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Abbreviations: PrP, prion protein; bvPrP, bank vole PrP; ePrP, elk PrP; HSQC, 

heteronuclear single quantum coherence; mPrP, mouse PrP; mPrP[S170N](121−231), 

polypeptide segment of residues 121–231 of the variant of mPrP with Ser170 replaced by 

Asn (see Schätzl et al.45 for the numeration used); NOE, nuclear Overhauser 

enhancement; NOESY, nuclear Overhauser enhancement spectroscopy; shPrP, Syrian 

hamster PrP; TOCSY, total correlation spectroscopy; TSE, transmissible spongiform 

encephalopathy. 
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Abstract 

The recent introduction of the bank vole (Clethrionomys glareolus) as an additional 

laboratory animal for research on prion diseases revealed an important difference when 

compared to the mouse and the Syrian hamster, since bank voles show high susceptibility 

to infection by brain homogenate from a wide range of diseased species, such as sheep, 

goat and man. In this context, we determined the NMR structure of the C-terminal globular 

domain of the recombinant bank vole prion protein (bvPrP(121−231)) at 20°C. 

bvPrP(121−231) has the same overall architecture as other mammalian PrPs, with three 

α-helices and an antiparallel β-sheet, but it differs from PrP of the mouse and most other 

mammalian species in that the loop connecting the second β-strand and the helix α2 is 

precisely defined at 20°C. This is similar to the previously described structures of elk PrP 

and the designed mouse PrP variant mPrP[S170N,N174T](121−231), whereas Syrian 

hamster PrP displays a structure that is in-between these limiting cases. Studies with the 

newly designed variant mPrP[S170N](121−231), which contains the same loop sequence 

as bvPrP, now also showed that the single-amino acid substitution S170N in mouse PrP is 

sufficient for obtaining a well-defined loop, thus providing the rationale for this local 

structural feature in bvPrP. 
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Introduction 

The bank vole (Clethrionomys glareolus) has recently attracted interest due to 

unexpected features revealed by its use as a new laboratory animal for the investigation of 

prion diseases. When compared to the mouse and the Syrian hamster, bank voles are 

highly susceptible to infection by sheep and goat scrapie, and various human strains of 

transmissible spongiform encephalopathies (TSE) also show a low transmission barrier.1-3 

Responding to the ensuing interest in the three-dimensional structure of bank vole PrP 

(bvPrP), this paper describes the NMR structure of the C-terminal globular domain in the 

healthy, cellular form of bvPrP (bvPrPC) at 20°C. To support the analysis of the structure of 

bvPrP(121−231), we further solved the structure of a designed mouse PrP (mPrP) variant, 

mPrP[S170N](121−231), and pursued a detailed comparison of the two structures.  

Prion diseases, or TSEs, are a group of neurodegenerative diseases which include 

scrapie in sheep, Creutzfeldt-Jakob disease (CJD) in humans, bovine spongiform 

encephalopathy (BSE) in cattle, and chronic wasting disease (CWD) in mule deer and 

elk.4-6 Critical events in the development and propagation of TSEs include the conversion 

of the cellular prion protein, PrPC, to a protease-resistant aggregated isoform, PrPSc, which 

accumulates most pronouncedly in neurologic tissues of the affected organisms.4 While 

TSEs can be transmitted within the same species, “transmission barriers” make 

interspecies transmission inefficient, as evidenced either by complete absence of 

detectable transmission or by prolonged incubation periods prior to onset of clinical signs.7 

The occurrence of “new variant CJD” in humans in the 1990s, which was attributed to the 

prion strain identified in BSE-infected cattle in the 1980s,8-11 emphasized the critical 

importance of transmission barriers and the possibility of their breakdown for food 

management and for public health services.  
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The amino acid sequence homology between PrP of the host and the donor is the 

basic determinant of the barrier between different species,7 whereby single-amino acid 

exchanges can cause a significant change in the susceptibility to infection.7,12 It has also 

been argued that the efficiency of transmission could further be affected by variation of the 

PrPC conformations of the donor and the recipient.13 The three-dimensional structures of 

PrPC from various species have been solved by solution NMR, including humans, cattle, 

sheep and elk, and the widely used laboratory animals hamster and mouse.14-21 The global 

PrPC architecture in all mammalian species studied so far is nearly identical, with a flexibly 

extended 100-residue N-terminal tail and a 100-residue globular C-terminal domain, which 

contains three α-helices and an antiparallel β-sheet. Nonetheless, subtle local structure 

variations between different species were observed in the globular domain, in particular in 

a loop formed by the residues 165–171, which link the second β-strand and the helix α2. 

At 20°C, the β2−α2 loop is precisely defined in PrPC from elk PrP (ePrPC), but disordered 

in the NMR structures of PrPC from a variety of other species, including man, cattle, sheep 

and mouse, and is partially ordered in PrPC from Syrian hamster (shPrPC) at 30°C. This 

special structural feature in ePrP(121−231) was attributed to the nature of the amino acid 

residues in positions 170 and 174, since the three-dimensional structure of the designed 

mouse variant mPrP[S170N,N174T](121−231) also includes a precisely structured loop of 

residues 165–171 at 20°C.20 
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Cloning, expression and purification of bvPrP(121–231) and mPrP[S170N](121–231) 

The amino acid sequence of bvPrP(121−231) differs from mPrP(121–231) at only 

four positions (Figure 1). Therefore we used site-directed mutagenesis to replace these 

four residues in mPrP(121−231) in order to obtain the gene encoding bvPrPC. Similarly, we 

used site-directed mutagenesis with mPrP(121–231) to generate mPrP[S170N](121–231). 

For the NMR structure determinations of bvPrP(121–231) and mPrP[S170N](121–231), 

the uniformly 15N- and 13C,15N-labeled proteins were produced in Escherichia coli and 

purified using the standard protocol for mammalian PrPCs.17,22  
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NMR structure determination of bvPrP(121–231) and mPrP[S170N](121–231) 

Nearly complete sequence-specific backbone and amino acid side chain 

assignments were obtained for bvPrP(121–231) and mPrP[S170N](121–231), including all 

of the residues 167−171 and 175, which were not observed in mPrP(121−231)14, with Hα 

of Phe175 being the only missing backbone assignment in bvPrP(121−231). Steady-state 

15N{1H}-heteronuclear NOE data then indicated that bvPrP(121–231) and 

mPrP[S170N](121–231) form a globular domain, with positive NOE-values near 0.8 for the 

residues 125−228, and that the flanking residues 121−124 and 229−231 undergo high-

frequency motions, as evidenced by negative 15N{1H}-NOE values (data not shown). 

On the basis of the essentially complete resonance assignments, a high-quality 

structure determination for the globular domain was obtained, as documented by the 

statistics for the final ATNOS/CANDID/DYANA cycle of the structure determination (Table 

1) and the displays of the structure in Figure 2. The figure 2A shows that bvPrP(121–231) 

contains three α-helices spanning the residues 144−156, 172−194 and 200−225, and a 

two-stranded antiparallel β-sheet of residues 128−131 and 161–164. The helices α1 and 

α2 end with a 310-helical turn, and a 310-helical turn is also formed by the residues 

165−169. The side-chains are well-defined, with the ones in the hydrophobic core bounded 

by the helices α2 and α3 having mean global displacements of less than 0.6 Å (Figure 

2B). 

The structure determination of mPrP[S170N](121–231) converged with closely 

similar statistics as bvPrP(121−231) (Table 1). The two structures can be superimposed 

with an rmsd value of 1.5 Å for the backbone heavy atoms. A superposition of the two 

structures (Figure 3C) visualizes the near-identity of the two folds, where the C-terminal 

end of helix α2 is less precisely defined in mPrP[S170N](121−231).
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Local structure variations in the globular domains of bvPrP(121−231), 

mPrP(121−231) and mPrP[S170N](121−231) and possible correlations with TSE 

transmission 

Earlier experiments with bank vole PrP provided indications that the residues in 

positions 155 and 170 have an important role for the conversion of bvPrPC into bvPrPSc.2,3 

Both positions show high variation among mammalian species.23,24 In the three-

dimensional structure they are both solvent-exposed, and they are located in two well 

separated molecular regions that have previously been discussed as important structural 

epitopes for TSE transmission,14 including that the helix α1 in PrPC has been suggested to 

act as an initiation site for the structural conversion.25 The transmission barrier between 

mouse PrPC and Syrian hamster PrPSc was actually traced back to residue 155 in the helix 

α1.26 Superpositions of the three-dimensional NMR structure of bvPrP(121−231) with 

mPrP(121−231) (Figure 3A), shPrP(121−231) (Figure 3B) and the designed variant protein 

mPrP[S170N](121−231) (Figure 3C) now show that there is no significant structural 

variation near to the helix α1 among these three species. Therefore, it seems likely that 

the chemical nature of the amino acid residue in position 155 contributes to the higher TSE 

susceptibility of bank voles, rather than its impact on the local three-dimensional structure. 

The residue 170 is located in a surface epitope formed by the β2−α2 loop and parts 

of the helix α3. This epitope was previously suggested to be a recognition site in a 

mouse/human chimera PrPC for a potential chaperone, designated as “protein X”, which 

would promote the conversion of PrPC into PrPSc.27,28 Figure 3 shows that the β2−α2 loop 

is precisely defined for both bvPrP(121−231) and mPrP[S170N](121−231) at 20°C, as was 

previously also observed for ePrP(121−231) and mPrP[S170N,N174T](121−231),20 and 

that it is also quite well defined in shPrP(121−231) at 30°C.15 All the backbone amide 
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resonances of the loop residues are present in the 2D [15N,1H]-HSQC spectra of Figure 4, 

B and C, whereas they are absent in the spectrum of Figure 4A, which is the reason why 

the NMR structure of mPrP(121−231) contains a disordered β2−α2 loop.14,20 One notices 

further that the C-terminal end of helix α3 forms closer contacts with the β2−α2 loop in 

bvPrP(121−231), mPrP[S170N](121−231) and shPrP(121−231) than in mPrP(121−231) 

(Figure 3). A close approach of the helix α3 to the β2−α2 loop was also observed in 

ePrP(121−231) and mPrP[S170N,N174T](121−231).20 

Molecular dynamics calculations with the cellular form of the mouse prion protein29 

provide support for the experimental observation that the residue Ser170 has a marked 

influence on the conformational properties of the β2−α2 loop in mPrPC.  

Finally, it is striking that both bank voles and cervids carry an asparagine residue at 

position 170, which seems to be correlated either with a higher susceptibility to horizontal 

TSE transmission30, or a lower transmission barrier to inter-species transmission.31 The 

impact of the nature of the residue 170 on the conformation of the β2−α2 loop in PrPC thus 

appears to propagate to species-specific intermolecular contacts. In this way the loop 

conformation could assume a trigger function in the disease-related conversion of PrPC 

into PrPSc. To further investigate possible physiological consequences of structural 

variations in the β2−α2 loop, studies with transgenic mice expressing PrP[S170N,N174T], 

which corresponds to the β2−α2 loop sequence of ePrP,20 are pursued in a collaboration 

with the group of A. Aguzzi at the University of Zürich.  
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Data bank accession codes 

The atomic coordinates for bvPrP(121−231) and mPrP[S170N](121−231) have 

been deposited in the Protein Data Bank (www.pdb.org, PDB ID codes 2k56 and 2k5o); 

the chemical shift lists are available at the BioMagResBank (www.bmrb.wisc.edu, 

accession numbers 15824 and 15845). 
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Figure captions  

 

Figure 1 

Amino acid sequence comparison of the C-terminal globular domain, spanning residues 

121−231, of bank vole PrP (bvPrP, Clethrionomys glareolus, GenBank: AAL57231) with 

mouse PrP (mPrP, Mus musculus, GenBank:AAA39997), Syrian hamster PrP (shPrP, 

Mesocricetus auratus, GenBank:AAA37091), human PrP (hPrP, Homo sapiens, GenBank: 

AAA60182) and elk PrP (ePrP, Cervus elaphus elaphus, GenBank: AAU93885). The 

numeration of bvPrP and the locations of the regular secondary structures in bvPrP are 

indicated at the top. The complete sequence of bank vole PrP is given. For the other 

species, only amino acids that are different from bvPrP are indicated, with dots indicating 

the presence of identical amino acids, and dashes indicating deletions. 

The mouse PrP variant mPrP[S170N](121–231) was generated from mPrP(121−231) by 

using the QuikChange® site-directed mutagenesis kit (Stratagene) according to the 

manufacturer's instructions, with the two primers 5'−CCA GTG GAT CAG TAC AAC AAC 

CAG AAC ACC−3' and 5'−GGT GTT CTG GTT GTT GTA CTG ATC CAC TGG−3'. As 

bvPrP(121−231) differs from mPrP(121−231) by only four amino acid substitutions 

(Y155N, S170N, D227E, R230S), its sequence was generated by three subsequent 

mutagenesis steps, starting from the plasmid encoding mPrP[S170N](121–231). The 

primers 5'−CGT GAA AAC ATG AAC CGC TAC CCT A−3' and 5'−T AGG GTA GCG GTT 

CAT GTT TTC ACG−3' were used for the mutagenesis Y155N, 5'−G GCC TAT TAC GAA 

GGG CGT CGT TCC−3' and 5'−GGA ACG ACG CCC TTC GTA ATA GGC C−3' for 

D227E, and 5'−GCC TAT TAC GAA GGG CGT AGC TCC TAG TAA GAA TTC GAA GCT 



Bank Vole Prion Protein Structure  Last change 17.11.2020 

 - 24 - 

TGA−3' and 5'−TCA AGC TTC GAA TTC TTA TCA GGA ACT ACG CCC TTC GTA ATA 

GGC−3' for R230S. 

 

Figure 2 

Stereo views showing the residues 125−228 in the NMR structure of bvPrP(121−231). (A) 

Superposition of the 20 energy-minimized conformers used to represent the NMR 

structure. The N-terminal amino acid position 125 and sequence locations of the beginning 

and the end of the three α-helices are indicated. α-helices are highlighted in blue, β-

strands are green, and the disulfide bond between residues 179 and 214 is orange. (B) All-

heavy-atom presentation of the energy-minimized conformer with the lowest DYANA target 

function value. The backbone is represented by a grey spline function through the Cα 

positions. The side-chains are colored according to their global heavy atom displacements, 

D32: cyan, D < 0.6 Å; yellow, 0.6 Å < D < 1.2 Å; red, D > 1.2 Å. 

 

Figure 3 

Pairwise superpositions of the polypeptide segments 125−228 in the NMR structures of 

prion proteins that are related to the PrPs of three laboratory animals that are widely used 

in prion research. (A) bvPrP(121−231) (grey) and mPrP(121−231) (yellow). The radius of 

the cylindrical rods representing the polypeptide backbone is proportional to the mean 

global backbone displacement among the 20 energy-minimized conformers used to 

represent the NMR structures. For the residues of bvPrP(121−231) which differ from 

mPrP(121−231), red stick diagrams of the bundle of 20 conformers in Figure 2A are shown 

and identified with red lettering. (B) bvPrP(121−231) (grey) and shPrP(121−231) (green). 

Same presentation as (A), with the variable side chains in green. (C) bvPrP(121−231) 
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(grey) and mPrP[S170N](121-231) (blue). Same presentation as (A), with variable side 

chains in blue. 

 

Figure 4 

2D [15N,1H]-HSQC spectra recorded at a 1H frequency of 500 MHz and T = 20°C. (A) 

mPrP(121–231). (B) bvPrP(121–231). (C) mPrP[S170N](121–231). The peaks 

corresponding to residues 166−175 are highlighted, with blue circles identifying peaks that 

are present in all three spectra, and red circles around peaks that were not observed in 

mPrP(121−231). The Asn170 and Phe175 peaks of bvPrP(121−231) and 

mPrP[S170N](121−231) are broadened when compared to the other peaks in the same 

spectra, and therefore only weak contours are seen. 
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Table caption 

Table 1 

Input for the structure calculations and characterization of the energy-minimized NMR 

structures of bvPrP(121−231) and mPrP[S170N](121−231). 

a Except for the two top entries, the average value for the 20 energy-minimized 

conformers with the lowest residual DYANA target function values and the standard 

deviation among them are given. 

b NMR experiments were performed at 20°C with uniformly 15N- or 13C,15N-labeled protein 

samples of bvPrP(121−231), and at 25°C with mPrP[S170N](121−231). Both proteins had 

been expressed in E. coli and purified following standard procedures.17,22 The NMR 

samples contained protein concentrations of 0.4−1.0 mM in 10 mM [d4]-sodium acetate 

buffer, pH 4.5, 90% H2O/10% D2O. Standard triple resonance NMR experiments33 were 

recorded on a Bruker DRX 500 spectrometer equipped with a triply tuneable cryogenic 

probehead to obtain sequence-specific resonance assignments. Side-chain assignments 

were obtained with 3D 15N-resolved [1H,1H]-TOCSY and 3D HCCH-TOCSY spectra 

measured on a Bruker DRX 600 spectromter equipped with a triple-resonance z-gradient 

probehead. Steady-state 15N{1H}-nuclear Overhauser enhancements (NOEs) were 

measured with recovery delays and proton saturation periods of 2 and 3 sec, respectively, 

and for the reference experiment we used a 5 sec recovery period.34,35 The program 

CARA36 was used for the spectral analysis. 

3D 15N-resolved [1H,1H]-NOESY spectra were recorded at a 1H frequency of 900 MHz for 

bvPrP(121−231) and of 750 MHz for mPrP[S170N](121−231). For both proteins, two 3D 

13C-resolved [1H,1H]-NOESY spectra were collected at 750 MHz, with the 13C carrier 

frequency either in the aliphatic or the aromatic region. All NOESY data sets were 

measured with a mixing time of 60 ms. Automatic peak picking and NOE assignment was 
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performed using the standalone ATNOS/CANDID program package.37,38 The final cycle of 

the structure calculation with DYANA39 was started with 100 randomized conformers; the 

20 conformers with the lowest residual target function values were energy-minimized in a 

water shell with the program OPALp40 using the AMBER force field.41 The program 

MOLMOL42 was used to analyze the results of the structure calculations and to prepare 

the drawings of the structures. Regular secondary structure boundaries were determined 

with MOLMOL, using the method of Kabsch and Sander.43 

c bb indicates the backbone atoms N, Cα, C’; ha stands for “all heavy atoms”. The 

numbers in parentheses indicate the residues for which the rmsd values were calculated. 

d As determined by PROCHECK.44 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Table 1  

 bvPr(121−231)
a
 mPrP[S170N](121−231)

a
 

NOE upper distance limitsb 1694 1567 

Dihedral angle constraints 114 116 

Residual target function value (Å2) 1.15 ± 0.40 1.39 ± 0.29 

Residual distance constraint violations   

   Number > 0.1 Å 25 ± 4 25 ± 4 

   Maximum (Å) 0.14 ± 0.01 0.14 ± 0.01 

Residual dihedral angle constraint 

violations 

  

   Number > 2.0 deg 0 ± 0 0 ± 0 

   Maximum (deg) 0.97 ± 1.32 1.35 ± 0.98 

Amber energies (kcal/mol)   

   Total −4873 ± 66 −4893 ± 114 

   Van der Waals −329 ± 14 −337 ± 17 

   Electrostatic −5467 ± 65 −5482 ± 107 

rmsd to the mean coordinates (Å)c   

   bb (125−226) 0.68 ± 0.08 0.68 ± 0.10 

   ha (125−226) 1.10 ± 0.10 1.11 ± 0.09 

Ramachandran plot statisticsd   

   Most favored regions (%) 85 85 

   Additional allowed regions (%) 14 13 

   Generously allowed regions (%) 1 2 

   Disallowed regions (%) 0 0 
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