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Abstract: A large number of research studies in structural health monitoring (SHM) have presented,
extended, and used subspace system identification. However, there is a lack of research on systematic
literature reviews and surveys of studies in this field. Therefore, the current study is undertaken to
systematically review the literature published on the development and application of subspace system
identification methods. In this regard, major databases in SHM, including Scopus, Google Scholar,
and Web of Science, have been selected and preferred reporting items for systematic reviews and
meta-analyses (PRISMA) has been applied to ensure complete and transparent reporting of systematic
reviews. Along this line, the presented review addresses the available studies that employed
subspace-based techniques in the vibration-based damage detection (VDD) of civil structures.
The selected papers in this review were categorized into authors, publication year, name of journal,
applied techniques, research objectives, research gap, proposed solutions and models, and findings.
This study can assist practitioners and academicians for better condition assessment of structures and
to gain insight into the literature.

Keywords: subspace system identification; data-driven stochastic subspace identification (SSI-DATA);
covariance-driven stochastic subspace identification (SSI-COV); combined subspace system
identification; PRISMA; damage detection; vibration-based damage detection

1. Introduction

Structural health monitoring (SHM) is an emerging multidisciplinary field for damage detection
and condition monitoring of structures [1,2]. Due to the complexity of civil structures and the associated
ambient-induced uncertainty, the development of a reliable SHM is a challenging task. Vibration-based
damage detection (VDD) is a promising field in SHM that deals with assessing the health state of
structures using vibration parameters [3–5]. The key factor in VDD is to establish a reliable analytical
model of a dynamic structure to estimate vibration parameters. Several researchers have reviewed
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literature on the vibration testing and damage detection of structures. Fan and Qiao [6] provided
a comprehensive review of VDD methods. Reynders [7] reviewed the applicability of damage detection
system using vibration behavior of structure. Das et al. [8] conducted a comparative study to evaluate
different VDD methods. Moughty and Casas [9] performed a review of VDD techniques for small to
medium span bridges.

System identification methods provide a powerful tool to construct an analytical model of
a dynamic system [10–13]. Subspace system identification aims to establish a mathematical model for
resolving practical problems in various branches of science and technology, such as chemistry [14,15],
computer science [16], electrical engineering [17], industrial engineering [18], bioscience [19] and
even finance [20]. Using subspace system identification for modal analysis is a well-established field
in the dynamics of structures [21,22]. VDD methods rely on observable variations in changes in
modal parameters (resonant frequency, damping, and mode shape) or their derivatives as indicators of
damage existence. Song et al. [23] and Reynders [7] reviewed subspace system identification for its use
in VDD and modal analysis.

Structures in VDD can be broadly divided into two categories of: (1) mechanical engineering
structures, such as airplanes [24], vehicle test rig [25], ship [26], and (2) civil engineering structures,
such as bridges [27], buildings [28], offshore jackets [29], and dams [30]. It is difficult to sustain any clear
distinction between mechanical and civil engineering structures but, as a general idea, they could be
differentiated based on their characteristics. In general, mechanical and civil engineering structure are
usually subjected to different loading and boundary conditions. Civil structures are stationary, massive,
and heavy [31] and they have simple structural and geometrical configuration. Civil engineering
structures can be modeled in the form of simple structural elements such as beams (e.g., in bridges and
wind turbines) and frames (e.g., in buildings and offshore jackets). Shells and plates are mainly used in
liquid retaining and transmitting structures (e.g., in dams, and pipes). However VDD methods are not
suited for structures with changing dynamic characteristics such as dams and water reservoirs. Hence,
the focus of the studies on VDD of civil engineering structures is to apply their developed algorithms
on beam and frame structures. Though the requirement and deployment challenges for each class of
VDD structure are different, diverse techniques are essential.

Subspace system identification is one of the popular methods in time-domain that was first
proposed by Van Overschee and De Moor [32] to derive modal parameters. Peeters and De Roeck [33]
enhanced its computational efficiency by extending the method to handle stochastic input data. Peeters
and De Roeck also utilized stabilization diagram for subspace system identification to improve the
quality of the identified results [34]. Overschee et al. [32] extended the concept of weight matrices in
subspace system identification as a basis for using the column space of the extended observability matrix.

Based on the incorporated input and output data, identification methods can be classified into two
categories: the methods that incorporates input-output measurements to identify system parameters;
so-called input–output methods, and the approaches that just use unknown output measurements,
termed as output-only methods [13,35]. Since output-only methods take all excitation forces as
an unknown output, the obtained results are not controllable and repeatable. Moreover, the accuracy
of results is greatly affected by variation in noise level [36–38]. Despite the mentioned challenges,
output-only methods are preferred over input–output methods due to the technical difficulties
associated with artificial exciting of large civil engineering structures that is the main requirement of
input-output methods [39,40]. Kim et al. [41,42] conducted a comparison between input–output and
output-only subspace system identification methods using a model of a support-excited multi-story
frame structure. Modal parameters were extracted from an input–output state-space model and the
obtained results were compared to the ones obtained from output-only response data. Higher accuracy
was achieved using the input–output method.

The input–output algorithm is still a tempting choice for earthquake induced excitation. Mellinger
et al. [43] developed a new scheme for modal identification using output-only and input–output
methods. The quality of identified system parameters was evaluated using Monte Carlo analysis in
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terms of accuracy of estimations and noise robustness. It was inferred that using input information
provides more reliable results for modal identification. Xin et al. [44] evaluated the performance of
data-driven stochastic subspace identification (SSI-DATA) using test data from offshore jacket-type
platform. The efficiency and efficacy of three different excitation signals of impact, step relaxation and
ground motion were investigated using both input-output and output-only algorithms. All procedures
had excellent agreement with estimated modal frequencies of stronger modes. However, less accurate
results were reported for damping ratios.

Stochastic subspace identification has been successfully applied for the modal analysis of several
civil engineering structures [45,46]. Different authors have used the identical term of “SSI” to
denote two different phenomena of “stochastic subspace identification” and “subspace system
identification” [47–49]. In order to avoid confusion with the term “SSI”, from now on, SSI is only
given to refer “stochastic subspace identification” category and no abbreviation is going to be used for
subspace system identification throughout this paper.

Recently a large number of subspace-based methods have been applied for VDD of civil structures.
However, the previously conducted surveys have not kept pace with the changing environment
and diversity in this field. Therefore, there is a need for a systematic review and meta-analysis
focusing on the most important recent studies conducted in the considered area. The presented review
systematically addresses the available studies that employed subspace-based techniques in the VDD
of civil structures and describes some contributions towards the development and application of
a subspace system identification algorithm in recent years. Some new perspectives are considered in
the current study including classification of the selected papers.

The outline of this review paper is as follows: Section 2 reviews literature about subspace-based
dynamic identification and damage detection. The research framework including the PRISMA
methodology is outlined in Section 3. Section 4 describes the results and the relation between
key parameters in the selected papers. Finally, Section 5 ends with the concluding remarks and
recommendations for future studies.

2. Literature Review

The pioneering works in the field of SHM of civil structures have used forced-vibration as
their excitation source [50]. Input–output system models, termed also as combined subspace system
identification, could be simply adapted to identify dynamic parameters in forced excitation. Nowadays,
a combined subspace system identification method is generally applied in modal analysis and the
health monitoring of seismic-excited civil structures. Potenza et al. [51] adapted subspace system
identification algorithm for seismic monitoring of historical structure by means of an advanced wireless
sensor network. Zhong and Chang [52] proposed a technique that adopted an orthogonal projection to
eliminate the effect of earthquake input and noise. The obtained results for combined subspace system
identification algorithm are more accurate than the ones extracted from output-only identification
techniques [41]. However, forced vibration and seismic motions are not always practical solutions for
SHM in civil engineering due to the associated interruption in serviceability and the potential hazard
to the safety [53].

2.1. Classification of the Subspace System Identification Methods

Recent researches greatly deals with application of ambient excitation for damage detection
and modal analysis of the in-service structures. Output-only subspace system identification also
referred as stochastic subspace identification (SSI), could be simply adapted to identify dynamic
parameters in ambient excitation. In a pioneering work, Overschee et al. [32] introduced stochastic
subspace identification together with combined and deterministic models within a unified framework.
The proposed stochastic subspace method used Hankel block matrix of the output data to analyze
system and to extract state space model. Due to the direct use of the response data in the identification
process, the method is named data-driven stochastic subspace identification or SSI-DATA. The state



Appl. Sci. 2020, 10, 3607 4 of 34

sequence matrix is calculated before deriving state-space equation. SSI-DATA is a numerically robust
algorithm that uses QR decomposition to project future data on the past subspace [54]. The methodology
of SSI-DATA is provided in Figure 1.
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The introduced identification method by Overschee et al. [32] has received considerable attention
due to its well-defined algorithm and data structure. However, the aforementioned algorithm is not
suitable for complex data categories with a large number of sensors, large number of modes of interest,
and existing turbulence or no-stationarity. To deal with the shortcomings of the algorithm proposed by
Overschee et al. [32], several researchers proposed improving the convergence rates of transfer matrices
to deal with large number of sensor data [55–57]. Studies such as those of Peeters and De Roeck [33]
or Reynders and De Roeck [58] suggested to reduce the data complexity using subset data, so-called
reference sensors. Advance processing of measurement data before the estimation of observability
matrix [59–61] and introduction of recursive identification systems [62–64] are among the proposed
solutions. In order to deal with complex data, Döhler and Mevel [65] introduced a new SSI-DATA
algorithm using multi-order system identification. In this method a fast computation scheme using
multiple-order observability matrix is suggested to solve the least squares problem. The computational
burden of the proposed algorithm is much lower than the conventional algorithms. In another research,
Döhler and Mevel [27] proposed an efficient SSI algorithm by reformulation and computation of
uncertainty bounds. The obtained results from application of the method on Z24 Bridge showed that
the algorithm is both computationally and memory efficient.
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Nowadays, wireless sensor networks (WSNs) are widely used in SHM. However, the computational
load is one of the main concerns regarding the application of WSNs. Hence, it is necessary to significantly
reduce the computational burden and data processing efforts. Centralized algorithms are not suitable for
sensor applications due to impractical computational and communication load, as well as its increased
vulnerability. Cho et al. [66] presented a decentralized SSI-DATA algorithm implemented on the
Imote2-based WSNs. The results obtained from an experimental test of a five-story shear building shows
a similar accuracy for the centralized and decentralized subspace system identification algorithms.

Classical covariance-based subspace algorithms [67–69] took advantage of using output data
to calculate covariance. To deal with output-only measurement, Peeters and De Roeck [33] used
covariance between outputs and a reference outputs for health monitoring of ambient excited civil
structures. The proposed SSI-COV method used correlation functions for modal identification. In this
method, the response signal of the applied ambient excitation is considered as Gaussian white noise,
equal to the covariance of the response signal. The methodology of SSI-COV is provided in Figure 2.

Using SSI-COV to extract damage features or modal parameters is a common practice in VDD.
Basseville et al. [70] proposed using residual of SSI-COV and a local statistical approach for VDD.
Sun et al. [71] defined a nonlinear subspace-based distance using covariance of the response signal
in the Hankel matrix. The distance index indicates the deviation from the normal state, and reflects
structural states. Zarbaf et al. [72] derived a frequency stabilization diagram using SSI-COV method.
Then, hierarchical clustering was deployed to the stabilization diagrams to identify natural frequencies
of each stay cable.
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For most VDD methods, it has been of great interest to study the effect of damage on eigenstructure
of dynamic systems. Most of the VDD methods use modal parameters as their damage index.
The dynamic characteristic of a structure can be extracted using eigensolutions [54].
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2.2. Application of Subspace System Identification for Modal Analysis

Subspace-based identification methods are widely used for modal parameter estimation in
time-domain [73]. For most VDD methods, it has been of great interest to study the effect of damage
on natural frequencies, mode shapes and damping ratios of a dynamic systems [74–76]. Table 1 shows
a number of studies that have used the subspace algorithm for modal analysis.

Table 1. Some examples of the schemes that use subspace algorithm for modal analysis.

References Extraction Method Test Model Specification

Saeed et al. [77] RSSI-COV (SubID)
Composite beam and

an CACTUS
aluminium plate

Iterative procedure is used to
improve identification results.
A stabilization histogram is

applied to spurious
mode elimination

Reynders et
al. [78] SSI-ICOV (CSI-ic) Simulated model of an

industrial process tower
Hybrid vibration testing or OMAX
model was adopted in this study.

Li & Chang [49] Recursive SSI-COV-IV

Numerical models of
a SDOF structure and

ASCE steel frame
structure

Model identification was
conducted for a system with

time-varying measurement noise

Loendersloot et
al. [79] RD–SSIcov

Numerical model and
a small scale wind

turbine tower

The random decrement (RD)
method was selected in this study
for its noise reduction capabilities.

Miguel et
al. [80] SSI-COV

Numerical examples and
a laboratory model of

cantilever beams

The model is appropriate to
handle incomplete measurements
data and truncated mode shapes

Reynders &
De Roeck [58] CSI/ref Z24 bridge benchmark

structure

Stabilization diagram is adopted
for post processing of modal data
combined deterministic–stochastic
subspace identification is used for

modal analysis using
this algorithm

Urgessa [81]
McKelvey frequency

domain subspace
algorithm

Uncontrolled
cantilever plate

Natural frequency was predicted
with an average error of 3.2% and
damping ratio had average error

of 2.8%

Goursat et
al. [82]

used crystal clear
stochastic subspace

identification (CC-SSI)
Ariane 5 launch vehicle

Clear results even in the case of
nonstationary data are obtained

using this algorithm

Weng &
Loh [83] RSSI

3-story steel frame &
2-story reinforced

concrete frame

In this methodSVD algorithm is
replaced by an advanced
algorithm to update LQ

decomposition.

Zhang et al. [84] Improved SSI

A numerical example of
7 Degrees of freedom

(DOF) and experimental
model of

Chaotianmen bridge

Less computing time due to not
having QR decomposition

CH matrix is constructed as
a replacement for Hankel matrix

Spurious modes are removed
using model similarity index

Döhler et
al. [26] Fast CC-SSI Operational data from

a ship Fast multi-order computation

Hong et al. [85] ECCA-based SSI
algorithm

FE model and
experimental wind

tunnel bridge model

Enhanced results are achieved for
weakly excited modes and noisy

response signal

The methodology of calculating modal parameters from state-space parameters of subspace
system identification algorithm is presented in Figure 3.



Appl. Sci. 2020, 10, 3607 7 of 34
Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 39 

 
Figure 3. Methodology of the calculating modal parameters from the state-space parameters of 
subspace system identification algorithm. 

Vibration-based SHM is concurrently subject of intensive investigation. Most of the VDD 
methods use modal parameters to extract dynamic characteristic of structure. 

2.3. Comparison with Other Algorithms 

In recent years, several studies have been conducted to compare the performance of subspace 
system identification with other time domain (TD), frequency domain, (FD) and time frequency 
domain (TFD). This subsection provides a review of the studies with focus on advantages and 
drawbacks of the subspace system identification. Rainieri et al. [86] assessed the performance of 
SSI-COV and FDD for the modal identification of ambient excited structures. The results indicated 
that subspace system identification is a more appropriate choice for modal identification of closely 
spaced modal frequencies, however coupling effect yielded unreliable result for second pairs of the 
closely spaced natural frequencies. Furthermore, subspace system identification had the drawback 
of requiring human judgment to determine system order. 

Giraldo et al. [87] presented an analytical comparison among eigensystem realization algorithm 
(ERA), subspace system identification, and auto-regressive moving average (ARMA) techniques for 
modal identification of ambient-excited structures. It is indicated that subspace system identification 
has provided the most accurate results for analytical and experimental tests. Magalhães et al. [88] 
compared SSI-COV and poly-reference least squares complex frequency (p-LSCF) algorithms using 
field data obtained from a concrete arch bridge. Both SSI-COV and p-LSCF found to give good 
results for mode shapes and natural frequency. However, better results were obtained for the daily 
variation of damping ratio using p-LSCF. Moaveni et al. [28] used SSI-DATA, multiple-reference 
natural excitation technique combined with eigensystem realization algorithm (MNExT-ERA) [89], 
enhanced frequency domain decomposition (EFDD) [90], deterministic-stochastic subspace 
identification (DSI) [91], observer/Kalman filter identification (OKID)-ERA [92] and general 
realization algorithm (GRA) [93] for modal identification of a full-scale structure on a shaking table. 
The mode shapes identified by the subspace system identification algorithm were the most accurate. 
The measured damping ratio for SSI-DATA and MNeXT-ERA was higher than the ones obtained 
from EFDD. 

Wang et al. [94] studied performance of subspace system identification, ERA, ARMA and 
Ibrahim time-domain (ITD) methods. A more stable result was reported for modal identification in a 
numerical model using subspace system identification. However, ERA outperforms for field testing. 

Figure 3. Methodology of the calculating modal parameters from the state-space parameters of subspace
system identification algorithm.

Vibration-based SHM is concurrently subject of intensive investigation. Most of the VDD methods
use modal parameters to extract dynamic characteristic of structure.

2.3. Comparison with Other Algorithms

In recent years, several studies have been conducted to compare the performance of subspace
system identification with other time domain (TD), frequency domain, (FD) and time frequency domain
(TFD). This subsection provides a review of the studies with focus on advantages and drawbacks
of the subspace system identification. Rainieri et al. [86] assessed the performance of SSI-COV and
FDD for the modal identification of ambient excited structures. The results indicated that subspace
system identification is a more appropriate choice for modal identification of closely spaced modal
frequencies, however coupling effect yielded unreliable result for second pairs of the closely spaced
natural frequencies. Furthermore, subspace system identification had the drawback of requiring
human judgment to determine system order.

Giraldo et al. [87] presented an analytical comparison among eigensystem realization algorithm
(ERA), subspace system identification, and auto-regressive moving average (ARMA) techniques for
modal identification of ambient-excited structures. It is indicated that subspace system identification
has provided the most accurate results for analytical and experimental tests. Magalhães et al. [88]
compared SSI-COV and poly-reference least squares complex frequency (p-LSCF) algorithms using
field data obtained from a concrete arch bridge. Both SSI-COV and p-LSCF found to give good results
for mode shapes and natural frequency. However, better results were obtained for the daily variation of
damping ratio using p-LSCF. Moaveni et al. [28] used SSI-DATA, multiple-reference natural excitation
technique combined with eigensystem realization algorithm (MNExT-ERA) [89], enhanced frequency
domain decomposition (EFDD) [90], deterministic-stochastic subspace identification (DSI) [91],
observer/Kalman filter identification (OKID)-ERA [92] and general realization algorithm (GRA) [93]
for modal identification of a full-scale structure on a shaking table. The mode shapes identified by the
subspace system identification algorithm were the most accurate. The measured damping ratio for
SSI-DATA and MNeXT-ERA was higher than the ones obtained from EFDD.

Wang et al. [94] studied performance of subspace system identification, ERA, ARMA and Ibrahim
time-domain (ITD) methods. A more stable result was reported for modal identification in a numerical
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model using subspace system identification. However, ERA outperforms for field testing. Kim and
Lynch [95] studied subspace system identification and FDD methods. Resolution problem was
reported for FDD with output-only measurements data. Cunha et al. [96] compared the modal
identification results of SSI-COV and FDD. The obtained results for both of the methods were too
similar. Liu et al. [97] implemented modal analysis of the Lupu Bridge in Shanghai using subspace
system identification, ERA, PolyMAX, polynomial power spectrum method (PPM), power spectrum
z-transform method (PZM), EFDD, frequency spatial domain decomposition (FSDD), and wavelet
transform (WT) under ambient excitation. The PolyMAX, PPM, PZM, EFDD, and FSDD are in FD.
Subspace system identification and ERA are TD methods used in modal identification of structures
whereas WT is in time/frequency-domain. Subspace system identification provided the most accurate
results for modal parameters, but computational burden of the algorithm was found to be significant.

Ceravolo and Abbiati [98] conducted a comparative study among ERA applied to RDS, AR and
SSI-DATA. All of the methods were robust enough to deal with modal identification in ambient condition,
but subspace system identification showed superior performance. Generally, the comparison showed
that subspace system identification algorithm outperformed for identification of natural frequency,
mode shape, and damping ratio. However, the computational burden of the algorithm and determining
user-defined parameters are two challenges that were reported as the main downside of using subspace
system identification algorithm. In the next subsection, conducted studies to overcome these challenges
and improve the performance of the subspace-based algorithms are highlighted.

2.4. Challenges in the Practical Application

Several research studies have been conducted to enhance performance of the subspace system
identification method. In this sub-section, the focus is on the problems involved in practical
application of subspace-based damage detection. Among them merging sensors data, determining
the optimum position for sensors, dealing with nonstationarity in the vibration signal, removing the
uncertainties caused by environmental factors, eliminating spurious modes, improving performance
of an identification scheme, determining the number of block rows and system order in subspace
system identification are of the topics that is widely studied in subspace system identification.
Most of these challenges are not specific to subspace system identification but generalize to all system
identification methods.

In practical modal analysis of large civil engineering structures, dynamic response cannot be
measured from all degrees of freedom (DOFs) in one setup. Merging sensor data, so called data
aggregation, is used to reduce the number of transmissions in decentralized networks. Peeters [60]
presented a subspace system identification approach to merge sensor data of different measurement
setups with overlapping reference sensors. One of the solutions to merge multi-setup sensor data is to
identify natural frequencies separately and merge the results in the next step. In this case inconsistency
may arise due to mismatch of the identified frequencies. Another multi-setup method to deal with this
problem is to merge the successive measurements, and to process them globally, instead of merging the
identified natural frequencies. These methods are called post- and pre-identification merging method.
Simultaneous measurement is considered as another choice for merging sensor data away from the
multi-setup method. Mevel et al. [99] proposed post-identification method using SSI-COV for merging
multiple non-simultaneously measured vibration responses through gluing natural frequencies and
pole matching. Döhler et al. [100] used three subspace-based approaches of PoGER, PreGER and
PreGER for merging non-simultaneously recorded measurement data. In another research, Döhler and
Mevel [101] addressed a modular and scalable approach to solve the problem of dimension explosion in
merging multi-setups. Furthermore, Döhler et al. [102] evaluated the statistical uncertainty in identified
modal parameters using subspace system identification in multi-setup configuration. Orlowitz et
al. [103] conducted a comparative study to investigate the relative advantages of multi-setup and
simultaneous methods for merging multi-setup configuration. The post-identification method showed
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a better correlation of mode shapes and natural frequencies, however, for the structures with changing
dynamic characteristics such as dams and water reservoirs.

Subspace system identification has shown great potential in identification of dynamic parameters
in civil structures. It was shown by Benveniste and Mevel [104] that the subspace algorithm is
robust against nonstationarity caused by parameters such as varying operating load. Benveniste
and Mevel [104] studied the impact of nonstationarity in the vibration signal on consistency of
subspace system identification algorithm. It is reported that subspace algorithm ensures consistency
against nonstationarity. Alıcıoğlu and Luş [105] assessed the effect of structural complexity and
ambient uncertainty on identified modal parameters using SSI-COV and SSI-DATA techniques. It was
demonstrated that the algorithm performed reliably in the identification of natural frequencies and
improved efficiency was achieved by adopting a stabilization diagram. Clustering analysis was found
to be promising to automate selecting of real modes.

Separating the effect of externally acting agents such as operational and environmental factors is
important for successful damage detection. Several researchers have studied the effect of environmental
variation in dynamic identification, as shown in Table 2. Hence, some researchers reported measuring
externally acting agents along with measurement of the vibration response.

Table 2. Influence of environmental and operational condition on damage detection of structures.

Reference Test Model Environmental and Operational Effect

Sohn et al. [106] Alamosa Canyon Bridge 5% daily change in natural frequency due to
temperature variation

Liu and
DeWolf [107]

Real-scale bridge 4–5% variation in natural frequencies during spring and
winter were observed.

Nayeri et al. [108] a full-scale 17-story building Correlation between modal frequency and temperature is
reported in a 24-h period.

Cornwell et al. [106] Alamosa Canyon Bridge. 6% variation in modal frequencies have been recorded
Wood [109] Bridge beam Damp air caused decrease in natural frequency of structures
Xia et al. [110] Reinforced concrete slab 2% increase was recorded when relative humidity was ranged

from 15% to 80%.
Farrar et al. [74]
and Alampalli [111]

Alamosa Canyon Bridge Variation in modal parameters is entirely dependent on the
targeted structure

Peeters et al. [112] Z24 bridge Frequency variation due to ambient, shaker and impact
excitations was very small

Peeters and De
Roek [113]

Z24-Bridge Temperature differentials across the bridge deck as the driving
forces for natural frequency variations.

Ni et al. [114] Ting Kau Bridge Temperature variation changes modal frequencies with
variance ranged from 0.20% to 1.52% in the first ten modes.

Kim et al. [115] Experimental model of
a Euler–Bernoulli beam

Natural frequencies variation/ambient temperature from 0 ◦C
to 30 ◦C was 19%, 10%, 13% and 7% for 1st, 2nd, 3rd and 4th
modes, respectively.

Spiridonakos et al. [116] incorporated the variance of the uncertainties caused by humidity
and temperature in identification of the modal parameters using subspace system identification.
Two polynomial chaos expansion and independent component analysis were conducted to isolate
structural variations caused by deviation of acting agents and extraction of structural features,
respectively. Loh and Chen [117] addressed covariance-driven recursive stochastic subspace
identification (RSSI-COV) for isolating environmental effect from anomaly caused by damage.
Huynh et al. [118] analyzed the wind-induced vibration due to typhoons with various wind speeds.
Deraemaeker [119] evaluated the robustness of subspace system identification method by introducing
uncertainty into the FE model. It was shown that, other than the effect of externally acting agents,
the inherent performance of an identification scheme plays an important role in accuracy of the
estimation result. Then studying of the detectability of the dynamic parameters is of paramount
importance. Magalhães et al. [120] studied the effect of several factors, including the proximity of
natural frequencies, non-proportional damping, and accuracy of the identification algorithms, on the
quality of the extracted damping ratios. Rainieri and Fabbrocino [121] investigated the influence of
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the number of block rows and system order on estimation accuracy in subspace system identification
algorithm. The most robust identification using a subspace system identification algorithm is obtained
when the number of data goes to infinity. Short-length data cause estimation bias in modal identification.
The bias error is intensified when dealing with systems having high damping and high frequency.
Wang et al. [122] proposed a combined subspace system identification and ARX algorithms for
VDD of Hammerstein systems. Li et al. [123] developed a subspace system identification algorithm
to eliminate spurious modes caused by non-white noise. Brasiliano et al. [124] investigated the
effect of non-structural elements on vibration parameters using SSI-COV and SSI-DATA. Cara et
al. [125] discussed the modal contribution in each mode to the recorded vibration signal. In some
structural systems ambient excitation is the only practical means to excite civil structure as a result;
some of the modes are not influenced. Ashari et al. [35] introduced injecting auxiliary input to the
subspace system identification algorithm to extract the unexcited modes. Several methods are used to
introduce uncertainty including adding Gaussian perturbation into natural frequency or damping
coefficients, adding independent Gaussian noise at each mode-shape measurement location and adding
uncorrelated noise on the extracted vibration response.

Some other researchers studied the specific cases that may occur in practice. Pridham and
Wilson [126] investigated the use of correlation–driven SSI to estimate damping ratio from short-length
data sets. Banfi and Carassale [127] studied the effect of environmental variability and short-length
measurement data in determining modal parameters. Marchesiello et al. [128] proposed short-time
stochastic subspace identification (ST-SSI) to deal with time-variant identification. Markovsky [129]
developed a subspace system identification algorithm for dynamic system with missing data.
Brownjohn and Carden [130] compared the degree of uncertainty in black box identification from the
author’s experiences. Carden and Mita [131] summarized the challenges to extract accurate confidence
intervals in the modal identification of civil structures using subspace system identification.

As demonstrated above, the most researched challenges in implementation of subspace system
identification algorithm deal with merging multi-setup sensor data and improving the performance of
the subspace algorithm for the identification of the modal parameters using short-length measurement
data. In the next subsection, the use of subspace system identification in the development of software
is presented.

2.5. The Software Packages

The subspace method has been used in many structural monitoring and modal analysis software
programs. In this subsection, the software packages that used subspace system identification for modal
identification and SHM are further investigated. ARTeMIS is a self-stand tool suite that utilized CC-SSI
for operational modal analysis [132]. Reynders and De Roeck [58] developed MACEC for modal
analysis in TD and FD. SSI-COV, SSI-DATA, combined deterministic-stochastic subspace identification
(CSI), and their reference-based generalization (SSI-data/ref, SSI/ref and CSI/ref) are adopted in the
software package. MACEC 3.2 is the latest version of the software [133]. ModalVIEW [134] software
was developed under LabVIEW which used subspace system identification algorithm for modal
analysis. Hu et al. [135] presented structural modal identification (SMI) and continuous structural
modal identification (CSMI) for modal analysis within the LabVIEW environment. Goursat and
Mevel [136] proposed COSMAD toolbox in Scilab, for in-operation damage identification that used
SSI-COV as the basic identification tool in the software. Chang et al. [137] introduced structural modal
identification toolsuite (SMIT) to study the modal parameters of natural frequency, mode shapes,
and damping ratio.

Operational modal analysis (OMA) [138] is another software program that uses subspace system
identification for the dynamic identification of structure and it has been used for the modal identification
of several structures such as Berta Bridge [139] and Berke Arch Dam [140]. LMS Cada-X [141] is another
software program employing subspace algorithm. The software is developed by LMS International
in Leuven, Belgium. TestLab [142] is another software by LMS that was used extensively for modal
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analysis. The software also used a subspace algorithm for parameter identification. Automated
operational modal analysis (AOMA) [143] utilized a strong identification and stabilization diagram.
The algorithm uses one user-defined parameter.

3. Methodology

For the research methodology of the present review paper, the preferred reporting items for
systematic reviews and meta-analyses (PRISMA) is proposed by Moher et al. [144]. PRISMA statement
consists of two main parts of systematic reviews and meta-analysis. Systematic reviews provide
objective summaries of researches carried out on a specific field. An explicit and systematic method
is used for identification, selection, appraisal, collecting and analysis of the data to answer clearly
formulated questions about the studies included in the review. This is highly useful especially in wide
research area to encompass the researches that focus on narrow aspect of the field [145]. The provided
explicit framework to conduct the review is to ensure the procedure is objective and replicable by
others. Meta-analysis is referred to as the statistical analysis recommended for integrating findings
of the included studies. The main goal of using PRISMA statement is to help authors to improve
reporting of literature reviews [146–149]. The PRISMA statement has been used in several studies to
provide comprehensive literature review in various fields. In order to conduct the present review
study, a three step procedure including search in literature, choosing the eligible published papers and
data extraction and summarizing is employed.

3.1. Literature Search

Literature search was carried out by consulting three databases of Scopus, Web of Science,
and Google Scholar for systematic review of the applications and methodologies on subspace-based
SHM. Defining keywords for a systematic review and meta-analysis is more than just important.
Selecting keywords from subject heading is of the best tools for efficient retrieval and survey of
data from database [150]. Hence, in the first step, the following combinations were used in the
keyword search: (“subspace system identification” AND (“structural health monitoring” OR “damage
detection” OR “fault detection” OR “modal”)). Duplicates and unrelated articles; assessed from
title screening; were excluded from the study. Following the database searches and title screening,
eligibility of the retrieved records were assessed through abstract screening. The search process was
iterative, and the studies that met the inclusion and exclusion criteria were continuously extracted
till the end of the study. Moreover, the search terms were refined in the process of becoming familiar
with literature. Other search keyword were also added in the course of the review process such as
a combination of (“subspace system identification” AND (“output-only” OR “ambient excitation” OR
“civil” OR “stochastic”)).

It is now about 25 years or more since subspace system identification was linked as an approach to
the dynamic identification and SHM of civil structures. The literature search and eligibility assessment
study shows that the time period 1995–2019 can be divided into two time intervals. The 1995–2008 can
be characterized to development of the theoretical foundation and conceptualization of the framework
that is discussed in introduction section. Hence, to deal with application and application-related topics
more specifically, the scope of the literature search was limited to the papers published in the time
frame of 2008–2019. An evaluation process was conducted to determine whether a publication must be
retained in the final list.

The literature search was confined to the English language journal papers and the relevant works
in the form of book chapters, non-indexed conference papers, editorial notes, master dissertations,
doctoral theses, and textbooks were excluded from the review. Abstract review is the first screening of
the papers for inclusion or exclusion that is conducted based on the pass/fail criteria. Using this criteria
a total of 90 scholarly papers were identified. The duplicated records with redundant information
were removed from the final search results. In this stage, 67 papers remained. All the above identified
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articles were thoroughly read based on topics and abstracts while unrelated studies were removed.
Totally, 69 potentially related studies qualified, as shown in Figure 4.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 39 
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3.2. Articles Eligibility

Article eligibility was assessed based on full-text reading of each manuscript obtained from the
above process. In the final step all identified articles were carefully read in its entirety to confirm the
significance and relevance to the review topic. In several previous studies, the combined subspace
method is used for modal identification and SHM of civil engineering structures under the seismic
excitation. However, the ambient excitation is the most common procedure for SHM of civil engineering
structures; as a result the focus in the literature search is more on SSI-COV and SSI-DATA rather
than the combined method. In the end, 69 articles were selected for the application of SSI in SHM
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of civil structures from 31 scholarly international journals between 2008 and 2019 that satisfied the
inclusion criteria.

3.3. Summarizing and Data Extraction

In the final step of our methodology, finally 69 articles were reviewed and summarized.
Furthermore, all articles were reviewed based on various criteria such as the used technique and
method, research gap and results and findings. We believe that, the reviewing, and classifying of articles
can help to extract valuable and important information. Consequently, several recommendations
were given for future studies. It is noteworthy that the difficult part during the accomplishment
of the PRISMA method was to extract the implicit methodology in abstracts and the context of the
selected articles. Hence, in order to provide sufficient information and unbiased decisions regarding
the approach applied in the analysis, in most cases, the full manuscript was searched. The authors
believe that this review could help the readers to find the most relevant and appropriate published
studies regarding subspace system identification.

4. Distribution of the Subspace-Based Damage Detection Techniques

4.1. Distribution of the Papers on SSI-DATA Approach

Table A1 in Appendix A shows those studies which used SSI-DATA technique. A total of 31
studies have used SSI-DATA method alone or combined with other methods in various test structures
such as beams and 2D frames, 3D frames structures and buildings, and bridges and other structures.

WSNs are promising future use technology and now are applied for SHM of civil engineering
structures. Some of the studies in application of SSI-DATA algorithm are dealt with the limitations of
WSNs facilities for data transmission and developing dense networks of low-cost wireless sensors for
complex infrastructures [66,151,152]. To deal with the limitations of WSN facilities for data transmission
Cho et al. [66] presented a decentralized SSI-DATA algorithm implemented on Imote2-based WSNs.
An experimental test of a five-story shear building was used as the verification test. The identification
results obtained from decentralized and centralized SSI techniques were close to each other. Kurata
et al. [151] developed a novel internet-enabled wireless structural monitoring system for large-scale
civil infrastructures. A wireless monitoring system was installed on New Carquinez Bridge to verify
the applicability of the proposed framework. The obtained results verified the stable and reliable
application of the proposed system on a large number of nodes. Kim and Lynch [152] introduced
an indirect SSI-DATA algorithm based on Markov parameters customized for decentralized WSNs.
The proposed strategy is verified by dynamic testing of a cantilevered balcony in a historic building.
System properties were identified with a high accuracy.

FE model updating is a powerful tool in SHM to ensure that FE analysis reflects the real behavior
of structures. Several researches on SSI-DATA were focused on practical limitation of FE updating and
to validate a reliable FE model [153–155]. In order to validate FE models by applying identification
methods, Nozari et al. [153] implemented an FE model updating framework to identify damage
in a ten-story reinforced concrete building. Due to the limitations of experimental responses and
measurement errors, the optimization in FE updating problem may reach multiple solutions in the
search domain. To deal with this problem, Shabbir and Omenzetter [154] applied a methodology using
particle swarm optimization (PSO) with sequential Niche technique (SNT) for FE model updating of
a pedestrian cable-stayed bridge. It was shown that the proposed methodology gives more confidence
for model updating. In order to know the dynamic behavior of complex buildings subjected to
near-fault earthquakes, Foti et al. [155] used output-only EFDD and SSI-DATA to identify modal
parameters of two buildings to update an FE model of the damaged structures. Testing was conducted
on a complex building which was heavily damaged in an earthquake. After a series of improvements
of the model, satisfactory agreement has been reached.
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Several researches have been conducted to improve performance of classical SSI-DATA to be
applied on continuous time SHM and enhance the efficiency [84,156–158]. In order to track the
current structural state from building seismic responses, Chen and Loh [156] developed two recursive
SSI-DATA algorithms using BonaFide LQ renewing algorithm and inversion lemma algorithm. Two sets
of building seismic response data from a three-story steel structure and a four-story-reinforced concrete
elementary school building were used for verification of proposed methods. The results show that
subspace system identification inversion with forgetting factor could provide more accurate estimation
of the stiffness change. Li et al. [157] developed a reference-based subspace system identification
technique to identify structural flexibility using modal scaling factors. A numerical model of an RC
bridge and a laboratory-scale simply supported beam were presented to illustrate the robustness
of the proposed method. The examples, successfully illustrated the robustness of the proposed
method. Dai et al. [158] presented a modified subspace system identification method for modal
analysis of structures under harmonic excitation with frequencies close to natural frequencies of the
structure. In this method, Hankel matrix was modified by adding harmonic vectors. Application of
the algorithm on numerical lumped-mass dynamic system model and an in-service utility-scale wind
turbine tower resulted in accurate estimation of the modal parameters. Zhang et al. [84] introduced
a CH matrix as a replacement for a Hankel matrix and replaced a projection operator with the classical
QR decomposition. A seven-DOF numerical model and experimental test of Chaotianmen Bridge
were used to verify the method. An improved computational efficiency without losing the quality and
separation of the spurious modes are the advantages achieved using the proposed algorithm. Further
details of the selected papers of this section can be found in Table A1.

4.2. Distribution of the Papers on SSI-COV Approach

Table A2 in Appendix A shows the studies with focus on the SSI-COV approach. From the data
presented in this table, a total of 25 studies used SSI-COV in various structures including beams and
2D frames, 3D frames structures and buildings, and bridges. Some of these studies integrated SSI-COV
approach with preprocessing or postprocessing stages [72,159–163].

In order to smoothen input signal and yield reliable modal parameters, Loh et al. [159] adopted
singular spectrum analysis (SSA), for preprocessing of the response signal, and a stabilization diagram
for postprocessing of the extracted modal parameters, respectively. The experimental test was carried
out for the validation of the proposed algorithm using the long-term monitoring data of Canton Tower
high-rise slender structure. It was found that the use of SSA as a pre-processing tool for SSI-COV
improved the identifiability of modes using a stabilization diagram. To estimate the tension forces of
the cables in cable-stayed bridges, Zarbaf et al. [72] adopted hierarchical clustering algorithm to identify
natural frequencies of each stay cable in Veterans’ Glass City Skyway Bridge. The agreement between
the estimated results and the measured tension forces was good. Due to the need for the removal
of bias and variance errors in the modal parameter estimation, Reynders et al. [161] used first-order
sensitivity of the modal parameters and stabilization diagram to remove bias errors. A simulation
model and measured vibration data of a beam and a mast structure were used for the verification
purpose. The practicability of the proposed method was confirmed in a real-world application.

In order to improve the identifiability of the weakly excited modes Zhang et al. [162] introduced
component energy index (CEI) and an alternative stabilization diagram to identify spurious and
physical modes. A simulation model of a seven-DOF mass-spring-dashpot (MSD) system and the
experimental model of a metallic frame structure subject to wind load were used for verification of
the proposed scheme. Good performance was observed especially for the measurement data with
low SNR. In order to identify structural changes in presence of environmental variation, Carden and
Brownjohn [163] proposed a fuzzy clustering algorithm to extract state parameters from real and
numerical poles. Data from Z24 Bridge and Republic Plaza Office Building in Singapore were used for
experimental verification of the method. The inflicted damage on the Z24 Bridge was successfully
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identified using the proposed method. The shifts in modes of the Plaza Office Building in Singapore
were also clearly captured.

Several studies on SSI-COV were concerned with discrimination environmental and operational
effect during the identification process by improving the inherent performance of the SSI-COV
algorithm. Döhler et al. [164] presented an efficient and fast SSI-COV damage detection that is robust
to changes in the excitation covariance. Three numerical applications were presented. It is reported
that the new approach can better detect and separate different levels of damage.

Several researches on SSI-COV dealt with improving the damage detection process by introducing
a damage sensitive and noise-insensitive features [71,165–169]. To discriminate changes in modal
parameters caused by damage from those occurred due to environmental factors, Basseville et
al. [165] designed a damage detection algorithm using null space residual, χ2 test and a statistical
nuisance rejection. A vertical beam made of steel and aluminum was tested under controlled ambient
temperature for verification of the presented scheme. The relevance of the presented algorithm was
illustrated using a laboratory-scale test structure. Balmès et al. [170] proposed the use of subspace
residual as damage feature and χ2 tests to discriminate the effect of noise from estimated modal
parameters. A simulated bridge deck with controlled temperature variations was used for verification
of the proposed method. Efficiency of the method on simulation model for various temperature cases
was confirmed. Zhou et al. [168] used a residual of the subspace system identification and global
χ2-tests for damage detection. A full-scale bridge benchmark was validated by numerical simulation.
It is reported that the damage in tower was detected in the same time. In order to consider nonlinearity
of structures for identification of modal characteristics Sun et al. [71] defined a nonlinear subspace
distance as damage feature. The proposed index was validated by the data obtained from a viscoelastic
sandwich structure (VSS) subjected to an accelerated ageing. It is shown that the designed index
is very effective to evaluate the health state in the structure. Ren et al. [169] adopted Mahalanobis
and Euclidean distance decision functions for the pattern recognition of a proposed damage index.
One numerical signal and two simulated FE dynamic beam models were used for the verification of
the proposed procedure. The method was capable of locating damage in FE beam structures. Details
of selected papers which adopted the SSI-COV approach in their identification process are presented
in Table A2.

4.3. Distribution of the Papers on Combined Subspace System Identification Approaches

Table A3 in Appendix A shows the studies which used combined subspace system identification
techniques. Based on results presented in the table, a total of 13 studies have used combined subspace
system identification algorithms for analysis of various test structures. Though subspace system
identification algorithm is originally a TD identification approach, some researchers have developed the
FD version of the combined subspace system identification algorithm for identification of the vibration
parameters [81,171]. In order to meet interpretation challenges associated with system identification
obtained from measured sensor data, Urgessa [81] presented two FD system identification methods
by adopting ERA and the McKelvey subspace system identification approaches. FE model of a plate
structure was used for verification of the proposed algorithms. The methods were able to predict
natural frequencies and damping ratio with a high accuracy. Akçay [171] proposed a two-step subspace
algorithm by calculating minimal realization of the power spectrum samples and a canonical spectral
factor. A numerical example is provided to illustrate the performance of the proposed algorithm.
Serious drawbacks regarding reliable performance of the algorithm dealing with short data records and
corrupted data were reported. Several studies are concerned with improving the performance of the
combined subspace system identification algorithm [41,42,172,173] to deal with these problem. Kim and
Lynch [41,42] presented a theoretical framework to extract actual physical parameters of structures
using a physics-based model and a data-driven mathematical model. Numerical model of a multi-DOF
shear building structure and experimental verification test of a six-story steel frame structure under
support excitation were tested. The proposed grey-box framework has shown a promising performance
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for SHM of civil engineering structures exposed to base motions. Gandino et al. [172] developed
a novel multivariate input–output SSI-COV formulation for modal parameter identification. A 15-DOFs
numerical example and an experimental application consisting of a thin-walled metallic structure
were used for verification. The obtained results were similar to those reached by data-driven
method. Verhaegen and Hansson [173] introduced data-driven input-output N2SID using convex
nuclear norm optimization. Mathematical formulations are furnished to derive the theory of the
N2SID algorithm. The sequence for derivation of the system parameters from N2SID was clearly
demonstrated. Table A3 provides the information of the selected papers which applied combined
subspace system identification approaches.

4.4. Comparison among Identification Methods

Several subspace system identification methods have been applied for modal identification and
VDD of civil structures. These methods are in the form of output-only or input–output algorithms.
Output-only algorithms are used for vibration analysis of ambient excited structures. SSI-DATA
and SSI-COV techniques are the two main output-only subspace system identification algorithms.
SSI-COV algorithm uses the covariance of the raw time-history to reduce the dimensionality of the
measurement data. Data reduction in SSI-DATA is performed using QR projection of the Hankel matrix.
Both subspace system identification algorithms use SVD to determine the order of a dynamic system.
The calculation of the covariance matrix is faster compared to calculation of the QR decomposition
which is much slower. However, both algorithms are reported to perform well for the estimation of
the modal parameters whereas SSI-DATA is expected to be theoretically more robust due to avoiding
squaring up of the measurement data. Combined subspace system identification algorithm is used
for identification of system parameters with known input data. More reliable results are obtained by
using the input-output subspace system identification compared to the output-only scheme. Several
algorithms are introduced based on the classical SSI-COV, SSI-DATA and the combined method to
improve the performance of the subspace system identification for SHM application. The performance
is enhanced either by change in structure of the underlying algorithms or by adding preprocessing
or postprocessing steps to the original subspace system identification algorithm. In some cases,
the subspace system identification algorithm is integrated with other analytical methods to yield
higher performance.

4.5. Test Structure’s Classification

Selected articles are categorized into five different test structures including 2D structures, 3D frame
structures and buildings, bridge structures, multiple test structures, and others. 2D structures are
in the forms of simply supported beam, cantilever beam or 2D shear frames. Most of the applied
3D test structures for verification of subspace system identification algorithms in this study were in
the form of 1-span shear building tested on shaking table for progressive damage test. Furthermore,
some of the algorithms are applied into structures from two different categories such as “bridge, and 3D
frame and buildings” which are classified within the multiple test structure groups. The category
“others” include structures such as dam, wind turbine, chimney, tensegrity systems and sandwich
structures. The distribution of the selected paper list based on test structures and applied subspace
system identification methods is shown in Figure 5.



Appl. Sci. 2020, 10, 3607 17 of 34

Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 39 

the theory of the N2SID algorithm. The sequence for derivation of the system parameters from 
N2SID was clearly demonstrated. Table A3 provides the information of the selected papers which 
applied combined subspace system identification approaches. 

4.4. Comparison among Identification Methods 

Several subspace system identification methods have been applied for modal identification and 
VDD of civil structures. These methods are in the form of output-only or input–output algorithms. 
Output-only algorithms are used for vibration analysis of ambient excited structures. SSI-DATA and 
SSI-COV techniques are the two main output-only subspace system identification algorithms. 
SSI-COV algorithm uses the covariance of the raw time-history to reduce the dimensionality of the 
measurement data. Data reduction in SSI-DATA is performed using QR projection of the Hankel 
matrix. Both subspace system identification algorithms use SVD to determine the order of a dynamic 
system. The calculation of the covariance matrix is faster compared to calculation of the QR 
decomposition which is much slower. However, both algorithms are reported to perform well for 
the estimation of the modal parameters whereas SSI-DATA is expected to be theoretically more 
robust due to avoiding squaring up of the measurement data. Combined subspace system 
identification algorithm is used for identification of system parameters with known input data. More 
reliable results are obtained by using the input-output subspace system identification compared to 
the output-only scheme. Several algorithms are introduced based on the classical SSI-COV, 
SSI-DATA and the combined method to improve the performance of the subspace system 
identification for SHM application. The performance is enhanced either by change in structure of the 
underlying algorithms or by adding preprocessing or postprocessing steps to the original subspace 
system identification algorithm. In some cases, the subspace system identification algorithm is 
integrated with other analytical methods to yield higher performance. 

4.5. Test Structure’s Classification 

Selected articles are categorized into five different test structures including 2D structures, 3D 
frame structures and buildings, bridge structures, multiple test structures, and others. 2D structures 
are in the forms of simply supported beam, cantilever beam or 2D shear frames. Most of the applied 
3D test structures for verification of subspace system identification algorithms in this study were in 
the form of 1-span shear building tested on shaking table for progressive damage test. Furthermore, 
some of the algorithms are applied into structures from two different categories such as “bridge, and 
3D frame and buildings” which are classified within the multiple test structure groups. The category 
“others” include structures such as dam, wind turbine, chimney, tensegrity systems and sandwich 
structures. The distribution of the selected paper list based on test structures and applied subspace 
system identification methods is shown in Figure 5. 

 
Figure 5. The distribution of the paper by the test structures and the applied subspace system 
identification methods. 

5. Conclusions 

Figure 5. The distribution of the paper by the test structures and the applied subspace system
identification methods.

5. Conclusions

In this review paper, the theory and applications with respect to recent developments of the
subspace system identification approach in the modal identification and health monitoring of civil
engineering structures are comprehensively reviewed. The applied test structures of these selected
papers were classified into five groups. These papers are accessible via three important databases of
Scopus, Google Scholar, and Web of Science. To this end, 69 studies were carefully selected about
subspace system identification application in health monitoring of the civil engineering structures
based on title, abstract, introduction, research method, and conclusion. A number of important issues
with respect to subspace system identification application were extracted from the present literature
review. The extensive of the selected studies were published in 2016. In total, papers were classified
into five test structures including 2D frame structures, 3D frame structures and buildings, models tested
on multiple structures and others. In this regard, bridge structures were the most likely candidate
structure with 25 papers using SSI-DATA, SSI-COV, and combined subspace system identification
approaches. In addition, 31 international journals were considered in the current review paper.

Output-only methods are generally applied for identification of the state-space parameters
under ambient excitation where the combined method used seismic or forced vibration excitation.
Test structures for input-output subspace system identification are generally 2D or 3D frames or
buildings where in output-only subspace system identification, test structures are generally bridges.
SSI-DATA is the most researched subspace system identification approach in health monitoring of
the civil structures. The obtained results for SSI-DATA and SSI-COV algorithms are overall similar in
the case of accuracy, but the computation time SSI-COV is much lower than the SSI-DATA approach.
The research works contributed with the SSI-COV are mainly concentrated on improving the quality
of the obtained modal parameters using preprocessing or postprocessing techniques. Stabilization
diagram is the most applied postprocessing method to select physical modes and distinguish false
and spurious modes. Additionally, some studies are conducted to introduce appropriate damage
features for SHM. However, the research studies in the SSI-DATA are generally devoted to enhancing
the intrinsic structure of the subspace system identification algorithm itself, or integrating with other
soft computing approaches to deal with the problem.

This study confirms that subspace based damage detection approaches can help researchers and
practitioners to overcome some uncertainties regarding the quality of the condition assessment in
various application areas. The present review has some limitations, which are common to these types
of studies and can be considered as an object of future studies. First, this review is focused mainly
on the application of a subspace system identification algorithm for the health monitoring of civil
structures rather than the theory and development of the classical subspace-based techniques. Second,
the available papers of the publishers in Web of Science, Scopus, and Google Scholar till the end of
November 2019 have been included in the identification process.
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This review can be expanded to include future studies. Another limitation is that the collected
data were from international journals while non-indexed conferences papers, textbooks, doctoral
theses, and masters projects were excluded from the current study. Therefore, in the future studies,
the data from the aforementioned resources can be collected and the obtained results can be evaluated
with the data reported in this study. However, the authors believe that this paper has comprehensively
reviewed the most published papers in international journals focusing on several aspects such as the
authors, publication year, technique and methods, research purpose, gap and contribution, solution
and modeling, and results and findings. It is recommended that future papers focus on different
functions. In this regard, the current review paper presented some opportunities to find gaps that can
be addressed for further study directions.
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Nomenclature

ARMA Auto-regressive moving average
CC-SSI Crystal clear stochastic subspace identification
CSI Combined deterministic-stochastic subspace identification
CSMI Continuous structural modal identification
DOFs Degrees of freedom
DSI Deterministic-stochastic subspace identification
EFDD Enhanced frequency domain decomposition
ERA Eigensystem realization algorithm
FD Frequency-domain
GRA General realization algorithm
ITD Ibrahim Time-domain
MIMO Multiple-input multiple-output
MNExT-ERA Multiple-reference natural excitation technique combined with ERA
MOESP Multivariable output error state-space
MSD Mass-spring-dashpot
OKID Observer/Kalman filter identification
PPM Polynomial power spectrum method
PRISMA Preferred reporting items for systematic reviews and meta-analyses
PSO Particle swarm optimization
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PZM Power spectrum z-transform method
RD The random decrement
RSSI-COV Covariance-driven recursive stochastic subspace identification
SHM Structural health monitoring
SIMO Single-input multiple-output
SMI Structural modal identification
SMIT Structural modal identification toolsuite
SSI Stochastic ubspace identification
SSI-COV Covariance-driven stochastic subspace system identification
SSI-DATA Data-driven stochastic subspace system identification
ST-SSI Short-time stochastic subspace identification
TARMA Time-varying analysis method using time-dependent auto-regressive moving average
TD Time-domain
TFD Time/frequency domain
VDD Vibration-based damage detection
VSS Viscoelastic sandwich structure
WSNs Wireless sensor networks
WT Wavelet transform
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Appendix A

Table A1. Distribution of the papers based on SSI-DATA techniques.

Author Method Research Objective Research Gap and Problem Solution and Modeling Result and Finding

Priori et al.
[174] SSI-DATA

Proposed rules to determine the number of
block rows and columns of the Hankel

matrix

Need to define optimum value for
-defined parameters in SSI

Vibration test on a scaled structure
and tests on a real-size RC building.

Rules to determine the lower bound
for the user-defined parameters of
the SSI algorithm was discussed.

Pioldi and
Rizzi [175] Improved SSI-DATA Adopted an improved SSI-DATA procedure

and a refined FFD algorithm

Need to identify modal parameters
from short-duration, non-stationary,

earthquake-induced response

A numerical model of a ten-story
frame structure under a set of

selected earthquakes

Both rFDD and the SSI-
methodologies turn out robust

results.

Chen and Loh
[156] Improved SSI-DATA

Developed two algorithms of recursive SSI
with BonaFide LQ renewing algorithm and

matrix inversion lemma algorithm

Need to track structural current
state from the building seismic

response

A three-story steel structure and a
four-story-reinforced concrete an

elementary school building

The SSI Inversion with forgetting
factor can provide more accurate
estimation of the stiffness change.

Li et al. [157] Reference-based
SSI-DATA

Developed a SSI technique to identify
structural flexibility using the modal scaling

factors

Need to correct estimation of the
structural modal scaling factor and

flexibility characteristics

A numerical model of a RC bridge
and a laboratory-scale simply

supported beam

The Examples successfully
illustrated the robustness of the

proposed method.

Park and Noh
Hae [176] SSI-DATA Adopted an iterative parameter updating Need to deal with practical

limitation of output-only methods
A numerical model of a 5-story

shear building

The modal parameters are
estimated with 85–99%. Updating
further improves these accuracies.

Nozari et al.
[153] SSI-DATA

Implemented a FE model updating
framework to identify damage in a 10-story

reinforced concrete building.

Need to validate FE models by
applying identification methods

A ten-story reinforced concrete
building

The updated model parameters
shown considerable variability

across different sets.

Dai et al. [158] SSI-DATA Presented a modified SSI method for modal
identification under harmonic excitation

Need for a SHM system to ensure
proper performance and save

maintenance costs in wind turbines

A numerical lumped-mass system
model and an in-service

utility-scale wind turbine tower

The modal parameters of the first
two modes were accurately

estimated.

Tarinejad and
Pourgholi [30] SSI-DATA

Proposed an algorithms using stochastic
realization theory and canonical correlation

analysis for operational modal analysis

Need to deal with uncertainties of
unknown nature such as ambient
noises and measurement errors.

Experimental tests on
Shahid-Rajaee arch dam and

Pacoima dam

More accurate natural frequencies
are obtained compared to those of

classic SSI.

Soria et al.
[177]

SSI-COV, SSI-DATA
& SSI-EM

Studied the influence of the environmental
and operational factors using three SSI-based

modal analysis techniques

Need to a low-cost
vibration-monitoring system

A steel-plated stress-ribbon
footbridge was used as the

experimental case study

An excellent correlation for the
lowest persistent vibration modes

was reported.

Loh et al. [178] SSI-DATA Used SSI and a technique to remove
spurious modes

Need to identification of an
earthquake-induced structural

response

One 7-story RC building and one
mid-isolation building and an

isolated bridge

The identified system dynamic
parameters were used for seismic

assessment of the structures.

Lardies [179] SSI-DATA
Presented four different algorithms of (i)

block Hankel matrix, block observability and
block controllability and shifted versions

Need to determine the transition
matrix

Numerical model of a two-DOF
system and experimental model of

a cantilever beam

The same results are obtained using
these algorithms.
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Table A1. Cont.

Author Method Research Objective Research Gap and Problem Solution and Modeling Result and Finding

Cho et al. [66] SSI-DATA Presented a decentralized SSI-DATA
implemented on the Imote2-based WSN

Need to deal with the limitations of
WSNs facilities for data

transmission

Experimental test of a 5-story shear
building model using WSNs

The identification results obtained
from the WSNs and the centralized

were close to each other.

Shabbir and
Omenzetter

[154]
SSI-DATA

Proposed a particle swarm optimization
with sequential niche technique (SNT) for FE

updating

Need to deal with the limitation of
FE updating problem

FE model updating of a pedestrian
cable-stayed bridge is used to

analyze the method

The proposed methodology gives
the analyst more confidence for

model updating.

Junhee et al.
[180] SSI-DATA Applied a SSI technique to model guided

wave propagation
Need to model complex dynamics

behavior of wave propagation.
Welded plates of varying

thicknesses
The algorithm was capable to

simulate the propagating waves.

Yu et al. [181] SSI-DATA
Investigated the time-varying system
identification in temperature-varying

environments.

Need to confirm the applicability of
time-varying modal parameter

identification algorithm

A steel beam with a removable
mass

The effect of the thermal stresses on
the natural frequency reduction is

revealed

Foti et al. [155] SSI-DATA
Used output-only EFDD and SSI to identify

the modal parameters of two building to
update a FE model

Need to know the dynamic
behavior of complex buildings

subjected to near-fault earthquakes

A complex building which was
heavily damaged in an earthquake.

At first low agreement was found
but finally satisfactory agreement

has been reached.

Kurata et al.
[151] SSI-DATA

Developed a novel internet-enabled wireless
structural monitoring system tailored for

large-scale civil infrastructures

Need to develop dense networks of
low-cost wireless sensors for large

and complex infrastructure

Installed wireless monitoring
system is on New Carquinez Bridge

The obtained results verified the
stable and reliable application of
the proposed monitoring system.

Ubertini et al.
[182] SSI-DATA

Proposed an automated SSI-based modal
identification procedure, using clustering

analysis

Increasing need to diffusion of
continuous monitoring systems for

structural condition assessment

Two bridges of iron arch bridge and
a long-span footbridge

The reliable performance of the
automated long term monitoring

was verified.

Döhler et al.
[102]

SSI-DATA and
SSI-COV

Proposed an efficient stochastic SSI
algorithm by reformulation and

computation of uncertainty bounds

Need to a fast and reliable damage
detection algorithm

The field vibrational data of the Z24
Bridge

The algorithm is both
computationally and memory

efficient.

Döhler and
Mevel [27]

SSI-DATA &
SSI-COV

Derived a new efficient algorithm for
multi-order system identification using SSI

method

Need to distinguish the true modes
from spurious structural modes Z24 Bridge data

The presented methods are faster
than the conventional algorithms in

use.

Kim and Lynch
[152] Indirect SSI-DATA

Introduced a SIMO model of SSI algorithm
based on Markov parameters customized for

the decentralized WSNs

Need to decentralized data
processing due to its advantages

consumption.

Dynamic testing of a cantilevered
balcony in a historic building

System properties were identified
with a high accuracy.

Zhang et al.
[84] Improved SSI-DATA

Introduced a CH matrix as a replacement of
Hankel matrix and projection operator for

QR decomposition

Need to improve the low
computational efficiency of the

SSI-DATA

A numerical model of a 7-DOF and
an experimental model of

Chaotianmen bridge

Computational efficiency and reject
of the spurious modes without
losing the quality are achieved.

Lardies and
Minh-Ngi

[183]
SSI-DATA

Applied improved SSI using modal
coherence indicator to eliminates spurious

modes and Morlet wavelet

Need to overcome the concerns
about health state of the tension
cables in cable-stayed bridges

Two experiments of stay cables in
laboratory scale and Jinma

cable-stayed bridge

The robustness and reliability of
the subspace and the WT transform

methods are demonstrated.
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Author Method Research Objective Research Gap and Problem Solution and Modeling Result and Finding

Weng and Loh
[83]

RSI-DATA &
RSSI-DATA

Developed an on-line tracking of the
estimated system parameter using response

measurements

Need to develop an on-line
tracking of modal parameter
without human interference

Seismic excitation of a 3-story steel
frame and a 2-story reinforced

concrete frame

Accurate results were obtained by
identifying the model properties.

Carden and
Mita [131] SSI-DATA

Investigated the methods applied to estimate
uncertainty and confidence intervals and
summarized drawback of each method.

Need to deal with finite lengths of
data for modal identification

Numerical models of a MSD
system and experimental model of

a suspension bridge

The drawbacks for reliable
application of residual

bootstrapping procedure are
reported.

Brownjohn et
al. [184] SSI-DATA

Implemented the SSI procedure in the
‘virtual instrument’ for SHM of a 183 m

reinforced concrete chimney

Need to overcome the concerns
about large-amplitude response
induced by interference effects

A 183 m reinforced concrete
chimney for a coal-fired power

station

The damping values show the tune
mass damper to have been effective

in controlling response.

Hu et al. [135] SSI-DATA and
SSI-COV

Introduced tools for modal identification in
LabVIEW named SMI and CSMI

Need to computational tools for
modal identification and long term

vibration monitoring

Field data collected at Pinha˜ o
bridge and Coimbra footbridge

The potential of this software to
obtain the natural frequencies and

modal damping.

Marchesiello et
al. [128] ST-SSI

Two approaches of continuous wavelet
transform and the ST-SSI is proposed and

compared.

Need to take into account the effect
of system variation in time-variant

systems

A pinned–pinned bridge carrying a
moving load

CWT was found to suffer from the
drawback of edge effects compared

to ST-SSI.

Deraemaeker
et al. [185] SSI-DATA Examined two damage features obtained

from SSI and peak indicators
Need to consider the effect of

environmental condition in analysis
A numerical bridge model subject

to noise and damage
All damages were detected using

the proposed procedure.

Alıcıoğlu and
Luş [105]

SSI-DATA &
SSI-COV

Investigated the performance of output-only
SSI-DATA and SSI-COV algorithms

Need to objectively determine the
practical benefits of SSI and to find

out the potential difficulties

FE model, physical laboratory
model of a small scale steel frame

and a long span suspension bridge

Both SSI algorithms are found to
perform quite satisfactorily for

operational modal analysis.

He et al. [186] SSI-DATA
Simulated the wind-induced vibration

response of a Bridge using FE model and
stochastic wind excitation model

Need to study systematically the
effects of damage scenarios in

long-span cable-supported bridges

Simulation of the wind-induced
vibration response of Vincent

Thomas Bridge,

The framework was validated to
study the effects of damage

scenarios.
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Table A2. Distribution of the papers based on SSI-COV techniques.

Author Method Research Objective Research Gap and Problem Solution and Modelling Result and Finding

Zarbaf et al.
[72] SSI-COV Adopted a hierarchical clustering algorithm to

obtain tensions in the stay-cable
Need to estimate the tension forces of

cables in cable-stayed bridges
The ambient response of the

Veterans’ Glass City Skyway Bridge

A good agreement between the
estimated results and measured

tension forces was observed.

Reynders et al.
[187] SSI-COV

Validated a method for estimating the
(co)variance of modal parameters identified

using SSI

Need to estimate the variance of modal
parameters

A damaged prestressed concrete
bridge and a mid-rise building

Good agreement is reported
between the predicted uncertainty

and the observation data.

Wu et al. [188] SSI-COV Developed a new SSI methodology to identify
modal parameters of stay cables

Need to extract numerous modes in
stay cable

The ambient response of the three
stay cables of Chi-Lu Bridge

The feasibility of this new approach
is verified successfully.

Zhou et al.
[168] SSI-COV Used the residual of the SSI and global χ2-tests

built on that residual for damage detection.
Need to exploit possible damages in

structure using output data
A full-scale bridge benchmark

validated by numerical simulation
The damage in tower was detected

in the same time.

Karami and
Akbarabadi

[189]
SSI-COV

Proposed an algorithm in two steps by
integrating structural health monitoring with

semi-active control strategy

Need to damage detection of large
building structures using limited

output data

A numerical model of a shear
building structure

The algorithm could identify the
damage accurately with saving

time and cost due.

Attig et al.
[160] SSI-COV

Investigated performance of the combined SSI
algorithms and a stabilization diagram for

tensegrity systems

Need to identify structural changes in
Tensegrity systems

A numerical models of a tripod
simplex structure and a Geiger

dome

Effectiveness of the proposed
methodology was verified using

the proposed methodology.

Sun et al. [71] SSI-COV
Defined a nonlinear subspace distance to detect
the deviation from the normal state, and reflects

structural states.

Need to consider nonlinearity of the
structures for identification of modal

characteristics

A VSS subjected to accelerated
ageing

The designed index is very effective
to evaluate the health state.

Khan et al.
[190] SSI-COV

Employed EDA, outlier analysis and cross
correlation to elucidate any defects and

anomalies in the data.

Need to distinguish between abnormal
data malfunctioning, and anomalies of

the sensors

A cable stayed bridge over Sutong
Yangtze river

The method was very effective to
provide accurate real life results in

the continuous SHM of bridges.

Guo et al. [191] SSI-COV
Proposed a near-real-time hybrid framework for
system identification of structures to deal with

stationary and transient response

Need to simultaneously deal with
stationary and transient responses of

the applied excitation loads

Extensive numerical simulations as
well as analysis of the internet

enabled data of Burj Khalifa

The efficacy of the framework is
demonstrated.

Mekki et al.
[192] SSI-COV Applied a null-space Hankel matrix of

correlation estimates
Need to study the dynamic response of

structures on composite structures

Numerical and experimental of a
one span composite bridge deck,

formed by wood and concrete

The first natural frequencies were
determined with an uncertainty

below 0.15%.

Döhler et al.
[164] SSI-COV

Presented an efficient and fast SSI damage
detection that is robust to changes in the

excitation covariance

Need to investigate the change in
unmeasured ambient excitation

properties
Three numerical model

The new approach can detect better
and separate different levels of

damage.

Tondreau and
Deraemaeker

[119]
SSI-COV Studied the effect of noise on the uncertainty of

obtained modal parameters using SSI

Need to study the resulting uncertainty
for modal analysis using the stochastic

SSI method.

A numerical test of a supported
beam, and the experimental model

of a clamped-free plate

The uncertainty on modal damping
and eigenfrequencies may exhibit a

non-normal distribution.

Dohler et al.
[193] SSI-COV SSI-COV together with their confidence interval

estimation and a null space-based VDD

Need to consider the intrinsic
uncertainty for a robust and automated

SHM

A large scale progressive damage
test of the S101 Bridge in Austria.

The proposed method is able to
clearly indicate the presence of

damages.
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Author Method Research Objective Research Gap and Problem Solution and Modelling Result and Finding

Hong et al.
[85] SSI-COV Adapted enhanced canonical correlation

analysis (ECCA) for state variable estimation
Need to determine model order and

prevent failure of identification system

A FE simulation and field
measurements of the Carquinez

suspension bridge

The reliability of the new algorithm
was verified through numerical

analyses.

Loh et al. [159] SSI-COV
Adopted singular spectrum analysis (SSA), for
pre-processing and stabilization diagram for

post-processing

Need to do some pre-processing to
smooth noisy signal,

The experimental test on Canton
Tower high-rise slender structure

The use of SSA as a pre-processing
tool improved the stabilization

diagram identifiablity of modes.

Döhler &
Mevel [101]

Modular and
scalable
SSI-COV

Proposed a modular and scalable SSI approach
to improve retrieving the system matrices of a

full system

Need to deal with the problem of
merging sensor data of

non-simultaneously recorded setups
Mathematical formulations The application of the method for

has been verified successfully.

Chauhan [194] SSI-COV Developed a unified matrix polynomial
approach (UMPA) to explain the SSI algorithm

Need to explain and derive various
experimental modal analysis

algorithms in an easy way
Mathematical formulations

The sequences for derivation the
system parameters from output
data are clearly demonstrated.

Ren et al. [169] SSI-COV
Introduced a new damage feature to reject the
environmental effects. Two distance functions

adopted for pattern recognition

Need to extract the damage-sensitive
but environment-insensitive damage

features

One numerical signal and two
simulated FE dynamic beam

models

The method was capable to locate
damage in FE beam structures.

Basseville et al.
[165] SSI-COV

Designed a damage detection algorithm based
on null space residual and a χ2 test to exploit the

thermal model

Need to discriminate changes in modal
parameters caused by damage

A vertical beam made of steel, and
aluminium tested under controlled

ambient temperature.

Relevance of the presented
algorithms was illustrated using

the laboratory test case.

Whelan et al.
[195] SSI-COV

Deployed a wireless sensor network with higher
sampling rates with reliable large, dense array

sensory network

The need to enhance data analysis
methods for the data obtained from

remote sensor-based SHM

A single-span integral abutment
bridge

The feasibility and maturity of the
distributed network of wireless

sensor was confirmed.

Balmes et al.
[170] SSI-COV

Proposed using subspace residual as damage
feature and χ2 tests to discriminate the effect of

noise

Need to remove the effect of
temperature and other environmental

factors for VDD.

A simulated bridge deck with
controlled temperature variations

Efficiency of the method on
simulation model for various

temperature models was
confirmed.

Carden and
Brownjohn

[163]
SSI-COV

Proposed a Fuzzy Clustering Algorithm to
extract state parameters from the real and

numerical poles

Need to identify structural changes in
the presence of environmental

variation

The data from Z24 Bridge and the
Republic Plaza Office Building

(POB) in Singapore

The damage inflicted on the Z24
Bridge and the shifts in modes of
the POB were clearly captured.

Reynders et al.
[161] SSI-COV

Used first-order sensitivity of the modal
parameter and stabilization to remove bias

errors

Need to remove of bias and variance
errors in the estimated modal

parameters

Simulation model and measured
vibration data of a beam and a mast

structures

Practicability of the proposed
method was confirmed in real-life

application.

Balmès et al.
[170] SSI-COV Investigated damage localisation using

clustering in the large-scale FE models.
Need for localization of damage in

vibration-based methods.
A FE model of a bridge deck with a

large number of elements
The algorithm was able to locate

the damage in case of a FE model.

Zhang et al.
[162] SSI-COV

Introduced component energy index together
with an alternative stabilization diagram to

identify spurious and physical modes

Need to improve the identifiability of
weakly excited modes

A 7 DOF MSD system and the
experimental model of a metallic

frame

Good performance was observed
especially for measurements with

low SNR.
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Table A3. Distribution of the papers based on combined SSI techniques.

Author Method Research Objective Research Gap and Problem Solution and Modelling Result and Finding

Marchesiello et
al. [196] Non-linear SSI Introduced a modal decoupling procedure and the

modal mass

Need to deal with variability of the
identification results due to nonlinear

effects

A multi-storey building model with
a local nonlinearity

Significant improvements were
highlighted in estimates obtained by the

proposed approach.

Shi et al. [197] MOESP
Used two SSI techniques sequentially and

iteratively to extract modal parameters and
estimates the ground acceleration.

Need to estimate the structural
parameters of a under unknown

ground excitation

A numerical and a laboratory test
of a 3-story building model

The estimation of structural parameters
is satisfactory and fairly robust.

Zhong and
Chang [52] Combined SSI

Adopted an orthogonal projection and IV
approach to eliminate the effect of earthquake

input and noise

Need for modal identification of
time-varying structures under

non-stationary earthquake excitation

Numerical model of a four DOF
structure and a three DOF

experimental building model.

The proposed algorithm can track the
modal parameters quite well.

Verhaegen and
Hansson [173] input-output N2SID Introduced a SSI using convex nuclear norm

optimization

Need to an identification scheme for
multivariable state space model by

improving the classical methods
Mathematical formulations

The sequences for derivation the system
parameters from N2SID is clearly

demonstrated.

Potenza et al.
[51]

SSI-COV &
combined SSI

Focused on the seismic monitoring of a historical
structure by means of an advanced WSNs

Need to analyse critical issues in the
wireless data acquisition

The historical structure of the
Basilica S. Maria di Collemaggio.

The monitoring system permitted to
update a finite element model in the

current damaged conditions.

Al-Gahtani et
al. [198] Deterministic SSI

Performed deterministic SSI on the obtained
response signal after applying wavelet de-noising

methods

Need to an system identification with
low sensitivity to the inflicted noise

A numerically simulated model
and experimentally measured rotor

The use of multi-wavelet de-noising
result in a more accurate identification.

Gandino et al.
[172] Combined SSI-COV Developed a novel multivariate SSI-COV-based

formulation for modal parameter identification

Need to a reliable SHM systems with
no memory limitation and work

properly in presence of noise

A 15-DOF numerical example and
an experimental application of a

thin-walled metallic structure

The obtained results are similar to those
reached by data-driven method.

Kim and Lynch
[41]

SSI-DATA &
combined SSI

Presented a theoretical framework to extract
physical parameters using a physics-based and a

data-driven models

Need to estimate physical modal
parameters of structures

A multi-DOF shear building model
and an experimental test of a

six-story steel frame.

The proposed grey-box framework has
shown a promising performance for

SHM of civil structures.

Akçay [171] Frequency domain
subspace

Proposed a subspace algorithm by calculating
minimal realization of power spectrum and a

canonical spectral factor

Need to deal with the problem of
system identification of dynamic

systems.
A numerical example

Some drawback regarding reliable
performance of the algorithm is

highlighted.

Urgessa [81] McKelvey SSI-FD
Presented two system identification methods

based on eigensystem realization and the
McKelvey frequency-domain SSI

Need to meet interpretation challenges
associated with system identification FE model of a plate structure

The methods were able to predict natural
frequency and damping ratio with high

accuracy.

Weng et al.
[199] Input-output SSI

Proposed a damage assessment method by
adopting input/output SSI algorithm and a model

updating method.

The need to validate FE models by
applying input-output identification

methods

A1/4-scale six-story steel frame
structure and a two-story RC frame

The method was able to detect the
damage locations and quantify the

damage severity.

Reynders and
De Roeck [58]

Combined
SSI-DATA

Adopted modal decoupling and a new criterion
from model reduction theory for automation of

the modal analysis process.

Need to extract frequency content of
limited number of modes from the

narrow band ambient excitation

Field vibration data obtained from
the Z24 Bridge

The most complete set of modes reported
so far is obtained.

Kurka and
Cambraia [167]

Multivariable
combined SSI

Proposed a Multiple-input multiple-output
(MIMO) input–output SSI method that uses

multi-input and single-output (MISO) realization

A need to provide a robust model
order determination using SVD.

Numerical model and a free–free
spatial truss

Accurate modal parameters were
estimated using this method.
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