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Abstract 

Recently, series elasticity has been realized using pneumatics in human-robot interaction systems. 
Pneumatic circuits provide not only a flexible power transmission, but also the elastic element in a 
series elastic actuator (SEA). Pneumatic series elastic systems involve more than twice the number 
of parameters that influence system behaviors in comparison with rigid robotic systems. In this study, 
a position controller that eliminates the need of identifying a system model by employing the time 
delay estimation (TDE) technique is proposed for pneumatic SEA systems. The TDE technique is 
effective in compensating for system dynamics and all uncertainties involved in system behaviors without 
imposing computation load. TDE error is cancelled out through a learning way, which improves control 
performance and leads to asymptotic stability. A simulation study demonstrates the robustness of the 
proposed controllers against uncertainties imposed on the motor system as well as uncertainties on the 
end-effector. The simulation shows the efficacy of the learning compensation for TDE error. 
© 2020 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Series elastic actuators (SEAs) are used in robot designs because of its safety feature
o humans interacting with robots [1–7] . In SEAs, compliance is purposefully introduced
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etween an actuator and robot end-effector and masks the high impedance of the actuator from
umans or environments. SEAs are able to maintain low impedance at high frequencies, while
hey offer an ability to shape the programmed impedance within their operational bandwidth.
ecently, it has been noticed that actuation that employs compressible fluid takes over the
dvantages of SEAs in that fluid compressibility provides elasticity between a bulky and
eavy actuator and end-effector [8–10] . A pneumatic circuit hides the actuator’s impedance
rom the end-effector, reducing the backdrive impedance of the device. Impact forces on
he end-effector are absorbed by fluid compressibility. As well, pneumatic actuation provides
exible transmission and high force-to-weight ratios. 

SEAs are a non-collocated system since the sensor and actuator used for control are sep-
rated by the elastic structure [11] . The position of the end-effector is controlled by the
eformation of the elastic structure and the deformation is controlled by the actuator. These
igh-order systems consist of two masses (one is the actuator and the other is the end-effector)
ut they are controlled typically with only one control command. As each mass involves fric-
ion and disturbance, the number of parameters that characterise an SEA system doubles in
omparison with a rigid actuation system. Moreover, the property of the elastic element de-
ermines the behaviors of the SEA system. For satisfactory control of an SEA system, these
arameters might require to be well identified. Even in use of proportional-integral-derivative
PID) type controllers [12–14] , the property of the elastic element needs to be known; it is a
ecessary procedure to control the deformation of the elastic structure. 

Like rigid robot manipulators, various position control solutions for SEA systems (or
exible-joint systems) have been proposed to suppress the influence of uncertainties over
ystem modelling on control performance. Most of these solutions are realized by using
liding mode techniques, intelligent algorithms (fuzzy logic and neural networks) or their
ombinations [15–22] . However these approaches require at least the nominal value of each
arameter of the target system. In some controllers, more complicated schemes are employed
o deal with unstructured uncertainties, which would lead to substantial computation load. 

Time delay estimation (TDE) has been recognized as a powerful tool in the control field
23–34] . The TDE technique uses the command (input) and its accompanying system state
output) to quantitatively estimate system dynamics and disturbances that are difficult to iden-
ify precisely. The estimate that is obtained using the previous-step sensor reading and record
f previous-step command can be used to cancel out system dynamics and uncertainties
hrough their incorporation into the control at the current step. Consequently, employing the
DE technique leads to accuracy and robustness of control in the presence of a wide class of
ncertainties including both structured and unstructured uncertainties under the assumption of
nfinitesimally small sampling intervals. Also TDE alleviates computation load for the system
ynamics and uncertainties in comparison with other robust control schemes. Note that the
erm time delay estimation used in this paper has a different meaning from one used in several
apers where the term indicates estimation of an uncertain time delay in feedback loops [35] .

In this study, a TDE-incorporated position controller is proposed for a pneumatic SEA sys-
em. This controller does not require a precise knowledge of the target system. In particular,
he TDE technique eliminates the need to identify elasticity placed between an actuator and
obot link that is highly nonlinear and even time-varying in a pneumatic SEA system. With-
ut significant computation load, the proposed controller exhibits robustness to mismatched
ncertainties (e.g., friction and disturbance imposed on the end-effector) as well as matched
ncertainties (e.g., friction and disturbance imposed on the actuator). 
2 
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Fig. 1. (a) Schematic of a cylinder and piston and (b) the curve of stiffness of air of 0.001 m 

3 with piston area 
A = 0. 0025 m 

2 at 20 ◦C ( T = 293 K). The parameters are selected as l = 0. 4 m, m = 0. 0012 kg, and R = 287 J/kgK. 
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In addition to the TDE technique, a learning algorithm is adopted in the proposed controller
o cope with time delay estimation error (TDE error), which can be regarded as the biggest
hallenge to be resolved in controllers with TDE. TDE error, which arises from approximating
he current system dynamics and uncertainties with the values of control input and state at the
revious-time step, exerts a critical influence on both stability and control performance [26,27] .
ypically, TDE-incorporated controllers achieve uniformly ultimate boundedness at the best
ase, with the assumption that TDE error is bounded. The learning algorithm compensates
or TDE error by estimating it. Employing the learning counteraction for TDE error opens
he possibility that the system is asymptotically stabilized beyond uniformly ultimate bounded
tability. 

In this study, the controller is developed in a sampled-data environment. Controllers in-
orporated with the TDE technique have been designed in the continuous-time framework,
lthough these controllers need to be run using digital computers to control continuous-time
ystems [24–31,36,37] . The design procedures and stability analyses of almost all controllers
ith TDE overlooked the sampled-data environment. These controllers were developed form-

ng TDE with a control command and its corresponding system state which are at the same
ime point. We assume that the command and state at the same time point are in causality
elationship in the continuous-time framework, but they are not in practice. An input and an
utput at the same time point do not reflect system dynamics. Therefore, the need to design
nd analyze a TDE-incorporated controller for sampled-data systems, with practical causality
bout the control command and its output, arises. 

. Target system: SEA with a pneumatic circuit 

It is well known that air is typically compressible [38] . A container filled with air changes
olume when it is pressed, while the container tends to return to its original state if the applied
orce is removed. The air in the container acts as a spring. Fig. 1 (a) depicts a cylinder filled
ith 0.001 m 

3 of air. The force F applied to the piston by the air is the product of the
ressure inside the chamber P and the area of the piston A, given as 

 = PA. (1)
3 
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Fig. 2. (a) Actuation with pneumatic circuits, and (b) series elastic actuation. 
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The stiffness effect of the fluid in the chamber can be obtained by differentiating the force
 with respect to the position x as follows: 

 � −∂F 

∂x 
= −∂P 

∂x 
A, (2)

ith the following relationship coming from the assumption that the air in the cylinder is an
deal gas undergoing an isothermal process ( �T = 0), 

 = 

mRT 

V 

= 

mRT 

A (l + x) 
, (3)

here m, V are the mass and volume of the entrapped air, respectively; R the universal gas
onstant; T the absolute temperature and l the length of the cylinder. The partial derivative
f P with respect to x is then obtained as 

∂P 

∂x 
= − mRT 

A (l + x) 2 
. (4)

ubstituting Eq. (4) into Eq. (2) yields 

 = 

mRT 

(l + x) 2 
. (5)

he stiffness k thus increases nonlinearly as the piston is pushed in, as shown in Fig. 1 (b). 
Including a container filled with compressible air between the actuator and end-effector

epicted in Fig. 2 (a) provides the primary features of a series elastic actuator (SEA) shown in
ig. 2 (b), as experimentally investigated in [8] . A motor input F m 

produces the displacement of
ass M, defined as x m 

, and accordingly results in the deformation of the elastic structure. The
eformation brings about the displacement of the end-effector, defined as x l . The end-effector
nteracts with the environment through a force F e . 

In this study, the target system to be controlled is an arm exoskeleton with pneumatic
ircuits, as depicted in Fig. 3 . The master cylinder is powered by a motor, as in [8] , and
4 
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Fig. 3. (a) Schematic of an arm exoskeleton with pneumatic circuits. 
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he end-effector is actuated through pneumatic circuits connected to the rotary transmission
esigned in [9] . 

With the translational and rotational stiffnesses resulting from pneumatic compressibility
umped as k x and k θ , respectively, the target system can be modeled based on SEA systems
r flexible-joint systems [39] as follows: 

 θ̈ = k θ (x/r − θ ) − mgh sin θ + F f 1 + D 1 , 

B ̈x + k x (x − rθ ) = F f 2 + D 2 + F m 

, (6)

here I and m denote the inertias of the driven part including the exoskeleton, respectively;
the gravitational constant; h the distance between the joint and the center of mass of the

riven part; B the inertia of the driving part; r the ratio between translational motion and
otational motion. The control input F m 

is exerted on the driving part. F f 1 and F f 2 denote
riction forces that consist of viscous friction and Coulomb friction, respectively. D 1 and D 2

re bounded oscillatory disturbances that result from sensor noise and communication noise,
espectively. 

The stiffnesses k x and k θ can be obtained using the ideal gas law P V = mRT . To express
he stiffness k x , F p denotes the resultant force exerted on the driving piston. The pneumatic
ystem consists of two separate fluidic circuits: one entraps air in front of the driving piston,
he other one in back of the driving piston. The first circuit is expressed with subscript 1
nd the second circuit with subscript 2. It is assumed that the air chambers are made of an
nelastic material. 

 p = −P 1 A 1 + P 2 A 2 = −m 1 RT 

V 1 
A 1 + 

m 2 RT 

V 2 
A 2 , (7)

here P, V and m with subscript 1 and 2 denote the pressure, volume and mass of the air
ntrapped in each circuit respectively, A 1 is the front side area of the piston and A 2 is the
ack side area of the piston considering the area of the rod. 
5 
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The volumes of the air entrapped in each circuit V 1 , V 2 are obtained as 

 1 = V 10 − A 1 x + 

3 δ(a 

2 − b 

2 ) θ

2 

, (8)

 2 = V 20 + A 2 x − 3 δ(a 

2 − b 

2 ) θ

2 

, (9)

here V with subscript 0 indicates the initial volume, δ, a and b denote the dimensions of the
ir chambers in the rotary pneumatic transmission, respectively (see Fig. 3 ), and weight 3 is
ultiplied because three air chambers form one fluidic circuit. 
Then the stiffness k x is given as 

 x � − ∂ F p 

∂x 

= −m 1 RT 

V 

2 
1 

V 

′ 
1 A 1 + 

m 2 RT 

V 

2 
2 

V 

′ 
2 A 2 = 

m 1 RT 

V 

2 
1 

A 

2 
1 + 

m 2 RT 

V 

2 
2 

A 

2 
2 

= 

m 1 RT (
V 10 − A 1 x + 

3 δ(a 2 −b 2 ) θ
2 

)
2 

A 

2 
1 + 

m 2 RT (
V 20 + A 2 x − 3 δ(a 2 −b 2 ) θ

2 

)
2 

A 

2 
2 . (10)

Next, the stiffness k θ can be obtained in a similar way. 
The torque τt that is transferred to the exoskeleton in the transmission by the fluid can be

xpressed as the product of the force by the air pressure and the distance of it from the the
rigin along the w axis: 

t = 3 P 1 δ

∫ a 

b 
wdw + 3 P 2 δ

∫ a 

b 
wdw . (11)

Then the stiffness k θ is written as 

 θ � 

∂τt 

∂θ
= 

3 δ(a 

2 − b 

2 ) 

2 

(
∂ P 1 

∂θ
− ∂ P 2 

∂θ

)
= 

(
3 δ(a 

2 − b 

2 ) 

2 

)
2 

(
m 1 RT 

V 

2 
1 

+ 

m 2 RT 

V 

2 
2 

)
. (12)

With Eqs. (8) and (9) , Eq. (12) can be rewritten as 

 θ = 

(
3 δ(a 

2 − b 

2 ) 

2 

)
2 

(
m 1 RT (

V 10 − A 1 x + 

3 δ(a 2 −b 2 ) θ
2 

)
2 

+ 

m 2 RT (
V 20 + A 2 x − 3 δ(a 2 −b 2 ) θ

2 

)
2 

)
. (13)

The ratio r can be derived from the following relationship: 

3 δ(a 

2 − b 

2 ) 

2 

d θ = A 1 d x. (14)

From this relationship, the ratio r is defined as 

 � 

dx 

dθ
= 

3 δ(a 

2 − b 

2 ) 

2A 1 
. (15)

. Control strategy 

.1. Problem statement 

The objective of the control problem is to design the control input F m 

that causes the end-
ffector (θ ) to track a desired trajectory (θd ) . The first step is to linearize the map between the
6 



D. Kim and J. Lee Journal of the Franklin Institute xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: FI [m1+; November 24, 2020;2:29 ] 

i  

W  

(

x

x

x

x  

w

z

z

z

z  

t

z

z

z

z  

w

α

 

β  

3

 

d  

o  

d

F  

w  

i  

c
 

(  

α

nput F m 

and the actual output θ, using the fact that SEA systems are feedback linearizable.
ith the state variables defined as x 1 = θ, x 2 = 

˙ θ, x 3 = x, and x 4 = ˙ x , the equations of motion
6) are expressed in state-space form as 

˙  1 = x 2 , 

˙  2 = (k θ (x 3 /r − x 1 ) + G (x 1 ) + F f 1 + D 1 ) /I , 

˙  3 = x 4 , 

˙  4 = (−k x (x 3 − rx 1 ) + F f 2 + D 2 + F m 

) /B, (16)

here G � −mgh sin x 1 . 
Under the following nonlinear state coordinate transformation 

 1 = x 1 , 

 2 = x 2 , 

 3 = (k θ (x 3 /r − x 1 ) + G (z 1 ) + F f 1 + D 1 ) /I , 

 4 = (k θ (x 4 /r − x 2 ) + 

˙ G (z 1 ) + 

˙ F f 1 + 

˙ D 1 ) /I , (17)

he model (16) can be written in terms of the new coordinates as 

˙  1 = z 2 , 

˙  2 = z 3 , 

˙  3 = z 4 , 

˙  4 = α(z) + βF m 

, (18)

here z = 

[
z 1 z 2 z 3 

]T 
, 

(z) = −k θ
I 

z 3 − k x 
B 

z 3 + 

1 

I 
( G̈ (z 1 ) + F̈ f 1 + D̈ 1 ) + 

k x 
I B 

(G (z 1 ) + F f 1 + D 1 ) + 

k θ
rI B 

(F f 2 + D 2 ) , 

(19)

= 

k θ
rI B 

. (20)

.2. Controller design 

Continuous-time systems are typically controlled in digital implementation. A controller is
iscretized and implemented with sample and hold devices. Assuming that the state variables
f the system are measured at sampling instants, a discrete-time controller is designed as
elayed control as follows [40] : 

 m 

(t ) = F md (t k ) = F md (t − d(t )) , t ∈ [ t k , t k+1 ) , (21)

here F md is a discrete-time control input, 0 = t 0 < t 1 < · · · < t k < · · · are the sampling
nstants, and d(t ) = t − t k ≤ d max = L (fixed sampling interval) which denotes a piecewise
ontinuous delay with 

˙ d (t ) = 1. 
From now on, a controller using the TDE technique is designed that moves the end-effector

 z 1 ) to the desired trajectory ( z d ), eliminating the need of identifying a system model (i.e.,
, β in Eq. (18) ). 
7 
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The last line of Eq. (18) can be rewritten, by introducing a constant β, as follows: 

˙  4 = z (4) 
1 = α(z) + βF md (t − d(t )) −βF md (t − d(t )) + βF md (t − d(t )) = H + βF md (t − d(t ))

(22)

(ϑ ) = ϕ(ϑ) , with ϑ ∈ [ −d max , 0] , (23)

here H � α(z) + βF md (t − d(t )) − βF md (t − d(t )) , ϕ ⊆ R 

n is the minimal information to
btain the solution z(t, ϕ, t 0 ) . 

The term H contains system dynamics and all uncertainties. Originally, TDE-incorporated
ontrollers are developed based on the assumption that the term H is piecewise continuous
ince the system (6) is generally composed of continuous components. The assumption enables
he term H to be estimated; the current value of the term H can be estimated with the
revious-step control input and its corresponding measured output. In the proposed control,
he estimation of the current value of the term H can be achieved through the following
stimator: 

̂ 

 (t − d(t )) � z (4) 
1 (t − d(t )) − βF md (t − d(t ) − L) . (24)

The terms z (4) 
1 (t − d(t )) and F md (t − d(t ) − L) are the latest measured state and the

revious-step control input, respectively. The accuracy of TDE can be improved by reducing
he difference between t and t k . This can be achieved by increasing the sampling frequency.
tilizing this approach, the control law is constructed as 

 md (t − d(t )) = 

1 

β

(−̂ H (t − d(t )) + ν
) = F md (t − d(t ) − L) + 

1 

β

(
−z (4) 

1 (t − d(t )) + ν
)
. 

(25)

The new control input, defined as ν, determines the error dynamics of the system. The
ew input ν for position control can be designed as 

= z (4) 

d (t − d(t )) + c 1 
... 
e (t − d(t )) + c 2 ̈e (t − d(t )) + c 3 ̇  e (t − d(t )) + c 4 e (t − d(t )) , (26)

here e (t ) � z d (t ) − z 1 (t ) and c 1 , . . . , c 4 are design parameters. 

.3. TDE error compensation 

We note that the control law does not guarantee asymptotic stability since ̂ H (t ) � = H (t )
details are presented in an Appendix). In particular, when discontinuous components such
s friction are included in the term H, the difference between the real value of H and its
stimate becomes significant. TDE error, an estimation error, arises from the difference. TDE
rror is involved in the convergence of the error dynamics. With TDE error defined as 

 (t ) � 

̂ H (t − d(t )) − H (t ) = ν − z (4) 
1 (t ) , (27)

he error dynamics of the proposed controller including TDE error is obtained by substituting
q. (26) into Eq. (27) as follows: 

 (t ) = z (4) 

d (t − d(t )) − z (4) 
1 (t ) + c 1 

... 
e (t − d(t )) + c 2 ̈e (t − d(t )) + c 3 ̇  e (t − d(t )) + c 4 e (t − d(t )) . (28)
8 
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Note that the TDE error ε causes the system output to deviate from the desired trajectory.
n an effort to reduce the influence of ε on the error dynamics and pursue asymptotic stability,
 learning algorithm is adopted that estimates the TDE error ε. The update law is 

  (t − d(t )) = ̂  ε (t − d(t ) − L) − γ ξ (t − d(t )) , (29)

here γ is a learning factor and ξ denotes tracking error. 
The tracking error can be designed as 

(t − d(t )) � k 1 e 
(4) (t − d(t )) + k 2 

... 
e (t − d(t )) + k 3 ̈e (t − d(t )) 

+ k 4 ̇  e (t − d(t )) + k 5 e (t − d(t )) , (30)

here k 1 , . . . , k 5 are gains. 
The proposed control law considering the counteracting term ̂ ε (t − d ) is written as fol-

ows: 

 md (t − d(t )) = F md (t − d(t ) − L) + β
−1 [

z (4) 

d (t − d(t )) − z (4) 
1 (t − d(t )) + c 1 

... 
e (t − d(t )) 

+ c 2 ̈e (t − d(t )) + c 3 ̇  e (t − d(t )) + c 4 e (t − d(t )) + ̂  ε (t − d(t )) 
]
. (31)

The position and its derivatives of the driven part need to be fed back to the control
aw including the TDE error compensation. As long as the sampling interval L is sufficiently
mall and the learning algorithm estimates the TDE error ε in a satisfactory manner, the target
ystem can be asymptotically stabilized with the control input. The proof of the stability of
he closed-loop system is presented in the Appendix. 

.4. Measurement noise and remedies 

The proposed control requires the position state and its derivatives to be measured. For
ractical reasons, all required states are difficult to measure using sensors. Fortunately, the
se of a relatively large value of β leads to the same effect as a 1st-order digital low-pass
lter (LPF). One can rewrite the proposed control law (31) with a definition w � e (4) + c 1 

... 
e +

 2 ̈e + c 3 ̇  e + c 4 e + ̂  ε as 

 md (t − d(t )) = F md (t − d(t ) − L) + β
−1 

w. (32)

When the 1st-order LPF is injected into the control law, Eq. (32) can be rewritten as 

 md (t − d(t )) = F 

F 
md (t − d(t ) − L) + β

−1 
w, (33)

here F 

F 
md is the filtered control input. 

Designing the 1st-order LPF with the cutoff frequency of λ as 

 

F 
md (t − d(t )) = λL (1 + 1 λL ) −1 F md (t − d(t )) + (1 + 1 λL) −1 F 

F 
md (t − d(t ) − L) , (34)

nd substituting Eq. (33) into Eq. (34) leads to 

 

F 
md (t − d(t )) = F 

F 
md (t − d(t ) − L) + b 

−1 
w, (35)

here b 

−1 = λL(1 + 1 λL) −1 β
−1 

. 
From the fact that Eqs. (32) and (35) are in the same form, it is concluded that increasing

he value of β plays the same role as the 1st-order digital LPF. 
9 
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. Numerical validation 

A simulation study of the proposed control with the pneumatic system ( Fig. 3 ) is con-
ucted. The system parameters are presented in Table 1 , based on [8,9] . First, it is required to
xamine how the proposed control provides robustsness to uncertainties including unknown
isturbances and measurement noise. Next the effect of the learning TDE error compensation
s examined with the learning factor γ varying. Through the simulation study, it is assumed
hat the position and acceleration of the driven part are measured using separate sensors and
e obtain the velocity from the measured position state and jerk and its derivative from the

cceleration state, respectively, through numerical differentiations. 
The mismatched disturbance D 1 and matched disturbance D 2 are imposed as 0. 61 sin (60t )

nd cos (60t ) , respectively [41] . Friction F f 1 , F f 2 are set as 0.02 ̇  q 1 + 0.02sgn( ̇  q 1 ) Nm and
 ̇  q 2 + 2sgn( ̇  q 2 ) N, respectively. The sampling time L is 0.001 s. The 4th-order Runge–Kutta
ethod is adopted to solve system dynamics with step size 0.0001 s. The initial conditions

f all system states are all set to 0. 

.1. Performance over uncertainties 

To investigate the capability of the proposed control in compensating for system dynamics
nd uncertainties, a controller proposed in [42] is selected as a comparison target. The control,
hich is based on feedback linearization, adopted an extended state observer (ESO) to estimate

ystem dynamics and uncertainties. 
The control gains c 1 , c 2 , c 3 , and c 4 in the proposed control are determined by placing

he poles at (1 + τc s) 4 with τc = 1 / 15 . The gain β is located at 250. We determine the
ontrol gains k 1 , k 2 , k 3 , and k 4 in the ESO control by placing the same poles, i.e., (1 + τc s) 4

ith τc = 1 / 15 , to produce the same error dynamics. The observer gains β1 , β2 , β3 , β4 , and
5 in the ESO control are obtained by placing the same poles, i.e., (1 + τo s) 5 with τo =
 / 30. The nominal value b 0 in the ESO control law is set to 150 while the real value of
(in their denotation) is around 152. The learning counteraction is turned off through this

omparison. 
able 1 
arameters of the pneumatic system. 

arameter Symbol Value Unit 

riven part inertia I 0.04 kgm 

2 

ravitational torque mgh 2 Nm 

riving part inertia B 1.5 kg 
riving cylinder bore A 1 , A 2 0.0011, 0.0009 m 

2 

niversal gas constant R 287 J/kgK 

emperature T 293 K 

nitial volume V 10 , V 20 0.0003 m 

3 

ir mass m 1 , m 2 3.6123 ×10 −04 kg 
ir chamber thickness δ 0.03 m 

ir chamber outer diameter a 0.04 m 

ir chamber inner diameter b 0.02 m 

10 
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Fig. 4. Comparisons in performance of the proposed control with the ESO control (without measurement noise): (a) 
position (the desired trajectory (magenta line) is behind the red line), (b) position error and (c) control input. 
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Fig. 4 shows the comparisons in performance between the two controls. It is observed
hat the proposed control provides improved accuracy in tracking in comparison with the
SO control, under a similar degree of control input. This implies that system dynamics and
ncertainties are efficiently estimated and compensated by TDE in comparison with the ESO.

Next a situation under measurement noise is considered. For position sensor noise, zero-
ean Gaussian noise with the standard deviation σ = 0. 005 

2 is applied, and for accel-
ration sensor noise, zero-mean Gaussian noise with the standard deviation σ = 0. 01 

2 is
pplied. 

Fig. 5 displays comparisons in tracking performance under measurement noise; the figures
n the left column are the results of the proposed control, whereas the figures on the right
olumn are the results of the ESO control. In comparison with the ESO control that uses
n observer, it is observed that the proposed control is less affected by measurement noise
rom the fact that its control input is less contaminated by the noise. Note that the proposed
ontrol law contains an equivalent low-pass filter. The tracking performance does not show a
otable change in the presence of noise. 
11 
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Fig. 5. Comparisons in performance of the proposed control (red line) with the ESO control (black line) under 
measurement noise: (a), (b) position, (c), (d) position error, and (e), (f) control input. The magenta lines in the 
position plots indicate the desired trajectory. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

12 
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Fig. 6. Performance of the proposed control with different values of the learning factor γ : (a) position (four curves 
overlap), (b) position error, and (c) control input (four curves overlap). The magenta line in the position plot indicates 
the desired trajectory. 
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.2. Effect of TDE error compensation 

The effect of TDE error compensation using the learning algorithm is examined with
our different values of the learning factor γ : 0, 0.01, 0.05, and 0.1. The control gains
 1 , c 2 , c 3 , and c 4 in the proposed control are determined by placing the poles at (1 + τc s) 4

ith τc = 1 / 20. The gains k 1 , k 2 , k 3 , k 4 , and k 5 in Eq. (30) are selected by placing the same
oles ( (1 + τcp s) 5 with τo = 1 / 20). All unstructured uncertainties are imposed. Measurement
oise is not considered at this time to test the effect of TDE error compensation. 

Fig. 6 shows that a greater value of γ provides more accuracy in tracking. This suggests
hat the term ̂ ε in the control law that is introduced to counteract TDE error plays a role
n cancelling out TDE error that influences the convergence of the error dynamics. This
ccordingly leads to reduced position error. Counteracting TDE error does not require a
ignificant increase in control input. 
13 
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. Conclusion 

With the need of controlling the position of an arm exoskeleton actuated by a motor
ystem through pneumatic circuits, a model-free and robust controller by incorporating the
DE technique and learning compensation has been developed. The TDE technique com-
ensates for system dynamics and all kinds of uncertainties with no significant computation
oad. The learning compensation leads to asymptotic stability by cancelling out TDE error.
he controller is designed and its closed-loop stability is analyzed in a sampled-data envi-

onment, redefining the causality about the control command and its output in TDE from a
ractical aspect. Numerical simulation through a comparative study, the proposed controller
chieves satisfactory control performance in the presence of mismatched uncertainties as well
s matched uncertainties. And it was founded that the learning counteraction for TDE error
urther reduces position tracking error. 
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ppendix A 

1. Stability with TDE only 

emma 1. If 1) ̂ H = H, 2) d max (= L) is sufficiently small, and 3) A 0 + A 1 is a Hurwitz
atrix, then the system (6) with control input (25) is asymptotically stable. 

roof. Assuming that z (4) 

d (t ) ≈ z (4) 

d (t − d(t )) , the closed-loop dynamics can be expressed
s 

 

(4) (t ) = −c 1 
... 
e (t − d(t )) − c 2 ̈e (t − d(t )) − c 3 ̇  e (t − d(t )) 

− c 4 e (t − d(t )) . (36)

With introducing the matrices A 0 , A 1 ∈ R 

4×4 , Eq. (36) is rewritten in a matrix form as
ollows: 

˙ 
 (t ) = A 0 e(t ) + A 1 e(t − d(t )) , (37)
14 



D. Kim and J. Lee Journal of the Franklin Institute xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: FI [m1+; November 24, 2020;2:29 ] 

e  

w

A  

A  

e  

e  

0  

F  

 

w
 

P

W  

w

P

W  

w

η  
(ϑ ) = ϕ (ϑ ) , with ϑ ∈ [ −d max , 0] , (38)

here 

 0 = 

⎡ 

⎢ ⎢ ⎣ 

0 1 0 0 

0 0 1 0 

0 0 0 1 

0 0 0 0 

⎤ 

⎥ ⎥ ⎦ 

, (39)

 1 = 

⎡ 

⎢ ⎢ ⎣ 

0 0 0 0 

0 0 0 0 

0 0 0 0 

−c 4 −c 3 −c 2 −c 1 

⎤ 

⎥ ⎥ ⎦ 

, (40)

(t ) = [ e (t ) ˙ e (t ) ë (t ) 
... 
e (t )] T . (41)

One can express Eq. (37) in a descriptor form as follows: 

˙ 
 (t ) = y(t ) , (42)

 = −y(t ) + (A 0 + A 1 ) e(t ) − A 1 

∫ t 

t −d(t ) 
y(s) ds. (43)

Again, Eq. (37) can be written in an extended form as 

 ̇

 ē (t ) = 

[˙ e (t ) 
0 

]
(44)

= 

[
0 I 

A 0 + A 1 −I 

]
ē (t ) −

[
0 

A 1 

] ∫ t 

t −d(t ) 
y(s) ds, (45)

here ē (t ) = [ e T (t ) y 

T (t )] T and F = diag[ I, 0] . 
Next, a Lyapunov–Krasovskii functional with positive 4 ×4 matrices

 1 , P 2 , P 3 , Y 1 , Y 2 , Z 1 , Z 2 , Z 3 , R, and S is employed as follows: 

 1 (t ) � ̄e T (t ) FP ̄e (t ) + 

∫ 0 

−L 

∫ t 

t+ � 

y 

T (s) Ry(s) d sd �, (46)

here 

 � 

[
P 1 0 

P 2 P 3 

]
, FP = P 

T F ≥ 0. 

Differentiating W 1 along the trajectories of Eq. (37) leads to (refer to [43] for details) 

˙ 
 1 (t ) ≤ē T (t ) �ē (t ) −

∫ t 

t−L 
y 

T (s) Ry(s) ds + η(t ) , (47)

here 

(t ) ≤
∫ t 

t−L 
[ y 

T (s) ē T (t )] 

⎡ 

⎣ 

R Y − [ 0 A 

T 
1 ] P 

Y 

T − P 

T 

[
0 

A 1 

]
Z 

⎤ 

⎦ 

[
y(s) 
ē (t ) 

]
ds (48)
15 
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a

Z  

W

 

 

s

W  

w

�  

 

 

(  

b  

i  

p

A

L  

s

ξ

= 

∫ t 

t−L 
y 

T (s) Ry(s) ds + 2 

∫ t 

t−L 
y 

T (s) 
(
Y − [ 0 A 

T 
1 ] P 

)
ē (t ) ds + 

∫ t 

t−L 
ē T (t ) Z ̄e (t ) ds 

= 

∫ t 

t−L 
y 

T (s) Ry(s) ds + 2 

∫ t 

t−L 
˙ e T (s) (Y − [ 0 A 

T 
1 ] P 

)
ē (t ) ds + L ̄e T (t ) Z ̄e (t ) 

≤
∫ t 

t−L 
y 

T (s) Ry(s) ds + 2e T (t ) 
(
Y − [ 0 A 

T 
1 ] P 

)
ē (t ) − 2e T (t − L) 

(
Y − [ 0 A 

T 
1 ] P 

)
ē (t ) 

+ L ̄e T (t ) Z ̄e (t ) , 

� P 

T 

[
0 I 

A 0 −I 

]
+ 

[
0 I 

A 0 −I 

]
T P + d max Z 

+ 

[
0 0 

0 d max R 

]
, (49)

nd 

 � 

[
Z 1 Z 2 

Z 3 

]
, Y � 

[
Y 1 Y 2 

]
. (50)

Then, Eq. (47) can be rewritten as 

˙ 
 1 (t ) ≤ē T (t ) �ē (t ) + 2e T (t ) 

(
Y − [ 0 A 

T 
1 ] P 

)
ē (t ) − 2e T (t − d(t )) 

(
Y − [ 0 A 

T 
1 ] P 

)
ē (t ) 

+ L ̄e T (t ) Z ̄e (t ) (51)

Under the the conditions Y = [ 0 A 

T 
1 ] P and R and Z → 0 (and d max is assumed sufficiently

mall), Eq. (51) can be rewritten as 

˙ 
 1 (t ) ≤ ē T (t ) ̄�ē (t ) , (52)

here 

¯ � 

[
φ P 1 − P 

T 
2 + (A 0 + A 1 ) 

T P 3 

−P 3 − P 

T 
3 

]
, (53)

φ � P 

T 
2 (A 0 + A 1 ) + (A 0 + A 1 ) 

T P 2 . (54)

If P 1 = P 2 , P 3 → 0 and φ < 0, then 

˙ W 1 (t ) < 0. This result indicates that the system
6) with control input (25) is asymptotically stable. Note that we assume that Lemma 1 has
een constructed with the condition the ideal assumption ( ̂  H = H ) which is unrealistic. If the
deal assumption ( ̂  H = H ) is broken, asymptotic stability cannot be guaranteed. Also, it is
ossible that performance degrades. �

2. Stability with TDE and the learning-based counteraction 

emma 2. The system (6) with control input (31) is asymptotically stable if 1) d max (= L) is
ufficiently small, 2) A 0 + A 1 is a Hurwitz matrix, and 3) ξ is designed as follows: 

(t ) = 2a[ e T (t ) ˙ e T (t )] D 

= 2a 

(
P 

4, 4 
3 e (4) (t ) + (P 

4, 4 
2 + P 

3 , 4 
3 ) 

... 
e (t ) + (P 

3 , 4 
2 + P 

2, 4 
3 ) ̈e (t ) 
16 
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w

D  

w  

t

P

e  

w

E  

F  

 

W  

w

W

 

W

 

w

+ (P 

2, 4 
2 + P 

1 , 4 
3 ) ̇  e (t ) + P 

1 , 4 
2 e (t ) 

)
, (55)

here 

 � [ P 

1 , 4 
2 · · · P 

4, 4 
2 P 

1 , 4 
3 · · · P 

4, 4 
3 ] T , (56)

ith P 

i, j 
2 , P 

i, j 
3 denoting the (i, j) th element of P 2 , P 3 , respectively. P 

i, j 
2 , P 

i, j 
3 are selected such

hat the matrices P 2 , P 3 remain positive. 

roof. The closed-loop dynamics can be expressed in a matrix form as 

˙ 
 (t ) = A 0 e(t ) + A 1 e(t − d(t )) + E(t ) , (57)

here 

(t ) = [0 0 0 ˜ ε ] T , 
(˜ ε (t ) � ε(t ) − ̂ ε (t − d(t )) 

)
. (58)

In a similar way to Eq. (45) , Eq. (57) is expressed in an extended form as 

 ̇

 ē (t ) = 

[˙ e (t ) 
0 

]
(59)

= 

[
0 I 

A 0 + A 1 −I 

]
ē (t ) −

[
0 

A 1 

] ∫ t 

t −d(t ) 
y(s) ds 

+ 

[
0 

E(t ) 

]
. (60)

The following Lyapunov–Krasovskii functional can be designed: 

 (t ) � W 1 (t ) + W 2 (t ) = W 1 (t ) + m 

∫ t 

t−L 

1 

2 ̃

 ε 2 (s) ds, (61)

here m > 0. 
Differentiating W 1 along the trajectories of Eq. (57) leads to 

˙ 
 1 (t ) ≤ē T (t ) �ē (t ) + 2e T (t ) 

(
Y − [ 0 A 

T 
1 ] P 

)
ē (t ) 

− 2e T (t − d(t )) 
(
Y − [ 0 A 

T 
1 ] P 

)
ē (t ) + L ̄e T (t ) Z ̄e (t ) 

+ 2 ̄e T (t ) P 

T 

[
0 

E(t ) 

]
. (62)

Next, W 2 can be differentiated as 

˙ 
 2 (t ) = 

m 

2 

( ̃  ε 2 (t ) − ˜ ε 2 (t − L)) 

= 

m 

2 

( ̃  ε (t ) − ˜ ε (t − L))( ̃  ε (t ) + ̃  ε (t − L)) 

= 

m 

2 

ε̄ (t )(2 ̃  ε (t ) − ε̄ (t )) 

= m ̄ε (t ) ̃  ε (t ) − m 

2 

ε̄ 2 (t ) , (63)

here ε̄ (t ) � ̃  ε (t ) − ˜ ε (t − L) . 
17 
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W

 

 

 

e
E
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i

2  

w

ξ  

a

W  
W 2 can be rewritten as follows, with the relationship ξ (t − d(t )) = 

1 
γ
( ̂  ε (t − d(t )) − ̂ ε (t −

(t − L) − L)) from Eq. (29) : 

˙ 
 2 (t ) ≤ m ̄ε (t ) ̃  ε (t ) 

= m 

(
(ε(t ) − ε(t − L)) − ( ̂  ε (t − d(t )) − ̂ ε (t − d(t − L) − L)) 

)˜ ε (t ) 

= m 

(
(ε(t ) − ε(t − L)) ̃  ε (t ) − γ ξ (t − d(t )) ̃  ε (t ) 

)
= m 

(
(ε(t ) − ε(t − L)) ̃  ε (t ) − γ ξ (t ) ̃  ε (t ) + γ (ξ (t ) − ξ (t − d(t ))) ̃  ε (t ) 

)
. (64)

The summation of the above two Lyapunov functionals (W � W 1 + W 2 ) can be reduced to 

˙ 
 (t ) ≤ ē T (t ) ̄�ē (t ) − (1 − ˙ d (t )) e T (t − d(t )) Se(t − d(t )) 

+ 2e T (t ) 
(
Y − [ 0 A 

T 
1 ] P 

)
ē (t ) (65)

− 2e T (t − d(t )) 
(
Y − [ 0 A 

T 
1 ] P 

)
ē (t ) 

+ L ̄e T (t ) Z ̄e (t ) + 2 ̄e T (t ) P 

T 

[
0 

E(t ) 

]
− mγ ξ (t ) ̃  ε (t ) 

+ m(ε(t ) − ε(t − L)) ̃  ε (t ) + mγ (ξ (t ) − ξ (t − d(t ))) ̃  ε (t ) , 

here the matrix �̄ was defined in Eq. (54) . 
As in Lemma 1 , if d max (= L) is assumed sufficiently small and Y = [ 0 A 

T 
1 ] P, R and Z

 0, Eq. (65) is reduced to 

˙ 
 (t ) ≤ē T (t ) T �̄ē (t ) + 2 ̄e T (t ) P 

T 

[
0 

E(t ) 

]
− mγ ξ (t ) ̃  ε (t ) 

+ m(ε(t ) − ε(t − L)) ̃  ε (t ) + mγ (ξ (t ) − ξ (t − d(t ))) ̃  ε (t ) . (66)

The last two terms in the above equation becomes negligible: 
• m(ε(t ) − ε(t − L)) ̃  ε (t ) ≈ 0 when m → 0 and the TDE error estimation error ̃  ε (t ) → 0.
• mγ (ξ (t ) − ξ (t − d(t ))) ̃  ε (t ) ≈ 0 when d(t ) is sufficiently small and the TDE error

stimation error ˜ ε (t ) → 0. 
liminating these negligible terms from Eq. (66) , we have 

˙ 
 (t ) ≤ē T (t ) T �ē (t ) + 2 ̄e T (t ) P 

T 

[
0 

E(t ) 

]
− mγ ξ (t ) ̃  ε (t ) . (67)

Based on Lemma 1 , the matrix �̄ is negative if d max (= L) is sufficiently small and A 0 + A 1

s Hurwitz. 
The middle term on the right-hand side of Eq. (67) can be rearranged as 

 ̄e T (t ) P 

T 

[
0 

E(t ) 

]
= 2 ̄e T (t ) 

[
P 

T 
2 E(t ) 

P 

T 
3 E(t ) 

]
= 2 ̄e T (t ) D ̃  ε (t ) , (68)

ith the matrix D defined in Eq. (56) . 
If ξ (t ) is designed such that 

(t ) = 

2 

mγ
ē T (t ) D , (69)

s long as the matrices P 2 , P 3 remain positive, one can obtain 

˙ 
 (t ) ≤ē T (t ) T �ē (t ) . (70)
18 
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The condition �̄ < 0 leads to that ˙ W (t ) < 0. Therefore, the closed-loop system is globally
symptotically stable. �
emark 1. The gains k 1 , . . . , k 5 in Eq. (30) correspond to the coefficients of Eq. (55) , respec-

ively. The gains k 1 , . . . , k 5 need to be selected that keep P 2 , P 3 positive to achieve asymptotic
tability. 

emark 2. The gain β̄ does not influence stability theoretically, which is in accordance with
31] . Due to practical limitations including the actuator output limit and measurement noise,
t is necessary to avoid setting the gain to a high value. 
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