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ABSTRACT Diabetic foot ulcers (DFUs) are a serious complication for people with diabetes. They result in
increasedmorbidity and pressures on health system resources. Developments in machine learning (ML) offer
an opportunity for improved care of individuals at risk of DFUs, to identify and synthesise evidence about
the current uses and accuracy of ML in the interventional care and management of DFUs, and, to provide a
reference for areas of future research. PubMed, Google Scholar, Web of Science and Scopus were searched
using the Preferred Reporting Items for a Systematic Review andMeta-analysis of Diagnostic Test Accuracy
Studies (PRISMA-DTA) guidelines for papers involving ML and DFUs. In order to be included, studies
needed to mention ML, DFUs, and report relevant outcome measures regarding ML algorithm accuracy.
Bias in included studies was assessed using the quality assessment tool for diagnostic accuracy (QUADAS-
2). 37 out of 3769 papers were included after applying eligibility criteria. Included papers reported accuracy
measures for multiple types of ML algorithms in DFU studies. Whilst varying across theML algorithm used,
all studies reported at least 90% accuracy compared to gold standards using a minimum of one reported
ML algorithm for processing or recording data. Applications where ML had positive effects on DFU data
analysis and outcomes include image segmentation and classification, raw data analysis and risk assessment.
ML offers an effective and accurate solution to guide analysis and procurement of data from interventions
which are designed for the care of DFUs in small samples and study conditions. Current research is limited,
and, for the development of more applicable ML algorithms, future research should address the following:
direct comparison of ML applications with current standards of care, health economic analyses and large
scale data collection. There is currently no evidence to confidently suggest that ML methods in DFU
diagnosis are ready for implementation and use in healthcare settings.

INDEX TERMS Diabetes, diabetic foot, machine learning, review, ulcers.

LIST OF ABBREVIATIONS
Acronym Term
AI Artificial Intelligence
ANN Artificial Neural Network
AUC Area Under Curve
CNN Convolutional Neural Network
CPU Central Processing unit
D-ANN Deep Artificial Neural Network
D-CNN Deep Convolutional Neural Network
DFU Diabetic Foot Ulcer
DPN Diabetic Peripheral Neuropathy
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DSC Dice Similarity Coefficient
DT Decision Tree
EMC Expectation Maximisation Clustering
FCN Fully Convolutional Networks
FFBP Feed Forward Back Propagation
FL Fuzzy Logic
FSC Fuzzy Spectral Clustering
GA Genetic Algorithm
GPU Graphics Processing Unit
IoU Intersection-over-Union
JSI Jaccard Similarity Index
KMC K-Means Clustering
k-NN K-Nearest Neighbour
LDA Linear Discriminant Analysis
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LRC Logistic Regression Classifier
MCC Matthews correlation coefficient
ML Machine Learning
MLR Multivariate Linear Regression
MRM Multivariate Regression Modelling
MSA Mean-shift algorithm
NBC Naïve Bayes Classifier
NPV Negative Predictive Value
PCA Principle Component Analysis
PNN Probabilistic Neural Network
PPV Positive Predictive Value
PSO Particle Swarm Optimisation
R-ANN Region Based Artificial Neural Network
R-CNN Region Based Convolutional Neural Network
RF Random Forest
ROI Region of Interest
SOM Self-Organising Map
SVD Singular Value Decomposition
SVM Support Vector Machine
T2DM Type 2 Diabetes Mellitus

I. INTRODUCTION
Diabetes Mellitus (DM) is one of the leading worldwide
causes of death and quality of life impairment. In 2019,
approximately 463 million adults were living with diabetes,
with this expected to rise to 700 million adults by the year
2045 [1]. Diabetic peripheral neuropathy (DPN) is a severe
complication affecting 30-50% of people with diabetes which
affects the sensory nerve supply to the feet which can cause
infections, structural foot changes, and the development of
diabetic foot ulcers (DFUs) [2]. Foot ulceration acts as a
precursor to the development of gangrene and limb loss, and
lower limb amputation is carried out more than 20 times
as often in people with diabetes than in those without [3].
The World Health Organisation (WHO) estimates that a
lower limb is lost every 30 seconds somewhere in the world
because of diabetes [4]. DFUs have a 5-year mortality rate
of more than 50%, rising to 80% in patients who have a
diabetes-related amputation, making mortality rates worse
than many common cancers [4]. The estimated cost to the
UK’s NHS is around £580 million a year, with £307 million
spent on ulceration in the primary care setting [5]. This
highlights the economic burden of the disease and the need
for improvements to the current care paradigm.

The development of DFUs is the result of multiple con-
tributing factors. The major underlying causes are peripheral
neuropathy and ischaemia from peripheral vascular disease
decreasing the protective factors of the tissues, in conjunction
with some form of stress (e.g. pressure, shear and trauma)
to the skin. Complications of foot ulcers include severe pain,
infection, gangrene, osteomyelitis, amputation, and death [6].
Coexisting diabetic complications such as reduced peripheral
sensation and lack of pain allow continued ambulation, facil-
itating further damage. Osteomyelitis may occur in advanced
cases, carrying a high mortality rate [7].

Current management focusses on patient education, reg-
ular self-foot checks and annual diabetic foot assessments.
These annual checks involve a patient history, peripheral
vascular exam, and assessment of sensory nerve function for
early identification of DPN. Studies looking at possibilities
of reducing foot pressure or changing gait using pressure
analysis provide an interesting insight into new technological
advances for early detection and prevention of DFU [8], [9].
In evaluating risk, infrared thermography is another tech-
nological advance that can provide clinical information to
assist in the early diagnosis and prevention of lesions in
compromised zones of the foot [10]. Research indicates an
isolated difference of just 2.2 ◦C compared to mean foot
temperature is significant in identifying inflammatory pro-
cesses [10].Management of confirmedDFUpatients involves
offloading, control of infection or ischaemia, wound debride-
ment and wound dressings if necessary [11]. The results
from the tests used to guide management may take time
to become available in clinical settings and progression of
DFU severity is hard to distinguish visually, with many DFU
classification systems taking into account the proportion and
types of tissue which are visually distinguishable [12]. Gran-
ulation tissue is red/pink and is tissue that is healing, slough
tissue is more yellow and represents infective tissue, whilst
dark/black necrotic tissue indicates an area of tissue death.
These tissues are the common basis for most visual tests
carried out in healthcare with relation to DFU. As with all
visual classification systems, there is an element of subjec-
tivity in assessment, as well as the risk of confirmation bias.
Numerous studies show that proper diagnosis and manage-
ment of DFUs can greatly reduce or prevent serious compli-
cations [12], [13]. Despite various national and international
guidelines, the management of DFUs remains inconsistent.
Due to the importance of reliable and quick management in
diabetic patients, machine learning (ML) has great potential
to improve healthcare systems.

Constant advances in technology means the use of ML
algorithms in healthcare is becoming an increasingly popular
approach. Their ability to reduce human error, cost, number
of personnel and time taken to complete tasks are valued
features. ML algorithms are characterised by their ability
to learn and adapt over time without being explicitly pro-
grammed. ML can be classified into supervised learning,
which trains a model on known input and output data so that it
can predict future outputs and unsupervised learning, which
finds hidden patterns or intrinsic structures in input data [1].
Supervised learning uses classification and regression tech-
niques to develop predictive models. Unsupervised learning
in healthcare studies commonly utilises clustering, which
allows the algorithms to find hidden patterns or groupings
in data. These tasks can be applied to DFU care in pre-
dicting complication probability, screening, diagnosis, and
guided management. However, the large systems require high
amounts of raw data and high operational costs. Details of the
different types of ML referenced are found in the list of ML
definitions at the beginning of this review. ML provides an
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opportunity for improved classification, extraction and anal-
ysis of data in DFU studies [14]. Studies utilising ML in dia-
betes have already shown promise in accuracy and reliability.
Arcadu et al. [15] used deep learning (DL) to predict future
progression in individuals with diabetic retinopathy, reaching
a maximum sensitivity of 79±12% at 12 months and a max-
imum specificity of 77±12% at 6 months. Outside the field
of diabetes, Wu et al. [16] utilised a novel deep convolution
neural network (D-CNN) trained on a large data set to detect
early gastric cancer during oesophagogastroduodenoscopy.
The network outperformed all human comparators in the
study, reaching an accuracy of 92.5%, a sensitivity of 94.0%
and a specificity of 91.0% in identifying early gastric cancer
lesions. ML therefore shows promise at improving diagnostic
accuracy of tests in the healthcare field. Benefits of ML for
use in DFU care are varied, and include improved clinical
decision making based on ulcer classification and healing
status, data analysis for risk and automated classification
systems. ML could be applied to applications for mobile
devices or to allow remote access. This literature review
will identify current applications of ML in DFUs to identify
future research needs. This will enable better use of resources
by directing future studies towards areas of need. Studies
on implementing ML into diabetic foot care focus mainly
on imaging and segmentation or classification of DFU to
improve diagnosis or management [17], [18]. They acknowl-
edge the importance of prevention and diagnosis of DFUs as a
means of improving overall life expectancy, quality of life and
also in reducing healthcare-associated costs. Despite its many
applications, there is a lack of coherence in the use of ML in
DFUs and its potential to improve care. Currently there does
not exist a single published systematic review comparing the
uses and accuracy of ML in people with DFUs. The rationale
for this study is to summarise and convey studied methods for
improving DFU care in healthcare settings using ML. The
advantages of ML over current diagnostic methods include
the reduced impact of subjective bias and of human errors
such as fatigue or negligence. Improvements in the time taken
to complete tasks and accessibility are also considerations.

This systematic review aims to be the first to understand
and compare the current applications of ML in the care of
DFU patients and compare their diagnostic and prognostic
accuracy. The review will discuss and compare papers using
real-world participant data of people with DM, which use
ML in the acquisition or interpretation of data from index
tests. It will identify possible areas of future development for
ML applications in DFU care and suggest improvements in
research methodologies to allow the results of future studies
to improve clinical treatment guidelines and aid the imple-
mentation of ML technologies into healthcare services.

II. METHODOLOGY
As a template for the methodology of this review,
the Preferred Reporting Items for a Systematic Review
and Meta-analysis of Diagnostic Test Accuracy Studies
(PRISMA-DTA) guidelines were used [19].

A. ELIGIBILITY CRITERIA
Titles and abstracts of papers in the search were initially
screened using exclusion criteria. Studies which remained
after this were assessed using their full-texts, using the eligi-
bility criteria shown in detail in Table 1. Criteria was designed
after review of preliminary papers by a focus group of the
three authors stated above, and were deigned to be broad
to avoid missing relevant literature. Characteristics included
papers published in English, which used ML for the analysis
or acquisition of data from patients with diagnosed type 1
(T1DM) or Type 2 diabetes mellitus (T2DM) with DFUs.
Papers needed to report an outcome measure of importance
relating to the accuracy of the ML method used in order to
be included in this review. This was important to allow the
comparison of uses between papers, and address the main
research question regarding ML and DFU care.

B. LITERATURE SEARCH PROCESS
For this study, four electronic databases were analysed, which
were as follows:

1. MEDLINE electronic database via PubMed
2. Google Scholar using Harzing’s Publish or Perish soft-

ware (Version 7.18)
3. Web of Science
4. Scopus

The search strategies were: computer search of databases,
review of reference lists of included articles, and manual
addition of relevant articles or exclusion of irrelevant articles.
The search was performed between the 9th and 17th of Jan-
uary 2020, reporting papers focussed on the use of ML on
diabetes-related ulcers. The categories of search terms used
were:

1. Terms for diabetes
2. Terms for ulcers
3. Terms for ML
4. Terms for analysis of outcomes
The databases were searched employing Boolean logic

using the precise keywords detailed in Table 1. Limits
were applied to reduce the quantity of results returned
whilst retaining relevant publications so as only to include:
human studies, papers published in English, and papers with
full-texts available. The use of limits was considered to cut
down the number of irrelevant articles and limit keyword
searches to the title, abstracts and introductions. This was
agreed upon after discussion between the three authors to
ensure it would not discriminately exclude relevant articles.
Whilst this may have introduced some bias, the authors
concluded it was unlikely that a relevant paper would not
mention the above search terms in either its title, abstract or
introduction.

C. STUDY SELECTION
In this review, only studies published in the English lan-
guage were considered. The literature acquired by the above-
mentioned search protocol were imported into Microsoft
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TABLE 1. Eligibility criteria.

Excel to include the following data: title, authors, date of
publication, place of publication, and full abstract. Using the
software, duplicates were removed from the list of literature
and remaining article abstracts were screened using eligibility
criteria (table I). Forms of publications other than journal
articles were excluded from the list of literature with proper
inspection. Following this process, remaining articles were
assessed in their full-text to exclude any irrelevant articles.
Five additional publications were added manually, which
were found in the references of previously selected systematic
reviews and considered relevant for this study. Before screen-
ing started, the three authors discussed the use of eligibility
criteria for screening to ensure agreement between asses-
sors. Screening of titles and abstracts was done by the first
author (JT), and a random sample of 100 papers was assessed
by the second (MA) and third authors (RZ) for conformity
to the eligibility criteria and research question to reduce the
risk of selection bias. The final screening and selection of
included papers was reviewed by the second (MA) and third
authors (RZ). Overall the exclusion and inclusion of papers
for the purposes of the review was agreed satisfactorily by all
authors involved. The study selection procedure is presented
in Fig. 1.

D. DATA EXTRACTION
Data was extracted from the studies using a standardised
form, and included: title, authors, date of publication, place of

publication, dataset, sample size, ML methods used, applica-
tions of ML, and all relevant outcome measures reported.

E. ASSESSMENT OF METHODOLOGICAL QUALITY
Methodological quality of the studies was assessed using the
quality assessment tool for diagnostic accuracy (QUADAS-2)
checklist [20] and journal rating (SCImago) [21]. The
QUADAS-2 tool was designed to evaluate the risk of bias
and applicability of diagnostic accuracy studies and consists
of four key domains:

1. Patient selection
2. Index test
3. Reference standard
4. Flow and timing

All four domains are assessed with regards to risk of bias and
the first three in terms of concerns regarding applicability.
The risks and concerns are rated as high, low and unclear.
Unclear risk was determined when there was insufficient
presented data in the study to draw a conclusion from. Not
applicable (N/A) was used where the QUADAS domain does
not apply due to the study methodology. High risks of bias in
any category may indicate issues with the papers methodol-
ogy, and across multiple categories may affect the reliability
of the reported results in relation to the research question.
High risk of bias regarding applicability in the tested domains
may indicate the included data from the assessed paper does
not accurately match the review question.

4 VOLUME 8, 2020



J. Tulloch et al.: Machine Learning in the Prevention, Diagnosis and Management of Diabetic Foot Ulcers

FIGURE 1. PRISMA-DTA flow diagram for literature selection.

F. DIAGNOSTIC ACCURACY MEASURES
The principal diagnostic accuracy measures reported in this
review vary greatly across the included literature. Whilst all
outcome measures report the accuracy of the ML algorithm
used, this applies to the whole dataset of the individual
paper, and no paper reports outcome measures per-patient
or per-lesion. As such the reported measures seen in the
results sections of this review must be examined with the
knowledge that it applies to a whole dataset accuracy, and
not an individual basis. The stated accuracy measures within
this review include; accuracy, sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value (NPV),
area under the ROC curve (AUC), mean intersection-over-
union (IoC) (AKA Jaccard index), Dice coefficient (AKA
F-1 Score), kappa statistic and the Matthews correlation
coefficient (MCC).

Accuracy is an umbrella term in measures, and can be
reported in multiple ways. The reported accuracy demon-
strates the ability of the ML algorithm to perform its task

and determine the correct target condition/classification com-
pared to its gold-standard. Sensitivity refers to the proportion
of positives that are correctly identified whilst specificity
measures the proportion of negatives that are correctly iden-
tified and are useful measures of accuracy. PPV and NPV
assesses the likelihood that a patient has a specific disease
and is more related to clinical scenarios. The AUC quantifies
the overall ability of the test to discriminate between those
individuals with the disease and those without the disease and
is given a value between 0.5 and 1.0 where 0.5 means the
test is no better at identifying true positives than chance. The
Intersection-Over-Union (IoU), also known as the Jaccard
Index, is one of the most commonly used metrics in semantic
segmentation. IoU is the area of overlap between the pre-
dicted segmentation and the ground truth divided by the area
of union between the predicted segmentation and the ground
truth. The dice coefficient is linked to IoU and is calculated
as 2 multiplied by the area of overlap divided by the total
number of pixels in both images. Kappa statistic is used
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as a quantitative measure of the magnitude of agreement
between observers and can be measured in any situation in
which two or more independent observers are evaluating the
same thing, where a score of 1.0 indicates perfect agreement
and <0 indicating a less than chance agreement. The MCC
is used in machine learning as a measure of the quality of
binary classifications using observed and predicted binary
classifications. A coefficient of 1 represents a perfect predic-
tion, 0 no better than random prediction and -1 indicates total
disagreement between prediction and observation. As well as
accuracy measures, other measures included are processing
time and size of the model. These assess functions of ML
algorithms other than the ability to give an accurate output.
Processing time indicates the length of time for the algorithm
to perform a given function as specified by the paper (i.e. time
per-lesion or per-dataset), and can refer to any part of the ML
process. Size of the model relates to the storage required for
the ML algorithm and its stored data.

As the search criteria included umbrella-terms for accu-
racy, no papers were excluded for containing any form of
accuracy measurement not mentioned specifically in the
search parameters. Accuracy measures not reported in this
review indicate a lack of relevant articles reporting these
statistical measures as outcome measurements.

G. DATA SYNTHESIS AND ANALYSIS
Extracted data were organised into groups based on the type
of ML method (supervised or unsupervised) and function
(image analysis, data analysis, segmentation, or classifica-
tion). Data were also organised based on the type of index
test used in the study. This allowed direct comparison of
data between studies. All outcome measures were extracted
and analysed in a standard form, including all definitions of
accuracy regardless of measure used by the included papers
to record this. Data is presented in the results section by func-
tion, and all ML algorithms are recorded with their respective
outcome measure values for comparison and understanding
of ML efficacy across similar task functions.

III. RESULTS
A total of 3769 papers were identified. Titles were screened
to eliminate duplications, leaving 2885, before evaluating
abstracts and applying exclusion criteria. The remaining arti-
cles (n = 130) were reviewed in their full-text forms. These
were refined to 37 studies based on the eligibility crite-
ria (Table 1). The flowchart based upon the PRISMA-DTA
methodology detailing this process is outlined below (See
Figure 1). The 37 papers included in this review reported
multiple forms of ML in their published outcomes.

A. STUDY CHARACTERISTICS
The 37 studies included in this paper have varied character-
istics and demographics. The full details of study charac-
teristics are found in Table 2. The publishing year for the
included papers ranged from 2010 to 2020. Datasets var-
ied between papers. One study used 255 patients’ genetic

data [22] and three studies used bacterial samples taken
from DFUs [23]–[25]. Of the remaining 33 studies, four
studies used thermographic images [26]–[29], and 22 stud-
ies included colour images [3], [17], [18], [30]–[48],
three studies included both colour and thermographic
images [49]–[51], two papers recorded dynamic foot pres-
sure [32], [52], one study used hyperspectral imaging
(HIS) [22] and one study examined 301 patient records
for variables affecting amputation decisions [53]. Fifteen of
the 37 studies focussed on using ML techniques for clas-
sification [3], [23]–[27], [29]–[32], [36]–[38], [53], [54].
Eight studies focussed on the segmentation of colour
images [3], [17], [40], [42], [43], [45], [46], [48], and
four studies focussed on the segmentation of thermal
images [28], [49]–[51]. Nine studies utilised ML to conduct
both segmentation and classification [31], [33]–[35], [39],
[41], [44], [52], [55]. One study looked at risk analysis via
regression [22].

ML algorithms varied across studies. The majority of the
studies included a form of artificial neural network (ANN),
k-Means, convolutional neural network (CNN) or support
vector machine (SVM). SVM was the highest referenced
form of ML, with 32% of studies including it in their analysis
and results (n = 12). CNNs were present in 30% of studies
(n = 11). K-Means and ANNs were both referenced in 19%
of studies (n = 7) and K-Nearest Neighbour (k-NN) was
mentioned in 14% of included studies (n= 5). The other ML
algorithms were mentioned in under three studies. A graph-
ical representation of the spread of ML techniques can be
found below (See Figure 2).

All papers used at least one of the primary outcome mea-
sures identified by the eligibility criteria. Results are split into
studies whose primary results considered outcomes regard-
ing data classification (Table 3), colour image segmentation
(Table 4), thermal image segmentation (Table 5), both seg-
mentation and classification (Table 6) and other ML applica-
tions (Table 7).

B. METHODOLOGICAL QUALITY
The majority of studies were found to be low risk overall with
regards to bias and applicability defined by the QUADAS-2
tool, indicating a good methodological quality, as shown
in Table 8, and graphically in Figure 3. There was a high
risk of bias identified in four studies [29], [34], [40], [43].
Adam et al. [29] was high risk for applicability due to
flaws in patient selection. These included unjustified exclu-
sions and non-random sample selection, resulting in test data
that did not accurately fit the review question. The use of
healthy subjects in the diabetic screening tests in the study
by Siddiqui et al. [43] limits the ability to apply study data
to the diabetic population. The risk of bias due to patient
flow was high in two of the studies. In Godeiro et al. [34]
out of a small data set of 30 images, only 15 were used to
test the final classification system. In Dhane et al. [40] only
images where the gold standard reference test showed high
agreement were selected for testing. This is likely to have
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TABLE 2. Characteristics of included studies.
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TABLE 2. (Continued.) Characteristics of included studies.
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TABLE 2. (Continued.) Characteristics of included studies.
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TABLE 2. (Continued.) Characteristics of included studies.

introduced a risk of bias, as the images with higher agreement
between experts are likely to be less complex and thus easier
for the ML algorithm to classify.

In the majority of studies, there was a low risk of bias
in reference to the index test used (97%). However, there
were a high percentage (50%) with reference tests that were
not applicable. This was matched regarding concerns over
applicability, with 97% of the index tests being low concern

and 50% of the reference tests being not applicable. Without
a reference test, it is difficult to compare to the current
available practices. There was a large percentage of studies
where the sample selection domain was unclear in its risk of
bias (43%) and applicability concerns (32%). This is mainly
due to the lack of published details regarding the subject
selection and lack of clinical details regarding the subjects.
Studies with lack of data on which patients received the
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FIGURE 2. Graphical display of machine learning references in included studies.

index/reference tests were rated as unclear for the risk of
bias in the flow and timing domain. Blinding of the data was
adequate in most studies, as the ML analysis occurs within
a closed system. Overall, 66% of all responses showed low
risks for bias and applicability concerns, which increases to
82% of all responses if those that were not applicable are
excluded.

The majority of included studies (81%) are published by
Q1 and Q2 rated journals as identified using the SCImago
index (Table 2). The SCImago quartile rating refers to the
impact of the journal in terms of referencing and citations.
Q3 and Q4 rated journals are not cited or referenced as often
as upper quartile journals, and has been used as a measure
of methodological quality in systematic reviews. As this is a
subjective rating it was not deemed appropriate for this paper
to remove or assess bias of studies based on quartile rating as
a sole factor.

C. CLASSIFICATION ALGORITHMS
Three studies used classification to delineate skin into
a binary function of healthy skin or abnormal skin
(ulcer) [30], [36], [37]. One study created a CNN (DFUNet),
which achieved an overall accuracy of 92.5±2.9% [36].

An updated deep learning neural network with an SVM
classifier (DFU_QUTNet+SVM) achieved a precision rate
of 95.4% on 754 foot images [30]. The third study created a
region-based CNN (R-CNN), which achieved a mean aver-
age precision (mAP) of 91.8% and an overlap percentage
with the gold standard of 95.8% [37]. Two studies used
classification to delineate skin into tissue types [38], [47].
Jung et al. [38] classified wound images into healing and
non-healing using tree models, achieving an area under
the curve (AUC) of 0.823 for diabetic neuropathic ulcers.
Wannous et al. [47] classified wound images into granula-
tion, slough and necrosis tissue types to classify the healing
stage using SVM, achieving an overall accuracy of 88%.

Goyal et al. (2020) achieved an accuracy of 90.3% and
72.7% for ischaemia classification and infection classifica-
tion respectively using a CNN [18]. One study classified
patients into either a healthy control group, diabetic control
group, or diabetic neuropathy group, achieving an average
accuracy of classification of 95% [32]. In Yang et al. (2018)
hyperspectral imaging (HSI) was combined with principle
component analysis (PCA) and compared to an algorithm
that used oxygen saturation (SpO2) to classify the risk of
non-healing in DFUs [54]. The sensitivity of prediction of
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TABLE 3. Studies that utilised machine learning algorithms for the process of classification.
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TABLE 3. (Continued.) Studies that utilised machine learning algorithms for the process of classification.

healing at 12 weeks using PCA (87.5%) was significantly
greater than that of SpO2 (50.0%).

Three included studies classified thermal images into
regions of interest (ROI) and ulcer areas. Adam et al. used an
SVM classifier; yielding a classification accuracy of 89.39%,
sensitivity of 81.81% and specificity of 96.97% using five
features [37]. Vardasca et al. (2018) used a 5 class k-nearest

neighbour (k-NN) algorithm, achieving a classification accu-
racy of 92.5%. In 2019, Vardasca et al. [26] used a 5 class
k-NN algorithm to localise DFUs, achieving best results
of 81.25% accuracy, 80% specificity and 100% sensitivity
using 5 feature k-NN.

Three studies [23]–[25] looked at the ability of ML to
classify data from bacteria isolated from DFUs for wound
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TABLE 4. Studies that utilised machine learning algorithms for the process of colour image segmentation.
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TABLE 4. (Continued.) Studies that utilised machine learning algorithms for the process of colour image segmentation.

healing status. One study evaluated the pathogens of wound
infection from gas sensor data, using a logistic regres-
sion classifier (LRC), and achieved an error of prediction
of 2.8% [24]. The other two studies used linear discriminant
analysis (LDA) in conjunction with another ML classifier.
Yusuf et al. found that LDA and a single ML classifier
successfully identified poly and single microbial species with
above 98% accuracy [25]. Abdullah et al. achieved a min-
imum accuracy of 97% using principle component analysis
and LDA, in conjunction with an ANN classifier to classify
bacteria present [23].

One study used variables from hospital records to clas-
sify risk of amputation using decision tree ensembles [53].
The simple classifier used two parameters and obtained an
accuracy of 94% in the test group. The second classifier
was a more complex computer-derived construct that showed
100% accuracy in the principle group and an accuracy of 96%
during testing. All outcomes were measured and results for
these studies are described in Table 3.

D. COLOUR IMAGE SEGMENTATION ALGORITHMS
Four studies address smartphone applications of ML for
image segmentation [3], [45], [46]. MSA was used [3], [45]
to colour segment images into three tissue types (healing,
necrosis and slough). The former study averaged a Matthews
Correlation Coef?cient value of 0.68, compared to wound
area delineation by clinicians [3]. This study also used
Krippendorff’s alpha coefficient (KAC) to measure the agree-
ment of ratings given by clinicians, where a value of 1 indi-
cates perfect agreement. The agreement values ranged from
0.42 to 0.81. The latter study analysed accuracy and relia-
bility of wound segmentation using ML using MCC, where
the fixed optimal parameter setting scored 0.403. In con-
trast, the customised parameter settings scored 0.736 [45].
Wang et al. [46] used four different SVMs to determine
wound area in DFU images. The two-stage binary classifi-
cation system was compared to other ML strategies. All ML

strategies used achieved a specificity greater than 92%. The
two-stage SVM-based classi?er provided the best sensitivity
rate to determinewound boundary onDFU images containing
wound regions (73.3%). Yap et al. (2017) assessed the relia-
bility of an app to standardise the image capture of DFUs [48].
Interoperator reliability was highly rated (JSI = 0.89 (range:
0.83-0.94)).

Two studies looked at uses of CNNs for segmentation of
diabetic wounds. Cui et al. (2019) compared SVM and two
CNNs (U-Net and Patch-based CNN) and found a deep learn-
ing CNN (U-Net) performed highly in all outcome measures.
U-Net achieved a 91.7% sensitivity and 97.3% specificity.
It also achieved a 0.761 mean IoU and 0.845 on the Dice
index, which are used to evaluate the overlapping extent of
the ground truth and the predicted segmentation (values close
to 1 indicate agreement). Ohura et al. (2019) compared four
CNN systems, and identified U-Net as the best performing
CNN, achieving a sensitivity of 85.8% and a specificity of
98.8% on a DFU dataset. U-Net also achieved an AUC score
of 0.982, a Dice coefficient of 0.850, and an MCC of 0.846.
The time taken to process each image was calculated as
2.61 seconds (GPU) and 7.09 seconds (CPU).

Only one study utilised segmentation of diabetic plan-
tar surfaces to automatically identify areas for applica-
tion of a Semmes-Weiss Monofilament (SWME) for DPN
checks [43]. The machine achieved a 96% accuracy rate on
70 images, which increased to 100% on the same subjects
after adapting conditions for imaging. The average time for
the automated system was 47 seconds per foot compared to
180 seconds per foot manually. In this study by Dhane et al.,
fuzzy spectral clustering (FSC) is used to demarcate and
segment ulcer borders. The proposed method achieves a sen-
sitivity of 87.3±0.10%, a specificity of 95.7±0.97% and an
overall accuracy of 91.5±0.35%. JSI and the Dice index
are used to analyse the predicted overlap and achieve scores
of 79±1.08 and 86.7±0.97 respectively. All outcomes mea-
sured and results for these studies are described in Table 4.
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TABLE 5. Studies that utilised machine learning algorithms for the process of thermal image segmentation.

E. THERMAL IMAGE SEGMENTATION ALGORITHMS
Four studies looked at the use of ML for segmentation of
thermal images. In one study, thermographic images are seg-
mented using a genetic algorithm (GA) for the early detection
of foot ulcers [28]. Compared to Otsu’s method, the GA
achieved a smaller relative overall combination value than the
other techniques. GA achieved misclassification error (ME),
region nonuniformity (NU), relative foreground area error
(RAE), and edge mismatch (EMM) scores of 0.0028776,
0.034485, 0.000437 and 0.013672 respectively. GA achieved
a combination score of 0.0129 compared to Otsu’s method,
which achieved a score of 0.039365. Image segmentation
into foot surface and background in order to identify ROIs
on thermography was performed by one study, which used
an expectation maximisation clustering (EMC) algorithm to
segment data [49]. All ML algorithms used had an average

sensitivity of 98.1±1% and specificity of 99.1±1%, with
EMC performing best at 95% accuracy in a test data group.

Another study used image segmentation of diabetic foot
images for clinician annotation and classification [50]. Using
a k-Means clustering algorithm (SLIC) resulted in the high-
est Dice similarity coefficient (98.25%), indicating a high
level of crossover between SLIC and gold standard manual
segmentation. The final study used a segmentation method
embedded in a smartphone application for non-contact wound
surface area and temperature measurement [51]. High inter-
rater reliabilities were observed using the application across
all wound sizes (Intraclass correlation coefficients (ICCs)
= 1.00 for area measurements); indicating wound app area
measurements are accurate. The data shows the reliability of
using an ML algorithm for segmentation of wound images
(Table 5).
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TABLE 6. Studies that utilised machine learning algorithms for both segmentation and classification.
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TABLE 6. (Continued.) Studies that utilised machine learning algorithms for both segmentation and classification.

TABLE 7. Studies that utilised machine learning algorithms for data and risk analysis.

FIGURE 3. Graphical representation of QUADAS quality assessment.

F. SEGMENTATION AND CLASSIFICATION ALGORITHMS
Three studies used ML techniques for the segmentation and
classification of DFU images into tissues (necrotic tissue,
granulation tissue and slough tissue) [31], [34], [41]. The
study by Babu et al. [31] used particle swarm optimisation
(PSO) to segment data and enable ROIs to be extracted

for the classifiers. Classification was completed via Naïve
Bayes and Hoeffding tree processes, which achieved respec-
tive accuracies of 90.90% and 81.81%. In the study by
Godeiro et al. [34] different CNNs were used to classify the
images into the three tissue types. U-Net_CSR performed
the best in all outcome measures, achieving a classification
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TABLE 8. QUADAS quality assessment of included studies.

accuracy of 96.10±4.08%, 98.76±2.30% specificity and a
sensitivity of 91.28±7.40%. Classification into the three
aforementioned tissue output classes was also achieved using
an SVM after utilising fuzzy divergence for image seg-
mentation [41]. In this study, it was observed that a 3rd

order SVM methodology achieved classification accuracies
for granulation, slough, and necrotic tissues of 86.94%,

90.47%, and 75.53%, respectively. The system also achieved
the highest total accuracy of all tested methods (86.13%),
with the highest kappa statistic value (0.793), which
assesses agreement between results accounting for chance
(where 1 indicates perfect agreement).

Goyal et al. [35] classified DFU images into nor-
mal (healthy skin) and abnormal (ulcer) skin, using fully
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convolutional networks (FCNs). Four different FCNs were
tested, with very high speci?city for all regions. FCN-16s
and FCN-32s had higher sensitivities, with values of 90.0%
and 90.4%, respectively. A similar methodology was used in
Maldonado et al. [39] where the application of a region-based
CNN (R-CNN) was used to segment and classify thermo-
graphic diabetic foot images into ulcer tissue, necrotic tissue
and tissue with no risk of ulceration. The results illustrated a
detection accuracy of 90.29% for ulcers and 88% for necrosis.
This demonstrates that the system is capable of successfully
detecting and visualising temperature di?erences in samples.
Toledo Peral et al. [44] classified skin macules (small, flat,
coloured areas of skin) using an ANN for early diagnosis
of foot changes in DFU, achieving a 97.5% accuracy rate in
differentiating between skin macules.

Two studies focussed on neural networks to classify DFU
images into six categories, based on the Wagner diabetic foot
ulcer grade classification system [33], [55]. In Wijesinghe
et al. [55] a D-CNN was utilised for both the process of
wound detection and segmentation, as well as wound classi-
fication, achieving an accuracy of 97.5% on 400 test images.
2400 images were assessed in the paper by Gamage et al. [33]
adapting an existing CNN (DenseNet-201) by utilising other
ML classifiers, such as global average pooling (GAP) and sin-
gular value decomposition to boost the power of the network.
The best performing ML model in this study (DenseNet-
201+GAP+SVD+ANN) achieved an accuracy of 96.22%
and an F-1 score of 0.9610. The F-1 Score is a measure of
a test’s accuracy, where a score of 1 reflects perfect precision
and recall.

One study applied SVM to the classification and segmen-
tation of dynamic plantar foot pressure measured by innova-
tive pressure insoles [52]. This study achieved an accuracy
and precision of 96.4% and 96.7%, respectively. The data
suggests plantar pressure may be a good screening tool in
DFU risk, however inaccuracies in method reporting limit
the power of this study. A large random sample size repeat
of this study design would improve its reliability for the
general population. All outcomes measured and results for
these studies are in Table 6.

G. DATA ANALYSIS ALGORITHMS
One study compared multivariate linear regression (MLR)
to an ANN that utilised back-propagation for the process
of data analysis of genetic data (TLR4 haplotypes) in DFU
patients [22]. Assessing ML for predicting the risk of devel-
opment of DFU in type II diabetes (T2DM), the ANN model
was able to predict with 83% accuracy compared to MLR
(74% accuracy). All outcomes measured and results for these
studies are described in Table 7.

IV. DISCUSSION
A. RESULTS OF THIS REVIEW
1) IMAGE ANALYSIS
This review aimed to identify the current uses and effective-
ness of ML in DFU care. Firstly, the main application of ML

was in the analysis and classification of images. The main
ML algorithms used were CNNs and SVMs, as they showed
a high overall accuracy, and the neural network architecture
allows for the easy addition of more classifiers, which can
boost the accuracy of the network. Classification is a common
task in the treatment of DFUs, with many different applica-
tions. Multiple studies applied ML algorithms to the classifi-
cation of slough, necrotic and granulation tissue [34, 41]. This
has important implications for the management of chronic
non-healing ulcers. However, tissue identification is limited
by the lighting of the images obtained, potentially leading
to misclassification. Therefore, to improve the classification
accuracy in these studies, testing image capture should be
undertaken in a controlled environment. Yap et al. [48] tested
a user app designed to standardise images for segmentation
and classification. It showed a high inter- and intra-operator
reliability. The app is however, designed for mobile phones,
whereas the CNNs and D-CNNs necessary for classification
require more memory in order to run. Image analysis by ML
is beneficial due to its speed and the autonomous nature of the
screening. Manual identification of ulcer severity is challeng-
ing, as vision may vary between consultants. Accordingly,
automatic severity stage classification is of signi?cant ben-
efit and all the ML techniques analysed here are capable of
achieving over 90% accuracy when classifying DFU images.
In the study by Godeiro et al. [34] U-Net_CSR was able to
achieve a classification accuracy of 96.10±4.08%, which was
the best out of any CNN network for classification. However,
the CNN in this study was trained on 15 images and tested
on another set from the same sample, creating potential bias
in patient flow. As the image sample sizes were small and
the test data may have been more similar to the training data,
there may have been a falsely high sense of accuracy.

DFU imaging is time consuming and inaccuracies lead to
failed healing. ML therefore offers the ability to accurately
classify in a faster timeframe. However, neural networks are
only as good as the set of training data on which they are
initialised. In order to be accurate in a clinical setting, it would
need to be trained on a larger set of data, which would still
require annotation to establish ground truth. Whilst ML has
been shown to be highly accurate in these studies, dataset
limitations mean they may not retain this classification accu-
racy in a wider dataset. To improve the clinical applicability
of these studies, the neural networks and SVMs should be
trained on larger, more variable datasets, as the gold standard
of training. This shows the need for the development of larger
image databases to allow for this training. Research into the
use of ML for DFU image processing should build databases
for the populations in need. This change in training data
means studies of these neural networks and SVM classifiers
would be more reflective of clinical practice.

Other than classifying into percentage of each tissue or
a binary classifier such as ulcer/no ulcer, the integration
of already existing classification systems can help support
decision making. By increasing the number of classes in
the classification system, these systems were able to classify

20 VOLUME 8, 2020



J. Tulloch et al.: Machine Learning in the Prevention, Diagnosis and Management of Diabetic Foot Ulcers

images by the ulcer grade classification system. As many
different models exist for the classification of DFUs, there
is an opportunity to program an ML algorithm that can
apply different numbers of classes (such as K-Means) to
allow classification using the appropriate system for each
patient. Overall, the ability of ML to automatically classify
DFU images is highly beneficial for patients and staff alike,
through enabling access and reducing clinician labour. The
main limitation is that no existing study has used a sufficient
training dataset. As such, these systems require testing on
patients in clinical settings to determine their accuracy.

2) THERMOGRAPHY
Four studies from this review looked at the use of ML for
segmentation of thermal images. Many studies addressing
thermographic imaging also included asymmetric analysis.
A difference of just 2.2◦C has been shown to be the cut off
for a possible inflammatory process like ulcer formation [10].
However, asymmetric analysis for DFU would be unable
to compare two feet in diabetic patients with diabetic foot
deformities. Although asymmetric analysis was successful
for 35/37 diabetic feet, the study excluded major deformities.
This system would therefore have functional limitations in
clinical practice. Further, thermographic imaging requires
expensive equipment. This means this tool would have to be
integrated into the health system, rather than as part of self-
screening. Moreover, thermal imaging requires adjustments
for environmental conditions. The majority of studies utilised
a period of acclimatisation for temperature normalisation
and used a black cloth backing to prevent the background
confusing the algorithm. However, one study utilised an FLIR
camera, with a point-of-care wound measurement app, which
performed well without acclimatisation [51]. Overall, ther-
mography is a very useful tool in the evaluation of the diabetic
foot and reliably detects DFUs early [10], [51]. It is limited
by an inability to use asymmetry detection on patients with
foot deformities and has a high associated cost, prohibiting
use in self-monitoring.

3) DATA ANALYSIS
In one study, classification of risk was calculated after anal-
ysis of dynamic plantar foot pressure to calculate the ROI
and rank the risk [52]. This methodology managed to achieve
accuracy and precision of 96.4% and 96.7% respectively.
Whilst the data suggests plantar pressure may be a good
screening tool, inaccuracies in method reporting limit the
power of this study. Using a large random sample of diabetic
subjects would improve the study’s reliability to classify DFU
risk in the general population. Smart insoles for diagnosis
would be improved by an ML classifier, as risk classifica-
tion could influence management. One other study compared
MLR to an ANN, which utilised back-propagation for data
analysis of genetic data in DFU patients [22]. Assessing
ML predicting the risk of development of DFU in T2DM,
the ANN model was able to predict with 83% accuracy
compared to MLR, which predicted with 74% accuracy.

Data analysis enabled the ANN to predict the relationship
between geneticmaterial and the risk of DFU. There aremany
applications for this use of ML, as an ANN can analyse data
and process into risk classes with any other type of data.
This suggests that the application of ML techniques on large
datasets are a beneficial implementation of ML in diabetic
patients, as they are able to calculate many variables from
input data in a way a human clinician cannot. Unsupervised
learning techniques can therefore act to screen patient data
from DFU patients and diabetic patients to both calculate
risk and probability, but identify links that may also provide
insight into future clinical investigations, treatments and pre-
ventative measures. The lack of research in this topic is likely
due to the lack of large datasets, and the creation of these is
of vital importance to future research.

B. LIMITATIONS OF INCLUDED RESEARCH
Whilst filters are not recommended in systematic review
methodology, the limits applied by the authors in this review
are unlikely to have impacted the articles retrieved. The limits
were deemed satisfactory so as to restrict the number of irrel-
evant articles whilst not impacting on the retrieval of relevant
articles. Limits used included human studies only which is
relevant to the review question and eligibility criteria. Using
the limits to include papers published in English and only
papers with full-texts available was necessary due to the
scope of this review and is unlikely to have impacted the.

Some of the limitations in this data are caused by method-
ological bias, as described in the results section (see method-
ological quality). There are, however, further limitations in
the research. Deep networks, which are becoming more pop-
ular, require large amounts of RGB colour and thermal DFU
images, as classification accuracy is dependent on the quality
and size of the dataset. Further, the database requires annota-
tion bymedical experts to act as a gold standard, which acts as
a barrier in setting up training data. Neural networks are often
subject to overfitting, where they learn their training data too
well. This means ML is not applicable to populations beyond
those trained, for example other ethnicities. This highlights
the importance of using diverse data matched to the target
population.

V. CONCLUSION
DFUs are a concern for the growing population of diabetic
patients around the world. Although the current principles
that guide healthcare are comprehensive, there is still an
important gap between our current and desired management
outcomes. This is the ?rst review to assess the published
literature with respect to the efficacy of applications of ML in
the diagnosis, prevention and management of DFUs. Current
studies relatingML toDFUs are promising, but there is a need
for studies to ensure dataset populations are based on those
most in need (i.e. outpatient clinics, rural areas, developing
countries).

ML offers a way in which the care of DFU patients can
be substantially improved; from large scale data analysis,
to at-home image analysis for personalised treatment and
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management. This review has shown that the primary DFU
uses of ML algorithms currently are related to segmentation
and classification of images using differentmodalities (colour
image, thermography, etc.) Promise is shown in the ability of
neural networks and SVM to be able to achieve high levels
of accuracy and specificity, even when not trained on large
datasets. This has the potential to allow for accurate testing
for patients from their homes, either using smartphone apps
or by uploading images to a neural network.

Finally, although the papers included in this review favour
the ability of ML to aid healthcare tasks, the limitations
of the studies create problems in generalising results from
small study groups to the more varied, general population.
Future research should facilitate the development of large
databases for the target populations to ensure reliability.
These databases should contain data regarding diabetic foot
care, diabetic care and control, and images of diabetic ulcers
in order to allow future ML algorithms to train on data-sets
specific to the healthcare population they would inevitably
be used on. The development of these databases both at a
regional and national level is integral in increasing the avail-
able data pool for training such algorithms, and improving the
overall accuracy of these systems when confronted by input
data which is varied by the patient demographic. Further,
ML techniques should also be assessed in randomised-control
trials to allow comparison to current standards of care. Com-
paring the effects of ML on task and data analysis when
compared to time and cost to current practices of care is
vital for proving the effectiveness of implementing ML into
a public healthcare system. Randomised control trials offer a
robust methodological approach to help comparison of ML
and current standards, and more of these studies need to be
done to further the embedding of ML in healthcare. As none
of the reported studies included a health economics analy-
sis, this is an essential measure for future studies to report.
Implementation of new systems and methods into healthcare
is costly, and the effects of these must be calculated to aid
national and local services manage funding. These analyses
must assess the cost of generating and storing training data
from diabetic patients, implementing the ML algorithms to
test data, creation of interfaces for interaction with patients
and healthcare professionals, as well as a host of other con-
siderations.Withmore of these analyses from future research,
health organisations will be able to more accurately evaluate
the decision to integrate ML systems into clinical practice.
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