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A B S T R A C T   

Background: Malaria is one of the most life-threatening vector-borne diseases globally. Recent autochthonous 
cases registered in several European countries have raised awareness regarding the threat of malaria reintro-
duction to Europe. An increasing number of imported malaria cases today occur due to international travel and 
migrant flows from malaria-endemic countries. The cumulative factors of the presence of competent vectors, 
favourable climatic conditions and evidence of increasing temperatures might lead to the re-emergence of ma-
laria in countries where the infection was previously eliminated. 
Methods: We performed a systematic literature review following PRISMA guidelines. We searched for original 
articles focusing on rising temperature and the receptivity to malaria transmission in Europe. We evaluated the 
quality of the selected studies using a standardised tool. 
Results: The search resulted in 10999 articles of possible relevance and after screening we included 10 original 
research papers in the quantitative analysis for the systematic review. With further increasing temperatures 
studies predicted a northward spread of the occurrence of Anopheles mosquitoes and an extension of seasonality, 
enabling malaria transmission for annual periods up to 6 months in the years 2051–2080. Highest vector stability 
and receptivity were predicted in Southern and South-Eastern European areas. Anopheles atroparvus, the main 
potential malaria vector in Europe, might play an important role under changing conditions favouring malaria 
transmission. 
Conclusion: The receptivity of Europe for malaria transmission will increase as a result of rising temperature 
unless socioeconomic factors remain favourable and appropriate public health measures are implemented. Our 
systematic review serves as an evidence base for future preventive measures.   

1. Introduction 

Malaria is one of the most life-threatening vector-borne diseases and 
is affecting nearly half of the people worldwide [1]. Malaria is caused by 
Plasmodia parasites that are spread to humans through the bites of 
infected female Anopheles mosquitos. Five parasite species cause malaria 
in humans whereas P. falciparum and P. vivax pose the highest thread. 
Anopheles are mainly found in tropical and subtropical areas of the 

world. In 2018 some 228 million cases of malaria were estimated, 
mainly in sub-Saharan Africa with about 4050000 deaths, mostly in 
children under 5 years of age [2]. In Europe, malaria was endemic until 
its elimination in the 1970s, with Macedonia being the last endemic area 
in 1974 [3]. Many factors led to the decline of malaria, including land 
use and agricultural change, socioeconomic improvements and inter-
vention efforts [4]. However, recent autochthonous cases registered in 
several European countries have raised awareness regarding the threat 
of malaria reintroduction to Europe. An increasing number of imported 
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malaria cases are now registered due to international travel and migrant 
flows from malaria-endemic countries [5,6]. Together with the presence 
of competent vectors, favourable climatic conditions and evidence of a 
changing climate this may lead to the re-emergence of malaria in 
countries where this disease was previously eliminated. Locally trans-
mitted cases have been reported in Germany [7], the Netherlands [8], 
Spain [9], France [10], Italy [11], Greece [12], and the UK [13]. The 
dominant Anopheles vector species in Europe are currently An. Atro-
parvus, An. Labranchiae, An. Messeae, An. Sacharovi, An. Sergentii, and An. 
Superpictus [14]. The main cause for autochthonous malaria in Europe is 
the human parasite P. vivax with P. falciparum occurring only sporadi-
cally [15]. 

The risk of malaria spreading depends on the receptivity and 
vulnerability in a given area. The WHO defines receptivity as a degree to 
which an ecosystem in a given area at a given time allows for the 
transmission of Plasmodium spp. From a human to another human 
through a vector mosquito [16]. The concept encompasses the vectorial 
capacity of the mosquito, susceptibility of the human population to 
malaria infection and the strength of the health system, including ma-
laria interventions. Receptivity depends on vector susceptibility to 
particular species of Plasmodium and is influenced by ecological and 
climatic factors. Vulnerability of an area is defined as the frequency of 
influx of infected individuals or groups and/or infective Anopheles 
mosquitoes and is also referred as the “importation risk” [16]. Since 
local malaria transmission in Europe is only possible after introduction 
of a Plasmodium infected individual or mosquito, this systematic review 
refers to receptivity of Europe for malaria transmission only. 

Climatic conditions, such as temperature, rainfall patterns and hu-
midity affect the life cycle and survival of parasites and vectors and 
therefore highly determine the receptivity for transmission of malaria 
and other vector-borne diseases [4]. This is of special concern since the 
world’s climate is changing. The Intergovernmental Panel on Climate 
Change (IPCC) defines climate change as long-term change in the state 
of the climate that can be identified by changes in the mean or the 
variability of its properties that persists for an extended period, typically 
decades or longer [17]. Climate change impacts environmental factors 
including rise in temperature, precipitation, sea level, ocean acidifica-
tion and extreme weather events (heat weaves, floods, windstorms). 
This systematic review focuses on the impact of rising temperature due 
to climate change. The IPCC stated that human activities have already 
caused approximately 1.0 �C of global warming since pre-industrial 

period and warming is likely to reach 1.5 �C between 2030 and 2052 
if it continues to increase at the current rate [17]. The IPCC special 
report from 2018 provides multiple lines of evidence that this rapid 
global warming has major impacts on organisms and ecosystems, as well 
as on human systems and well-being and further emphasises that the risk 
for vector-borne diseases, such as malaria, are projected to increase with 
a high degree of confidence [17]. Global warming can increase vectorial 
capacity of malaria mosquitos through the reduction of the Plasmodium 
extrinsic incubation period, the extension of the mosquito breeding 
period and an increase in adult population density [18,19]. The aim of 
this systematic review is therefore, to assess the impact of rising tem-
perature on the receptivity to malaria transmission in Europe and to 
provide an evidence base for the critical appraisal of the current state of 
knowledge on which health care guidelines and prevention efforts rely. 

2. Methods 

2.1. Literature extraction 

The literature searches for this study were conducted following 
PRISMA guidelines, providing a set of items for reporting in systematic 
reviews and meta-analyses [20]. We searched for peer-reviewed articles 
published before October 21, 2019 in the electronic databases Embase, 
Medline, Cochrane Library and Scopus. Besides, we identified additional 
articles through other sources (reference list of identified papers, official 
reports from Ministries of Health and other surveillance reports, insti-
tutional reports from their website). 

We used the following search terms in title, abstract and keywords 
(for full search methods see Appendix 1): 

Associated keywords: ‘climate change’ or climat* or ‘global warm-
ing’ or seasonality. 

2.2. Associated keywords: temperature 

Associated keywords: malaria or Anopheles or ‘Plasmodium falcipa-
rum’ or ‘Plasmodium vivax’ or ‘Plasmodium malariae’ or ‘Plasmodium 
ovale’ or ‘Plasmodium knowlesi’ or ‘annual parasite index’ (API) or 
‘annual parasite incidence’. 

The three concepts have been combined through Boolean operator 
AND to a search set (n ¼ 10999) and animal studies have been removed 
(n ¼ 274) (Fig. 1). After duplicate removal in total 10040 studies have 
been screened for eligibility. Articles in English, French and German 
were reviewed. 

2.3. Screening, inclusion and exclusion criteria 

Eligibility criteria were original articles focused on rising tempera-
ture associated with climate change and transmission of malaria. This 
systematic review was restricted to malaria in Europe. Europe was 
defined according to the United Nations geoscheme for Europe, created 
by the United Nations Statistics Division (for countries see Appendix 2) 
[21]. 

We used the following inclusion criteria for selecting studies (in 
order of importance):  

1. Studies must include current and future spatial or temporal distribution 
of Anopheles mosquitos, malaria transmission, incidence or annual 
parasite index (API) or the impact on malaria by temperature. 

2. Studies using the climate variable temperature to analyse a (quanti-
tative) trend of climate data and are relevant for the study of malaria.  

3 Studies on Europe.  
4 Articles in English, French or German. 

Two authors (LF, PS) first independently screened titles, abstracts 
and keywords of relevant articles and then read full text articles to 
evaluate them according to our inclusion criteria. We also searched 

Abbreviation 

An Anopheles 
CLMcom-CCLM4-8-17 Climate Limited-area Modelling 

Community Model 
EWS Early Warning Systems 
GCM General Circulation Models 
GIS Geographic Information System 
HadCM3 Hadley Centre Coupled Model, version 3 
IPCC Intergovernmental Panel on Climate Change 
KNMI-RACMO22E Royal Netherlands Meteorological Institute 

Regional Atmospheric Climate Model 
R0 Basic Reproduction Rate 
RCM Regional Climate Model 
RCP Representative Concentration Pathway 
REMO Regional Model 
SRES Special Report on Emissions Scenarios 
UKCIP02 Climate Change Scenarios for the United Kingdom 
VSI Vector Stability Index 
WettReg Weather Condition-based Regionalization Method 
WHO World Health Organization  
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websites of interest (WHO, ECDC, IPCC). In addition to the articles 
extracted from the electronic databases, we added 13 articles identified 
through other sources (Fig. 1). 

The selected papers were systematically reviewed and thematically 
analysed. We excluded non-original research such as opinion pieces and 
viewpoints or articles referring to geographical areas other than Europe. 
The selected studies were read in more detail by one author (LF), who 
also hand-searched reference lists to ensure that no relevant articles are 
missing in this systematic review. An independent selection among the 
full-text articles assessed for eligibility was made by two authors (LF, PS) 
that discussed their choices and consequently agreed upon a final se-
lection. Articles were further excluded for one of the following reasons: 
area other than Europe, other language, other focus, no original research 
or duplicate. Finally, a total number of 10 articles were included in the 
findings table of this systematic review. For documenting the research 
process a study flow diagram as recommended by the PRISMA statement 
was performed (Fig. 1). To ensure the quality of the included studies an 
assessment of the relevance and credibility was performed for each 
study individually, following a questionnaire from the International 
Society for Pharmacoeconomics and Outcomes Research (ISPOR), 
Academy of Managed Care Pharmacy (AMCP) and National Pharma-
ceutical Council (NPC) Good Practice Task Force Report (Table 1) [22]. 

2.4. Data extraction 

References were imported from the electronic databases and 

managed with the bibliographic software Zotero. For data management 
a summary of key findings of full-text articles retrieved and identified for 
qualitative synthesis was listed in a customised Microsoft Excel spread 
sheet. We used a uniform tool to extract data from eligible papers and 
recorded data on the journal, title, author, year, place, time period, 
method, vector species, response type, temperature, key findings, and 
additional comments. From a total of 10 articles that were included in 
the final selection, 8 used the occurrence of the Anopheles vector and two 
the malaria infection as marker of risk (Table 1). We summarized the 
models used as climate models including climate scenarios (Box 1 and 2) 
and the vector models (Box 3) found in the articles. 

3. Results 

We identified 10999 articles in the electronic database searches, 
added 13 through other sources and after removal of duplicates and 
animal studies we screened 10040 articles. We found 59 studies on ma-
laria in Europe to access for eligibility and eventually included 10 arti-
cles in the final selection as shown in the PRISMA diagram (Fig. 1). 

3.1. Modelling trends 

We found two approaches for predicting the impact of rising tem-
perature on receptivity to malaria transmission that can be distin-
guished. First, empirical correlative approaches that use statistical 
models of relationships between Anopheles mosquitoes and/or malaria 

Fig. 1. PRISMA flow diagram.  
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Table 1 
Summary of published studies that assessed the effect of rising temperature on malaria receptivity in Europe.  

Author Place Time period Method Vector species Response type investigated Key findings Quality of the studya 

Hertig 2019 
[23] 

Europe and the 
Mediterranean 
area 

1985–2005, 
2040–2060, 
2080-2100 

Mathematical model: Boosted 
Regression Trees using regional 
climate model simulations (KNMI- 
RACMO22E and CLMcom- 
CCLM4-8-17, under RCP4.5 and 
RCP8.5 scenarios) 

An. Atroparvus, An. 
Labranchiae, An. Messeae, An. 
Sacharovi, An. Sergentii, An. 
Superpictus 

Vector abundance 
(distribution maps from 
literature) and transmission 
stability (vector stability 
index (VSI)) 

Projected northward spread of 
Anopheles vector occurrences. Highest 
vector stability increases are predicted 
for Southern and South-Eastern 
European areas. 

Sufficient: 
Relevance 4/4 
Credibility 10/11 

Tr�ajer and 
Hammer 
2018 [24] 

Central and 
Eastern Europe 
and the North 
Balkan 

1961–1990, 
2011–2040, 
2041–2070 

Mathematical model: based on 
regional climate model (REMO, 
under A1B scenario) and 
Hungarian mosquito data 

An. Maculipennis Vector abundance (mosquito 
sampling) 

An. Maculipennis larva season is 
predicted to increase by 1–2 months in 
Central and Eastern Europe and the 
North Balkan between 2041 and 2070, 
while April and October showed the 
most notable changes. 

Sufficient: 
Relevance 4/4 
Credibility 8/11 

Ivanescu 
et al., 
2016 [29] 

Romania 1961–2014, 
2030 

Mathematical model: based on 
extrapolation of temperature 
evolution and diagnosed malaria 
cases 

An. Atroparvus, An. 
Labranchiae, An. Messeae, An. 
Sacharovi, An. Sergentii, An. 
Superpictus 

malaria cases There will be a slight increase of 
temperatures to an average of 24C� in 
2030, which may ensure a favourable 
climate for the development of 
Anopheles and is therefore increasing 
the risk of malaria re-emergence in 
Romania. 

Sufficient: 
Relevance 4/4 
Credibility 9/11 

Holy et al., 
2011 [26] 

Germany 1961–1990, 
1991–2007, 
1991–2020, 
2021–2050, 
2051–2080 

Mathematical model: based on 
temperature measurements and 
regional climate models (REMO or 
WettReg, under B1 or A1B 
scenario) 

An.atroparvus transmission risk (basic 
reproduction rate (R0)) 

Both climate modelling approaches 
resulted in prolonged seasonal 
transmission gates in the future, 
enabling P. vivax malaria 
transmissions up to 6 months in 
Germany in the period 2051–2080 
(REMO, scenario A1B). 

Sufficient: 
Relevance 4/4 
Credibility 8/11 

Lindsay 
et al., 
2010 [25] 

UK 1961–1990, 
2015 and 2030 

Mathematical model: based on 
general circulation model 
(HADCM3, under UKCIP02 
scenario for the UK) Statistical 
model: using logistic regression 

An. Atroparvus transmission risk (basic 
reproduction rate (R0)) and 
areas of environmental 
suitability for malaria 
transmission 

Although the current and future 
climate in the UK is favourable for the 
transmission of vivax malaria, the 
future risk of locally transmitted 
malaria is considered low because of 
low vector biting rates and the low 
probability of vectors feeding on a 
malaria-infected person. 

Sufficient: 
Relevance 4/4 
Credibility 10/11 

Zhao et al., 
2016 [4] 

Europe 1900–2009 Statistical model: using 
correlations 

NA malaria cases Socioeconomic improvements such as 
wealth, life expectancy and 
urbanization were strongly correlated 
with decline of malaria in Europe, 
whereas climatic and land use changes 
showed weaker relationships. 

Sufficient: 
Relevance 4/4 
Credibility 10/11 

Benali et al., 
2014 [28] 

Portugal 2001–2010 Statistical model: using simple 
linear correlations and 
multivariate models based on 
mosquito sampling and satellite- 
derived temperature data 

An. Atroparvus Vector abundance (mosquito 
sampling, vector density) and 
areas of environmental 
suitability (larval habitat 
suitability) 

Present environmental conditions are 
suitable for vector development at 
high densities and the spatial and 
temporal patterns closely resemble the 
ones registered in the past endemic 
period. 

Sufficient: 
Relevance 4/4 
Credibility 9/11 

Sainz-Elipe 
et al., 
2010 [27] 

Spain 1961–1986, 
2005 and 2006 

Statistical model: using climate 
diagrams, ecological 
characteristics and mosquito 
sampling 

An. Atroparvus transmission risk (Gradient 
Model Risk (GMR) index) 

Temperature increase favoured a 
widening of the potential transmission 
window in an historically endemic 
area in Spain, starting two months 
before, in May, and lasting until 
September in the case of P. falciparum 
and until October in case of P. vivax, 
respectively. 

Sufficient: 
Relevance 4/4 
Credibility 9/11 

France 2005 Sufficient: 
(continued on next page) 
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distribution and rising temperature. Second, process-based mathemat-
ical models that aim to simulate epidemiological processes between 
environmental conditions and vectorial performance estimated inde-
pendently of current distributions. From the 10 articles included in the 
quantitative analysis of this systematic review, five studies used statis-
tical models to conclude their results, four used projecting mathematical 
models and one used both methods (Table 1). 

The six papers that were found using correlative statistical modelling 
approaches were based on empirically observed data on Anopheles 
mosquitoes and/or current/historical malaria distribution as well as 
climate data. Climate data, including temperature, was found to be 
either satellite-derived (1) or obtained from national weather stations 
(4). The five identified papers that used predictive mathematical models 
included historical and current data while allowing to make projections 
for the future. In our analyses five different climate models were iden-
tified and an overview of the models used can be found in Box 1. The 
models were either general circulation models (GCM) or regional 
climate models (RCM) and used different climate scenarios to make 
projections for future malaria transmission in Europe (Box 2). In addi-
tion, four different vector models have been identified that have been 
used as a measure for the risk prediction of possible transmission and 
spread of malaria. A summary of the identified malaria vector models 
can be found in Box 3. 

3.2. Anopheles mosquitos are still present in Europe 

All studies included in this systematic review confirmed that 
Anopheles mosquitoes transmitting Plasmodium vivax are still present in 
European countries, although in lower densities compared to the pre- 
elimination period. An. Atroparvus was found to be the most widely 
distributed species in Europe (evaluated in 8 studies) that is capable of 
transmitting P. vivax malaria. Three studies evaluated An. Labranchiae, 
An. Messeae, An. Sacharovi, and An. Superpictus respectively, two studies 
An. Sergentii and one study An. Maculipennis, An. Algeriensis, An. 
Hyrcanus, and An. Melanoon respectively. Studies on environmental 
suitability for malaria (8 from 10 studies) further concluded that the 
present environmental conditions would be suitable for Anopheles 
mosquito development at high densities and the spatial and temporal 
patterns closely resemble those registered in the past in endemic re-
gions [25,28]. 

We found two studies that generated risk maps of the competent 
Anopheles mosquito species currently present in Europe that can be 
used as a preliminary step towards predicting future scenarios for 
receptivity to malaria transmission [18,23]. Receptivity depends on 
vector susceptibility to particular Plasmodium species and was higher 
in P. vivax than in P. falciparum. The most widely distributed 
Anopheles vector belong to the Anopheles maculipennis complex that 
includes several species with different susceptibility to Plasmodium 
species due to different behavioural pattern and feeding preferences. 
The most common species, An. Atroparvus, was found to be widely 
distributed in Northern and Western Europe, Spain, Portugal, Italy, 
the Balkans, but not in North Scandinavia, the Alpine regions, and 
North Africa [18,23,25–29]. An. Messeae was identified as the second 
most common Anopheles mosquito and its presence has been mapped 
in Scandinavia and North-Western Europe, including the Baltic States 
and Russia [18,23]. An. Labranchiae was found to be the third most 
common species and restricted to Southern Europe, comprising Italy, 
the coastal regions of the Balkans, Eastern Spain and North Africa 
[18,23]. An. Sacharovi was present mainly in South-Eastern Europe, 
from Eastern Spain along the Alps to the Balkans, Turkey and the 
Black Sea [18,23]. The distribution of An. Superpictus was mapped 
similar but less extensive than that of An. Sacharovi and ranges from 
the Alps to the Balkans, Turkey and North Africa [18,23]. Besides 
that, one study stated that An. Hyrcanus, and not An. Atroparvus, was 
reported the main potential malaria vector in Southern France in 
2005 [30]. Ta
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3.3. Northward spread of Anopheles mosquitos 

Five studies were found assessing the potential transmission of ma-
laria in the future, of which all modelled increased Anopheles abundance 
for large parts of Europe under rising temperatures. However, distinct 
changes in the distribution of the dominant European malaria vectors 
were predicted. In general, we found that rising temperatures are ex-
pected to lead to a northward spread of Anopheles vector occurrence 
[23]. Most noticeable is the projected spread of An. Atroparvus and An. 
Messeae to the North until the end of the 21st century. Concurrently, An. 
Messeae is predicted to decline over the Western parts of Europe. An. 
Labranchiae, An. Sacharovi and An. Superpictus have been found to be 
expected to extend northwards, but with a lower probability of occur-
rence [23]. In contrast, we found that for some Mediterranean areas 
occurrence probabilities may decline. Most pronounced seems to be the 
reduction of An. Superpictus, An. Sacharovi and An. Sergentii over the 
Eastern Mediterranean area and North Africa under future climate 
conditions. Hertig assumed that these distribution changes are related to 
the general temperature increase and the strong temperature increase 
over North-Eastern Europe and the Mediterranean area in spring and 
autumn, but also to the predicted reduction in precipitation [23]. 
Moreover, we found a geographically northward decline in malaria 
transmission stability towards Scandinavia in the predictive modelling 
studies. The authors stated that the duration of the extrinsic incubation 
period in the mosquito could also in the future, be still 
temperature-limited over Northern Europe [23,25]. In addition, we 
found that the future risk of locally transmitted malaria is considered 
limited due to low biting rates and the low probability of vectors feeding 
on a malaria-infected person, as stated in a study on the UK by Lindsay 
et al. [25]. 

3.4. Lengthening of possible transmission season 

The results of our systematic review also show a lengthening of the 
possible malaria transmission season, which was investigated in four 
studies. We found one study that has already observed an expansion of 
the potential malaria transmission window in Spain in 2005, based on 
data corresponding to a 26-year-period [27]. The authors noted that the 
favourable transmission period was longer and started two months 
earlier, in May, and lasting until September in the case of P. falciparum 
and until October in case of P. vivax, respectively. In addition, we found 
three predictive modelling studies that suggest an extension of the po-
tential malaria transmission season for regions other than Southern 
Europe and the Mediterranean area. Changes in the length of Anopheles 

larva season were expected for Central and Eastern Europe and the 
North Balkan region [24,29]. Based on the REMO climate model, Tr�ajer 
and Hammer predicted that the season for An. Maculipennis larvae will 
increase by one or two months between 2041 and 2070, with April and 
October showing the most notable changes [24]. We also found an ex-
pected prolonged seasonal transmission in An. Atroparvus for Germany, 
enabling malaria transmissions due to P. vivax up to six months in the 
period 2051–2080 (REMO, scenario A1B) [26]. Moreover, we identified 
a widening of the potential malaria transmission window favoured by 
rising temperature for the UK, where the climate is predicted to be 
suitable for P. vivax malaria transmission for three to four months by 
2030 [25]. 

3.5. Expected risk areas in Europe 

In general, all predictive models showed that the areas of potential 
malaria transmission are increasing where rising temperature favours 
Anopheles occurrence and also significantly impacts the vectorial ca-
pacity. As a result, highest malaria transmission stability was found to be 
projected for Southern and South-Eastern European areas. The authors 
stated that a rise in global mean temperature by 2100 of about 4.8 �C 
compared with pre-industrial levels (RCP8.5 scenario) is predicted to 
lead to an increased vector stability especially in South and South- 
Eastern Europe [23]. An increased risk was predicted for the following 
areas: Spain, France, Italy, Greece, the Central and Eastern European 
countries Bulgaria, Romania, Macedonia, Serbia, Croatia, Hungary, 
Ukraine and Russia [23,24,27,29]. 

A further finding of our analysis is that socioeconomic factors will 
most likely play a large role in the determination of malaria risk in 
Europe [18]. Zhao et al. showed that the elimination of malaria in 
Europe was already in the past mainly related to socioeconomic im-
provements and only to a limited extent to climatic changes including 
temperature [4]. 

4. Discussion 

In its most recent report, the IPCC stated that global warming of 1.5 
�C–2 �C compared to pre-industrial levels is expected to have major 
impacts on vector-borne diseases such as malaria and that their risk is 
projected to increase with high confidence including potential shifts in 
their geographic range [17]. This, together with the fact that its former 
vectors are still distributed across the continent [14], has led us study 
the effects of rising temperature on the receptivity to malaria trans-
mission in Europe, in order to assess the risk of malaria re-emergence in 

Box 1 
Climate models used in the publications selected in this review.  

Name (Abbreviation) Climate Model 
KNMI regional atmospheric climate model (KNMI- 

RACMO22E) 
Regional atmospheric climate model developed by the Royal Netherlands Meteorological Institute (KNMI) in the 
Netherlands. The model is based on the European community Earth-System Model (EC-EARTH) and uses the 
Representative Concentration Pathway (RCP) scenarios for future projections. 

Climate Limited-area Modelling Community Model 
(CLMcom-CCLM4-8-17) 

Regional climate model developed by the Climate Limited-area Modelling Community (CLM-Community) in 
Germany. The model is based on the Max Planck Institute Earth-System Model (MPI-ESM-LR) and uses the 
Representative Concentration Pathway (RCP) scenarios for future projections. 

Regional Model (REMO) Numerical regional climate model developed by the Max Planck Institute for Meteorology in Germany. The model is 
based on the global ECHAM climate model and uses the scenarios A1B, A1, B1 for future projections. REMO is used by 
about 15 institutes in Germany, France, Switzerland, Greece and China. 

Weather Condition-based Regionalization Method 
(WettReg) 

Statistical regional climate model developed by Climate & Environment Consulting Potsdam in Germany. The model is 
based on the global ECHAM climate model and uses the scenarios A1B, A1, B1 for future projections. 

Hadley Centre global climate model (HadCM3) Coupled atmosphere-ocean general circulation model (AOGCM) developed at the Hadley Centre in the United 
Kingdom. It was one of the major models used in the Intergovernmental Panel on Climate Change (IPCC) third 
Assessment Report in 2001.    
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countries where the disease was previously eliminated. 
The articles we identified focused on the vector species historically 

associated with the distribution of endemic malaria in Europe. They 
confirmed that several Anopheles species capable of transmitting P. vivax 
caused malaria are still present in Europe, leading to a phenomenon 
known as “anophelism without malaria”. The current and historically 
most widespread species An. Atroparvus, An. Labranchiae and An. 
Sacharovi are among the members of the subgroup An. Maculipennis. 
Malaria vectors of minor importance comprise other members of the 
subgroup An. Maculipennis (An. Messeae, An. Maculipennis s.s., An. Mel-
anoon), or refer to An. Algeriensis, An. Claviger, An. Hyrcanus, An. 
Plumbeus, An. Superpictus, and An. Sergentii. Moreover, An atroparvus was 
found to be the dominant malaria vector in large parts of Europe not 
only under past and present but also under future climate conditions 
[23]. An important role is assigned to this vector with regard to the 
change in potential transmission stability, based on expected increases 
in length of the transmission season and the extrinsic incubation period. 

4.1. Impact on malaria by rising temperature 

The distribution of European malaria vectors has already in the past 
frequently been linked with rising temperatures [18]. It has been spec-
ulated that rising temperatures associated with climate change may 
increase the frequency of the Anopheles mosquitos and its bite rates as 
well as shorten the extrinsic incubation period of the Plasmodium para-
sites leading to an increased vectorial capacity [18,19]. Moreover, 
temperature influences the development and survival rate of the mos-
quito and also of parasites within the mosquito. For P. vivax a minimum 
temperature of 14.5–15 �C is required to develop inside the mosquito, 
while P. falciparum requires 16–19 �C [31,32]. For both Plasmodium 
parasites the optimal temperature for transmission ranges up to 33 �C. 
However, a recent modelling study from Mordecai et al. [33] suggests an 
optimal malaria transmission already at 25 �C (6 �C lower than previous 
models), which makes many more areas vulnerable to possible trans-
mission, also in Europe. This is consistent with one of our identified 
studies from Portugal, reporting favoured Anopheles abundance at 

temperatures between 19 and 25 �C [28]. 
Our assessment of the impact of rising temperature on the receptivity 

to malaria transmission in Europe showed that large areas of the 
continent could support malaria transmission today and could extend in 
the future. In general, potential malaria transmission in Europe is highly 
seasonal due to temperate climate conditions. Temperature suitability is 
usually much higher in Southern than in Northern European areas, 
where the vector development is probably constrained by lower tem-
peratures in winter [18]. Southern Europe and the Mediterranean area, 
with mild and wet winters and hot and dry summers, was and still is 
suitable for malaria transmission. Also in the future under the RCP8.5 
scenario, projecting a rise in global mean temperature by 2100 of about 
4.8 �C compared with the pre-industrial state, large parts of Southern 
and South-Eastern European areas emerge as regions of high trans-
mission stability [23]. This finding is consistent with previous studies 
that investigated the impact of climate change on potentially emerging 
vector-borne diseases in Europe [34,35]. However, extreme tempera-
tures in summer especially in Southern countries may also constrain 
Anopheles development [28]. A transmission risk currently exists, lasting 
from May until September (P. falciparum) or October (P. vivax) and an 
extension of this season is expected in the future [24–27]. Therefore, if 
the climate becomes warmer, conditions for malaria transmission in 
Europe become more favourable and last for longer. Moreover, we found 
a general northward spread of the Anopheles mosquito occurrence in our 
analyses, which was already modelled in previous global modelling 
studies [23]. An assessment of possible future changes of malaria 
transmission using general circulation models (GCM) and different 
malaria impact models also showed that until the 2080s a northward 
shift of the malaria epidemic belt over Central and Northern Europe 
could occur [15]. 

4.2. Other driving forces 

Despite the substantial number of imported malaria cases from 
travellers and migrant flows from endemic areas that could contribute to 
an increased infectious parasite reservoir and the documented presence 

Box 2 
Climate scenarios used in the publications selected in this review.  

Name (Abbreviation) Climate Scenario Comments 
Representative Concentration 

Pathway (RCP) 
Group of 4 individual scenarios developed by the IPCC in 2014 to 
supersede Special Report on Emissions Scenarios (SRES). RCP is a 
greenhouse gas concentration (not emissions) trajectory adopted by 
the IPCC for its fifth Assessment Report (AR5) in 2014. 

The four RCPs (RCP2.6, RCP4.5, RCP6, and RCP8.5) are labelled 
after a possible range of radiative forcing values in the year 2100 
(2.6, 4.5, 6.0, and 8.5 W/m2, respectively). In the RCP8.5 scenario, 
the rise in global mean temperature by 2100 is about 4.8 �C 
compared with the pre-industrial state or 4 �C compared with 
1986–2005. In the RCP4.5 middle scenario, the warming reaches 
2.6 �C compared with the pre-industrial level. In the RCP2.6 
scenario, however, the mean global temperature rise of the model 
remains below the 2 �C target. 

Special Report on Emissions 
Scenarios (SRES) 

Group of 40 scenarios developed by the IPCC in 2000. SRES scenarios 
quantify anthropogenic emissions of greenhouse gases (and some 
other pollutants), land-use and other factors for the 21st century by 
giving a wide range of possible alternatives, based on modelling 
(socioeconomical, biogeochemical) and research. 

The A families are characterized by rapid economic development, 
while B scenarios represent environmental sustainability. A1 and 
B1 versions show population decrease after few decades and global 
solutions for the world challenges, whereas A2 and B2 scenarios 
indicate continuous population growth with local socioeconomic 
solutions. A1 scenario has three groups describing alternative 
directions of technological change in the energy system: fossil 
intensive (A1FI), non-fossil energy sources (A1T), or a balance 
across all sources (A1B). By the end of the 21st century, the highest 
concentration levels are reached in A1FI and A2; more “optimistic” 

future paths are resulted by B1 and A1T; and A1B is a medium 
scenario. 

Medium-high climate change 
scenario for the UK 
(UKCIP02) 

This scenario uses the Hadley Centre global climate model (HadCM3) 
for a medium-high climate change scenario (SRES A2), which is used 
to drive a regional version of the model.     
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of Anopheles mosquitos [36–38], autochthonous malaria transmission 
has only rarely been observed in Europe since its elimination in the 
1970s [13]. Recent studies have further stated that malaria transmission 
caused by imported infectious mosquitoes or travellers with para-
sitaemia does not occur on a large scale, even at Central European air-
ports, and it is unlikely that such transmission could be sustained by 
native Anopheles mosquitoes [39]. The present situation of “anophelism 
without malaria” indicates that current socioeconomic and environ-
mental conditions maintain the basic reproduction number (R0) below 
1, indicating no spreading of the disease [18]. 

It should be noted that a temperature increase does not necessarily 
mean a transmission risk increase if accompanied by a precipitation 
decrease. The role of precipitation in promoting malaria transmission is 
mainly through the availability of larval breeding sites [31]. Also in our 
analysis we found a decrease of malaria transmission stability to the 
South that was mainly related to the projected rainfall reductions and 
the resulting decline of vector occurrences due to the drought-induced 
inhibition of the aquatic life-cycle of the mosquitos [23]. Moreover, 
we found that changes in land use practices and draining of marshlands 
for cropping resulted in fewer mosquito breeding sites in the past [4,18], 
which is consistent with other studies [40–42]. Nevertheless, this limi-
tation can, for example, be offset by artificial irrigation of agricultural 
landscapes as also reported in our identified studies [18,24,27,30]. 
Hence, areas with high Anopheles vector abundance tend to be related 
with ecosystems where irrigated agriculture periods coincide with the 
optimal temperature interval, generally spring and summer [27,28,30]. 

Furthermore, several authors have reported already in the past that 
socioeconomic changes such as the increase in Gross Domestic Product 
(GDP), life expectancy and urbanization were significantly correlated 
with the decline and elimination of malaria in Europe [4]. Rising tem-
perature associated with climate change is only one component in a 
complex epidemiologic setting and other aspects such as human 

activities are therefore probably more important for the determination 
of malaria spreading as reported previously [43,44]. 

4.3. Future implications 

With our systematic review we could determine the receptivity and 
identify risk areas of potential future malaria disease spreading for 
Europe due to rising temperature under climate change. Although the 
potential of malaria spreading is currently considered limited for 
Europe, mainly owning to socioeconomic conditions, strengthening of 
disease awareness and maintaining of robust public health care in-
frastructures for surveillance and vector control are of great importance, 
especially in the most vulnerable areas such as Southern Europe and the 
Mediterranean area. Monitoring drivers of malaria and other infectious 
diseases, such as changes in environmental and climatic conditions, can 
help predict the threat of malaria re-emergence, as shown in a recent 
study from Semenza et al. [40] on prototype early warning systems for 
vector-borne diseases in Europe. Targeted epidemiological surveillance, 
vector control activities and awareness raising among the general pop-
ulation and health care professionals, in particular in the areas projected 
environmentally suitable for malaria transmission as also recommended 
by the WHO [45]. Interestingly, these areas are often those that once 
supported malaria in the past [25,28]. Adapting existing surveillance 
practices in Europe will improve preparedness and facilitate public 
health responses to potentially emerging infectious diseases, including 
malaria, thereby helping to contain human and economic costs [46]. 

4.4. Strengths and limitations 

A strength of our systematic review is the wide range of screened 
databases and Public Health agency documentation (WHO, ECDC, IPCC) 
as well as the adherence to the PRISMA guidelines and the quality 

Box 3 
Vector models used in the publications selected in this review.  

Name (Abbreviation) Vector Model 
Vector Stability Index (VSI): Global index representing the potential malaria transmission stability. The spatial index includes the most 

important intrinsic properties of Anopheles mosquitos that interact with climate to determine the vectorial 
capacity [23]. 

VSI ¼ ​
P12

m¼1a2
i;mpE

i;m=� lnðpi;mÞ

m month 
i vector (Anopheles species) 
a human-biting proportion 
p daily survival rate 
E length of extrinsic incubation period in days 
Relative monthly larvae abundance value (Arm): Measure for mosquito larva season [24]. 
Arm ¼ ​ Nm

Na
� 100  

Nm number of the total collected larvae according to a 
given month  

Na total number of the collected larvae representing the 
entire period 

Basic Reproduction Rate (R0): R0 ¼
ma2bpn

�lnðpÞr  
Measure used for the risk prognosis of malaria disease spreading [25,26]: if R0 � 1 risk of a malaria spread if R0 
< 1 no risk of a malaria spread 

m relative frequency of mosquito 
a number of blood meals per human and day 
b ratio of mosquitos in which parasites can develop after 

ingestion of infected blood 
p daily survival probability of adult mosquitoes 
n duration (days) of parasite development in adult 

mosquitoes 
r recovery rate of malaria-infected people 
Gradient Model Risk Index (GMR index):  

GMR ¼ GDD�
R

PET; if
R

PET > 0:2  
Measure applied to forecast the malaria transmission risk, e.g. along the year. if GMR �116 transmission risk 
exists (116 is the value required for the development of one Plasmodium generation) [27] 

GDD growing degree-days R rainfall PET  
potential evapotranspiration    
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assessment of the included studies. One possible limitation is that we 
have only included the aspect of temperature as a climate driver, 
although precipitation patterns and humidity also impact the life cycle 
of parasites and vectors. Moreover, most studies were based on mathe-
matical models whose quality highly depends on the parameters used. A 
selection bias may be our inclusion of articles in English, French or 
German languages only. 

5. Conclusion 

Although malaria was officially eliminated in Europe in the 1970s, 
its former vectors are still distributed across the continent, leading to a 
phenomenon known as “anophelism without malaria”. The current and 
future climate in large parts of Europe, in particular Southern and South- 
Eastern Europe, is predicted to be favourable for the receptivity to ma-
laria transmission. As a result of rising temperature, the geographic 
occurrence of the Anopheles mosquito is expected to spread northwards 
and the possible season of malaria transmission to be extended. The risk 
of malaria transmission will therefore increase unless socioeconomic 
factors remain favourable and appropriate public health and anti-vector 
measures are implemented and maintained. Our systematic review 
assessed the impact of rising temperature on the receptivity of Europe 
for malaria transmission and provided a critical appraisal of trans-
mission predictions. It will serve as an evidence base for future pre-
ventive measures. 
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Appendix 1. Electronic database search strategy (last search on 
October 21, 2019) 

1. Embase: (‘climate change’/exp OR ‘climate change’:ti, ab OR cli-
mat*:ti, ab OR ‘global warming’:ti, ab OR seasonality:ti,ab) AND 
(‘temperature’/exp OR temperature:ti,ab) AND (‘malaria’/exp OR 
malaria:ti, ab OR anopheles:ti, ab OR ‘plasmodium falciparum’:ti, ab 
OR ‘plasmodium vivax’:ti, ab OR ‘plasmodium malariae’:ti, ab OR 
‘plasmodium ovale’:ti, ab OR ‘plasmodium knowlesi’:ti, ab OR 
‘annual parasite index’:ti, ab OR ‘annual parasite incidence’:ti,ab) 
NOT ([animals]/lim NOT [humans]/lim) → 485 retrieved hits  

2. Medline: (exp Climate Change/or (climat* or global warming or 
seasonality).ti,ab.) AND (exp Temperature/or temperature.ti,ab.) 
AND (exp Malaria/or (malaria or anopheles or plasmodium falcip-
arum or plasmodium vivax or plasmodium malariae or plasmodium 
ovale or plasmodium knowlesi or annual parasite index or annual 
parasite incidence).ti,ab.) NOT (Animals/not (Animals/and 
Humans/)) → 382 retrieved hits  

3. Cochrane: (MeSH descriptor: [Climate Change] explode all trees OR 
((climat* OR ‘global warming’ OR seasonality):ti,ab,kw)) AND 
(MeSH descriptor: [Temperature] explode all trees OR temperature: 
ti,ab,kw) AND (MeSH descriptor: [Malaria] explode all trees OR 

(malaria OR anopheles OR ‘plasmodium falciparum’ OR ‘plasmo-
dium vivax’ OR ‘plasmodium malariae’ OR ‘plasmodium ovale’ OR 
‘plasmodium knowlesi’ OR ‘annual parasite index’ OR ‘annual 
parasite incidence’):ti,ab,kw) → 6 retrieved hits  

4. Scopus: (TITLE-ABS-KEY(“climate change” OR climat* OR “global 
warming” OR seasonality)) AND (TITLE-ABS-KEY(temperature)) 
AND (TITLE-ABS-KEY(malaria OR anopheles OR “plasmodium fal-
ciparum” OR “plasmodium vivax” OR “plasmodium malariae” OR 
“plasmodium ovale” OR “plasmodium knowlesi” OR “annual para-
site index” OR “annual parasite incidence”)) AND NOT ((animal* OR 
…) AND NOT (human* OR patient*)) → 852 retrieved hits 

Appendix 2. European countries (according to United Nations 
geoscheme for Europe [21]) 

Åland Islands, Albania, Andorra, Austria, Belarus, Belgium, Bosnia 
and Herzegovina, Bulgaria, Channel Islands, Croatia, Czechia, Denmark, 
Estonia, Faroe Islands, Finland, France, Germany, Gibraltar, Greece, 
Holy See, Hungary, Iceland, Ireland, Isle of Man, Italy, Latvia, 
Liechtenstein, Lithuania, Luxembourg, Malta, Monaco, Montenegro, 
Netherlands, North Macedonia, Norway, Poland, Portugal, Republic of 
Moldova, Romania, Russian Federation, San Marino, Serbia, Slovakia, 
Slovenia, Spain, Svalbard and Jan Mayen Islands, Sweden, Switzerland, 
Ukraine, United Kingdom of Great Britain and Northern Ireland. 
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