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Immunotherapies have revolutionized cancer treatment. In particular, immune checkpoint
therapy (ICT) leads to durable responses in some patients with some cancers. However,
the majority of treated patients do not respond. Understanding immune mechanisms that
underlie responsiveness to ICT will help identify predictive biomarkers of response and
develop treatments to convert non-responding patients to responding ones. ICT primarily
acts at the level of adaptive immunity. The specificity of adaptive immune cells, such as T
and B cells, is determined by antigen-specific receptors. T cell repertoires can be
comprehensively profiled by high-throughput sequencing at the bulk and single-cell
level. T cell receptor (TCR) sequencing allows for sensitive tracking of dynamic changes
in antigen-specific T cells at the clonal level, giving unprecedented insight into the
mechanisms by which ICT alters T cell responses. Here, we review how the repertoire
influences response to ICT and conversely how ICT affects repertoire diversity. We will also
explore how changes to the repertoire in different anatomical locations can better correlate
and perhaps predict treatment outcome. We discuss the advantages and limitations of
current metrics used to characterize and represent TCR repertoire diversity. Discovery of
predictive biomarkers could lie in novel analysis approaches, such as network analysis
of amino acids similarities between TCR sequences. Single-cell sequencing is a
breakthrough technology that can link phenotype with specificity, identifying T cell
clones that are crucial for successful ICT. The field of immuno-sequencing is rapidly
developing and cross-disciplinary efforts are required to maximize the analysis,
application, and validation of sequencing data. Unravelling the dynamic behavior of the
TCR repertoire during ICT will be highly valuable for tracking and understanding anti-tumor
org October 2020 | Volume 11 | Article 5870141
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immunity, biomarker discovery, and ultimately for the development of novel strategies to
improve patient outcomes.
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INTRODUCTION

Immunotherapies that harness T cell responses against cancer
have changed cancer treatment. Therapies such as immune
checkpoint therapy (ICT) and adoptive T cell transfer now play
a critical role in the treatment of solid and blood malignancies. In-
depth understanding of the biology that underlies immunotherapy
success or failure is crucial for treatment monitoring and
improving current therapies. Cutting edge high-throughput
sequencing and flow cytometry have enabled multi-faceted
profiling of T cells, evaluating immune receptor composition,
antigen specificity, epigenetic and functional status of T cells,
greatly contributing to our understanding of how the anti-tumor T
cell responds especially in the context of ICT.
ICT IS A REVOLUTIONARY CANCER
THERAPY, BUT NOT ALL
PATIENTS RESPOND

Treatment with antibodies that block inhibitory receptors, such
as cytotoxic T lymphocyte associated protein 4 (CTLA-4),
programmed death receptor 1 (PD-1), or its ligand PD-L1, can
lead to durable complete responses in some patients depending
on the cancer type (1). CTLA-4 blockade has been the most
successful in metastatic melanoma, while responses in other
cancers such as non-small cell lung (NSCLC) (2, 3), Hodgkin’s
lymphoma (4), Merkel-cell carcinoma (5), triple-negative breast
cancer (6), renal cell carcinoma (7), urothelial bladder (8, 9) and
squamous cell carcinoma of the head and neck (10) are common
with anti-PD-1/PD-L1 therapy.

Despite these promising results, it is difficult to predict
whether an individual will benefit from ICT or not. ICT
removes T cell suppression indiscriminately, causing immune
related adverse events in up to 90% of treated patients, with
serious autoimmune-like toxicity observed in approximately 2–
5% of treated patients (11). Immune related adverse events
are observed with either anti-CTLA-4 or anti-PD1/L1 therapy
and increase in incidence with combination therapy. ICT is
also expensive, costing approximately USD6,000 to 20,000
per patient each month, depending on the cancer type and
treatment schedule (12). Importantly, only a minority of
patients respond to ICT, highlighting a need to develop
accurate biomarkers of response. The most clinically advanced,
pre-treatment biomarkers of ICT responses include CD8+ T cell
tumor infiltration (13, 14), intra-tumoral PD-L1 expression (13,
15), tumor mutation burden and neo-antigen burden (16, 17).
However, these have poor positive and negative predictive value
as pre-treatment biomarkers of ICT response and are not
reproducible across all cancers.
org 2
MEASUREMENTS OF DYNAMIC CHANGE
IN THE IMMUNE SYSTEM COULD OFFER
A BIOMARKER OF ICT RESPONSE

Although a pre-treatment predictor of ICT response would be
ideal, an early on-treatment biomarker could also have value. We
previously argued the therapeutic response to ICT can be
visualized as a critical state transition of a complex system
because of its dichotomous nature; some patients experience
rapid tumor regression, but other patients do not benefit from
ICT at all (18). In such complex, highly connected systems, not
all determinants of response can be found in pre-treatment.
Small differences in the initial state (e.g. minor differences in T
cell repertoire) can be easily amplified in cascading events,
resulting in a dramatic shift in the system state. Biomarkers
could be identified between the start of treatment and when the
critical state transition occurs. In the context of ICT, dynamic
changes in features of the immune system, such as the T cell
repertoire shortly after initiation of treatment, could inform ICT
responses and biomarker development. We envisage that a
dynamic biomarker will complement existing ones and
facilitate clinical decisions once treatment has started. For
example, dynamic biomarkers would allow the identification of
patients with ‘pseudoprogression’ (an initial increase in tumor
diameter due to immune cell infiltration and edema, followed by
regression) who would benefit from continuing therapy, and it
would identify early-on patients who will not benefit, thus
limiting side effects and reducing the substantial costs
associated with continued treatment. Characterizing the T cell
repertoire is useful for developing potential dynamic biomarkers
of ICT response, and there are different technologies used to
approach this.
SEQUENCING TECHNOLOGY
IS IMPORTANT FOR THE
CHARACTERIZATION OF
TCR REPERTOIRES

Fine characterization of T cell repertoires is made possible by the
application of high-throughput sequencing. Immune specificity
is derived from T cell receptors (TCRs) expressed on the surface
of all T cells that bind to peptides in the context of major
histocompatibility complex (MHC) proteins. Conventional T
cells express a vast range of TCRs, and each TCR is typically
composed of a heterodimer of a and b chains. This diversity is
generated during random, somatic rearrangement of variable
(V), joining (J), and diversity (D) gene segments in TCR chains
(19). Most TCR diversity arises from the b chain because it
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utilizes an additional D segment (Figure 1). Furthermore, the
process of gene rearrangement adds and removes random
nucleotides between segments (20), forming a hyper-variable
third complementarity-determining region (CDR3) that is a key
component of specificity. Although an upper bound of 1016

possible unique TCRab pairs can occur, 104 unique TCRbs can
be typically routinely sampled in human peripheral blood
samples (21, 22). In this review, we refer to TCR repertoire as
the collection of TCRs within a given T cell population.

Sequencing across the CDR3 region of TRBV gene in either
bulk populations of cells or at the single-cell level can be used to
fingerprint a repertoire (21, 23, 24). There are several well-
established TCR sequencing protocols, which involve targeted
PCRs to generate amplicons across the CDR3 region. We briefly
review commonly used protocols, as in-depth assessment and
head-to-head comparisons of different techniques have been
reviewed elsewhere (25–27).

TCR sequencing libraries can be prepared from genomic
DNA (gDNA) or messenger RNA (mRNA) starting material,
both with pros and cons (28). Essentially, DNA is more stable
and can be isolated from frozen or FFPE samples, whereas there
are more TCR RNA transcripts compared to the single copy of
rearranged DNA. Multiple fixed forward and reverse primers
specific to TCR Vb, and TCR Jb gene segments respectively are
used in multiplex PCRs to generate TCR libraries (24). Because
there are multiple TCR Vb and TCR Jb gene combinations,
multiplex PCR is required to cover most variations (24). The
benefit of the DNA approach is the direct quantification of single
TCR clones as each T cell contains one TCRb gene
rearrangement. However, transcriptional information is only
contained in RNA. Both RNA and gDNA based TCRseq have
Frontiers in Immunology | www.frontiersin.org 3
well documented methods and choosing one is dependent on
individual use cases.

5′ rapid amplification of cDNA ends (5′RACE) with template
switching oligonucleotides is the most widely used RNA based
approach to generate TCR sequencing libraries (29). This
approach incorporates an adaptor site at the 5′ end of a TCR
template during first strand synthesis, paired with a 3′ primer
specific for the TCR constant region. Subsequent PCR
amplification is performed with primers specific for 3′ end
and the 5′ adaptor sequence. 5′RACE is widely used because it
circumvents the need for multiple fixed primers. RNA
approaches measure expressed TCRbs, but quantification
of clonal expansion is challenging when sequencing bulk
populations of T cells, because multiple copies of the same
TCR could be expressed within a single cell (30). In a recent
study, matched samples underwent single-cell and bulk TCR
sequencing, and the proportion of each unique TCRb sequence
highly correlated between the two approaches (31). This suggests
that TCR transcript counts detected by bulk TCRseq can be
representative of T cell clonal expansion, rather than increased
expression of TCRs in a limited number of cells.

Regardless of starting material, PCR-based approaches are
often susceptible to amplification bias, which distort the relative
abundances of the sequenced products. A challenge lies in
distinguishing genuine rare clones from sequencing errors,
especially if sequences differ by a few nucleotides. Errors can
be corrected during analysis. For example, low frequency TCR
clones are often clustered with highly similar clones with
significantly greater frequencies because it is more likely the
sequence differences arising from these clones are due to error.
We also highlight the utility of unique molecular identifiers
A B

FIGURE 1 | All germline VDJ gene segments of the human T cell receptor. Variable (V) genes in red, diversity (D) genes in yellow and joining (J) genes in blue. From
outmost ring to innermost ring are the V (D)J sub-group, V (D)J group, and alpha (A)/beta (B) chains. Non-functional alleles are in white.
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(UMIs) or adjusting primer concentrations to correct this error
(32–34). UMIs are strings of random nucleotides added between
the adaptor sequence and oligonucleotides of the template
switching primer. During first-strand synthesis, each cDNA
template is tagged with a UMI which is carried through the
entire PCR and sequencing process. Post sequencing analysis
identifies sequences that originate from the same starting
priming molecule based on UMI sequence, allowing for
correction of any PCR bias and sequencing errors. Longer
UMI sequences lower the chance of identical but distinct RNA
molecules binding the same UMI (35). UMIs of 9 to 12
nucleotides are used in most RNA based TCR sequencing
protocols because it provides coverage for a typical range of
105 to 108 distinct TCR transcripts. Repeated deep sequencing of
human peripheral blood T cells identified a lower bound of 106

unique TCRb chains in a repertoire (36). With 12 nucleotide
UMIs there is sufficient coverage to sequence each unique
human peripheral blood TCRb at most 100 times. Both DNA
and RNA based bulk TCRseq approaches are now available
through commercial services or kits. While it is generally
accepted that current TCR sequencing methods will not
capture the entirety of repertoire diversity in an individual
(36), there is significant overlap between different bulk TCR
sequencing approaches in capturing the most abundant and
frequent TCRs.

Single-cell analysis is at the forefront of TCR sequencing
technology. In addition to sequencing TCRs, single-cell
sequencing interrogates transcriptional activity of individual
cells, linking T cell phenotype and specificity (37). With
single-cell technology, each cDNA molecule is barcoded to a
unique cell in a microfluidic droplet. UMIs are added and
amplicon libraries are similarly generated for sequencing.
Sequencing reads from individual cells are identified through
their unique barcodes. Single-cell fluidic platforms such as 10×
Chromium capture transcript and TCR information from up to
10,000 of individual cells in parallel. Bulk TCRseq captures 105

transcripts that provides more opportunity to sample low
expanded T cell clones. Although bulk TCRseq does not
provide transcriptomic information, it gives a more accurate
estimation of diversity than single-cell sequencing, and
is considerably cheaper. Both single-cell and bulk TCR
sequencing approaches have been used in combination because
they offer complementary information (reviewed in later
sections). The accessibility of the assays has led to an increase
in its use in immuno-oncology studies to characterize T cell
repertoires, especially in the context of response/non-response
to ICT.
TCR REPERTOIRES CAN BE
CHARACTERIZED BY DIFFERENT
METRICS

It is important to understand how multiple TCR clones are
distributed in T cell repertoires of patients that respond to ICT.
As TCRseq data sets typically contain millions of TCR sequences,
Frontiers in Immunology | www.frontiersin.org 4
with unique TCR clonotypes expressed at variable frequencies,
diversity metrics adapted from ecological studies are used to
characterize the relative distributions of multiple TCR clones.
These metrics are one-dimensional scores that estimate the
distribution of species in any given system. In the case of TCR
repertoires, each unique TCR clone represents a unique species,
and the abundance of each clone represents the number of
members of that species. The fraction of every unique
species (unique TCR clone) over the total number of T cells
(total TCRs) in the repertoire is calculated, weighted, summed
and normalized to produce a summary statistic. The most
commonly used metrics to characterize repertoire diversity in
published studies are based on Shannon’s and Simpson’s
diversity indices (38, 39). These scores range between
maximum clonality (with one clone occupying the whole
repertoire) and maximum evenness (with all clones occurring
equally). The degree of T cell clonal expansion is estimated with
these values. Importantly, diversity scores allow for statistical
comparisons between different TCR repertoires within (for
example before and after treatment) and between patients.
Perturbations in TCR repertoire, such as changes in TCR
diversity reflect immunological processes that can be analyzed
to understand antigen-specific T cell responses. ICT-induced
clonal expansion of antigen-specific T cells results in a reduction
of TCR diversity. Conversely, increased migration of T cells into
the tumor due to ICT could be reflected in an increase of TCR
diversity. The diversity index also offers a possible stratification
score for developing a biomarker of responsiveness to therapy,
but this requires further validation. Diversity indices are one of
few widely used metrics to characterize TCR repertoires in
ICT (40).

Another common metric used to characterize similarities or
differences in TCR repertoires is the Morisita–Horn index (41). It
accounts for both the number and abundance of shared TCRs
between two repertoires, and its score ranges between zero (no
overlap) and one (all clones overlapping at similar frequencies).
An advantage of performing TCR sequencing on serial samples is
the ability to track dynamic changes in TCR clonotypes over
time. For time course data, not only frequencies of individual
TCR clonotypes are measured, but overlap metrics have been
used as well (42). For example, an increased Morisita–Horn
Index between two sequential samples could reflect the
persistence and expansion of TCR clonotypes over time (43).
Changes in TCR overlap and diversity over time are important
dynamic measurements that could be informative of ICT
outcomes, and have been assessed in different studies (44–47).
ANTI-CTLA-4 MONOTHERAPY
REMODELS THE BLOOD TCR
REPERTOIRE

Studies investigating TCR repertoire and ICT are difficult to
compare because they differ in the type of cancer, type of sample
(blood or tumor biopsy), and timing (pre-treatment or post-
treatment) of sample collected, genetic material used for
October 2020 | Volume 11 | Article 587014
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sequencing (gDNA or RNA), and different diversity metrics used
for analysis. Our next section will focus on anti-CTLA-4 and
anti-PD-1/PD-L1 separately, as they are the most commonly
used antibodies in the clinic and have different mechanisms of
action (48, 49).

CTLA-4 blockade appears to broaden blood CD8+ T cell
responses against tumor associated antigens, increasing the
number of tumor-specificities measured by peptide-MHC
multimer staining when pre- and post-blood samples were
compared (50). TCRb sequencing performed in separate
studies support this, as anti-CTLA-4 increases the total
number of unique TCR clones and increases TCR diversity in
the blood (51). Although significant changes in TCR diversity
were not observed in all studies (43, 52), an important
observation with anti-CTLA-4 monotherapy is that highly
different repertoires were observed pre- and post-treatment, as
measured by low overlap indices (43, 48). This suggests that anti-
CTLA-4 treatment drives a rapid influx of new T cell clones and
broadens the circulating TCR repertoire, with minimal clonal
expansion of T cells within the blood (51). The broadening of the
T cell repertoire is indiscriminate in its specificity, as increased
blood TCR diversity has been linked to immune-related side
effects (48, 53).

Patients with a high pre-treatment blood TCR diversity score
experienced more clinical benefit and increased survival with
anti-CTLA-4 monotherapy in some studies (43, 54), but
not others (48, 55, 56). TCR diversity scores from pre-
treatment blood samples are highly variable because the
peripheral blood contains the most heterogeneous populations
of T cells. Although anti-CTLA-4 reshapes the blood TCR
repertoire, some TCR clonotypes are still found before and
after treatment. The persistence and expansion of high-
frequency TCR clonotypes post-treatment correlate with
survival in some studies (43, 51). There is no clear consensus
on how TCR diversity in whole blood samples correlates with
anti-CTLA-4 response.
ANTI-CTLA-4 DRIVES CLONAL
EXPANSION OF TUMOR INFILTRATING
LYMPHOCYTES

There is limited clinical data about dynamic changes in tumor
TCR repertoire diversity upon anti-CTLA-4 monotherapy. A
reduction in overall TCR diversity (measured by Shannon’s
Diversity) post-treatment compared to pre-treatment was
reported in a melanoma study (57) but not in a breast cancer
study (52). When TCR clones were tracked, anti-CTLA-4 drove
polyclonal, rather than oligoclonal expansion of TCR clones
within the tumor (52). Recent studies highlight that bystander
T cells specific for non-tumor antigens can infiltrate tumors,
obscuring the ability to analyze the anti-tumor T cell response
(58). A significant challenge lies in distinguishing tumor-specific
TCRs from the bystanders. Furthermore, most early clinical
Frontiers in Immunology | www.frontiersin.org 5
studies were performed with limited samples, and the effects of
anti-CTLA-4 monotherapy are not clear because anti-CTLA-4 is
mostly administered in combination with anti-PD-1/L1 or other
adjuvant therapies in clinical studies. Furthermore, serial tumor
biopsies are limited for most cancers. Hence preclinical models
have been widely used to study the effects of anti-CTLA-4 on
tumor TCR repertoires.

In murine studies, the effects of anti-CTLA-4 monotherapy on
tumor TCR diversity are model-dependent. Treatment of breast
tumors (4T1, E0771) results in reduced tumor TCR diversity
compared to untreated tumors, and this reduction in diversity is
accompanied by expansion of dominant TIL clones (59, 60).
However, similar changes are not observed in murine melanoma
(61, 62). B16 tumors did not respond to anti-CTLA-4 monotherapy
in these studies, likely contributing to the discrepancy. In vivo anti-
CTLA-4 treatment increases the frequency of neo-antigen specific
tumor-infiltrating T cells in other responsive murine cancer lines,
suggesting that clonal expansion of T cells, and reduction in tumor
TCR diversity is a feature that accompanies anti-CTLA-4 treatment
(63, 64). In most preclinical studies, tumors from treated vs
untreated animals are compared, unlike clinical studies where
serial samples from the same individual can be studied. This has
to be taken into consideration when studying dynamic changes in
murine models, as individual mice have highly private tumor TCR
repertoires even though they are genetically identical, and were
inoculated with ostensibly similar cancer cell lines (60, Nicola
Principe et al., 2020) (manuscript under review). This highlights
the challenge of developing a TCR based dynamic biomarker of
response from tumor samples.
NUANCED ANALYSIS OF PD-1+ BLOOD T
CELLS MIGHT OFFER A BIOMARKER TO
RESPONSE TO PD-1/L1 BLOCKADE

Peripheral blood T cells are heterogeneous and include naïve,
effector and memory T cells. Bulk TCR sequencing is often
performed on all PBMCs, and TCR distributions within these
different T cell subsets are lost. This could explain why some
studies show an association between TCR diversity and response
to ICT, but not others. Focusing TCR diversity analysis on a
phenotypically distinct subset of blood T cells could provide a
more accurate biomarker of response, compared to analysis of
whole blood samples. Peripheral PD-1+ T cells represents one
such population, as CD8+PD-1+ are the primary T cells which
PD-1 blockade acts, are clonally expanded, and are enriched for
tumor-specific T cells (65–67). TCR diversity of select
populations of T cells can be derived from sequencing flow
cytometry sorted populations. Patients with high pre-treatment
TCR diversity, and reduced diversity post anti-PD-1 treatment in
their CD8+PD-1+ T cell population had longer progression-free
survival. Importantly, these associations with treatment
outcomes were not observed when TCR sequencing was
performed on blood CD8+ T cells (66, 68).
October 2020 | Volume 11 | Article 587014
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EXPANSION OF INTRA-TUMORAL TCR
CLONOTYPES IS A FEATURE OF
RESPONSE TO ANTI-PD-1 THERAPY

A pre-treatment tumor TCRb repertoire with reduced diversity
correlates with clinical response to anti-PD-1 therapy in some
melanoma, and lung cancer patient cohorts (13, 17, 40), but not
others (69, 70). In pancreatic ductal carcinomas, post-treatment
but not pre-treatment TCRb clonality was associated with response
to anti-PD-1 (43). Patients who were refractory to anti-CTLA-4
therapy, but who responded to subsequent anti-PD-1 therapy had
a more clonal TCRb repertoire before and after PD-1 blockade
(57). In studies where subsequent biopsies could be profiled,
expansion of a greater number of TCRb clonotypes between pre-
and on-treatment samples was observed in responders compared
to a smaller number of expanded clonotypes in non-responders
(13, 40, 57, 70). Even though the timing of biopsies varied between
studies, expansion in tumor TCRb clonotypes suggests antigen-
specific T cell proliferation and is likely to be a key feature of
successful responses to anti-PD-1 therapy.

Some studies have described dynamic changes in tumor and
blood TCR repertoire, providing insight into how the T cell
response changes when ICT treatment is administered. However,
the utility of the TCR repertoire as a dynamic biomarker of ICT
response is still limited, and we discuss some of the current
limitations in the next section.
IMPROVING HOW TCR REPERTOIRE
DATA IS REPRESENTED

The most frequently used diversity metrics, including Shannon’s
and Simpson’s indices are useful to generate a single numerical
score to estimate repertoire diversity of millions of TCR
sequences (71). However descriptive information, such as
Frontiers in Immunology | www.frontiersin.org 6
oligo- or monoclonality is lost when data is compressed like
this. For example, two repertoires with the same numerical
Shannon’s or Simpson’s diversity values can have vastly
different repertoires, especially in how the most abundant
clones are distributed (Figures 2A, B). Renyi entropy can be
used to graphically represent how abundant clones are
distributed in relation to the rare clones within a given
repertoire, in addition to assigning a numerical value to
repertoire diversity (Figure 2C) (72). For example, the gradient
of the slope increases as the distribution of the repertoire
becomes more monoclonal.

Another common feature of bulk TCR sequencing data is the
large number of unique TCR clones that occur once only. These
low-frequency TCRs can skew Shannon’s and Simpson’s indices,
increasing the diversity score in the presence of a few dominant
clones. Ecological diversity metrics were designed to account
for rare species, but it is unclear if a rare, unique TCRb
sequence belongs to a rare T cell clone, or a sequencing
artefact. Even if it was the former, it is likely that only the
most abundant clonotypes are of biological relevance. Hence,
modified diversity metrics that only account for the more
abundant TCR clonotypes have been used to characterize
repertoires, and stratify patients. Top 10 clones or the top 50%
of the most abundant clones have been used to represent TCR
repertoire diversity (62). A recent melanoma study highlighted
ICT response correlated with a higher number of large clones
(clones occupying greater than 0.5% of the total repertoire) in the
blood (31).

Diversity indices are highly sensitive to the sequencing depth
and absolute number of TCRs sampled in each repertoire.
Comparisons of diversity measurements are only meaningful if
repertoires have sufficient sampling and similar repertoire sizes.
The absolute number of TCRs and unique TCRs from individual
samples are important data that should be presented for
understanding and comparing TCR repertoire diversity. A
challenge with developing a predictive biomarker based on
A B

C

FIGURE 2 | Identifying pitfalls in one-dimensional T cell receptor diversity metrics. (A) Tree maps of four examples of TCR repertoires. Each tile is a unique clone,
and the size of each tile represents the abundance of each clone. (B) Table of summary statistics of the four repertoires, highlighting different distributions of TCRs
can have similar diversity scores. (C) Representative Renyi diversity plots of the four repertoire examples. Features of each line/curve on the plot, such as the
gradient and where the curve intersects the y-axis, correspond to different repertoire features.
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TCR diversity is the variation in how repertoire diversity is
measured between different studies and the lack of validation of
these metrics used to stratify ICT responders and non-responders.
MOVING BEYOND DIVERSITY: NOVEL
APPROACHES TO STUDY
TCR REPERTOIRES

Recent studies have approached TCR repertoire analysis utilizing
novel computational approaches. Some unique TCRb CDR3
sequences only differ from others by a single or few amino
acids. A novel approach to studying TCR repertoires is to
account for sequence similarity, with the underlying
assumption that TCRs specific for the same antigen will have
similar CDR3 amino acid sequences. Clustering highly similar
sequences, and mapping them as networks can reveal interesting
properties about TCR repertoire structure. The most abundant,
public TCRb CDR3 sequences are highly conserved between
healthy individuals, more so than previously expected (73).
When clustering approaches are applied to longitudinal blood
samples, changes in the connectivity of TCR clusters over time
distinguished healthy and tumor bearing mice (74). ICT possibly
alters TCR networks in patients over time (73). Mapping TCR
networks based on amino acid motifs within the CDR3 region
potentially offers a more robust biomarker of response to therapy
than TCR diversity measurement by Shannon’s alone (75).

Some key papers describe how a clustering approach
identified shared amino acid motifs within CDR3 regions of
common virus (influenza, CMV) epitope specific TCR
repertoires (76, 77). If tumor-epitope associated TCR clusters
can be identified, the expansion and contraction of these clusters
can be tracked over time and might be expected to correlate
better with response. Heterogeneity in tumor antigens between
patients and the lack of TCR sequencing data of tumor-specific T
cells are significant hurdles to this. It is also likely that such an
approach would be suited to shared tumor antigens, such as
tumor differentiation or viral associated tumor antigens.

As a further consideration, it is important to recognize that
the nucleotide sequence within TCRb CDR3 regions can be
redundant, with receptors having identical amino acid sequences
but different nucleotide sequences. TCR convergence in
peripheral blood, defined as the frequency of unique TCRb
nucleotide sequences that share a CDR3 amino acid sequence
with at least one other clone, correlated with response to anti-
CTLA-4 in a small cohort of patients (42).

High dimensional analysis comparing amino acid residues or
nucleotide bases between millions of TCR sequences is now
possible, giving us unprecedented information about TCR
repertoires and how they relate to anti-tumor immunity.
Although these approaches are at an early stage, the use of
novel analytic approaches could inform our understanding of the
TCR repertoire structure in the context of tumor immunology
and assist development of a TCR based dynamic biomarker
of response.
Frontiers in Immunology | www.frontiersin.org 7
CLONAL DIVERSITY OF MEMORY CD8+

T CELL SUBSETS MIGHT OFFER A
DYNAMIC BIOMARKER OF
ICT RESPONSE

Another approach to develop a novel biomarker of response is to
focus on the clonal diversity within a population of relevant T
cells. Most existing studies perform bulk TCR sequencing on
whole blood and tumor samples, without the capacity to
differentiate heterogeneous T cell populations that differ in
phenotype and function. We would anticipate that changes in
TCR diversity, such as clonal expansion within a population of T
cells would be more robust biomarkers of response to ICT,
compared to TCR diversity derived from unsorted T cells.

The advent of single-cell technology that incorporates
transcriptome and TCR profiling now permits the assignment
of T cell clones to a phenotype or phenotype cluster. This has the
potential to provide unprecedented insight into the dynamics of
phenotype change within T cell clones and how those changes
relate to ICT treatment response. Recent papers highlight the
role of memory CD8+ T cells in ICT therapy, identifying tissue
resident memory (TRM) and effector memory-like CD8+ T cell
subsets as potential predictors of positive outcomes to
ICT therapy.

A specialized subset of resident memory T cells reside in
tissues to mount an effective, rapid local immune response. TRM
cells are canonically identified by surface expression of CD69 and
CD103 and reside in organs such as the skin and lung and within
solid tumors. CD8+CD103+ tumor infiltrating T cells often
correlate with better prognosis and outcomes in multiple
cancers (68, 78–87). Clonally expanded TRM expressed PD-1
and correlated with effective anti-PD-1 therapy in lung cancer
patients. Single-cell analysis of TRM from these responding
patients demonstrated increased expression of cytotoxicity
genes in these populations (88).

Single-cell analysis of CD8+ T cells from melanoma biopsies
revealed that ICT responders are enriched with effector memory
like T cells that express genes associated with memory, activation
and cell survival (IL-7R, TCF7), but not residency (89). The
transcription factor TCF7 is critical for CD8+ T cell proliferation,
differentiation (90), especially in the context of anti-PD-1
therapy (91, 92). Importantly, TCF7 expression was validated
in a different patient cohort and found to associate with
responses to ICT (89). A limitation to acquiring dynamic data
of TRM or TIL subsets is the difficulty in obtaining serial on-
treatment tumor biopsies for study.

When serial peripheral blood T cells were analyzed using
single-cell phenotyping, responders to both anti-PD-1 and anti-
PD-1/anti-CTLA-4 exhibited more expanded T cell clones than
non-responders in PBMCs post-treatment (31). Some highly
expanded clones appeared to differentially express genes
associated with cytotoxicity (such as granzyme B, perforin,
ITGB1, and CCL4), compared to the non-expanded clones
(31). In another study, a subset of clonally expanded memory
T cells characterized by CD27−CCR7− were found in the
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peripheral blood of patients responding to ICT (93). In these
patients, response to immunotherapy correlated with a subset of
clonally expanded T cells identified by single-cell RNAseq,
representing a potential biomarker of response.

Although single-cell sequencing is a powerful tool, the costs
are very high. It does, however, provide novel insights that can be
tested with bulk TCRseq and flow cytometry analysis. A more
cost effective T cell based biomarker might lie in TCR analysis of
a subset of effector T cells. Further work is required to identify
surface markers that define memory T cell subsets of interest
across multiple studies. Lastly, the approach of combining TCR
sequencing and flow cytometry analysis to develop a biomarker
of response is agnostic to antigens and would be useful when
tumor antigens are not well defined.
CONCLUSION

Immune checkpoint therapy has changed the therapeutic
landscape allowing the word “cure” to enter the oncologist’s
lexicon at least for a subset of hitherto incurable cancer patients.
Methods to stratify cancer patients who will benefit most from
therapy are desperately needed because of the high cost of
treatment and the potential for adverse reaction without
clinical benefit. The specificity of the immune system allows us
to leverage T cell receptor sequencing as a potential biomarker of
patient outcomes. T cell proliferation and differentiation is a
dynamic process so serial samples are likely to boost the
predictive potential of TCRseq on ICT outcomes. Sequencing
of specific subsets of T cells will also improve predictive power as
the downstream effectors and additional targets of ICT are
Frontiers in Immunology | www.frontiersin.org 8
identified. Immune cell phenotyping and receptor sequencing
combined in single-cell RNAseq is beginning to provide the
greatest depth of analysis and is likely to better stratify patients
by predicted outcomes. The current challenge is to make single-
cell RNAseq more accessible by overcoming technical barriers
and developing robust mathematical and statistical models to
accurately interpret the wealth of information. The last 10 years
of cancer immunology research have demonstrated an
acceleration in treatment, diagnostic and predictive capacity
that ensure the future contains better outcomes for all
cancer patients.
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