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Abstract. We propose 3DBooSTeR, a novel method to recover a tex-
tured 3D body mesh from a textured partial 3D scan. With the advent
of virtual and augmented reality, there is a demand for creating realistic
and high-fidelity digital 3D human representations. However, 3D scan-
ning systems can only capture the 3D human body shape up to some
level of defects due to its complexity, including occlusion between body
parts, varying levels of details, shape deformations and the articulated
skeleton. Textured 3D mesh completion is thus important to enhance
3D acquisitions. The proposed approach decouples the shape and tex-
ture completion into two sequential tasks. The shape is recovered by an
encoder-decoder network deforming a template body mesh. The texture
is subsequently obtained by projecting the partial texture onto the tem-
plate mesh before inpainting the corresponding texture map with a novel
approach. The approach is validated on the 3DBodyTex.v2 dataset.

Keywords: 3D shape completion · Human body shape · Point cloud ·
Texture · Inpainting
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Fig. 1: Overview of the proposed approach for completing a partial textured
3D body mesh. 1) The complete shape is estimated. 2) The partial texture is
transferred onto the estimated shape. 3) The corresponding texture image is
inpainted.
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1 Introduction

The completion of a partial textured 3D body shape is key to enable the digital
representation of 3D body shape with realistic details, in a reasonable time and
in an automated way. This is required in applications such as virtual reality.
Capturing the 3D human shape and texture of the human body is complex due
to the occlusion of body parts, the complex shape of the clothing wrinkles, the
variation of the pose in time, etc. Some photogrammetric scanner systems, on
the one hand, use a large array of cameras to cover the body shape from all pos-
sible angles. These systems are able to capture textured 3D shape sequences at
high frame rates (120kHz). However, they still suffer from occlusion and cannot
represent fine details, such as the fingers and the ears. Hand-held scanners, on
the other hand, can be brought to resolve fine details and cover all view angles,
but they require a static target. For an unconstrained usage, it is then more de-
sirable to acquire a partial shape and come with an effective completion solution
that recovers the missing data. Aware of this emergent need, some state-of-art
works have tried to recover the missing information provided by the scanning
devices. Most of them consider the problems of shape and texture completion
independently. Accordingly, the relevant literature is presented separately below.

Shape completion A simple approach to shape completion is the hole-filling al-
gorithm (e.g . Davis et al. [4]), in which the missing shape regions are filled with
a surface patch joining the boundaries of the available surface. This approach is
limited to relatively small holes with respect to the surrounding surface and to
relatively smooth regions.

An approach to regularise the shape completion is to rely on a template
shape that is deformed to match the input partial shape. Szeliski et al. [26]
deform a simple convex shape to represent anatomical body parts such as the
head. Anguelov et al. [1] learn a parametric model of the human body pose and
shape to regularise the completion of a full 3D body shape while handling the
large deformations caused by variation in pose. This sort of methods usually
requires manual initialisation, as shown by Saint et al. [24, 22, 23], who propose
fully-automatic body model fitting approaches by exploiting the colour or tex-
ture information in human scans, as available in 3DBodyTex [22]. This allows
recovering shapes with relatively large proportions of missing data. The body
models based on SMPL provide a reasonable trade-off between computational ef-
ficiency and expressiveness [16, 19]. However, body models smooth out the shape
details and are limited to the body shape without clothing. In these works, the
completion of the texture is not considered, even though the texture might be
used to regularise the shape completion [22, 23].

Some works use volumetric convolutions to complete partial 3D shapes [28,
3, 10]. The achievable resolution is limited due to the high computational com-
plexity of 3D convolutions. Moreover, this category of approaches works well on
relatively rigid shapes [28, 3] (e.g . objects of the same class) but less well on de-
formable shapes [14] (e.g . shape of the human body or of animals). Chibane et al. [2]
represent the 3D body shape with an implicit function. The implicit function is
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approximated by a deep neural network and learned from a dataset of example
3D body shapes. This method allows completing partial shapes but does not
consider the texture. It accepts different input 3D shape representations (e.g .
point cloud, mesh, voxel grid), however, the output surface must be recovered
from the implicit function with a post-processing step, such as the marching
cube algorithm [17].

Several works learn the space of body shape deformations using deep learn-
ing [9, 13, 14, 18]. These models use encoder-decoder architectures. An input
shape is encoded into a latent representation by the encoder. The decoder then
deforms a base body mesh from a canonical pose and shape to a specific pose
and identity, using the intermediate representation as input. The deformations
are performed with mesh convolutions (e.g . PointNet [20] or FeaStNet [27]).
The parameters of the network are learned from a dataset of example 3D body
shapes. Some works target only the body shape with minimal close-fitting cloth-
ing [9, 13, 14], which is locally smooth and regular. Other works target the body
shape with casual clothing [18], which contains irregular local variations, such
as wrinkles, due to factors including the cut and the fabric. The completion of
texture information is not tackled in these works.

Texture completion Deng et al. [6] recover the 3D shape and the colour infor-
mation of a face from a non-frontal 2D view. Shape and texture completion are
decoupled. A 3D morphable model (3DMM) is first fitted to the image. Then,
the available colour information is projected onto the UV map of the template
mesh. Finally, the UV map is inpainted to recover the missing colour informa-
tion. The fitting of a body is more complex due to the pose variation, larger and
more non-linear than the variation in the expression. The UV map for the face
is a single chart. For a body model, it is a set of multiple charts representing
different body regions.

In the context of partial shape and texture completion, we present our ap-
proach to solve the SHARP challenge [25] on recovering large regions of partial
textured body meshes. This challenge provides 3DBodyTex.v2, a dataset with
thousands of textured body meshes. The training set and the validation set con-
tain the ground-truth textured body meshes. The evaluation set contains only
partial meshes. The goal is to estimate the complete shapes in the evaluation
set.

Our contribution, sketched in Fig. 1, is a method, named 3DBooSTeR, to
recover a 3D body mesh with a corresponding high-resolution texture from a
textured partial 3D body scan. The tasks of shape and texture completion are
decoupled into a sequential pipeline. The shape completion method is a data-
driven mesh deformation deep learning network (based on Groueix et al. [9]) that
produces an output mesh of fixed topology. The texture completion is reduced to
an inpainting task of the texture image of the reconstructed mesh. An novel in-
painting method (based on Liu et al. [15]) is proposed. It is specifically designed
to handle the inpainting of a texture image with robustness to irregularly-shaped
incomplete regions and irregularly-shaped background regions that must be ig-
nored.
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The rest of the paper is organised as follows: Section 2 introduces the problem
and the notations used in the paper. Section 3 presents the proposed approach
for shape and texture completion. Experimental results are reported in Section 4.
In Section 5, we conclude the paper.

2 Problem Statement

A textured body shape is denoted X = (S,T ), where S = (V,F, π) is a body
mesh with nv vertices stacked in a matrix V ∈ Rnv×3, nf triangular faces en-
coded in F ∈ Nnf×3 as triplets of vertex indices, and a 2D parametrisation, π,
defining a mapping of the faces between the 3D shape, S, and the 2D texture
image, T .

Given a partial textured body shape Xp = (Sp,Tp), with, Sp, the partial
mesh, and, Tp, the partial texture, we aim to predict a complete textured body

mesh X̂ = (Ŝ, T̂ ) that approximates well the ground truth X = (S,T ). More-
over, the estimation X̂ should preserve the partially provided texture and shape
information as much as possible.

Texture atlas A texture image T has a texture atlas structure [12] consisting
of a set of charts (i.e. small pieces of the body texture) gathered together in a
single image. Each of these charts is mapped onto a different region of the 3D
mesh S using the 2D parametrisation π. This allows for densely colouring a 3D
mesh from a 2D image. Fig. 2a shows an example texture atlas corresponding to
a complete body mesh. Fig. 2b shows its corresponding background mask. The
background corresponds to the regions outside of the charts. They do not contain
any texture information and are coloured black by convention. The background
is defined in a background mask Mb where Mb(i, j) = 0 if (i, j) is a background
pixel, and Mb(i, j) = 1 otherwise (foreground). Fig. 2c and 2d, show the partial
texture atlas and background mask of a corresponding partial mesh (generated
synthetically).

(a) A complete
texture atlas.

(b) Background
mask of complete
texture.

(c) A partial tex-
ture atlas.

(d) Background
mask of partial
texture.

Fig. 2: Example of complete and partial texture atlases with their corresponding
background masks Mb. Sample from the 3DBodyTex.v2 dataset.
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3 Proposed Approach

Xp = (Sp, Tp); ∅

shape completion

(Ŝ, ∅);π

partial tex-
ture transfer

(Ŝ, T̂p);π

texture inpainting

X̂ = (Ŝ, T̂ );π

Tp

Fig. 3: Overview of the proposed approach for 3D body shape and texture com-
pletion.

We propose to solve the problem of textured 3D body shape completion with
two sequential tasks: shape completion, followed by texture completion (Fig. 3).
First, a complete 3D shape Ŝ is predicted from the partial shape Sp by an
encoder-decoder model. The encoder-decoder completes the input partial shape
by deforming a template mesh of a full 3D body into the corresponding pose and
shape of the input. The texture information of the partial input mesh is then
projected onto the estimated shape, Ŝ, to obtain a completed shape with partial
texture, T̂p. The regions with missing texture information are then identified on

the texture image, T̂p. Given the partial texture and the missing regions, the
task of texture completion on a 3D shape is turned into an image inpainting
task with additional constraints to handle the specific image representation of
texture atlas. Indeed, the texture image contains irregularly-shape background
regions that must be correctly ignored to avoid their propagation and unrealistic
inpainting results. The different stages of the approach are detailed below.

3.1 3D Body Shape Completion

The 3D body shape completion is performed in two steps, as illustrated in Fig. 4.
First, an encoder-decoder network predicts a rough estimation of the pose and
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Sp fe z fd

ST

Ŝ0 refinement Ŝ

f

Fig. 4: Pipeline for 3D shape completion: 1) An encoder-decoder network pro-
duces a first estimate of a complete shape. 3) The estimate is refined to better
fit the clothing.

shape of the partial input shape. Second, the estimation is refined to better
match the clothing shape.

The encoder-decoder, f , maps a partial 3D shape, Sp, onto a completed shape,

Ŝ. This model is based on [9]. The encoder, fe, transforms the input partial shape
into a latent representation, z ∈ Rnz , of the body pose and human shape. The
decoder, fd, uses this latent code to deform a template body mesh, ST , into
the pose and shape of the input. The result is a first estimation, Ŝ0, of the
ground-truth complete shape, S.

To refine the first shape estimate, Ŝ0, the corresponding latent code ẑ0 is
adjusted such that the decoded shape better fits the input partial shape. This
is cast as the optimisation problem

Ŝ = arg min
z

dChamfer(Sp, fd(z)). (1)

The decoder, fd, is taken as a black-box function. The objective function is the
directed Chamfer distance [7] from the partial shape, Sp, to the estimation, Ŝ.
The directed Chamfer distance is important to only fit the partial shape where
there is information and prevent uncontrolled deformations in holes (as reported
in the experiments in Section 4.1). Additionally, the fitting makes use a higher-
resolution shape than the one used in the encoder-decoder to fit clothing shape
details more precisely.

Architecture The encoder-decoder is parametrised by a deep neural network
with 3D convolutions. The encoder, fe, follows a PointNet [20] architecture. It
takes as input the set of mesh vertices, V ∈ Rnv×3, and applies successive point
convolutions. A point convolution consists in a shared multi-layer perceptron
(MLP) applied on the features of a set of points, to produce transformed fea-
tures of a possibly different size. The feature size of the successive layers are
(3, 64, 128, 1024). The last layer is max-pooled across the points into a vector,
z0, of size nz = 1024. This vector is then refined using two densely connected
layers of size 1024 to produce the latent vector z of size nz as well. The decoder,
fd, concatenates the latent code, z, to each vertex of the template mesh and then
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applies a series of point convolutions, as above. The feature size of the layers in
the decoder are (3 + 1024, 513, 256, 128, 3).

Training The training strategy of the network follows [9]. The mesh of the
SMPL body model [16] is used as the body mesh template, ST . The encoder-
decoder network, f , is trained with supervision by learning to reconstruct the
SMPL body model in randomly generated poses and shapes. The input training
data is augmented with random subsampling of the points and random shifts in
the positions. This makes the network robust to partial and irregular sampling
and variations in the input data. The loss is the mean-squared error (MSE) on
the point positions.

3.2 Body Texture Completion

After estimating the complete 3D shape (Section 3.1), a corresponding complete
texture image is estimated with the following steps. First, the input partial
texture is transferred onto the texture image of the estimated shape. Then, the
regions to be inpainted are identified. Finally, the completion of the texture is
performed by inpainting the partial texture image with specific constraints for
handling the topology of the texture atlas. These steps are detailed below.

Partial texture transfer The method of Section 3.1 estimates a complete
mesh Ŝ aligned with the input partial shape Ŝp. The partial texture Tp of the

input mesh is transferred onto Ŝ by a ray-casting algorithm that propagates
the texture information along the normal directions. The result is a mesh with
a complete shape and a partial texture, X̂Tp

= (Ŝ, T̂p). This is illustrated by
the mesh in Fig. 5a, where the regions without mapped colour are rendered
in black (default background colour). These regions must be identified on the
corresponding texture image prior to inpainting.

Identification of the regions with missing texture If no texture infor-
mation is transferred in a particular region of the mesh X̂Tp

, the corresponding
region in the texture image is left unmodified with the default black background
colour. Thus, the black pixels inside the charts of the texture atlas indicate
missing texture information. This is illustrated in Fig. 5b where the identified
regions without texture are highlighted in white. A binary mask M with the
same dimension as the partial texture image is derived such that M(i, j) = 0
if the pixel (i, j) corresponds to a missing texture information due to partial
data, and M(i, j) = 1 otherwise. An example of the computed mask is shown in
Fig. 5c. The corresponding background mask Mb is shown in Fig. 5d.

Texture inpainting To the transferred partial texture image T̂p is associated
the mask M indicating the regions with missing information. Additionally, the
background mask Mb of the texture is known from the definition of the charts
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(a) Partial tex-
ture transferred
on a complete
mesh.

(b) Identified
regions with
missing texture
(white).

(c) Binary mask
of the partial tex-
ture.

(d) Binary back-
ground mask.

Fig. 5: Identification of missing regions on a partial texture and binary masks
calculation.

in the texture atlas (Section 2). Given this information, the problem of texture
completion is turned into an image inpainting task. However, the inpainting
should only occur in the foreground regions, i.e. on the charts of the texture
atlas. Moreover, the non-informative background of the image must be explicitly
ignored to prevent irrelevant background colour (e.g . black) to propagate onto
the charts. The proposed adapted inpainting algorithm is detailed below.

Image inpainting is extensively studied in the literature [29, 31, 30, 15]. While
some works focus on image inpainting with regular masking shapes (e.g . rectan-
gular masks) [30, 29], more recent works try to address the inpainting problem
in case of irregular masking shapes [15, 31]. In our case, the masks of the missing
texture are derived from partial 3D shapes. This makes the masks irregular and
not restricted to specific shapes as it can be observed in Fig. 5c. Consequently,
the selected image inpainting approach should take into account these irregular-
ities. Accordingly, we build on the method proposed in [15] handling irregular
masks. In [15], the authors use partial convolutional layers instead of conven-
tional convolutional layers. These layers consist of mask-aware convolutions and
a mask update step.

Given a binary mask M , partial convolutions extend standard convolutions
to focus the computations on the information from unmasked regions (i.e. pixels
(i, j) such that M(i, j) = 1) and discard the information from masked regions.
With the goal of inpainting, the masks are updated after every partial convolu-
tional operation by removing the masking (i.e. changing the mask value from 0
to 1) for each location that was involved in the convolution. The mask update
forces the masked regions to disappear after a sufficient number of updates. More
formally, let W be the weights for a specific convolution filter and b its corre-
sponding bias. Tw are the feature values for the current sliding window and M
is the corresponding binary mask. The partial convolution at at every location,
similarly defined in [15], is expressed as:

tc =

{
WT (Tw �M) · sum(1)

sum(M) + b if sum(M) > 0

0 otherwise
(2)
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where � denotes element-wise multiplication, and 1 has same shape as M but
with all elements being 1. After every partial convolution, a masked value in
M (M(i, j) = 0) is updated to unmasked (M(i, j) = 1) if the convolution was
able to condition its output on at least one valid input value. In practice this is
achieved by applying fixed convolutions, with the same kernel size as the partial
convolution operation, but with weights identically set to 1 and no bias.

One important observation in the two texture atlases provided in Fig. 2, is
that they contain some non-informative black regions used as background to
gather the body charts in a single image. The inpainting of the missing texture
information (white regions in Fig. 5b) could be impacted by the non-informative
background (i.e. black) using the original form of partial convolutions intro-
duced in [15]. This is confirmed and visualised by experiments in Section 4.3.
As a solution, we propose to ignore these regions during the partial convolu-
tions as done with the masked values of the missing texture to be recovered.
However, these regions should not be updated during the mask update as the
background mask should stay fixed through all the partial convolution layers.
This is achieved by including the background mask Mb of the texture image in
the partial convolution as follows,

tc =

{
WT (Tw �M �Mb) · sum(1)

sum(M�Mb)
+ b if sum(M �Mb) > 0

0 otherwise
(3)

The background mask Mb is passed to all partial convolutions layers without
being updated by applying do-nothing convolution kernels with the same shape
as the ones used for the masks M . A do-nothing kernel consists of a kernel
with zeros values everywhere except for the central location which is set to 1.
Moreover, before updating the original mask M we apply on it this background
mask Mb by element-wise multiplication so that we guarantee that the mask M
will not be updated using the background regions.

The aforementioned partial convolutional layers are employed in a UNet-
like architecture [21] instead of standard convolutions. Several loss functions are
used to optimise the network. Two pixel-wise reconstruction losses are defined
separately on the masked and unmasked regions with a focus on masked regions.
Style transfer losses are also considered by constraining the feature maps of the
predictions and their auto-correlations to be close those of the ground truth [8].
Finally a Total-Variation (TV) loss [11] is employed on the masked regions to
enforce their smoothness. For more details about the aforementioned inpainting
method are presented in [15].

The inpainting task is facilitated by the fact that the texture atlas images
to inpaint have a fixed arrangement of the charts. This is because they are all
defined on the same template mesh XT of used for the shape completion in
Section 3.1. This means that semantic body regions are placed consistently on
the texture images, regularising the inpainting problem.

In the experiments (Section 4.3), two training strategies are investigated
for this inpainting method. First, the network is trained from scratch on the
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3DBodyTex.v2 dataset [25]. Second, the network, pretrained on the ImageNet
dataset [5], is fine-tuned on the 3DBodyTex.v2 dataset [25].

4 Experiments

This work focuses on the completion of textured 3D human shapes using the
3DBodyTex.v2 dataset introduced in the SHARP challenge [25].

The SHApe Recovery from Partial Textured 3D Scans (SHARP) [25] chal-
lenge aims at advancing the research on the completion of partial textured 3D
shape. Two challenges are proposed with two corresponding datasets of 3D scans:
3DBodyTex.v2, a dataset of human scans, and 3DObjectTex, a dataset of generic
objects. 3DBodyTex.v2 contains about 2500 humans scans of a few hundred peo-
ple in varied poses and clothing types. It is an extension of 3DBodyTex [22].

4.1 Shape completion

Fig. 6: Results of shape completion for 6 examples of the test set. From left to
right: input partial shape (white), initial shape estimate (orange), refined shape
estimate (green), ground truth (white). In the input partial shapes, the visible
interior surface is rendered in black.

Fig. 6 shows the results of the shape completion (Section 3.1). It can be seen
that initial shape estimate (orange) captures the pose of the partial input but
not the loose-fitting clothing. The refined shape (green) represents the clothing
more accurately. This shows the validity of the approach in recovering clothed
body shapes.

However, several limitations are observed. A topology significantly different
from the template body mesh is difficulty recovered. This happens for example
with hair and clenched fists. Moreover, in the example in row 1 column 3 of Fig. 6,
the left foot is not recovered because it is completely cropped from the partial
input. This suggests that the shape estimation can fail locally on an extremity
of the body when no information is available in the partial shape. This could
be improved by retraining the encoder-decoder model on a dataset of partial
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shapes. Furthermore, the pose of the human skeleton is not always sufficiently
accurate in the first shape estimate produced by the encoder-decoder network. As
a consequence, the refinement fails and the final shape estimate is not correctly
aligned. This is due in part to the variety in clothing shapes for which the network
has not been trained. Similarly, in row 1 column 2 of Fig. 6, the refined shape
(green) does not capture the shape of the skirt realistically. This is also due to
the network being trained on body shapes only. The encoder-decoder, f , could
thus profit from a training or fine-tuning on a dataset of clothed shapes and
also possibly from adaptations of the architecture to handle the more complex
deformations of the clothing.

Fig. 7: Shape refinement with symmetric versus directed (one-way) Chamfer dis-
tance for three examples of the test set. The one-way Chamfer distance (green)
is the one retained in the proposed approach. From left to right: input partial
shape (white), refined shape with symmetric Chamfer distance (orange), refined
shape with directed (one-way) Chamfer distance (green), ground truth (white).
In the input partial shapes, the visible interior surface is rendered in black.

Fig. 7 illustrates the importance of the chosen objective function in the op-
timisation problem (1) to refine the initial shape estimate. With a symmetric
Chamfer distance (from partial input to estimated shape and conversely), the
shape refinement fails (orange shape in Fig. 7). With a directed Chamfer distance
(from partial input to estimated shape only), the shape refinement is sound. This
is due to the holes in the input partial shape. With the symmetric distance, the
measure from the estimated shape to the partial input has the effect of dragging
the estimated shape into regions of the partial input without holes. This creates
unrealistic distortions in the estimated shape.

4.2 Texture transfer

Fig. 8 illustrates the texture transfer from the partial shape onto the refined
shape estimate. Overall, the texture is mapped correctly when the shape estimate
is close the partial shape. When the estimated shape is incorrect (e.g. foot in
third column), the transferred texture is directly impacted.

4.3 Texture inpainting

Visual results on the validation set for texture completion are presented in Fig. 9.
The completed textures are displayed on the completed shapes obtained with
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Fig. 8: Illustration of the texture transfer (right) from the partial shape (left)
onto the refined shape estimate (orange, middle) for three examples of the test
set.

(a) Input par-
tial

(b) Pretrained (c) Pretrained
+ Mb

(d) Scratch +
Mb

(e) Fine-
tuning +
Mb

(f) Ground
truth

Fig. 9: Results for texture inpainting using different strategies.
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the method from Section 4.1. The first column (a) shows the input partial tex-
ture while the last column (f) depicts the ground-truth complete texture. The
intermediate columns show the inpainting results and training strategies: (b) the
original inpainting model, pretrained on ImageNet; (c) the improved inpainting
model with the proposed background masks (Section 3.2), pretrained on Ima-
geNet; (d) the improved inpainting model with background masks, trained from
scratch on 3DBodyTex.v2 and (e) the improved inpainting model with back-
ground masks, pretrained on ImageNet and fine-tuned on 3DBodyTex.v2.

As seen in Fig. 9b, the original inpainting model pretrained on ImageNet
is able to complete some of the missing regions with colour matching the local
context. However, the holes are not completed fully. This is due to the black
background of a texture atlas which is used as a local context for inpainting, as
explained in Section 3.2. With the addition of the proposed background masks to
the inpainting model (Fig. 9c), the holes are fully completed. This validates the
proposed approach tailored to the data at hand. However, the completed colour
does not match the local context accurately and contains artefacts. For example,
some holes are filled in with random colour patterns and some white patches are
produced in dark regions. Training the improved inpainting model from scratch
on 3DBodyTex.v2 (Fig. 9d) reduces the colour artefacts. The completed colour
patterns are more regular but the colour does not follow closely the surrounding
context. Thus, the 3DBodyTex.v2 dataset seems enough to regularise the colour
pattern inside the clothing but not rich and varied enough for the model to learn
what colour to complete with. Indeed, 3DBodyTex.v2 is relatively small (a few
thousands samples) in comparison to ImageNet (millions of examples). Finally,
the proposed method of fine-tuning on 3DBodyTex.v2 the improved inpainting
model pretrained on ImageNet (Fig. 9e) gives the best results by producing
regular colour patterns matching the local surrounding regions closely.

5 Conclusion

This work proposes 3DBooSTeR, a novel approach for the completion of par-
tial textured human meshes. The tasks of 3D shape completion and texture
completion are addressed sequentially. First, the 3D body shape completion is
performed with an encoder-decoder system that encodes a partial input point
cloud of a human shape into a latent representation of the complete shape and
decodes this representation into a completed shape by deforming a template
body mesh. The estimated shape is further refined to better match the clothing
by adjusting the encoded latent code with an optimisation procedure adapted to
the input partial data. The partial texture information is then projected onto the
estimated shape. The regions of the mesh to be completed are identified from the
3D shapes and mapped onto the texture image. The texture completion is then
seen as a texture inpainting problem. For this task, a novel inpainting method
tailored to texture maps is proposed. It is specifically designed to handle holes
of irregular shape and to be robust to irrelevant background image information.
Experiments on 3DBodyTex.v2 show the validity of the proposed approach on
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partial data. Future work includes making the encoder-decoder network capture
the clothing shape better, by training on a dataset of clothing shape and/or
adapting the architecture. The texture transfer could be made more robust to
bad shape estimates by enforcing a continuity in the mapping from partial shape
to estimated shape. Overall, the pipeline might profit from a coupling between
the shape and texture completion, for example in an end-to-end neural network
architecture. This involves at least designing differentiable alternatives to the
two intermediate manual steps of shape refinement and texture transfer.
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