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Abstract 24 

The predatory bacterium, Bdellovibrio bacteriovorus, was applied as a biological pre-treatment to 25 

solar disinfection and solar photocatalytic disinfection for rainwater treatment. The photocatalyst 26 

used was immobilised titanium-dioxide reduced graphene oxide. The pre-treatment followed by solar 27 

photocatalysis for 120 min under natural sunlight reduced the viable counts of Klebsiella pneumoniae 28 

from 2.00 × 109 colony forming units (CFU)/mL to below the detection limit (BDL) (<1 CFU/100 µL). 29 

Correspondingly, ethidium monoazide bromide quantitative PCR analysis indicated a high total log 30 

reduction in K. pneumoniae gene copies (GC)/mL (5.85 logs after solar photocatalysis for 240 min). 31 

In contrast, solar disinfection and solar photocatalysis without the biological pre-treatment were more 32 

effective for Enterococcus faecium disinfection as the viable counts of E. faecium were reduced by 33 

8.00 logs (from 1.00 × 108 CFU/mL to BDL) and the gene copies were reduced by ~3.39 logs (from 34 

2.09 × 106 GC/mL to ~9.00 × 102 GC/mL) after 240 min of treatment. Predatory bacteria can be 35 

applied as a pre-treatment to solar disinfection and solar photocatalytic treatment to enhance the 36 

removal efficiency of Gram-negative bacteria, which is crucial for the development of a targeted 37 

water treatment approach. 38 

 39 

Keywords: Harvested rainwater; Bdellovibrio bacteriovorus; Biological pre-treatment; Solar 40 

disinfection; Photocatalysis  41 
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1. Introduction 42 

Domestic rainwater harvesting is employed as a supplementary water source, particularly in water 43 

scarce regions. However, the quality of harvested rainwater does not always comply with drinking 44 

water standards, and some bacteria of public health concern such as Pseudomonas, Klebsiella, 45 

Campylobacter and Staphylococcus spp., have been detected in rainwater samples (De 46 

Kwaadsteniet et al., 2013). While various treatment methods have been investigated and applied to 47 

disinfect rainwater (Dobrowsky et al., 2015; Reyneke et al., 2016), the World Health Organisation 48 

(WHO) recognises solar disinfection (SODIS) as a cost-effective, household-based technology, 49 

which can be employed to decrease the number of viable pathogenic organisms in contaminated 50 

water sources and reduce the incidence of diarrheal disease (Byrne et al., 2011). The protocol 51 

involves exposing water in UV-visible transparent containers to direct sunlight for a minimum of 6 h 52 

(48 h in cloudy conditions). Nalwanga et al. (2018) investigated the use of SODIS with 2 L 53 

polyethylene-terephthalate (PET) bottles for the treatment of harvested rainwater in Uganda. While 54 

the viable counts of Escherichia coli and faecal enterococci exceeded drinking water standards in 55 

the majority of the untreated samples analysed, culture-based analysis indicated that after SODIS, 56 

the concentrations of these bacteria were significantly reduced (detailed information on counts not 57 

presented) (Nalwanga et al., 2018). The major limitations associated with the use of a simple SODIS 58 

system are, however, the small volume of treated water generated (1 to 5 L) and the treatment time 59 

required for sufficient disinfection of the water. It is also recommended that the treated water should 60 

be used within 24 h as regrowth of bacteria may occur (Makwana et al., 2015).  61 

Different approaches have subsequently been investigated to improve the efficiency of solar 62 

disinfection. Ubomba-Jaswa et al. (2010) used a 25 L methacrylate batch reactor fitted with a 63 

compound parabolic collector (CPC; concentrates diffuse solar irradiation onto a reactor vessel in 64 

order to increase the dose of solar irradiation) to disinfect well water. Complete inactivation of E. coli 65 

was achieved within 5 h on sunny days and a 3-log reduction was achieved within this time period 66 

during overcast conditions (cloudy days). However, some organisms are more resistant to solar 67 

disinfection than others. For example, Strauss et al. (2018) reported that while a solar-CPC treatment 68 

system effectively reduced the E. coli and total coliform counts to below the detection limit (BDL) at 69 
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temperatures exceeding 39°C and UV-A radiation exceeding 20 W/m2, ethidium monoazide 70 

quantitative polymerase chain reaction (EMA-qPCR) analysis indicated that viable Legionella and 71 

Pseudomonas were detected in all the SODIS-CPC treated samples throughout the sampling period. 72 

Clements et al. (2019) used EMA-qPCR to screen solar pasteurized (SOPAS) harvested rainwater 73 

for potentially viable bacteria and found that Klebsiella spp., amongst others, survived at 74 

temperatures > 90°C. It is hypothesised that the survival of bacteria in solar disinfection systems 75 

could be due to the possession of heat shock proteins, DNA repair mechanisms (such as recA) and 76 

their ability to form associations with protozoa (Strauss et al., 2018). Additional treatment techniques 77 

are thus required to overcome this bacterial resistance to disinfection strategies and effectively 78 

eliminate these pathogens and opportunistic pathogens from water sources. 79 

Advanced oxidative processes (AOP), such as heterogeneous photocatalysis with semiconductor 80 

materials (Byrne et al., 2011), have also been explored and Helali et al. (2014) investigated the solar 81 

inactivation of E. coli with different photocatalysts [i.e., TiO2 P25, TiO2 PC500, TiO2 Ruana and 82 

Russelite (Bi2WO6)]. With only solar irradiation, 3 to 5 h were required for complete inactivation of 83 

E. coli. In contrast, the treatment time required for the inactivation of E. coli was significantly reduced 84 

to between 5 to 30 min for TiO2 P25, which was the most effective photocatalytic material. We have 85 

also previously reported enhanced solar disinfection utilising TiO2-reduced graphene oxide 86 

composites (TiO2-rGO) (Fernández-Ibáñez et al., 2015; Cruz-Ortiz et al., 2017). Adán et al. (2018) 87 

then showed that TiO2 immobilised on borosilicate glass raschig rings effectively reduced E. coli 88 

concentrations, in co-culture with Acanthamoeba trophozoites, by 3 logs in distilled water after 89 

60 min, while a 2-log reduction was recorded after 180 min for synthetic wastewater. It was thus 90 

concluded that immobilised photocatalysts might be practical for water treatment as the post-91 

treatment removal of the photocatalytic material is not required.  92 

An interesting approach to the inactivation of resistant strains is the use of predatory bacteria such 93 

as Bdellovibrio-and-like-organisms (known as BALOs). These have been identified as potential “live 94 

antibiotics” as they are able to prey on and reduce the concentration of predominantly Gram-negative 95 

bacteria in co-culture experiments (Socket, 2009). This group of predatory bacteria include species 96 

such as Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus. Kadouri et al. (2013) 97 
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investigated whether B. bacteriovorus and M. aeruginosavorus could prey on clinically significant 98 

multidrug-resistant Gram-negative bacteria and found that B. bacteriovorus HD100 was able to prey 99 

on all the host organisms (100%), while B. bacteriovorus 109J was able to prey on 93% and 100 

M. aeruginosavorus ARL-13 was only able to prey on 35% of the host bacteria. Limited research has 101 

however been conducted on the application of these predatory bacteria as biocontrol agents for 102 

potable water treatment, with most studies focussing on their application as probiotics in aquaculture 103 

(Chu & Zhu, 2010; Willis et al., 2016) or as bioremediation agents in wastewater treatment plants 104 

(Yu et al., 2017; Ökzan et al., 2018).  105 

Based on the survival of pathogenic microorganisms in treated rainwater, a need exists to investigate 106 

a combination of technologies that incorporate biocontrol, physical and chemical treatment. This 107 

study thus aimed to apply B. bacteriovorus in combination with solar-CPC reactors and solar-CPC 108 

treatment with photocatalysis to disinfect rainwater. Klebsiella pneumoniae S1 43 (isolated from solar 109 

pasteurized rainwater at a treatment temperature above 70°C) (Clements et al., 2019) and 110 

Enterococcus faecium 8D (isolated from untreated harvested rainwater) (Dobrowsky et al., 2014) 111 

were included as test organisms.  112 

2.  Materials and Methods 113 

2.1  Coating of Raschig Rings 114 

The design and construction of the CPC is outlined in the Supplementary Information. The TiO2-rGO 115 

composite was synthesised using graphene oxide (GO; Nanoinnova, Spain) and TiO2 P25 (Aeroxide 116 

P25, Evonik, Germany) as previously described by Fernández-Ibáñez et al. (2015). The TiO2-rGO 117 

was immobilised on borosilicate glass raschig rings [5 mm (length) × 5 mm (outer diameter) × 1 mm 118 

(glass thickness); Sigma-Aldrich, Germany] for application in the designed small-scale solar-CPC 119 

systems. The raschig rings were cleaned as described by Cunha et al. (2018). The TiO2-rGO (1.5 g) 120 

was added to 100 mL absolute methanol to obtain a final concentration of 1.5% w/v. The suspension 121 

was sonicated for 15 min and the raschig rings were submerged in the suspension. To evaporate 122 

the methanol, the rings in the suspension were added to a rotary evaporator (Heidolph Instruments, 123 

Schwabach GmbH, Germany) with the water bath temperature set to 65°C and the rotary speed set 124 
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to 120 rpm. Once the methanol was evaporated, the coated raschig rings were dried at 80°C for 125 

90 min and annealed at 400°C for 2 h (with a heating rate of 2°C per min) in air (Cunha et al., 2018). 126 

The rings were weighed before and after the coating, and it was determined that the loading of 127 

TiO2-rGO was ca. 0.89 mg/cm2.  128 

2.2  Solar Treatment Experiments 129 

2.2.1  Prey Bacterial Strains 130 

Klebsiella pneumoniae S1 43 and E. faecium 8D were obtained from the Water Resource Laboratory 131 

Culture Collection at Stellenbosch University (Department of Microbiology). These bacteria were 132 

inoculated into 500 mL Luria Bertani (LB) broth (Biolab, Merck, South Africa) and were incubated at 133 

37°C for 24 to 48 h with shaking at 200 rpm. The bacterial cells were harvested by centrifugation at 134 

11 305 x g for 15 min. The bacterial biomass was washed and re-suspended in phosphate buffered 135 

saline (PBS) and the optical density (OD) of the re-suspended pellets was measured using the T60 136 

UV-Visible Spectrophotometer (PG Instruments Limited, Thermo Fisher Scientific, South Africa) at 137 

600 nm (OD600). The concentration of the bacterial cells was adjusted with PBS to obtain a final OD600 138 

of 1.00 (which corresponded to approximately 109 cells/mL) (Feng et al., 2016).  139 

2.2.2  Preparation of the Predatory Bacteria Stock Lysate 140 

Bdellovibrio bacteriovorus PF13 was isolated from wastewater collected from the influent point of 141 

the Stellenbosch Wastewater Treatment Plant (GPS co-ordinates: 33° 59' 21.13"S 18° 47' 47.75"E) 142 

as described by Waso et al. (2019). The predatory bacterium was stored as plaques on double-layer 143 

agar plates, with Pseudomonas fluorescens ATCC 13525 used as prey cells at 4°C until further 144 

experimentation commenced (Dashiff et al., 2011). To apply B. bacteriovorus PF13 as a pre-145 

treatment to SODIS, a predator stock lysate (used as the predator inoculum in the pre-treatment 146 

experiments) was prepared as described by Dashiff et al. (2011) in the presence of P. fluorescens 147 

ATCC 13525 as prey cells (Supplementary Information).  148 

 149 
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2.2.3  Experimental Set Up 150 

Synthetic rainwater was used to ensure that the composition of the medium remained constant 151 

throughout the study and was prepared by the method reported by Jones and Edwards (1993). For 152 

each test organism (K. pneumoniae S1 43 and E. faecium 8D), two experimental groups were 153 

analysed as follows: for one experimental group (two systems) the test organisms were pre-treated 154 

with B. bacteriovorus; while for the second experimental group (two systems) no pre-treatment 155 

occurred (Fig. 1). Additionally, for each experimental group, one solar-CPC system contained TiO2-156 

rGO coated raschig rings, while the second system contained uncoated raschig rings (solar 157 

disinfection only) (Fig. 1). For the pre-treated samples, 800 mL of synthetic rainwater was seeded 158 

with 100 mL of K. pneumoniae or E. faecium (OD600 = 1.00) (section 2.2.1). Subsequently, each 159 

sample was inoculated with 100 mL of the B. bacteriovorus stock lysate (OD600 < 0.2). The co-culture 160 

was incubated for 72 h at 30°C with shaking at 200 rpm to allow for the predation of B. bacteriovorus 161 

on the respective prey cells. For the samples which were not subjected to B. bacteriovorus pre-162 

treatment, 900 mL of synthetic rainwater was seeded with 100 mL of K. pneumoniae or E. faecium 163 

cells (OD600 = 1.00) (section 2.2.1) (Fig. 1) on the day of solar treatment.  164 

The four solar-CPC reactors were filled with approximately 390 mL of the pre-treated or untreated 165 

seeded synthetic rainwater samples and were exposed to natural sunlight for 4 h (Fig. 1). The 166 

remaining volume of each sample was kept in the dark and served as dark controls (Fig. 1). Samples 167 

(10 mL) were collected from each solar-CPC system at 0, 30, 60, 90, 120, 150, 180, 210, and 168 

240 min. For each of the collected samples, the pH, temperature, total dissolved solids (TDS), and 169 

electrical conductivity (EC) were measured with a hand-held Milwaukee Instruments MI806 meter 170 

(Spraytech, South Africa), and the dissolved oxygen (DO) was measured using a Milwaukee 171 

Instruments M600 meter (Spraytech). The solar irradiance data [maximum UV-A and UV-B radiation 172 

and the maximum direct normal irradiance (DNI)] were obtained from the Stellenbosch Weather 173 

Services [Stellenbosch University, Faculty of Engineering (http:// weather.sun.ac.za/)], and the 174 

ambient temperature data were obtained from the South African Weather Services (Supplementary 175 

Information Tables A.1 and A.2). The results for the conductivity, temperature, pH, TDS, and DO 176 

collected for the different solar treatment time points (0 to 240 min) for each test organism and 177 
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experimental design, are summarised in the Supplementary Information Tables A.1 and A.2. 178 

Throughout the text the term “solar disinfection” will refer to solar treatment using only the designed 179 

solar-CPC system (with uncoated raschig rings), while “solar photocatalytic disinfection” or “solar 180 

photocatalysis” will refer to the solar treatment using the designed solar-CPC system in combination 181 

with the immobilised TiO2-rGO. Furthermore, “solar treatment” will be used to refer simultaneously 182 

to both disinfection strategies. 183 

2.2.3.1 Culture-based Analysis 184 

To enumerate the K. pneumoniae and E. faecium cells during the solar treatments [in colony forming 185 

units per mL (CFU/mL)], samples (10 mL) were collected as described in section 2.2.3. In addition, 186 

for the samples subjected to B. bacteriovorus pre-treatment, 10 mL samples were collected before 187 

(0 h) and after pre-treatment (72 h). A further 10 mL sample was collected from each of the dark 188 

control samples after 240 min (to confirm that the changes in viable organisms occurred as a result 189 

of solar or solar photocatalytic disinfection). A 10-fold serial dilution was prepared (ranging from 190 

undiluted to 10-6) for each sample (n = 40), and 100 µL of each dilution was spread plated onto LB 191 

agar in triplicate. The plates were incubated at 30°C for 12 to 18 h (overnight).  192 

In order to verify that the solar treatment effectively removed the predatory bacteria from the pre-193 

treated samples, double-layer agar overlays (as described by Yu et al., 2017) were also prepared 194 

using the serial dilutions from the B. bacteriovorus pre-treated samples. The plates were incubated 195 

at 30°C for up to 7 days and the predatory bacteria were enumerated in plaque forming units per mL 196 

(PFU/mL).  197 

2.2.3.2 Molecular Analysis 198 

For the molecular analysis of the solar-CPC samples collected at each time point (0 to 240 min) as 199 

well as the samples collected before (0 h) and after (72 h) B. bacteriovorus pre-treatment, 500 µL of 200 

each sample was EMA treated as described by Reyneke et al. (2016). The EMA-treated aliquots 201 

were subjected to DNA extractions using the Quick-DNATM Fecal/Soil Microbe Miniprep kit (Zymo 202 

Research, Inqaba Biotech, South Africa) as per the manufacturer’s instructions.  203 
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Quantitative real-time PCR was subsequently performed to quantify the gene copies (GC) of 204 

B. bacteriovorus, K. pneumoniae and E. faecium during the various solar treatments. All qPCR 205 

assays were performed using the LightCycler® 96 Instrument (Roche Diagnostics, Mannheim, 206 

Germany) and the FastStart Essential DNA Green Master (Roche Diagnostics). All the qPCR primers 207 

and cycling parameters are outlined in Table 1, while the qPCR mixture as described by Waso et al. 208 

(2018) was utilised. Additionally, the standard curves utilised for GC quantification in the qPCR 209 

assays were generated as described by Waso et al. (2019), using conventional PCR and the cycling 210 

parameters defined in Table 1. 211 

All the qPCR results were analysed using the Roche LightCycler® 96 Software Version 1.1 and 212 

Microsoft Excel 2016. In addition, the lower limit of detection (LLOD) for each qPCR assay was 213 

determined as the lowest concentration (GC/μL) consistently detected in the standard curve 214 

samples. Furthermore, the lower limit of quantification (LLOQ) for each qPCR sample was 215 

determined as the lowest number of GC/µL that could reliably be quantified in the standard curve 216 

samples. All GC numbers were converted to GC/mL using the following modified equation (which 217 

excludes compensation for sample filtration) (Eq. 1) as described by Rajal et al. (2007): 218 

(
mL Original Sample

mL DNA eluted
) × (mL used per qPCR assay) = mL original sample per qPCR assay………… (1) 219 

2.3  Data Analysis 220 

All graphs were generated using GraphPad Prism 7.04 (2018). Two-way Analysis of Variance 221 

(ANOVA) for Multiple Comparisons with Dunnett’s tests (alpha value of 0.05) was utilised to 222 

determine whether the concentration of the prey bacteria (K. pneumoniae and E. faecium) and 223 

B. bacteriovorus changed significantly during the various solar treatments. Significance was 224 

observed at p < 0.05.  225 

3. Results  226 

3.1 Impacts of Different Disinfection Strategies on the Survival of Klebsiella pneumoniae 227 

For the B. bacteriovorus pre-treated samples, the CFU of K. pneumoniae were reduced by 1.92 logs 228 

during the 72-h pre-treatment, from 2.00 × 109 (before predation) to 2.40 × 107 CFU/mL. The PFU 229 



10 
 

of B. bacteriovorus correspondingly increased by 0.202 logs from 6.53 × 105 PFU/mL (before 230 

predation) to 1.04 × 106 PFU/mL. Additionally, EMA-qPCR analysis (characteristics summarised in 231 

Table A.3) confirmed that the concentration of K. pneumoniae was reduced after predation as the 232 

GC of K. pneumoniae decreased by 3.51 logs from 2.95 × 108 (before predation) to 233 

9.20 × 104 GC/mL, while the concentration of B. bacteriovorus increased by 0.430 logs from 234 

7.96 × 103 (before predation) to 2.14 × 104 GC/mL. Overall, for the dark controls, the plate counts 235 

indicated that the concentration of K. pneumoniae remained relatively constant with an average of 236 

1.97 × 107 CFU/mL and 7.50 × 108 CFU/mL recorded (after 240 min) for the 72-h B. bacteriovorus 237 

pre-treated sample and non-pre-treated sample, respectively. 238 

For the K. pneumoniae pre-treated sample subsequently exposed to solar photocatalytic treatment, 239 

culture-based enumeration indicated that within 120 min the K. pneumoniae cell counts were 240 

reduced by 7.38 logs from 2.40 × 107 CFU/mL (at 0 min) to BDL (<1 CFU/100 µL) (p < 0.0001) (Fig. 241 

2A; Table 2). Thus, considering the reduction in CFU/mL recorded after the B. bacteriovorus pre-242 

treatment as well as after the solar photocatalytic treatment, the CFU counts of K. pneumoniae were 243 

reduced by a total of 9.30 logs (p < 0.0001) from the initial concentration of 2.00 × 109 CFU/mL 244 

(Table 2). Correspondingly, EMA-qPCR analysis indicated that in total a 5.85 log reduction in the 245 

K. pneumoniae GC was obtained [from 2.95 × 108 GC/mL (before predation) to 4.19 × 102 GC/mL 246 

(after 240 min of solar exposure)] (p < 0.0001) (Fig. 2B; Table 2). The culture-based enumeration of 247 

the B. bacteriovorus cells analysed indicated that in the samples exposed to solar photocatalytic 248 

treatment, the PFU of B. bacteriovorus was reduced by 6.02 logs from 1.04 × 106 PFU/mL (at 0 min) 249 

to BDL (p < 0.0001) within 120 min (Fig. A.8A). Similarly, the EMA-qPCR analysis indicated that the 250 

concentration of B. bacteriovorus was reduced by 2.59 logs (p < 0.0001) after solar exposure from 251 

an initial concentration of 2.14 × 104 GC/mL to 5.49 × 101 GC/mL after 240 min (Fig. A.8B). 252 

For the sample pre-treated with B. bacteriovorus and subsequently exposed to solar disinfection, the 253 

cell counts of K. pneumoniae were reduced by 7.38 logs from 2.40 × 107 CFU/mL (at 0 min) to BDL 254 

(p < 0.0001), after 240 min of solar exposure (Fig. 2A; Table 2). Thus, the cell counts of 255 

K. pneumoniae were also reduced by a total of 9.30 logs (p < 0.0001) from the initial concentration 256 

of 2.00 × 109 CFU/mL (Table 2). In addition, the EMA-qPCR analysis indicated that overall the 257 
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K. pneumoniae concentration was reduced by 5.41 logs from 2.95 × 108 GC/mL (before predation) 258 

to 1.14 × 103 GC/mL (after 240 min of solar exposure) (p < 0.0001) (Fig. 2B; Table 2). The 259 

B. bacteriovorus was reduced by 6.02 logs from 1.04 × 106 PFU/mL (at 0 min) to BDL (p < 0.0001) 260 

within 150 min in the samples exposed to solar disinfection (Fig. A.8A). Accordingly, the EMA-qPCR 261 

analysis indicated that the concentration of B. bacteriovorus was reduced by 2.28 logs (p < 0.0001) 262 

after solar exposure, from an initial concentration of 2.14 × 104 GC/mL to 1.12 × 102 GC/mL (Fig. 263 

A.8B). 264 

In comparison, the cell counts of K. pneumoniae in the non-pre-treated sample exposed to solar 265 

photocatalytic treatment were reduced by a total of 6.34 logs after 240 min (from 7.33 × 108 CFU/mL 266 

to 3.33 × 102 CFU/mL) (p < 0.0001) (Fig. 2A; Table 2), while the molecular analysis indicated that 267 

the GC of K. pneumoniae in this sample were reduced by a total of 2.67 logs [from 6.41 × 107 GC/mL 268 

(initial concentration 0 min) to 1.39 × 105 GC/mL (after 240 min of solar exposure)] (p < 0.0001) (Fig. 269 

2B; Table 2). Furthermore, for the non-pre-treated sample exposed to only solar disinfection, the cell 270 

counts of K. pneumoniae were reduced by 8.87 logs from 7.33 × 108 CFU/mL (at 0 min) to BDL within 271 

210 min (p < 0.0001) (Fig. 2A; Table 2). The EMA-qPCR analysis confirmed a reduction in the 272 

concentration of the K. pneumoniae cells as the GC were reduced by 3.46 logs [from 273 

6.41 × 107 GC/mL (initial concentration 0 min) to 2.24 × 104 GC/mL (after 240 min of solar exposure)] 274 

(p < 0.0001) in this sample (Table 2).  275 

3.2 Impacts of Different Disinfection Strategies on the Survival of Enterococcus faecium 276 

For the B. bacteriovorus pre-treated samples, the culture-based enumeration indicated that the 277 

E. faecium cell counts were reduced by 0.598 logs from 3.57 × 109 (before predation) to 278 

9.00 × 108 CFU/mL (after 72 h of predation). The EMA-qPCR analysis then confirmed that the 279 

concentration of E. faecium was reduced after 72 h of predation from 8.24 × 105 GC/mL (before 280 

predation) to 1.60 × 105 GC/mL with a log reduction of 0.712 recorded. While, B. bacteriovorus did 281 

not produce any plaques on the double-layer agar overlays when E. faecium was utilised as prey, 282 

the EMA-qPCR analysis indicated that the concentration of B. bacteriovorus decreased by 0.167 283 

logs from 1.08 × 104 (before predation) to 7.34 × 103 GC/mL (after 72 h of predation). Overall, for 284 



12 
 

the dark controls, the plate counts indicated that the concentration of E. faecium remained relatively 285 

constant with an average of 4.17 × 108 CFU/mL and 1.63 × 108 CFU/mL recorded (after 240 min) for 286 

the 72-h B. bacteriovorus pre-treated sample and non-pre-treated sample, respectively. 287 

Subsequently, the cell counts of E. faecium recorded for the pre-treated sample exposed to solar 288 

photocatalysis were reduced by 3.81 logs from 9.00 × 108 CFU/mL (at 0 min) to 1.40 × 105 CFU/mL 289 

(at 240 min) (p < 0.0001) (Fig. 3A). Thus, the CFU/mL of E. faecium was reduced by a total of 290 

4.41 logs from an initial concentration of 3.57 × 109 CFU/mL (Table 2). The EMA-qPCR analysis 291 

then indicated that the E. faecium concentration was reduced by 1.57 logs from 1.60 × 105 GC/mL 292 

(at 0 min) to 4.35 × 103 GC/mL (at 240 min) (Fig. 3B), with an overall reduction of 2.28 logs recorded 293 

from an initial concentration of 8.24 × 105 GC/mL (Table 2). As mentioned previously, 294 

B. bacteriovorus did not produce any plaques on the double-layer agar overlays when E. faecium 295 

was utilised as prey and the EMA-qPCR analysis indicated that the concentration of B. bacteriovorus 296 

was reduced from an initial concentration of 7.34 × 103 GC/mL (at 0 min) to 8.13 × 102 GC/mL (0.956 297 

log reduction; p < 0.0001) after 240 min of solar photocatalysis (Fig. A.9). 298 

The cell counts of E. faecium recorded for the pre-treated sample exposed to solar disinfection, were 299 

reduced by 6.73 logs from 9.00 × 108 CFU/mL (at 0 min) to 1.67 × 102 CFU/mL (at 240 min) 300 

(p < 0.0001) (Fig. 3A; Table 2). Therefore, an overall log reduction of 7.33 in E. faecium CFU/mL 301 

was recorded after the B. bacteriovorus pre-treatment and solar disinfection (Table 2). The EMA-302 

qPCR analysis indicated that the concentration of E. faecium was reduced by 2.09 logs from 303 

1.60 × 105 GC/mL (at 0 min) to 1.29 × 103 GC/mL (at 240 min) (p < 0.0001) (Fig. 3B). Overall, the 304 

concentration of E. faecium was thus reduced by a total of 2.81 logs in the pre-treated sample 305 

exposed to solar disinfection, from an initial concentration of 8.24 × 105 GC/mL (Table 2). For the 306 

predatory bacteria, the EMA-qPCR analysis indicated that the concentration of B. bacteriovorus was 307 

reduced from an initial concentration of 7.34 × 103 GC/mL (at 0 min) to 8.95 × 102 GC/mL (0.914 log 308 

reduction; p < 0.0001) after 240 min of solar exposure (Fig. A.9). 309 

For the samples which were not pre-treated with B. bacteriovorus but exposed to solar disinfection 310 

and solar photocatalytic treatment, the culture-based enumeration of E. faecium indicated that for 311 
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both treatment methods, the cell counts were reduced by 8.00 logs from an initial concentration of 312 

1.00 × 108 CFU/mL to BDL (<1 CFU/100 µL) within 210 min of solar exposure (p < 0.0001) (Fig. 3A; 313 

Table 2). The EMA-qPCR analysis then indicated that during solar disinfection the concentration of 314 

E. faecium was reduced by 3.39 logs from 2.09 × 106 GC/mL (at 0 min) to 8.53 × 102 GC/mL (at 240 315 

min) (p < 0.0001) (Fig. 3B; Table 2). Similarly, for the sample exposed to solar photocatalytic 316 

treatment, the concentration of E. faecium was reduced by 3.38 logs from 2.09 × 106 GC/mL (at 317 

0 min) to 8.74 × 102 GC/mL (at 240 min) (p < 0.0001) (Fig. 3B; Table 2).  318 

4. Discussion 319 

While disinfection methods are effective in significantly reducing the concentration of microbial 320 

contaminants in water sources, various pathogens and opportunistic pathogens employ survival 321 

strategies and persist after treatment (Strauss et al., 2018; Clements et al., 2019). It was thus 322 

proposed in the current study that a combination of physical, chemical and biological treatments, 323 

could prove effective in eliminating disinfection resistant species. Bdellovibrio bacteriovorus is known 324 

to attach to the cell wall of Gram-negative prey, such as K. pneumoniae, through an unknown 325 

mechanism or receptor, whereafter the predator rotates to create a pore in the prey cell wall and 326 

enters the prey cell’s periplasmic space forming a structure called the bdelloplast (Sockett, 2009). 327 

Once the predator has invaded the prey cell, it secretes various hydrolytic enzymes to break down 328 

the prey cell’s constituents and produce progeny (Sockett, 2009). Correspondingly, as 329 

K. pneumoniae is sensitive to predation, the pre-treatment with B. bacteriovorus aided in effectively 330 

reducing the concentration of this organism in the seeded water samples. Furthermore, the addition 331 

of the photocatalytic material enhanced the disinfection efficiency as the treatment time required to 332 

reduce the K. pneumoniae CFU to BDL was decreased from 240 min (solar disinfection) to 120 min 333 

(solar photocatalysis). Under solar UV-visible exposure, the TiO2-rGO composite photocatalytic 334 

material produces reactive oxygen species (ROS), which significantly disrupts the cell membrane 335 

structures and damages DNA and RNA, ultimately leading to cell death (Byrne et al., 2011).  336 

We previously investigated the mechanisms behind the antimicrobial activity of TiO2-rGO in water 337 

using E. coli as the model organism (Fernández-Ibáñez et al., 2015; Cruz-Ortiz et al., 2017). 338 
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Fernández-Ibáñez et al. (2015) reported that E. coli was reduced by 6 logs (within 10 min, less than 339 

2 J/cm2) under natural sunlight with a photocatalyst loading of 500 mg/L. Probes were used to 340 

investigate the primary ROS produced during the disinfection experiments and we found that under 341 

UV-visible light, hydrogen peroxide, hydroxyl radicals and singlet oxygen were mainly responsible 342 

for the reduction in E. coli concentrations. Under visible light irradiation, only singlet oxygen was 343 

produced which resulted in the reduction of the E. coli concentration (Fernández-Ibáñez et al., 2015; 344 

Cruz-Ortiz et al., 2017). Lin et al. (2014) investigated the cytotoxic effects of UV excited TiO2 on 345 

Gram-negative bacteria by also employing E. coli as the test organism. With the use of transmission 346 

electron microscopy, the authors found that the TiO2 nanoparticles attached to the outside of the 347 

E. coli cells, while some microbial cells were also observed to contain internalised nanoparticles. It 348 

was concluded that the nanoparticles attached to the cell surface, induced cell distortion, plasmolysis 349 

and extensive cell wall and membrane damage. In addition, the authors hypothesised that the 350 

attachment of the nanoparticles to the cells resulted in decreased movement of substances into and 351 

out of the bacterial cells, ultimately resulting in homeostatic imbalances and cellular metabolic 352 

disturbances, which would eventually result in cell death (Lin et al., 2014).  353 

However, while Lin et al. (2014) evaluated the photocatalyst in suspension, in the current study, the 354 

photocatalyst was immobilised onto glass raschig rings and exposed to real solar irradiation. Sordo 355 

et al. (2010) compared the use of TiO2 in suspension to TiO2 immobilised onto a glass tube (used 356 

as the reactor vessel) and raschig rings for the disinfection of E. coli in a recirculating solar treatment 357 

system. The authors found that the disinfection of E. coli in the reactor with the TiO2 coated raschig 358 

rings, was comparable to the disinfection obtained in the reactor with TiO2 in suspension, while 359 

disinfection efficiency was not enhanced in the glass tube reactor vessel coated with the 360 

photocatalyst. It was hypothesised that the high disinfection efficiency obtained with the raschig ring 361 

immobilised photocatalyst was due to the greater contact area generated, which increased exposure 362 

of the E. coli cells to hydroxyl radicals produced during the photocatalytic process. However, the 363 

authors also noted that the flow rate generated in the recirculating system containing the raschig 364 

rings, greatly enhanced the disinfection efficiency of the reactor as strong mechanical stress was 365 

exerted on the bacterial cells (Sordo et al., 2010). The use of raschig rings as support materials for 366 
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the immobilisation of photocatalysts is thus advantageous as post-treatment removal of the material 367 

is not required. In addition, immobilising the photocatalyst creates a greater contact area which may 368 

increase the exposure of the cells to the photocatalytic material. Furthermore, if a flow rate is applied, 369 

mechanical stress is exerted on the cells.  370 

Apart from using photocatalytic material in two of the solar-CPC reactors in the current study, all the 371 

water samples (pre-treated with B. bacteriovorus and non-pre-treated) were exposed to solar 372 

treatment under CPC concentrated solar UV-A radiation. The CPC mirrors were used for the solar 373 

treatment reactors as it significantly enhances any kind of solar water treatment by improving the 374 

solar UV energy income by a concentration factor of 1 (Keane et al., 2014). Navntoft et al. (2008) 375 

demonstrated that the use of a CPC accelerated the reduction of 6-log E. coli K12 under solar 376 

disinfection by 90 minutes as compared to a PET plastic bottle. Based on the solar UV-A dose 377 

calculated for the K. pneumoniae trials (Supplementary Information), a similar UV-A dose was 378 

obtained within 120 min of solar exposure (25.83 J cm-2), to the dose reported in literature (27 J/cm2) 379 

to achieve a 5-log reduction in E. coli K12 by solar disinfection in a 2 L-PET bottle filled with clear 380 

transparent water (Castro-Alférez et al., 2018). Additionally, the dose obtained in the current study 381 

was 10 times higher than the 1.8 J/cm2 (10 min at 30 W/m2 of solar UV-A) required to achieve a 6-382 

log reduction of E. coli K 12 using the same catalyst (TiO2-rGO) suspended as a slurry at a 383 

concentration of 500 mg/L (Fernández-Ibáñez et al., 2015). Similar solar dose values were obtained 384 

for the E. faecium trial. Thus, sufficient solar irradiation was obtained to reduce the concentration of 385 

K. pneumoniae and E. faecium during the current study.  386 

Correspondingly, the most efficient treatment strategy for the reduction of E. faecium was the use of 387 

solar disinfection or solar photocatalytic disinfection without B. bacteriovorus pre-treatment. While it 388 

is generally theorised that B. bacteriovorus does not prey on Gram-positive bacteria, studies have 389 

indicated that this predator can prey on Staphylococcus aureus (Iebba et al., 2014; Pantanella et al., 390 

2018). The lytic enzymes produced by B. bacteriovorus have also been shown to disrupt biofilms 391 

produced by Gram-positive bacteria, while proteases produced by B. bacteriovorus can decrease 392 

the efficiency of S. aureus invasion into human epithelial cells (Monnappa et al., 2014). Furthermore, 393 

using culture-based methods and EMA-qPCR, we have recently reported that B. bacteriovorus PF13 394 
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can reduce the concentration of S. aureus and E. faecium in co-culture experiments (Waso et al., 395 

2019). Thus, while it is warranted to investigate the effect of B. bacteriovorus pre-treatment on the 396 

disinfection of Gram-positive bacteria, in this study pre-treatment with B. bacteriovorus PF13 did not 397 

significantly reduce the concentration of E. faecium. 398 

Based on the results obtained for the E. faecium trials, the addition of the photocatalyst also did not 399 

significantly enhance the disinfection efficiency. Gutiérrez‐Alfaro et al. (2015) compared three 400 

systems to disinfect potable water inoculated with wastewater containing E. coli, Enterococcus spp. 401 

and Clostridium perfringens: a 2 L PET bottle; a 2 L PET bottle with an internal cylinder coated with 402 

TiO2 doped with zinc; and a glass reactor (9 L) with a TiO2 coated inner cylinder. In all the systems 403 

analysed, E. coli was readily reduced to BDL, while Enterococcus spp. and C. perfringens were more 404 

resistant to disinfection. In addition, the immobilised photocatalyst used in the 2 L PET bottles only 405 

enhanced the disinfection efficiency of the SODIS bottles by 0.43 logs for E. coli, 0.45 logs for 406 

Enterococcus spp. and 0.28 logs for C. perfringens under natural sunlight (Gutiérrez‐Alfaro et al., 407 

2015). The authors ultimately concluded that Gram-positive bacteria, which have more complex cell 408 

walls, are more resistant to disinfection in comparison to Gram-negative bacteria. However, they 409 

found that recirculating the water in the solar photocatalytic systems, increased turbulence and 410 

contact between the catalyst and the bacteria, significantly enhancing the disinfection efficiency, 411 

especially for Gram-positive bacteria (Gutiérrez‐Alfaro et al., 2015). Veneiri et al. (2014) also 412 

investigated the disinfection of Enterococcus faecalis using TiO2 P25 (200 mg/L to 1500 mg/L) and 413 

SODIS under simulated sunlight, using culture-based methods and qPCR. The culturing results 414 

indicated that at the highest TiO2 concentration (1500 mg/L), E. faecalis was reduced by 7 logs to 415 

BDL after approximately 40 min of treatment. Similarly, while qPCR analysis indicated that a 7-log 416 

reduction in the GC of E. faecalis was obtained after 120 min of treatment, the GC were not reduced 417 

to BDL in any of the treated samples. The authors concluded that viable but non-culturable (VBNC) 418 

E. faecalis cells were still present in the treated samples and that the SODIS treatment time should 419 

be extended in order to eradicate E. faecalis (Veneiri et al., 2014).  420 

Similarly, in the current study, for all the treatment combinations analysed, EMA-qPCR results 421 

indicated that the GC of K. pneumoniae and E. faecium were not reduced to BDL, signifying that 422 
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VBNC cells may still have persisted. While numerous research groups have detected Klebsiella spp. 423 

in untreated harvested rainwater (De Kwaadsteniet et al., 2013), the K. pneumoniae strain (S1 43) 424 

employed in the current study was isolated from SOPAS rainwater at a treatment temperature above 425 

70°C (Clements et al., 2019). The thermal tolerance of Klebsiella spp. has been associated with the 426 

expression of heat shock proteins or can be acquired through plasmids encoding for ClpK ATPase 427 

(Bojer et al., 2011). Moreover, K. pneumoniae have prominent capsules which have been 428 

hypothesised to protect this organism from bactericidal stressors such as UV irradiation and 429 

antibiotic agents (Veneiri et al., 2017; Dorman et al., 2018). In contrast, the E. faecium strain (8D) 430 

employed was isolated from untreated harvested rainwater (Dobrowsky et al., 2014). 431 

Enterococcus spp. are known to tolerate a wide range of environmental conditions and they have 432 

been found to exhibit increased resistance to UV disinfection (McKinney & Pruden, 2012; Maraccini 433 

et al., 2012). Some strains of enterococci have been found to possess intracellular carotenoids which 434 

may act as quenchers of intracellularly produced ROS upon exposure to sunlight, ultimately 435 

protecting the cell from increasing oxidative stress and providing Enterococcus spp. with a 436 

competitive advantage against sunlight-induced inactivation (Maraccini et al., 2012). Gram-negative 437 

and Gram-positive bacteria also possess DNA repair mechanisms, which can repair damage 438 

induced by UV irradiation, and allow bacterial cells to persist and survive after UV disinfection 439 

(McGuigan et al., 2012). Thus, while the molecular analysis results obtained in the current study 440 

indicated that significant reductions (p < 0.0001) in GC were recorded (Fig. 2B and 3B), further work 441 

may include extending the solar disinfection and solar photocatalytic treatment time. 442 

5. Conclusions 443 

Based on the results obtained, B. bacteriovorus may be applied to decrease the concentration of 444 

Gram-negative bacteria, such as K. pneumoniae, prior to solar disinfection. This is crucial as many 445 

pathogenic Gram-negative bacteria have been found to persist after the implementation of various 446 

disinfection strategies. Solar disinfection or solar photocatalytic treatment successfully reduced the 447 

concentration of E. faecium and it is likely that forced convection in a solar photocatalytic system 448 

may further enhance the effect of the photocatalytic material on the disinfection of Gram-positive 449 

bacteria.  450 
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Furthermore, as hydroxyl radicals produced during photocatalysis significantly disrupts the cell 451 

membrane of bacteria (Polo-López et al., 2017), the use of EMA-qPCR is recommended to 452 

supplement culture-based analysis and should therefore be included in future studies monitoring 453 

such water treatment systems. As natural water sources will contain mixed bacterial communities, 454 

future research should investigate the effect of predatory bacteria pre-treatment on mixed bacterial 455 

communities in natural water sources, to assess the overall effect of B. bacteriovorus pre-treatment.  456 
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