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Abstract 19 

CRISPR-Cas9 provides a tool to treat autosomal dominant disease by NHEJ gene disruption 20 

of the mutant allele. In order to discriminate between wild-type and mutant alleles, SpCas9 21 

must be able to detect a single nucleotide change. Allele-specific editing can be achieved by 22 

employing either a guide-specific approach, in which the missense mutation is found within 23 

the guide sequence; or a PAM-specific approach, in which the missense mutation generates 24 

a novel PAM. While both approaches have been shown to offer allele-specificity in certain 25 

contexts, in cases where numerous missense mutations are associated with a particular 26 

disease, such as TGFBI corneal dystrophies, it is neither possible nor realistic to target each 27 

mutation individually. Here we demonstrate allele-specific CRISPR gene editing independent 28 

of the disease-causing mutation which is capable of achieving complete allele discrimination 29 

and we propose it as a targeting approach for autosomal dominant disease. Our approach 30 

utilises natural variants in the target region that contain a PAM on one allele which lies in cis 31 

with the causative mutation, removing the constraints of a mutation-dependent approach. 32 

Our innovative patient-specific guide design approach takes into account the patient’s 33 

individual genetic make-up allowing on and off target activity to be assessed in a 34 

personalised manner. 35 

Introduction 36 

CRISPR-Cas9 holds immense promise for the treatment of single gene diseases, enabling 37 

sequence specific genome modifications to be induced to remove or correct the genetic cause 38 

1–3. The best characterised Cas nuclease, S.pyogenes Cas9 (SpCas9) in complex with a single 39 

guide RNA (sgRNA) searches the genome for a NGG protospacer adjacent motif (PAM). Once 40 

a NGG PAM is encountered SpCas9 determines whether the 20bp guide sequence in the 41 

sgRNA has complementarity with the flanking sequence. If there is global sequence similarity 42 
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Cas9 will bind and generate a double-strand break (DSB) at this location. NHEJ, the DNA repair 43 

mechanism most often used in non-dividing cells, lacks fidelity and can introduce insertions 44 

and deletions (indels) at the repair site. NEHJ-mediated indels introduced in the coding region 45 

of a gene can result in a frameshifting mutation leading to premature termination of 46 

translation or nonsense mediated decay of the mRNA and thus permanent disruption of the 47 

target gene. One important application of this technology is the potential to treat autosomal 48 

dominant disease by allele-specific NHEJ mediated gene disruption. Autosomal dominant 49 

disease is predominantly caused by single base-pair, missense mutations4. Therefore, to 50 

achieve allele-specific NHEJ mediated gene disruption of the mutant allele, SpCas9 must be 51 

able to discriminate between wild-type and mutant alleles which differ by only this single base 52 

pair change. Allele-specific editing of missense mutations via CRISPR-Cas9 can be achieved by 53 

employing either a guide-specific approach, in which the missense mutation is found within 54 

the guide sequence; or a PAM specific approach, in which the missense mutation generates 55 

a novel PAM. Utilising a guide-specific approach has been shown to achieve reasonable allele 56 

discrimination with certain mutations5–7. However, successful application of this approach 57 

requires the mutation of interest to have a usable PAM in close proximity. The position of the 58 

missense mutation within the guide sequence, and critically within the first 8-12nt in the 59 

guide sequence, is known to limit this approach through reduced allele discrimination 60 

observed the more distal the mutation is from the PAM8. Similarly, although exploitation of a 61 

novel PAM has been shown to confer stringent allele-specificity, only a fraction of missense 62 

mutations will generate a novel PAM9,10 8. While both approaches can be efficiently utilised 63 

in the context of certain mutations, they both highlight the limitations of a mutation 64 

dependent approach.  65 
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Corneal dystrophies comprise a group of inherited, bilateral genetic eye diseases that affect 66 

the transparency or shape of the cornea, which can lead to progressive vision loss and 67 

eventually blindness11. Transforming growth factor β-induced (TGFBI) has been implicated as 68 

the causative gene in some of the most commonly occurring epithelial and stromal corneal 69 

dystrophies.  TGFBIp is an extracellular matrix (ECM) protein and through its interaction with 70 

integrins is involved in many key cellular processes, and has been shown to have a role in 71 

wound healing, angiogenesis, cancer and inflammatory diseases12,13. Despite the fact that 72 

TGFBIp is widely expressed, mutations within TGFBI appear only to result in an adverse 73 

phenotype in the cornea, although the mechanism behind the accumulation of mutant 74 

TGFBIp in the cornea is incompletely understood. To date >70 different disease-causing, 75 

predominantly missense mutations within TGFBI have been described. These mutations and 76 

the dystrophies associated with them are classified as epithelial-stromal TGFBI  corneal 77 

dystrophies14,15. A very strong genotype-phenotype correlation exists between each missense 78 

mutation and the pattern of the mutant protein deposits that accumulate in the cornea. 79 

Autosomal dominant missense mutations are not amenable to conventional gene 80 

replacement therapy, as the production of mutant protein will persist. Repair of the TGFBI 81 

R124H missense mutation has been demonstrated in patient-derived primary corneal 82 

keratocytes16. However, template repair is considered a relatively infrequent event in most 83 

cell types17. Heterozygous nonsense mutations in TGFBI associated with a normal phenotype 84 

have been reported18,19. Indicating that TGFBI is haplosufficient and disruption of the mutant 85 

allele, whilst leaving the wild-type allele intact, would not lead to a more severe phenotype. 86 

Allele-specific siRNAs targeted to a lattice corneal dystrophy (LCD1) (OMIM:122200) mutation 87 

R124C have been shown to achieve potent and specific knockdown of the mutant allele20. 88 

However, as knockdown of mutant protein expression by siRNA is only transient and would 89 
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require continued application/injection into the eye, permanent disruption of the mutant 90 

allele would be an attractive alternative strategy. In the case of TGFBI corneal dystrophies, 91 

with over 70 missense mutations currently associated with disease, utilising either a guide-92 

specific or PAM-specific approach would require the design of a different guide for each 93 

mutation. This is an insurmountable task, as greater than one third of these missense 94 

mutations cannot be targeted by either approach and not all of the remaining mutations will 95 

offer guides with good on-target and off-target profiles8.  96 

Using autosomal dominant TGFBI corneal dystrophies as a model, we present a mutation-97 

independent allele-specific CRISPR editing approach that is capable of achieving stringent 98 

allele discrimination with wild-type SpCas9 and propose it as a targeting approach for 99 

autosomal dominant disease. Genetic variation has been shown to affect the target specificity 100 

of CRISPR by creating or abolishing prospective target sites21,22. This enables allele-specificity 101 

to be achieved in cases where phase cannot be pre-determined23 utilising natural variants in 102 

the target region that are associated with a PAM that lie in cis with the causative mutation. 103 

Consequently, the targeting approach is no longer constrained by the location of the 104 

mutation. At the same time, employing common variants ensures that a pool of well tested 105 

guides can be used to treat the majority of affected individuals in a given population. Herein 106 

we present a workflow for gene editing of genes associated with autosomal dominant disease 107 

that will allow guide design based on the patient’s individual genetic make-up. Therefore, on 108 

and off target activity can be routinely assessed in a personalised manner for every 109 

therapeutic application. 110 
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Results 111 

Identification of mutation-independent PAM-associated SNPs in the TGFBI Gene 112 

The TGFBI gene covers ~35kb and contains 17 coding exons. Mutations within TGFBI occur 113 

in exons 4-16 but are clustered in hotspots found in exons 4, 11, 12 and 14. Previously, we 114 

analysed all missense mutations in TGFBI to determine if they were targetable for allele-115 

specific NHEJ gene disruption by either a guide-specific or PAM-specific approach utilising 116 

S.pyogenes Cas9 8. Greater than a third were targetable by neither approach. In addition, 117 

stringent allele-specificity could not be achieved for the 5 most prevalent mutations using a 118 

guide-specific approach. The specificity of Cas9 for the mutant allele varied for each 119 

mutation investigated and was dependent upon the position of the mutation in the guide 120 

sequence 8. 121 

Thus, the feasibility of an alternative mutation-independent strategy was explored.  We 122 

proposed that allele-specificity could be achieved by targeting non-disease causing SNPs 123 

that lie in cis with the disease causing mutation and contain a suitable PAM on only one 124 

allele. To identify variants across the TGFBI locus suitable for this approach, SNPs were 125 

filtered to select those with a minor allele frequency (MAF) of > 0.1 across all of the 126 

individuals in the 1000 Genomes Project Phase 3 cohort. As TGFBI is highly conserved, SNPs 127 

with a MAF of >0.1 were only located in intronic regions. These SNPs were then examined to 128 

determine which contain a PAM on only one allele and 24 which fitted these criteria were 129 

identified. (Figure 1a and Supplementary Table 1).  130 

Haplotype Analysis of identified SNPs across TGFBI 131 

Granular corneal dystrophy type II (GCD2) (OMIM: 607541) caused by the R124H TGFBI 132 

mutation, is most prevalent in East Asia: in  Korea,  the reported prevalence is 1 in 870, 133 

while in China it rises to 1 in 400 24.  Although we have identified 24 suitable SNPs, their 134 
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usefulness would be reduced if the PAM-associated alleles all lie together in the same 135 

linkage disequilibrium (LD) block. In order to determine whether the selected  SNPs  are 136 

suitable for allele discrimination in these populations, we performed haplotype analysis 137 

using the 1000 Genomes project phase 3 data for the East Asian cohort (EAS) 138 

(Supplementary Figure 1a,b) and in the sub-populations of Han Chinese in Beijing, China 139 

(CHB) (Supplementary Figure 1c,d) and Japanese in Tokyo, Japan (JPT) (Supplementary 140 

Figure 1e,f)  (Highlighted in red on Supplementary Table 1) and determined the extent of 141 

the LD blocks. For both the EAS population and CHB sub-population LD blocks were located 142 

in intron 1-2, spanning intron 2-3 to intron 13-14, and spanning intron 13-14 to intron 14-143 

15, with between three and four haplotypes described for each LD block (Supplementary 144 

Figure 1 a-d). The structure of the LD blocks in the JPT sub-population differed somewhat, 145 

with two LD blocks, spanning intron 1-2 to intron 10-11 (6 haplotypes) and intron 13-14 to 146 

intron 15-16 (3 haplotypes) (Supplementary Figure 1e,f). 147 

Our mutation independent approach relies on variation across the target locus. The 148 

haplotypes identified in the large haploblocks (EAS-B2, CHB-B2, JPT-B1) were analysed to 149 

determine the percentage of the population in which our approach could be used to 150 

selectively disrupt only one allele. The fraction of homozygotes, in whom the two alleles 151 

cannot be distinguished, was calculated using the Hardy-Weinberg equation for multiple 152 

alleles. This showed that 66% of the EAS population and 67% of the CHB and 71% of the JPT 153 

sub-populations are heterozygous for these alleles and therefore potentially targetable. 154 

Critically, since this analysis was performed using only the largest haploblock in each 155 

population, the actual proportion of the population that is potentially targetable may be 156 

larger.  157 
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The distribution of the PAM-associated SNPs was then assessed in each allele and used to 158 

calculate the number of targetable SNPs for each possible heterozygous combination of 159 

alleles. This analysis (Supplementary Figure 2) reveals that, even when only considering the 160 

largest haploblock, the proposed approach has the potential to target, for at least one 161 

position, all heterozygous combinations across all populations investigated, indicating that 162 

the 24 SNPs identified could be used to treat the majority of East Asian patients. 163 

Guide design based on patient haplotype 164 

To validate this approach we performed phased sequencing of a Japanese patient 165 

harbouring a R124H TGFBI GCD2 mutation which allowed identification of SNPs associated 166 

with a PAM on only one allele that lie in cis with the patient’s R124H mutation. (Figure 2, 167 

Supplementary Table 2).  A range of guides targeted to the PAM located on the mutant 168 

allele were then designed (Figure 3a, Supplementary Table 3). The ability of wild-type 169 

S.pyogenes Cas9 to distinguish between ‘PAM associated’ and ‘No PAM present’ alleles was 170 

assessed firstly by in vitro digestion. A PCR product containing either the allele associated 171 

with a PAM or the allele with no PAM present (Figure 3b), was incubated with 172 

ribonucleoprotein (RNP) complexes of Cas9 and sgRNA. Digestion products were then 173 

electrophoresed on an agarose gel and the intensity of the digested products revealed the 174 

in vitro specificity of each guide (Figure 3c). Of the 12 guides tested, 8 appeared to 175 

preferentially cleave the PAM associated allele while 4 appeared to have little activity at 176 

either the ‘PAM associated’ or ‘No PAM’ allele. It appeared that SNPs generating a non-177 

canonical PAM, which is a PAM sequence other than NGG that can still act as a weak PAM 178 

for S.pyogenes Cas9 such as NAG or NGA 25,26, on the ‘No PAM present’ allele, only 179 

conferred partial discrimination at best. These results suggest that, in order to achieve 180 

stringent allele-specificity, the sequence of the non-target allele, in trans with the mutation, 181 
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should be NGC, NCG, NGT or NTG and an NGG PAM should be in cis with the mutation on 182 

the targeted allele 183 

Allele-specificity of single guides in R124H lymphocyte cell line 184 

To test the mutation-independent allele-specific approach, a proliferating lymphocyte cell 185 

line (LCL) was generated utilising peripheral blood mononuclear cells (PBMC) from the GCD2 186 

patient harbouring a TGFBI R124H mutation. RNP complexes of SpCas9 and nine modified 187 

synthetic sgRNAs, previously tested by in vitro digestion, were individually nucleofected into 188 

the R124H LCLs. To determine the allele-specificity of each guide, targeted resequencing 189 

across the on-target region, where Cas9 is predicted to cleave, was performed. The target 190 

region for all 9 guides was PCR amplified and subjected to deep sequencing. Computational 191 

analysis was performed to determine whether indels had occurred and with which allele 192 

they were associated. For the guides screened, we found that all could efficiently distinguish 193 

between ‘PAM associated’ and ‘No PAM present’ alleles (Figure 4a). On average only 3.7% 194 

of indels occurred on the allele not associated with a PAM, in comparison to 96.3% of indels 195 

on the allele that is associated with a PAM. This indicates that careful guide design and 196 

testing can achieve stringent allele-specificity in a mutation-independent manner. However, 197 

in contrast to the observations of the in vitro digestion of PCR products (Figure 3b), 198 

stringent allele-specificity was observed regardless of whether of a non-canonical PAM was 199 

present on the non-target allele. In addition, the guide targeting rs6860369 appeared 200 

inactive in the in vitro screen but was active in a cellular context. This indicates that the in 201 

vitro screen, while largely suitable as a means of selecting active guides, does not serve as a 202 

predictive tool for allele specificity in a cellular context. For 7 out of 9 guides tested the 203 



 10 

predominant indels observed were 1 or 2bp insertions, which occurred 3 or 4bp upstream 204 

of the PAM (Figure 4b,c,d, Supplementary Figure 3).  205 

Allele-specific excision of coding region in TGFBI utilising a dual cut approach 206 

The in cis PAM-associated approach presented here removes the limitations of a mutation-207 

dependent approach. All of the non-disease-causing SNPs matching the guide selection 208 

criteria were located in intronic regions, thus indels introduced by single guides are unlikely 209 

to have therapeutic potential. To overcome this an in cis, dual-guide approach targeted to the 210 

mutant allele is required. Upon careful design, excision of the exon/s between the guides will 211 

result in a clearly defined and consistent frameshift that will result in premature termination 212 

of translation or nonsense mediated decay (NMD) of the resultant mRNA and selective 213 

knockout of expression of the mutant allele. In order to reach a therapeutic threshold in vivo 214 

the region between the dual-guides must be excised at a high frequency. However, the 215 

minimum reduction of TGFBIp in the cornea required to achieve a therapeutic effect is 216 

unknown.  217 

In some cases, the target SNPs described lie substantial distances apart, up to >18kb 218 

(Supplementary Table 4). As the efficiency of deletion drops with increasing intervening 219 

distance27, additional guides were designed that lie closer to a particular PAM discriminatory 220 

guide yet still allow excision of exons (Supplementary Table 5). In contrast to the PAM 221 

discriminatory guides, the additional guides are not allele-specific, they were selected to 222 

target the intronic region of both alleles (Figure 5a). It was hypothesised that the PAM 223 

discriminatory guide will only cut the mutant allele while the common-intronic guide will cut 224 

both alleles. When both cuts are made on the mutant allele the chromosomal region between 225 

these cuts may be deleted. The wild-type allele will only be cut by the common-intronic guide 226 
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which, provided meticulous design has been applied to avoid important regulatory elements, 227 

should have no functional effect.  228 

Five dual gRNA combinations ranging in intervening size from 419bp to 4008bp were tested 229 

by nucleofection into R124H patient derived LCLs (Supplementary Table 6). One pair (Dual 2) 230 

included the previously validated R124H specific gRNA, which cuts beside the mutation SNP 231 

within Exon 4 8. To confirm that the expected deletion was occurring, we performed PCR and 232 

Sanger sequencing analysis on genomic DNA from cells nucleofected with each pair.  PCR 233 

amplification across the deletion site for all pairs revealed a band from DNA isolated from 234 

treated cells corresponding to the expected size (Figure 5b).  Sanger sequencing analysis of 235 

each deletion PCR product using both the forward and reverse primer showed a wildtype 236 

sequence trace until the gRNA cut site, followed by mixed trace, indicating that regions 237 

outside of the deletion were unaffected (Figure 5c, Supplementary Figure 4). In some cases 238 

(e.g. dual 4, Figure 5c), we were able to determine the precise deletion of the intervening 239 

sequence as the trace after the cut site showed the expected truncation sequence or else 240 

with a 1bp indel. Other traces were mixed after the cleavage site indicating that varied indel 241 

events occurred alongside deletion which did not, however, extend beyond the predicted 242 

Cas9 cleavage site. Importantly, we were also able to confirm allele specificity of the deletion 243 

for many of the pairs when the strand recognised by the sgRNA placed the PAM on the 244 

opposite side of the Cas9 cleavage site to the deletion.  Thus, when the smaller, deletion band 245 

was sequenced only the PAM-associated SNP allele and not the alternative non-PAM allele 246 

was detectable in the trace (e.g. Figure 5c). Together these analyses confirm that the dual 247 

gRNA approach for specifically editing the mutation allele in TGFBI affected patients produces 248 

the expected deletions in genomic DNA. 249 
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Whole genome analysis of CRISPR off-targets  250 

In addition to demonstrating on target allele specificity it is necessary to demonstrate that 251 

the selected guides do not cause deleterious alterations elsewhere in the genome. We 252 

performed an unbiased in vitro genome wide screen for potential off targets performed 253 

using Circularization for In vitro Reporting of Cleavage Effects by sequencing (CIRCLE-seq)30. 254 

After employing a stringent cut-off threshold of greater than or equal to 25% of the top hit 255 

by read count we still detected potential off target cleavage sites for all of the guides tested 256 

(median 31, range 13-161) ( Supplementary Table 7, Supplementary Figure 5). The TGFBI on-257 

target site was consistently detected with high read count, however it was not always the 258 

top hit (Supplementary Table 8). The CIRCLE-seq results contained many of the Benchling in 259 

silico-predicted off target sites at high read count but also many others that were not 260 

predicted. Off targets were detected in gene coding regions (in 4/8 guides), none of which 261 

were predicted by the in silico design programs used. CIRCLE-seq reproducibility was tested 262 

by performing a technical replicate analysis on one guide; where separate CIRCLE-seq 263 

libraries were prepared from the same DNA sample and sequenced on separate lanes on 264 

different days. There was a high correlation between technical replicates when results were 265 

ranked by read number (r2 = 0.83). 266 

To validate CIRCLE-seq results by an independent method we selected a number of off 267 

target hits across all guides and performed Sanger sequencing and TIDE analysis31.  Targets 268 

to validate CIRCLE-seq results were selected as follows: 1. Top 5 off target hits by CIRCLE-seq 269 

read count, 2. All off-targets in gene-coding regions above the CIRCLE-seq read count 270 

threshold,  3. On target TGFBI location (if not included in 1.), 4. For two guides we selected 271 

the top 5 off targets detected in silico by Benchling. The total number of selected targets 272 
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was 62; of these, 50 successfully passed primer design criteria and 24 produced Sanger 273 

sequencing traces of sufficient quality for off target analysis by TIDE (Supplementary Tables 274 

8, 9a and 9b). For the off targets that could be analysed by TIDE, 75% were validated as 275 

being true off targets (18/24). There were 10 off targets in gene coding regions across all 276 

guides that were detected by CIRCLE-seq and not by in silico design; seven failed validation, 277 

one was not validated and two did validate, with in vitro cutting efficiencies of 12% and 5% 278 

(Supplementary Table 9a). 279 

Discussion 280 

Conventionally, gene therapy refers to gene replacement strategies, whereby a functional 281 

copy of the defective gene is introduced to ameliorate the disease32. This approach has been 282 

widely adapted for the treatment of autosomal recessive retinal dystrophies33. However, 283 

gene replacement is not appropriate for the treatment of autosomal dominant diseases, such 284 

as the TGFBI corneal dystrophies, due to the persistent production of mutant protein from 285 

the still present mutant allele. Conversely, an approach that aims to correct or disrupt the 286 

mutant allele can offer a viable treatment strategy for autosomal dominant disease.  287 

Previous reports have described alternative approaches to treat the corneal dystrophy caused 288 

by individual TGFBI mutations. Courtney et al demonstrated that allele-specific siRNAs 289 

targeted to a lattice corneal dystrophy (LCD1) (OMIM:122200) R124C mutation could achieve 290 

potent and specific knockdown of the mutant allele in patient-derived corneal epithelial 291 

cells20. However, as knockdown of mutant protein expression by siRNA is only transient 292 

continued application would be required. Alternatively, repair of the TGFBI R124H missense 293 

mutation by CRISPR-Cas9 mediated homology directed repair (HDR) has been demonstrated 294 

in patient-derived primary corneal keratocytes16. However, despite extensive efforts to 295 
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improve the efficiency of HDR, template repair is considered a relatively rare event, limiting 296 

in vivo use 34,35. Furthermore, as HDR is restricted to the G2 and S phases of the cell cycle, 297 

non-dividing cells such as corneal endothelial cells are not targetable by this approach.  298 

We have previously reported more than one third of the mutations associated with TGFBI 299 

corneal dystrophies are not targetable by either a guide- or PAM-specific approach8. 300 

Therefore, a strategy based on targeting each individual mutation would provide an 301 

incomplete approach to treat these dystrophies. While  SpCas9 has been shown to tolerate 302 

single base-pair mismatches between the guide and target sequences 8,36–38, mutations 303 

within the PAM are much less tolerated and have been shown to impair the cleavage 304 

efficiency of Cas939–41. The use of truncated guide RNAs or high-fidelity variants could 305 

improve specificity within the guide RNA42–45. However, we chose an approach, focused on 306 

allelic differences resulting in a PAM site on one allele, to derive more stringent allele-307 

specificity that removes the requirement that the disease-causing mutation itself must 308 

create a novel PAM. Nucleases with altered PAM specificities6,40,43,46–48 will broaden the 309 

targeting capacity and allow additional dual-guide combinations, highly specific for the 310 

mutant allele but in closer proximity to one another, to be designed. The method presented 311 

provides a promising alternative to mutation-dependent approaches that can be used to 312 

treat any patient affected with an autosomal dominant monogenic disease irrespective of 313 

their causative mutation where phase cannot be pre-determined.  314 

In order to prevent expression of the disease-causing mutant protein further considerations 315 

for guide design are required. It is widely accepted that if a premature stop codon resides 316 

≥50-55 nucleotides upstream of the 3’ most exon-exon junction then the exon-junction 317 

complex will not be removed and thus nonsense mediated decay (NMD) will be induced49,50. 318 
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Therefore, to induce NMD and selectively degrade the mutant allele guides that target 319 

exons early in the transcript will be most desirable. When this concept is applied to TGFBI a 320 

premature termination codon no later than 50-55 nucleotides from the 5’ splice site in exon 321 

15 will result in NMD. This is evident from an examination of the corneal dystrophy-causing 322 

mutations in TGFBI which are either missense mutations or in frame indels, with the 323 

exception of a frameshifting single base deletion at codon 626 reported by Munier et al 51. 324 

The result of this frameshift mutation is the addition of 43 missense amino acids and 325 

premature termination at codon 669, which is less than the required 50-55nt distance from 326 

the 3’ most exon-exon junction, therefore NMD is predicted not to occur and the nonsense 327 

transcript is translated. 328 

If common intronic guides are required to increase deletion frequency, care must be taken 329 

to ensure any indels they may induce do not disrupt any regulatory elements. In a similar 330 

approach used to target the Huntington gene (HTT), common intronic guides were found to 331 

affect expression of the normal allele due to the targeting of intronic transcription factor 332 

binding sites52, however in contrast to our approach these guides were designed to target 333 

intron 1 where they are more likely to affect regulation of transcription. The use of 334 

common-intronic guides assumes that any small indels induced in an intronic region will 335 

have no functional effect. However, Kosicki et al recently reported single guides targeted to 336 

intronic regions produced deletions of up to 2kb at significant frequencies; they 337 

demonstrated that transfection of 10 different guides singly, located 263–520 bp from the 338 

nearest exon, caused a 8–20% reduction in their gene of interest, while 2 guides > 2 kb away 339 

caused a 5–7% loss of their gene of interest53. While this would indicate that, provided they 340 

are highly allele-specific, single guides could have a functional effect by inducing larger 341 

deletions, it raises concerns about the types of alterations that Cas9 generates and whether 342 
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or not current detection methods are capturing a complete picture of the changes induced. 343 

Furthermore, while we have shown encouraging results for the use of a dual-cut to induce a 344 

therapeutically relevant deletion, Kosicki et al also reported that complex deletions and 345 

rearrangements may also be occurring, which would be undetectable by our PCR based 346 

assays.  347 

The approach described within necessitates thorough genomic characterization of the 348 

target loci. In this new era of personalised medicine, where progress will be made with great 349 

caution, whole genome sequencing (WGS) will undoubtedly be a prerequisite for any 350 

patient undergoing gene editing therapies to allow the potential for success or failure of 351 

such therapies to be fully assessed. We would advocate that patients undergo whole-352 

genome phased sequencing to enable the design of guides in cis with the mutation for 353 

autosomal disease. The phase information will also aid in the understanding of outcomes 354 

should unwanted off-targets effects, such as those detected by the in vitro and ex vivo 355 

assays used here, or chromosomal translocations occur. Other hurdles such as efficiency of 356 

delivery of the gene editing components to the target cells remain to be addressed, 357 

however the approach presented here offers a promising strategy to allele-specific gene 358 

therapy in a mutation independent manner for autosomal dominant disease.  359 

Materials and Methods 360 

Phased sequencing of R124H patient genome 361 

Genomic DNA was extracted from 3ml of whole blood with a MagAttract HMW DNA kit 362 

(QIAGEN, Hilden, Germany). DNA fragment lengths of approximately 45 kb were enriched 363 

for on a Blue Pippen pulsed field electrophoresis instrument (Sage Science, Beverly, MA, 364 

USA).  Fragment sizes averaging 51,802 bps were confirmed with a Large Fragment kit on 365 

the Fragment Analyzer (Advanced Analytical, Ankeny, IA, USA).  This high molecular weight 366 
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(HMW) DNA (1 ng) was partitioned across approximately 1 million synthetic barcodes 367 

(GEMs) on a microfluidic Genome Chip with A Chromium™ System (10x Genomics, 368 

Pleasanton, CA, USA) according to the manufacturer’s protocol. Upon dissolution of the 369 

Genome Gel Bead in the GEM, HMW DNA fragments with 16-bp 10x Barcodes along with 370 

attached sequencing primers were released.  A standard library prep was performed 371 

according to the manufacturer’s instructions resulting in sample-indexed libraries using 10x 372 

Genomics adaptors. Prior to Illumina bridge amplification and sequencing, the libraries were 373 

analyzed on the Fragment Analyzer with the high sensitivity NGS kit.  One lane of whole 374 

genome paired end short read (2 x 150 nt) sequencing was conducted on a HiSeq 4000 375 

(Illumina, San Diego, CA, USA).  The FASTQ files served as input into Long Ranger (10x 376 

Genomics) which was used to assemble, align and give haplotype phasing information. 377 

TGFBI linkage disequilibrium analysis 378 

Chromosome 5 1000 Genomes54 Phase III data  in gzipped variant call format (VCF)55 for 379 

build GRCh37 / hg19 was downloaded from the Department of Biostatistics at the University 380 

of Washington in November 2014. Indels were left-aligned, multi-allelic calls split, and the 381 

data converted to binary call format (BCF) using BCFtools v1.3.156. Variants spanning TGFBI 382 

(+/-1Kbp) were then extracted, also using BCFtools. The resulting dataset was then 383 

temporarily converted to plaint-text VCF to allow for the manual recoding of rs11348106 (a 384 

variant of interest) from an indel variant to a dummy single nucleotide variant to allow for 385 

later compatibility with downstream tools, before being converted back to BCF. From this 386 

dataset, sample groups were then extracted into separate BCF files for the following 1000 387 

Genomes populations: CHB - Han Chinese in Beijing, China (n=103), EAS - East Asian super 388 

population (n=504), JPT - Japanese in Tokyo, Japan (n=104). Each file representing each 389 

population was then converted into a separate PLINK dataset using PLINK v1.90b3.3857. 390 
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From PLINK, each dataset was then recoded into HaploView-compatible format using the 391 

options --chr 5 --from-bp 135364584 --to-bp 135399507 --snps-only no-DI –recodeHV. 392 

Recoded datasets (as PED files) were then read separately into HaploView v4.258 with 393 

default parameters: ignoring pairwise comparisons of markers > 500 Kbp apart; excluding 394 

individuals with > 50% missing genotypes. Within HaploView, from the ‘Check Markers’ tab, 395 

24 variants of interest were selected. A LD heatmap plot was then output in PNG format for 396 

each dataset from the ‘LD Plot’ tab. Colour scheme and numerical values for display were 397 

both set to ’R-squared’. The default method for identifying haploblocks, i.e., confidence 398 

intervals59, was used. The different haplotypes for each identified haploblock were then 399 

output in PNG format from the ‘Haploblocks’ tab. Again, default parameters were used: only 400 

including haplotypes > 1%; connecting with thin lines if > 1%; connecting with thick lines if > 401 

10%. All subsequent figure editing was performed using GNU Image Manipulation Program 402 

v2.8.16 and R Programming Language 3.5.1. 403 

In vitro digestion to determine on-target specificity 404 

A 50bp insert of TGFBI sequence encompassing the target site and PAM for either the ‘No 405 

PAM’ or ‘PAM present’ allele was cloned into the MCS of psiTEST-LUC-Target (York 406 

Bioscience Ltd, York, UK). A 587bp double-stranded DNA template was prepared by 407 

amplifying a region of the template plasmid using the primers listed in Supplementary Table 408 

10. A cleavage reaction was set up by incubating 30nM S.pyogenes Cas9 nuclease (NEB UK) 409 

with 30nM synthetic sgRNA (Synthego) for 10 minutes at 25˚C. The Cas9:sgRNA complex 410 

was then incubated with 3nM of DNA template at 37˚C for 1 hour. Fragment analysis was 411 

then carried out on a 1% agarose gel. 412 
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Preparation of primary human PBMC 413 

A whole blood sample was collected from a patient with Avellino corneal dystrophy. PBMCs 414 

were isolated by centrifugation on a Ficoll density gradient. PBMCs were washed in RPMI 415 

1640 media containing 20% FBS and incubated with EBV at 37˚C for 1 hour. After infection 416 

RPMI 1640 containing 20% FBS was added to a total volume of 3ml and 40µl of 1mg/ml 417 

phytohaemagglutinin was added. 1.5ml of the lymphocyte mixture was added to two wells 418 

of a 24-well plate and allowed to aggregate. Lymphoblastoids were cultured in RPMI 1640 419 

media containing 20% FBS. 420 

Nucleofection of lymphocyte cell line (LCL) with ribonucleoprotein (RNP) complexes 421 

S.pyogenes Cas9 nuclease (NEB) and modified synthetic sgRNAs (Synthego) were complexed 422 

to form RNPs. RNPs were formed directly in the Lonza Nucleofector SF solution (SF Cell line 423 

4D‐Nucleofector X kit - Lonza), and incubated for 10 minutes at room temperature. Desired 424 

number of cells were spun down (300g x 5mins) and resuspended in Nucleofector solution. 425 

5µl of each cell solution was added to 25µL of corresponding preformed RNPs, mixed and 426 

transferred to the nucleofector 16‐well strip. The cells were electroporated using the 4D 427 

Nucleofector (Lonza) and program DN-100, cells were allowed to recover at room 428 

temperature for 5mins and 70µl of pre‐warmed media was added to each well of Lonza strip 429 

to help recovery. The transfected cells were then transferred to 24‐well plate with 200µl 430 

media. After 48hrs of incubation at 37°C, gDNA was extracted using the QIAmp DNA Mini Kit 431 

(Qiagen), the target region was PCR amplified using primer pairs listed in Supplementary 432 

Table 10 and targeted resequencing was performed. 433 

Targeted resequencing across target locus 434 

48 hours post nucleofection gDNA was extracted from cells and PCR amplified using primer 435 

pairs listed in Supplementary Table 10. PCR products were purified using the Wizard® PCR 436 
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Preps DNA Purification System (Promega)and subjected to TruSeq PCR free library 437 

preparation. Samples then underwent paired end sequencing using an Illumina MiSeq 438 

instrument as per the manufacturer’s instructions. For genomic DNA samples, paired FASTQ 439 

files first underwent read filtration and trimming with Trim Galore! V0.4.0 440 

(https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) (utilising Cutadapt 441 

v1.15 and FastQC v0.11.5), using default parameters and --qual 20 --length 70 –paired. 442 

Reads from human samples were then aligned to the reference genome GRCh38 / hg38 / 443 

GCA_000001405.15 (downloaded from the UCSC), using BWA v0.7.12 (mem algorithm with 444 

default settings) 60. Aligned reads in SAM format were converted to BAM, sorted, and 445 

indexed with SAMtools v1.3.156. PCR and optical duplicates were marked with Picard v1.119 446 

(https://broadinstitute.github.io/picard/) and then expunged with SAMtools view function 447 

with parameter -F set to 0x400. Reads with MAPQ below 30 were also expunged using 448 

SAMtools view with parameter -q set to 30. Output BAMs were then sorted and indexed 449 

using SAMtools. Reads in each sample’s BAM file were then split based on the SNP of 450 

interest. This was achieved using SAMtools view to first extract reads overlapping the target 451 

SNP region, and then dividing these into allele-specific reads by using the shell function grep 452 

-e to extract reads containing each SNP of interest flanked by 3 bases in both the 3’ and 5’ 453 

directions. Allele-specificity of the resulting reads was visually checked for each sample in 454 

IGV v2.3.97 (http://www.broadinstitute.org/igv). The number of properly-paired reads in 455 

each allele-specific BAM file with and without indels was then tabulated by using SAMtools 456 

view in combination with the shell function awk to filter on the CIGAR string. For example: 457 

Reads with indels: samtools view -f 0x02 Allele1.BAM | awk '$6 ~ "I|D"', reads with no 458 

indels: samtools view -f 0x02 Allele2.BAM | awk '$6 !~ "I|D"'. Separately, for each allele-459 

specific BAM file, pindel v0.2.5b9 61 was used to identify indels and substitutions using 460 
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default settings. Output for each input file was then converted to VCF using pindel2vcf with 461 

default parameters plus --min_coverage 1 --het_cutoff 0.1 --hom_cutoff 0.9 to allow for low 462 

frequency variants to be retained. Output VCFs were bg-zipped and tab-indexed, and then 463 

BCFtools was used to filter out variants that did not have any genotype call by using 464 

BCFtools view function with --exclude-uncalled –min-ac=1. 465 

PCR and Sanger sequencing of genomic deletions 466 

Genomic DNA extracted from LCLs transfected with each pair of sgRNAs and untransfected 467 

control was amplified using primers >80bp outside the cleavage site for each dual pair  468 

(Supplementary Table 10) and run on 1% agarose gel to visualise deletions. Bands 469 

corresponding to the size predicted to result from deletion were gel extracted or PCR purified 470 

(Wizard SV Gel and PCR purification system, ProMega) and Sanger sequenced (DNA 471 

sequencing facility, University of Cambridge, UK) from both the forward and reverse primer. 472 

Sequencing traces were analysed using A plasmid Editor (ApE) and aligned using Benchling.  473 

Whole genome off-target analysis  474 

Whole genome CRISPR off-target analysis was performed in-vitro on gDNA from the PBMC 475 

EBV transformed cell line described above using CIRCLE-seq as previously described30.  Briefly, 476 

for each guide, 25 µg DNA was sheared to 300bp by sonication. For each guide to be tested, 477 

4 x 4µg aliquots of sheared DNA was subject to end repair, A-tailing and ligation to a uracil-478 

containing stem loop adapter using the KAPA HTP Library Preparation Kit PCR Free (Roche) 479 

followed by circularization and enzymatic digestion of non-circularized DNA. Circularized DNA 480 

was pooled to obtain 125ng DNA for in vitro sgRNA guided Cas9 digestion and linearized DNA 481 

fragments were subject to sequencing library preparation followed by PCR amplification with 482 

barcoded universal primers NEBNext Multiplex Oligos for Illumina (NEB). All samples were 483 
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subject to 150bp paired-end sequencing on an Illumina MiSeq instrument as per the 484 

manufacturer’s instructions.  485 

CIRCLE-seq data analysis was performed with CIRCLEseq (v1.1)30 using Python 2.7 in a 486 

dedicated Conda environment. BWA (v0.7.17) and SAMtools (v1.9) were also installed in this 487 

environment and utilised by the CIRCLEseq algorithm. The UCSC December 2013 release 488 

of GRCh38 / hg38 was used as the reference genome 489 

(download: http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/). The parameters in 490 

the config files passed to the CIRCLEseq 'all' algorithm were: ‘window_size: 3; 491 

mapq_threshold: 50; start_threshold: 1; gap_threshold: 3; mismatch_threshold: 6; 492 

merged_analysis: False; variant_analysis: True’. Annotation of regions identified by 493 

CIRCLEseq was performed with ANNOVAR (release 2015-06-17) against 'refGene' and 494 

'cytoBand' resources. Generation of Manhattan plots was performed in R Programming 495 

Language (v3.5.2) using custom scripts and the qqman package. 496 

 497 

Validation of off-targets identified by CIRCLE-seq 498 

The top 5 off target sites identified by CIRCLE-seq by read count and any off targets located 499 

in gene coding regions were selected for validation by Sanger sequencing and TIDE 500 

analysis31; an automated method to report on the mutation spectrum and efficiency of 501 

genome editing by sanger sequence trace decompostition. In total 62 sites across 8 tested 502 

guides were selected for validation. Genomic DNA extracted from the corresponding RNP 503 

transfected lymphoblastoid cell line ex vivo model described above was subject to PCR 504 

amplification, sanger sequencing of the target region, followed by TIDE analysis using the 505 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/
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online analysis tool (https://tide.nki.nl/). The same steps were completed for DNA extracted 506 

from the untreated lymphoblastoid cell line to act as a control for analysis purposes. 507 
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Figure 1: Non-disease causing mutations within the TGFBI locus with a MAF of >0.1 are 678 

identified, these SNPs are then analysed to determine if they generate a novel S.pyogenes 679 

PAM (NGG) on only one allele. Allele-specific guides are designed, and prospective guides are 680 

analysed using in silico design programs.  681 

Figure 2: Haplotype analysis of R124H Japanese patient a) Phased sequencing, of a Japanese 682 

corneal dystrophy patient harbouring a R124H mutation, revealed the patients haplotype 683 

blocks; comparison to our haplotype analysis of the TGFBI locus in the Japanese population 684 

revealed the patient had JPT-B1H1 which co-segregated with JPT-B2H1 and JPT-B1H2 which 685 

co-segregated with JPT-B2H2, the patient differed at one position (rs11738979) in JPT-B1H1 686 

as the patient was homozygous for the major allele. Blue indicates the major allele and red 687 

indicates the minor allele. b) The determination of the R124H patients haploblocks by phased 688 

sequencing allowed the identification of SNPs that contain a PAM on only the allele associated 689 

with the R124H mutation. Yellow shading and ticks indicate a combination of haplotypes that 690 

generate a heterozygote at this position, offering only one PAM-generating allele, therefore 691 

providing a potential SNP allele-specific gene-editing, grey indicates that either there is no 692 

PAM-associated allele present on either haplotype or each haplotype has the same PAM-693 

associated allele at this position. 694 

Figure 3: In vitro assessment of guide allele-specificity a) Based on the phased sequencing 695 

data 12 guides were designed that i) are associated with a PAM only on one allele ii) lie in cis 696 

with the R124H mutation and iii) have high on-target scores scores using Benchling an in silico 697 

off-target predictor tool. The TGFBI gene is shown in green. Location of the 12 guides and the 698 

R124H mutation are depicted by grey arrows. The R124H mutation is shown in red. b) 699 

Schematic to shown how the cleavage templates were generated. A 50bp region containing 700 
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the target site and PAM was cloned into the MCS of a reporter plasmid. Primers flanking this 701 

region were to generate a 587bp product with an offset target site. c) Initially in vitro digests 702 

were used to determine the allele-specificity of the 12 guides. RNP complexes were incubated 703 

with templates containing ‘No-PAM allele’ or ‘PAM-associated allele’ sequences for the 704 

respective SNPs, for each digest lane 1 = ‘No PAM’ digested, lane 2 = ‘PAM-associated’ 705 

digested, lane 3 = ‘No PAM’ undigested, lane 4 = ‘PAM associated’ undigested.  706 

Figure 4 a) LCLs were transfected with RNPs for each of the 12 guides. Targeted resequencing 707 

across the on-target cut site was used to determine the allele-specificity of each guide. 708 

Orange indicates % of indels that occurred on the ‘PAM-associated’ allele and blue indicated 709 

% of indels that occurred on the ‘No PAM’ allele.  b) Representative DNA repair outcomes for 710 

the ‘PAM associated’ allele for the rs7725702 guide shown in Figure 6a. Numbering indicates 711 

the frequency of the edit observed, with 1 being the most frequently observed indel. 712 

Insertions are shown in green and deletions are shown in red, SNP resulting in a PAM shown 713 

in yellow c) Respective schematic for the ‘No PAM’ allele for the rs7725702 guide shown in 714 

Figure 6a d) Frequency of indels for the rs7725702 guide shown for the ‘PAM associated’ and 715 

‘No PAM’ allele. 716 

Figure 5: Allele-specific dual gRNA editing in patient derived LCLs. a) Schematic of dual 717 

editing approach when using a common intronic gRNA (CI-gRNA) on one side. The wildtype 718 

allele has only the CI-gRNA PAM (green). The mutation-associated allele has a SNP associated 719 

PAM (purple) and a CI-gRNA PAM. When editing takes place, a double-stranded break (DSB) 720 

is induced and the region between the two cuts is excised on the mutation-associated allele, 721 

while, at most, only a small indel should occur in the intron of the wildtype allele leaving the 722 

exon intact. b) PCR products revealing deletion of the region lying between dual-guides. A 723 
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forward primer upstream of target site 1 and reverse primer downstream of target site 2 was 724 

used to amplify across the intended deletion. There is no band in the untreated lane (UT) 725 

when the primer sites are too far apart for PCR amplification and a PCR product of the 726 

expected size (red box) is only obtained in the treated cells (T) when the deletion brings them 727 

within amplification range. Water controls remain negative for amplification (H2O). c) 728 

Example of Sanger sequencing chromatograms showing editing events when cells were 729 

transfected with dual pair 4 (creating a 419bp deletion). Sanger sequencing was performed 730 

on gel-extracted deletion bands PCR-product and sequenced from the forward (F) and reverse 731 

(R) primer. The reverse chromatogram is displayed as a reverse complement to aid 732 

visualization. The wildtype (WT) and R124H mutation-associated allele sequences are 733 

displayed across the top of the trace. gRNA target sequences and direction are indicated 734 

above and NGG PAM highlighted in red. The SNP nucleotide is underlined in bold. *denotes 735 

where the PAM-associated allele SNP matches the chromatogram. The predicted deletion 736 

sequence is shown below.  737 

 738 

 739 
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Supplemental Information



Supplementary Figure 1: Linkage disequilibrium of the identified allele-discriminatory SNPs in the 

coding region of the TGFBI gene – plots were generated using the 1000 Genomes Project phase 3 

data for EAS, CHB and JPT populations, black indicates very strong LD, while a white indicates no LD 

a) LD plot showing the association between the 24 SNPs containing a PAM on only allele identified 

across the TGFBI locus for the EAS population; 3 LD blocks were found, the first block (EAS-B1) spans 

1kb within intron 1-2 (rs2237063- rs756462), the second block (EAS-B2) spans 21kb from intron 2-3 

(rs11738979) to intron 13-14 (rs10064478) and finally the third block (EAS-B3) spans 1kb from intron 

14-15 (rs6880837) to intron 15-16 (rs6865463) b) LD plot showing the association between the 24 

SNPs containing a PAM on only allele identified across the TGFBI locus for the CHB population; 3 LD 

blocks were identified, ; the first block (CHB-B1) spans 1kb within intron 1-2 (rs2237063- rs756462), 

the second block (CHB-B2) spans 21kb from intron 2-3 (rs11738979) to intron 13-14 (rs10064478) 

and finally the third block (CHB-B3) spans 1kb from intron 14-15 (rs6880837) to intron 15-16 

(rs6865463) c) LD plot showing the association between the 24 SNPs containing a PAM on only allele 

identified across the TGFBI locus for the JPT population, 2 LD blocks were found in the 1000 

Genomes JPT population; the first block spans 25kb from intron 1-2 (rs2237063) to intron 10-11 

(rs6860369) and the second block spans 2kb from intron 13-14 (rs6880837) to intron 15-16 

(rs6865463) d,e,f) Haplotype frequencies of the identified SNPs in the TGFBI gene in the d) EAS e) 

CHB and f) JPT populations. The blue indicates the major allele and red indicates the minor allele, 

numbers next to each haplotype bar are haplotype frequencies, in the crossing areas a value of 

multiallelic D’ is shown to represent the level of recombination between the two blocks. 

 

 

 

 

 

 

 

 

 

 

  



 



 

Supplementary Figure 2: Haplotype analysis to determine proportion of population targetable by 

the identified SNPs. a,b,c) Identified SNPs across each haplotype in the a) EAS population b) CHB 

population and c) JPT population were assessed to determine which have the PAM generating allele 

and which are not targetable. Blue indicates the major allele and red indicates the minor allele, 

green indicates a PAM-generating allele is present while orange indicates it is not targetable at this 

position. d,e,f) All possible heterozygous haplotype combinations for the d) EAS population e) CHB 

population and f) JPT population were assessed using only the large haploblock (EAS-B2, CHB-B2 and 

JPT-B1) to determine the total % of each haplotype that has targetable SNPs. Yellow shading and 

ticks indicate a combination of haplotypes that generate a heterozygote at this position, offering 

only one PAM-generating allele, therefore providing a potential SNP for allele-specific gene-editing. 

Grey indicates that either there is no PAM-associated allele present on either haplotype or each 

haplotype has the same PAM-associated allele at this position. 

  



 

 

Supplementary Figure 3: Predominant indels of each of the ASNIP guides shown in Figure 4a. 

PAM is shown in purple, gRNA is shown in blue, SNP associated with a PAM on only one 

allele is shown in yellow, insertions depicted in green and deletions depicted in red.  

 

 

 

 

 

 

 

 

 

 

  



 

 

 



 

 

Supplementary Figure 4: Sanger sequencing chromatograms showing editing events when cells 

were transfected with dual pairs. Sanger sequencing was performed on gel-extracted or PCR purified 

deletion bands PCR-product and sequenced from the forward (F) and reverse (R) primer. The reverse 

chromatogram is displayed as a reverse complement to aid visualization. The wildtype (WT) and 

R124H mutation-associated allele sequences are displayed across the top of the trace. gRNA target 

sequences and direction are indicated above and NGG PAM highlighted in red. The SNP nucleotide is 

underlined in bold. *denotes where the PAM-associated allele SNP matches the chromatogram. The 

predicted deletion sequence is shown below.  

  



 

 

 

 

Supplementary Figure 5: Off-target cleavage by CRISPR/Cas9 single guides investigated using 

CIRCLE-seq. Off targets were identified for each sample and analysed for genome location, read 

count (a) and mismatch number to target sequence (b). A threshold of >25% reads of top hit was 

used to rank guides by off-target cleavage and identify the most specific guides (c)  

  



 













 





 



 





 

 

Supplementary Table 1: Table showing the CRISPR mutational analysis for the TGFBI 

locus. Initially SNPs in the 50kb flanking regions and across the TGFBI coding region were 

filtered to leave only those with a MAF of >0.1. Each SNP and flanking sequence was then 

individually assessed to determine if it generates a novel S.pyogenes Cas9 PAM. Those that 

did generate a PAM were then further investigated to determine if a non-canonical PAM 

exists on the alternative allele. These SNPs (both with and without non-canonical PAMs on 

the alternative allele) were then cross-checked to the phased sequencing data from the R124H 

Avellino corneal dystrophy patient to determine if the PAM generating SNP lies in cis with 

the R124H mutation. Guides were then designed for those that were associated with a PAM 

on the same chromosome as the mutation. Guide sequences were then inputed into the in 

silico MIT CRISPR and Benchling design tools and sgRNAs were synthesised for those that 

generated the best on and off target scores. 

 

 

 

 

 

 

 



 



 





 



 



 



 



 

Supplementary Table 2: Haplotype analysis of the TGFBI locus following phased 

sequencing of the R124H patient, allowing identification of SNPs that contain a PAM on 

only the allele associated with the mutation. 

 

 

 

Supplementary Table 3: Guide sequences of 12 guides designed based on the phased 

sequencing results of the R124H Japanese Avellino corneal dystrophy patient  

 

 

 

 

 



 

Supplementary Table 4:  Distance in base pairs between dual combinations consisting of 

guides designed based on the haplotype analysis 

 

 

 

 

 

 

 

Supplementary Table 5: Common-intron guide sequences 

 

Supplementary Table 6: Table depicting all dual-guide combinations used 

  Guide 
combinations 

Guide 1 (5' - 3') Guide 2 (5' - 3') Distance 
apart 
(base 
pairs) 

Coding region 
excised (base 
pairs) 

Frameshift? 

Dual 4  
(5 & 6 ) 

rs6894815 & 
rs10064478 

GAGACTGAGACTGAAGACAG TGCCTGTAATCACAGCTACT 419 Only remove 
intronic 
region 

N/A 

Dual 3 
(C2 & 5) 

CI-2 & 
rs6894815 

TCACAACGTTGAGTATACAG GAGACTGAGACTGAAGACAG 1238 125 41.66666667 

Dual 1  
(3 & C1) 

rs1989972 & 
CI-1 

AGGGCTGTATTACTGGGGCT CACCAACAGGCAAGGCCCGG 2021 65 21.66666667 

Dual 2 
(C1 & H) 

CI-1 & R124H  CACCAACAGGCAAGGCCCGG TCAGCTGTACACGGACCACA 2268 Cut site in 
exon, difficult 
to predict 

Unknown 

Dual 5 
(C4 & 7) 

CI-4 & 
rs11956252 

AGAAGTTGGTAACGTCAAAT CATCGCCTCCCCAAGTGATG 4008 632 210.6666667 

 

Supplementary Table 7: Number of off-targets detected for all guides investigated 

 

Guide ID Target SNP Total off targets
Off targets above 

threshold (>25% of 
top hit) 

Number of top 10 

in silico targets 

identified by 

CIRCLE-seq

Mismatch range in 

off-targets above 

threshold

Rank position of 

on-target in 

CIRCLE-seq

Read count for top 

hit

Read count of on-

target in CIRCLE-

seq

On-target % 

cleavage in vitro

On-target % 

cleavage by deep 

seq

On-target % 

cleavage by TIDE 

analysis 

sg2 rs72794904 155 20 6 3-6 18 1324 390 60 2.15 NA - F

sg3 rs2282790 221 16 8 4-6 1 1892 1892 55 0.51 8

sg4 rs1989972 305 13 7 4-6 1 2148 2148 25 3.68 12

sg5 rs6860369 426 41 10 3-6 8 1814 898 80 2.3 NA - F

sg6 rs6894815 1448 161 8 2-6 10 2492 1556 0 1.75 NA - F

sg8 rs11956252 1554 34 4 2-6 2 796 646 45 4.6 9

sg9_1 rs7725702 782 29 9 4-6 1 2536 2536 75 39.82 27

sg9_2 rs7725702 761 77 10 3-6 20 1318 690 75 39.82 27

Guide Combo Distance

rs72794904 & rs2282790 18691 Both in 5' UTR

rs2282790 & rs1989972 14,131

rs1989972 & rs6860369 13524

s6860369 & rs6894815 4582

rs6894815 & rs10064478 419

rs10064478 & rs11956252 6560

rs11956252 & rs7725702 3607 Both in 3' UTR

rs7725702 & rs4976470 1113 Both in 3' UTR



 

Supplementary Table 8: Top off-target sites detected for each guide investigated 

 

guide ID PCR target ID Target type TIDE result % Efficiency Validation result

sg2 2.1 TOP HITS F FAIL

sg2 2.2 TOP HITS F FAIL

sg2 2.3 TOP HITS Y 8.3 POSITIVE VALIDATION

sg2 2.4 TOP HITS F FAIL

sg2 2.5 TOP HITS F FAIL

sg2 2.6 TGFBI F FAIL

sg2 2.7 EXONIC F FAIL

sg3 3.1 TGFBI Y 7.6 POSITIVE VALIDATION

sg3 3.2 TOP HITS Y 5.1 POSITIVE VALIDATION

sg3 3.3 TOP HITS Y 54.7 POSITIVE VALIDATION

sg3 3.4 TOP HITS Y FAIL

sg3 3.5 TOP HITS F FAIL

sg3 3.6 TOP HITS Y 2.3 POSITIVE VALIDATION

sg4 4.1 TOP HITS -TGFBI Y 11.6 POSTIVE VALIDATION 

sg4 4.2 TOP HITS Y 2.4 POSITIVE VALIDATION

sg4 4.3 TOP HITS F FAIL

sg4 4.4 TOP HITS Y 0.5 NEGATIVE VALIDATION

sg4 4.5 TOP HITS Y FAIL

sg4 4.6 TOP HITS F FAIL

sg4 4.7 TOP HITS F FAIL

sg4 4.8 BENCHLING F FAIL

sg4 4.9 BENCHLING F FAIL

sg5 5.1 TOP HITS Y 16.1 POSITIVE VALIDATION

sg5 5.2 TOP HITS F FAIL

sg5 5.3 TOP HITS Y 0 NEGATIVE VALIDATION

sg5 5.4 TOP HITS F FAIL

sg5 5.5 TOP HITS F FAIL

sg5 5.6 TGFBI F FAIL

sg5 5.7 EXONIC F FAIL

sg5 5.8 EXONIC Y 1.2 NEGATIVE VALIDATION

sg5 5.9 EXONIC F FAIL

sg6 6.1 TOP HITS Y FAIL

sg6 6.2 TOP HITS Y 3 POSITIVE VALIDATION

sg6 6.3 TOP HITS Y FAIL

sg6 6.4 TOP HITS Y 3.1 POSITIVE VALIDATION

sg6 6.5 TOP HITS Y 4.2 POSITIVE VALIDATION

sg6 6.6 TGFBI F FAIL

sg6 6.7 BENCHLING Y 16.7 POSITIVE VALIDATION

sg6 6.8 BENCHLING Y 1.7 POSITIVE VALIDATION

sg6 6.9 BENCHLING F FAIL

sg6 6.10 BENCHLING Y FAIL

sg6 6.11 BENCHLING F FAIL

sg6 6.12 BENCHLING Y 0.9 NEGATIVE VALIDATION

sg6 6.13 EXONIC F FAIL

sg6 6.14 EXONIC F FAIL

sg6 6.15 EXONIC Y FAIL

sg6 6.16 EXONIC Y 10.7 POSITIVE VALIDATION

sg6 6.17 EXONIC Y 4.6 POSITIVE VALIDATION

sg8 8.1 TOP HITS F FAIL

sg8 8.2 TOP HITS TGFBI Y 9.3 POSITIVE VALIDATION

sg8 8.3 TOP HITS F FAIL

sg8 8.4 TOP HITS Y 7.9 POSITIVE VALIDATION

sg8 8.5 TOP HITS F FAIL

sg8 8.6 EXONIC F FAIL

sg8 8.7 TOP HITS F FAIL

sg9 9.1 TGFBI Y 26.7 POSITIVE VALIDATION

sg9 9.2 TOP HITS Y 0.80% NEGATIVE VALIDATION

sg9 9.3 TOP HITS F FAIL

sg9 9.4 TOP HITS F FAIL

sg9 9.5 TOP HITS Y 0.40% NEGATIVE VALIDATION

sg9 9.6 TOP HITS F F FAIL

sg9 9.7 TOP HITS F F FAIL



 

Supplementary Table 9a: Validation of detected off-target sites detected 

 

Supplementary Table 9b: 

 

 

A: results for all samples that passed through TIDE analysis 

TIDE results

GUIDE id

Target/ 

Sample 

ID TARGET SOURCE gene region CONCLUSION

% 

EFFICIEN

CY

sg2 2.3 TOP HITS ncRNA_intronic POSITIVE VALIDATION 8.3

sg3 3.1 TGFBI upstream POSITIVE VALIDATION 7.6

sg3 3.2 TOP HITS intergenic POSITIVE VALIDATION 5.1

sg3 3.3 TOP HITS intergenic POSITIVE VALIDATION 54.7

sg3 3.6 TOP HITS intronic POSITIVE VALIDATION 2.3

sg4 4.1 TOP HITS -TGFBI intronic POSITIVE VALIDATION 11.6

sg4 4.2 TOP HITS intergenic POSITIVE VALIDATION 2.4

sg4 4.4 TOP HITS ncRNA_intronic NEGATIVE VALIDATION 0.5

sg5 5.1 TOP HITS intronic POSITIVE VALIDATION 16.1

sg5 5.3 TOP HITS intronic NEGATIVE VALIDATION 0

sg5 5.8 EXONIC exonic NEGATIVE VALIDATION 1.2

sg6 6.2 TOP HITS upstream_downstream POSITIVE VALIDATION 3

sg6 6.4 TOP HITS intronic POSITIVE VALIDATION 3.1

sg6 6.5 TOP HITS intronic POSITIVE VALIDATION 4.2

sg6 6.7 BENCHLING intergenic POSITIVE VALIDATION 16.7

sg6 6.8 BENCHLING intronic POSITIVE VALIDATION 1.7

sg6 6.12 BENCHLING intronic NEGATIVE VALIDATION 0.9

sg6 6.16 EXONIC exonic POSITIVE VALIDATION 10.7

sg6 6.17 EXONIC exonic POSITIVE VALIDATION 4.6

sg8 8.2 TOP HITS TGFBI intergenic POSITIVE VALIDATION 9.3

sg8 8.4 TOP HITS intergenic POSITIVE VALIDATION 7.9

sg9 9.1 TGFBI intergenic POSITIVE VALIDATION 26.7

sg9 9.2 TOP HITS intronic NEGATIVE VALIDATION 0.80%

sg9 9.5 TOP HITS intronic NEGATIVE VALIDATION 0.40%

B: Summary of sample drop off through CIRCLE-seq validation steps by TIDE analysis.

Summary table: 

TOTAL TARGETS SELECTED 62

Passed primer design 50

produced PCR product for treated and control 46

produced sanger sequencing result for treated and control 26

TIDE fail 2

TOTAL TIDE RESULTS 24

positive off-target validations 18

negative off-target validations 6



 

 

Supplementary Table 10: List of oligo nucleotides used 

Oligo Name Oligo Sequence (5' - 3') 

Cleavage template FWD ACCCCAACATCTTCGACGCGGGC 

Cleavage template REV TGCTGTCCTGCCCCACCCCA 

rs72794904 956bp FWD GGCAGTGTATTTCTTTCAGAGGA 

rs72794904 956bp REV GAGCCGAGATCATGCCACT 

rs72794904 238bp FWD CCAAGTGCCAGTCAATCCTG 

rs72794904 238bp REV TGCAAGAGAGGACATCAATTTGA 

rs2282790 748bp FWD GGCCTCAGAGCAGGTATCAC 

rs2282790 748bp REV TAGGTCCCTTAGGCCTCCTG 

rs2282790 240bp FWD TGGGCTACGGATCTTCCCAA 

rs2282790 240bp REV CATCTCTGCAACAGTACCTGC 

rs1989972 708bp FWD GTTCAGCTCCCTTGCGGTAT 

rs1989972 708bp REV CAGGCTATTGTCTTGGGACTCA 

rs1989972 249bp FWD GCCCTGACATGAGGACTTTGA 

rs1989972 249bp REV CCAGCTAAATCCAGGGAGAGC 

rs6860369 762bp FWD GGGGCCTCTCTAACCGTTCT 

rs6860369 762bp REV GCCGGGCAAGAAAACAAACT 

rs6860369 215bp FWD TCCCAGCCTTAATAACCCATCC 

rs6860369 215bp REV GGTCCATCGTGAACAGGGTC 

rs6894815 797bp FWD ATAGATTTGCCCTGGGTGGG 

rs6894815 797bp REV AAGAAAAACAGAGTAGTGGTTGAAA 

rs6894815 241bp FWD GGCCTGAGATAGATTTGCCC 

rs6894815 241bp REV CTCAGTCCTCACAGCAGTGTAT 

rs10064478 961bp FWD TCCCCAGTCTAACACAGGAC 

rs10064478 961bp REV GAGGCAGGACTGAGGTTCAA 

rs10064478 150bp FWD AAAATTAGCTGGGCGTGGTG 

rs10064478 150bp REV TGGAGTTTCAATCTTGTCGCC 

rs11956252 741bp FWD AGCCAGGAGAGAAAGTCATGG 

rs11956252 741bp REV TCCCCCAACTAAAACCCTCC 

rs11956252 210bp FWD CACCCACTTGTGGTTGGGGA 

rs11956252 210bp REV CCCCACCCTCTTCATTCTTCAG 

rs7725702 702bp FWD GGCTCCTTCAGTCAACAAGGT 

rs7725702 702bp REV TCCCTCACCCTCCGATTCTG 

rs7725702 247bp FWD TCTTCTCAGGAAAGCAGGGTG 

rs7725702 247bp REV CTCCCCAGAAGGGTTAGAGG 

rs4976470 829bp FWD ATGTAGCCTCAAATCCCAGCC 

rs4976470 829bp REV GCACACCTGACTATGGCTCT 

rs4976470 168bp FWD GCAACAGATCAAGTGACACCT 

rs4976470 168bp REV GGGGCTTGATATGGTTTGGC 

R124H 988bp FWD TGAGTTCACGTAGACAGGCA 



R124H 988bp REV ACAGCTTAAACCCCAGAAACCA 

R124H 187bp FWD CCTTTACGAGACCCTGGGAG 

R124H 187bp REV GTTCCCCATAAGAGTCCCCC 

CI-1 703bp FWD CCAGTTGGTTGGCTGTAGGT 

CI-1 703bp REV ATCCCATCGGCTCTCTAGCA 

CI-1 73bp FWD TCCAGCAGGTGAATGAATCC 

CI-1 73bp REV TACTCCTCTCTCCCACCATTCC 

CI-2 925bp FWD CTGGAAAGGTCCCTGGCTTT 

CI-2 925bp REV GGCTCACAGAGCAAGTGTCA 

CI-2 117bp FWD TGCTTTGTGTCCTCTGACCAT 

CI-2 117bp REV AGTGGTCACCCCTGAAATGAA 

CI-3 736bp FWD GTTGCCGAGCCTGACATCAT 

CI-3 736bp REV CGCAAACCTAGCAGGCATCT 

CI-3 173bp FWD GACACATTGCTCTTTGCGGA 

CI-3 173bp REV GAGAGGCAGGACTGAGGTTC 

CI-4 818bp FWD TCAGAACAGCAGGGTGACTTG 

CI-4 818bp REV CCAGCTGTGCAAGGGCTTTA 

CI-4 253bp FWD AGAAAACCAGAACATCGGGC 

CI-4 253bp REV TGGTGCATTCCTCCTGTAGTG 
 

 

 

 

 

 

 

 

 

 

 



The well documented propensity of CRISPR/Cas9 to cleave at unintended off-
target sites has impeded the progression of this promising tool to the clinic. In the 
case of autosomal dominant disease, the most perilous off-target site exists as the 
wild-type allele, which differs to the mutant allele by only a single base pair. This 
manuscript presents an innovative approach to selectively cleaving the mutant 
allele in a mutation-independent manner. Using corneal dystrophy as a model we 
show successful allele-specific editing of TGFBI and importantly offer a potential 
targeting strategy for all autosomal dominant disease, in which selective 
disruption of the mutant allele offers a viable treatment approach.  
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