on big data and Cloud systems should be user driven and not IT driven 	

3.2.6. Summary table

THEMATIC NETWORKS	Augmented Obs.	Interface with In Situ data integrators
Website	yes	yes
No. of Institutions involved	50	unclear
Terms of reference	no	Yes
Governance Structure	yes	Yes
Representation of EU efforts	yes	Yes
Links to Global Observing efforts	Medium	Strong
Science Cases	Multiple	Unclear
Data Requirements		
International standards	yes	yes
Links with EuroSea Obs. Networks	few	efficient

Links with Intl. Obs. Networks	efficient	efficient
Links with Intl. & Global Thematic Networks	poor	efficient
Application coverage		
dialogue/exchange with "observational networks"	yes	yes
Future Plans Process		
Challenges and Opportunities		