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Abstract: The status, changes, and disturbances in geomorphological regimes can be regarded as 

controlling and regulating factors for biodiversity. Therefore, monitoring geomorphology at local, 

regional, and global scales is not only necessary to conserve geodiversity, but also to preserve 

biodiversity, as well as to improve biodiversity conservation and ecosystem management. 

Numerous remote sensing (RS) approaches and platforms have been used in the past to enable a 

cost-effective, increasingly freely available, comprehensive, repetitive, standardized, and objective 

monitoring of geomorphological characteristics and their traits. This contribution provides a state-

of-the-art review for the RS-based monitoring of these characteristics and traits, by presenting 

examples of aeolian, fluvial, and coastal landforms. Different examples for monitoring 

geomorphology as a crucial discipline of geodiversity using RS are provided, discussing the 

implementation of RS technologies such as LiDAR, RADAR, as well as multi-spectral and 

hyperspectral sensor technologies. Furthermore, data products and RS technologies that could be 

used in the future for monitoring geomorphology are introduced. The use of spectral traits (ST) and 

spectral trait variation (STV) approaches with RS enable the status, changes, and disturbances of 

geomorphic diversity to be monitored. We focus on the requirements for future geomorphology 

monitoring specifically aimed at overcoming some key limitations of ecological modeling, namely: 

the implementation and linking of in-situ, close-range, air- and spaceborne RS technologies, 

geomorphic traits, and data science approaches as crucial components for a better understanding of 

the geomorphic impacts on complex ecosystems. This paper aims to impart multidimensional 

geomorphic information obtained by RS for improved utilization in biodiversity monitoring.  

Keywords: geomorphology; terrain; surface; geodiversity; fluvial; aeolian; coastal; traits; spectral 

traits; remote sensing; earth observation; DEM; DTM; DSM; monitoring 
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1. Introduction 

The evolutionary and ecological processes, structures, and functions of life on Earth are strongly 

influenced by multi-facetted geophysical processes, shaping geomorphic factors, and geodiversity on 

all spatio-temporal scales [1,2]. Geodiversity, including the lithosphere, the atmosphere, the 

hydrosphere, and the cryosphere [3], is the controlling and regulating factor for landscape processes 

and thus a decisive factor for biodiversity. Organisms both respond to [4] and significantly alter their 

abiotic environment, affecting, for example, nutrient loads, weathering rates, sediment transport, and 

water cycles. Indeed, recent work has shown that knowledge of geodiversity has a paradigm-shifting 

ability to improve predictions about the effects of environmental change on biodiversity [5,6] and 

that the successful conservation of biodiversity requires the conservation of geodiversity [7]. Of 

particular importance is the link with the maintenance or restoration of species diversity, ecosystem 

resilience, and connectivity in the face of climate change [7,8]. Monitoring geodiversity and its 

relation to biodiversity, ecosystem, and ecological integrity [1,9,10] is thus essential if we are to 

effectively manage our natural resources. 

In the last decade, global conservation organisations have started to recognize that protected 

areas should address aspects of geodiversity and that geodiversity is part of natural diversity [11–

13]. Consequently, these factors are increasingly being integrated into nature conservation planning 

and management measures, and adopted by nature conservation designations such as the 

Geoconservation programme of the International Union for the Conservation of Nature (IUCN, 2018) 

[11]. Gray et al. [14] provided an integrative review as a contribution to the sustainable management 

of ecosystems based on geodiversity, defining geodiversity as the diversity of abiotic features and 

their surface and subsurface processes or generally as the abiotic diversity of the Earth’s surface, 

which is represented by various geomorphic characteristics. Lausch et al. [3] extended this approach 

by defining geodiversity as “the range and variability of geo-components and their intraspecific and 

interspecific interactions on all levels of organization of their geo-components”. In the latter, five basic 

characteristics of geodiversity were defined, namely: geo-genesis diversity (GGD), geo-taxonomic 

diversity (GTaxD), geo-structural diversity (GSD), geo-functional diversity (GFD), as well as geo-trait 

diversity (GTD). Numerous interpretations of the geodiversity definition exist and the question as to 

whether a geocompartment belongs to geodiversity or not sometimes becomes a controversial issue 

[15]. All definitions of geodiversity account for geomorphic characteristics and their traits.  

The physical and chemical weathering of rocks and mass movements induce the formation of 

particular geomorphic structures and patterns, which form the basis of different geomorphic 

functions [16]. In this way, specific landforms developed from the geological process of geo-genesis 

(e.g., kettle holes from retreating glaciers, gullies from fluvial processes or various mountain, volcano, 

and coast types), creating specific microrefugia with characteristic morphological, hydrological, 

climatic, lithological, and soil patterns. Geomorphic diversity therefore creates the basis for niches 

and habitat diversity.  

Mountains are landforms [1] that can act as central interfaces with all other geo-factors, such as 

the climate, water, lithology, and soil, defining biodiversity at alpha, beta, and gamma levels, i.e., 

through species richness, or Shannon or Simpson diversity (see also [17]). They help when explaining 

patterns in the distribution of flora and fauna [18,19], leading not only to the development of distinct 

plant strategies and plant functional types [20,21], but also to spatial differentiation and speciation in 

animal populations due to barrier effects. Consequently, landforms, such as landslide scars [16,22] or 

water channels [23], make a crucial contribution to the richness, composition, and the occurrence of 

characteristic species traits and communities. Furthermore, geomorphic variables derived from 

digital elevation models (DEM) explain “the potential to open new research avenues for a variety of 

research disciplines that require detailed geomorphometric and land and aquatic surface 

information” [24]. A comprehensive overview of the state on landslides and quaternary climate 

changes is given by Pánek [25]. 

Geomorphic characteristics and their traits exist on all spatio-temporal scales [26,27], creating a 

strong link to biodiversity patterns and their interactions on a local, regional and even landscape scale 

[3]. Numerous studies have investigated the importance of individual geo-components to 



Remote Sens. 2020, 12, 3690 4 of 62 

biodiversity from the local or the patch scale [28,29] to the global scale [30,31] and investigated on 

which scales geodiversity is most relevant for biodiversity [32]. 

Patterns of bio- and geodiversity are particularly defined by topography, which defines the 

terrain, the three-dimensional quality of the surface, and the identification of specific landforms [33]. 

For example, topographic complexity is one of the main factors influencing the global patterns of 

mountain biodiversity [34]. Furthermore, topography explains the distribution of genetic diversity in 

one of the most fragile European hotspots of plant species [35]. The combination of both topography 

and climate also greatly influences the distribution patterns of vegetation on Earth [36]. More broadly, 

changes in species distribution, abundance, performance, and richness are shaped by geomorphic 

traits such as slope, aspect, curvature, variables of morphometry, lighting, visibility, soil moisture, or 

hydrological factors, such as channels, drainage networks, flow directions, or valley depths. Yet, 

current large-scale biodiversity models mainly focus on coarse and easily measured macroclimatic 

and topographic predictor variables, whilst largely ignoring other key aspects of the Earth’s surface 

and subsurface. Moreover, most analyses of biodiversity change do not consider the range of spatial 

and temporal scales at which geomorphic processes and traits act and the mechanisms by which they 

influence biodiversity. Despite meta-analyses [37] and recent progress (e.g., [5,6]). there remain 

fundamental gaps in synthesizing and integrating the links between biodiversity and geodiversity, 

especially for biogeography, macroecology, conservation planning, and global change biology [38]. 

Remote sensing (RS) can monitor geomorphic traits and changes in them. Due to sensor-specific 

RS characteristics such as spatial, spectral, temporal, or directional resolution, RS measurements with, 

e.g., insufficient spatial resolution, can lead to a loss of important information and subsequently to 

erroneous statements or input variables for ecosystem models [37–40]. In combination with 

modelling approaches, RS research is used to improve topographic base maps and to monitor 

landscape management, geoengineering, geomorphology, geohydrology, and geoecology [39–41]. RS 

is of particular importance in the prediction of geohazards, such as volcano eruptions and 

earthquakes, flooding, landslides, permafrost-related hazards, mass movements, soil erodibility. and 

erosion on land and in coastal waters [42,43]. Recent RS technologies such as the satellite-based light 

detection and ranging (LiDAR), global ecosystem dynamics investigation (GEDI) [44,45], as well as 

upcoming radio direction and ranging (RADAR) technologies such as the Tandem-L [46,47], NISAR 

(NASA-ISRO Synthetic Aperture RADAR) or even Rose-L (Copernicus High Priority Candidate 

Mission), alone and in combination with imaging spectroscopy [48] and thermal infrared (TIR) sensor 

technology such as the Copernicus Hyperspectral Imaging Mission (CHIME) [49], the Hyperspectral 

Infrared Imager Mission (HyspIRI, [50]) and Environmental Mapping and Analysis Program 

(EnMAP, [51]), open up new opportunities for a global monitoring of geo-and biodiversity and their 

interactions [3,52–54]. 

With the target-oriented open data policies for RS data [55–57], the continuity of RS time series 

like Landsat-5–9 [58] and increasingly more freely available RS-data products [59], the monitoring of 

geomorphology with RS sensors on close-range, as well as airborne and spaceborne platforms has 

been integrated for some years now into ecological modelling and geoengineering in science, 

economics, planning, and political decision-making processes. Indeed, the growing number of 

existing and future RS sensors and new technologies provide researchers, planners and political 

decision-makers tremendous opportunities. However, it is becoming increasingly difficult to get a 

proper overview or an understanding of which RS sensors, missions, and platforms can be used to 

monitor geomorphic characteristics and their traits. The goals of this paper are therefore as follows: 

 To document the state of the art of existing and upcoming RS technologies in air- and spaceborne 

RS for monitoring terrain and surfaces by using examples of aeolian-, fluvial- and coastal- 

landforms and their traits. 

 To provide a short overview of existing RS data products in the context of geomorphology. 

 To present a concise overview of the geomorphic characteristics and their traits that can be 

recorded by RS. 

The following chapters present the state-of-the-art for monitoring geomorphic landforms using 

airborne (UAV, airplanes), spaceborne (satellite) RS sensors (Figure 1). We discuss different 
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technologies, such as RADAR, LiDAR, thermal, multispectral, and hyperspectral sensors, that can be 

used for monitoring geomorphic characteristics and their traits. Furthermore, we address current and 

future satellite-borne sensors and missions as well as existing RS data products that enable the 

recording and monitoring of geomorphology, land terrain, and land surfaces. 

 

Figure 1. Different air- and spaceborne remote sensing platforms for assessing geomorphological 

landforms and their traits: (a) unmanned aerial vehicles (UAVs) or drones, (b) microlight-gravity-

controlled aircrafts (c) gyrocopter-microlight helicopter, (d) ECO-Dimona aircraft (top) and Cessna 

aircraft (bottom), and (e) satellite (from Lausch et al. [3]). 

2. Remote Sensing Techniques for Monitoring Geomorphology—Terrain and Surfaces 

Both land surface and relief influence the distribution and characteristics of geographic patterns 

of biodiversity by isolating and connecting plant and animal populations [60]. Surface elevation 

provides the foundation for many aspects of biodiversity, such as the vertical and spatial vegetation 

structure and fragmentation, homogeneity, biomass, age, and the height of the vegetation. Surface 

elevation influences the microclimate and precipitation patterns, affecting species distribution and 

primary production. Hence, surface elevation data are important to detect changes in ecosystems. 

Moreover, they build the basis for models that represent the height of the terrain surface (digital 

elevation models, DEMs) or models that represent surface heights and the height of buildings or 

vegetation (digital surface models, DSMs). If both DEM and DSM are available for an area, then the 

height difference from them results in the height of the vegetation or buildings, which is commonly 

referred to as the normalised digital surface model (nDSM). DEMs and DSMs are increasingly being 

combined with multi-temporal and multi-/hyperspectral RS data to describe biodiversity features in 

their complex multidimensionality. These models are of major importance for quantifying, modelling 

and monitoring plant and animal species distributions, especially at small spatial scales [32,61]. 

Terrain features such as slope aspect, slope gradient and terrain position are crucial variables that are 

derived from a DEM. These variables are essential for landscape analysis, evaluation, and modelling 

in geo- and biodiversity [62,63]. High resolution spatial 3D vegetation geometry is increasingly used 

as information for modelling animal movement and migration behaviours [64] and to describe the 

microclimate of animal and plant species habitats [65,66].  

For a long time ground-based in-situ point measurement methods were the only way to collect 

the base data for elevation maps. Surveyors traditionally used instruments such as tapes, compasses, 

theodolites, sextants, and aneroid barometers for mapping. The development of plane tables and 

alidades increased the precision of measurements. With the invention of tachymeters that determine 

distances through traveling time or the phase shift of light and the differential global navigation 

satellite system (CDGNSS), measurement precision has become even more accurate to the order of 

centimetres [67]. With these technologies, digital data collection has also emerged in the field of 

mapping, reducing the amount of cumbersome and laborious work. Nevertheless, these techniques 

are still labour intensive and only enable point measurements. For these reasons, it was difficult to 

achieve a universal ground-based survey of elevation data that fulfil the requirements of biodiversity 

studies and modern monitoring approaches. 

In the 19th century, airborne stereo-photogrammetry was developed [68], but considerable 

efforts still had to be made to obtain the desired results. Air- and spaceborne RS were able to 

overcome this limitation, enabling acquisitions of elevation data from the local to the global scale. 

The most ground-breaking development in terms of the acquisition of a global high-resolution digital 

terrain database was the International Shuttle RADAR Topography Mission—SRTM, which was on-
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board the Space Shuttle Endeavour for 11 days in February 2000 using a C-/X-band RADAR. This 

ultimately led to 1 or 3 arc degree global coverage [69]. 

Round about the same time airborne LiDAR systems became available [70] which were able to 

map surfaces at very high resolution from the local to the regional scale. Today, these systems are 

arguably the most commonly used systems in geomorphic-relevant applications [71]. Other systems 

are airborne and spaceborne SAR (synthetic aperture RADAR) and InSAR systems (interferometric 

SAR, [72]) that enable geomorphology to be monitored with accuracy levels to the mm. For example, 

SAR interferometers enable the monitoring of unstable slopes in high mountain ranges [73,74].  

Over recent years, the automatic photogrammetric processing of aerial images developed to a 

level where even laypeople were easily able to generate high resolution DEMs. As this method only 

requires a camera and a positioning system, it enables the wide-spread use of UAVs and airplanes to 

map the landscape. Numerous examples of how terrain, surfaces, and their changes can be derived 

using air- and spaceborne RS techniques are shown in Figure 2. 

 

Figure 2. Elevation, terrain and surfaces as crucial characteristics for all geomorphological landforms 

can be monitored with different air- and spaceborne RS technologies: (a) Digital Elevation Model 

(DEM)—GTOPO30, (b) an oblique, three-dimensional (3D) perspective of the DEM of the 

downstream area of Wadi El-Ambagi derived from a WorldView-2 stereo pair [75], (c) Digital Surface 

Model DSM and DEM derived from airborne LiDAR, area of reforestation in the former open-cast 

mining region Lausitz, Germany, (d) DEM of a rainforest area in Cape York (Australia) showing 

mining exploration scars and revealing groups of Brush Turkey mounds (airborne LiDAR—RIEGL 

Q680i-S), (e) 50 cm DEM of a mine site rehabilitation area near Morawa (Australia, airborne LiDAR—

RIEGL Q680i-S), (f) DSM and DEM derived from airborne LiDAR acquisitions of an open pit mining 

dump of Wintershall in Germany, (2 km × 2 km, >12 points/m2), (g) low resolution DEM of a 

dunescape in Tasmania (airborne LiDAR—RIEGL Q680i-S), (h) 25 cm DEM of sand dunes at the 

Tubridgi Coast in North West Australia (airborne LiDAR—RIEGL Q680i-S) and, (i) a land surface 

with 3D sinkholes in Israel (UAV). 
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2.1. Stereophotogrammetry and Related Approaches 

Stereophotogrammetry requires the acquisition of image data of the same area from slightly 

different positions. Due to the different viewing angles along the flight path of a platform, differences 

in elevation result in a different parallax, which can be measured and converted into elevation 

differences. Aerial images, for example, are often acquired with an overlap of more than 50% along 

the track. This allows stereoscopic measurements in the overlapping area. Pushbroom-like line 

scanners can be installed in such a way that enable forward view, nadir view, and backward view 

image strips to be recorded separately, allowing stereoscopic measurements. While airborne RS data 

can only be recorded under optimal weather conditions (no clouds, suitable lighting conditions), the 

data quality of optical data decreases enormously under cloud cover or poor lighting conditions. 

However, VNIR (visible and near infrared) can also be acquired below any clouds or even during 

heavy rain. This depends on the desired total signal-to-noise ratio (SNR), the flight altitude and the 

speed of, e.g., the aircraft or UAV. The advantage of airborne RS data is that the people interested in 

(or paying for) it have some control over the acquisition time, the spatial and spectral characteristics 

of the RS data. For spaceborne sensors this is rarely the case. One further advantage is that the 

resolution and precision of airborne is generally much higher than spaceborne RS, but the covered 

area is much bigger for spaceborne RS. For instance, for UAV we can have cm resolution and 

precision, while for spaceborne we have only very recently had m resolution (see also chapter 2.4, 

Table 1) 

Radargrammetry could solve this matter since it resorts to SAR data, for the acquisition of which 

illumination conditions (active sensor) and cloud cover are not that relevant (for a frequency ≤4 GHz 

electromagnetic (EM) waves penetrate clouds). Furthermore, there is a dependency with regard to 

different cloud types. In general, the approach of radargrammetry is identical to 

stereophotogrammetry except for the fact that the amplitude of the SAR signal is used instead of 

optical data. Because of the specifics of the RADAR geometry, additional processing steps are 

required. Due to the fact that the geometric resolution of RADAR used to be lower than the optical 

data, which were used during the photogrammetric DEM generation, and because the SAR-inherent 

speckle causes a degradation of the results, so far SAR data have not been widely used for elevation 

models. However, with the launch of sensors such as TanDEM-X, TerraSAR-X, Cosmo-Skymed, and 

ALOS-2 PALSAR, providing data with a geometric resolution as high as 1 m, radargrammetry has 

recently become a valid approach to fill gaps in cloud-prone regions or feature other peculiarities that 

complicate the stereophotogrammetry or InSAR [76]. 

Over recent years, UAVs have been increasingly used for monitoring the status, changes or 

disturbances of geomorphic characteristics [77–80]. Once the hardware, operator training and 

licencing, UAV licensing, insurance, and institutional certification (although not yet universal, but 

heading that way for many countries) have been organized, data can be recorded at a comparatively 

low cost for many applications. The image parameters, such as spectral channels, image overlap, and 

geometric resolution can be determined according to the mission requirements [81]. The overlap 

between the images enables stereoscopic image processing, the generation of seamless image 

mosaics, and the triangulation of high-density 3D point clouds (Figure 3). For the operational 

delineation of these products, several commercial and open source software packages are available. 

This kind of software commonly comprises bundle adjustment and structure from motion (SfM) 

algorithms [82,83]. In particular, this approach is increasingly being used to record geomorphic 

characteristics [84]. 
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Figure 3. Three-dimensional (3D) representations derived from overlapping images: (a) 

Representations of 3D plant species structure “Onobrychis viciifolia” and “Daucus carot” created 

with Structure from Motion (SfM) techniques as well as the use of a Time of Flight (TOF) 3D camera, 

a laser light sheet triangulation system and a coded light projection system (from Kröhnert et al., [85]), 

(b) Structure from Motion (SfM) techniques based dense point cloud that shows a gypsum mine close 

to Nordhausen, Germany. In total 250 RGB (red-green-blue) pictures, average point density 1020 

points/m2, UAV, (c–e) Digital Surface Model (DSM)—Santis Sankt Gallen, Switzerland, Aerial Laser 

Scanner (ALS)—LiDAR (RIEGL), point density (15 points/m2), total 51 million points, airplane. 

Based on the point cloud DSMs (digital surface models) and after vegetation filtering, DEMs can 

be delineated by rasterizing the point clouds. UAV-based DSMs and DEMs can therefore be used to 

accurately measure the canopy height [86]. Due to regulations and technical limitations, however, 

UAVs are currently only used for acquisition at a local scale. When considering a visual line of sight, 

i.e., a maximum distance of 100–500 m between the pilot and the UAV (a legal requirement in many 

countries), a theoretical area of 78.5 ha can be covered in one flight. It is possible to increase the 

monitoring area to be recorded by changing the UAV pilot’s location, transferring control to another 

pilot (at a different location) during the flight, or establishing technical BVLOS (beyond visual line of 

sight) systems. For the retrieval of elevation data products based on stereophotogrammetry and 

related approaches, equal points or image objects must be identified and accurately detected in all 

overlapping images. Particularly, in areas with low contrast (e.g., snow-covered areas), the number 

of reliable points can be very low. Furthermore, this method is not viable over water. In such areas a 

large number of ground control points (GCP) is therefore required, leading to higher production 

costs. In many cases, the number and positional accuracy of detectable points per unit area rises with 

increasing spatial resolution. A high point density enables small raster cells in the final elevation 

model.  

In 2009, NASA’s Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) 

aboard the Earth Observation satellite Terra provided a global DSM based on spaceborne optical 

data. Image acquisitions from two different angles along the satellite’s track allowed a stereographic 

analysis, resulting in absolute heights with an average standard deviation of 13 m [87,88]. A possible 

limitation for some disciplines may be the spatial resolution of 30 m. Hence, more recent 
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developments have focused on improving the spatial resolution, starting with an optical sensor, the 

Panchromatic Remote Sensing Instrument for Stereo Mapping (PRISM) aboard the Advanced Land 

Observing Satellite (ALOS) that was in operation from 2006 to 2011. The current global DSM yields a 

spatial resolution of around 5 m with a height root mean square error (RMSE) of 5 m [89,90]. Aldorsari 

and Jacobsen [91] and Alganci et al. [92] provided a quality assessment of DEM models from different 

spaceborne sensors. 

As discussed above, radargrammetry can be a valuable approach in areas where no optical data 

is available. In fact, the German mission TanDEM-X mission (two twin satellites flying in a helix-

formation) provided a suitable dataset for the generation of global radargrammetry-based elevation 

models like the WorldDEM. Airbus is promoting the WorldDEM, but the WorldDEM is an 

interferometric product: The description of WorldDEMcore: “This Digital Surface Model (DSM) 

represents the surface of the Earth including buildings, infrastructure and vegetation. This unedited 

DSM is output of the interferometric processing without any refinement. This product usually 

contains RADAR specific artefacts, voids, and can include processing artefacts”. Source: 

https://api.oneatlas.airbus.com/documents/2018-

07_WorldDEM_TechnicalSpecs_Version2.4_I1.0.pdf. However, since the TanDEM-X mission has 

InSAR capabilities (see Section 4.3), enabling even more accurate elevation models, a global 

radargrammetry-based model might not be produced.  

2.2. Approaches by InSAR 

InSAR-based elevation models rely on the phase signal of electromagnetic waves. The SAR 

phase basically depends on object trait characteristics (controlling the scattering process) and the 

distance between SAR and the Earth’s surface [93,94]. Thus, at least two phase data sets are required 

to separate both impacts. In the case of InSAR, both phase data sets are acquired from slightly 

different positions (the maximum distance is determined by the critical baseline) and feature the same 

polarisation [94,95]. Thus, the object phase can be assumed equal in both images and is cancelled out 

when the phase differences are computed. Ultimately, the remaining range difference is exploited. 

The range difference can be used to infer the height of any given point. Thus, InSAR is the only 

instrument that provides continuous (resolution or sub aperture cell-wise) height measurements 

from space, even in the presence of cloud. The height value of each resolution cell represents the 

location of the scattering phase centre. 

In the case of surface scattering, where the scattering process takes place at the boundary 

between air and a surface (e.g., bare soil), the scattering phase centre represents the elevation of this 

boundary. For volume scattering, where the scattering process takes place at several locations along 

a vertical profile (e.g., the forest canopy), the scattering phase centre is located somewhere within this 

volume [96–98]. The ultimate position in a forest canopy primarily depends on the canopy gap 

fraction and the attenuation of the electromagnetic wave by individual trees, but only hiding the 

desired geomorphic traits (the ground). Low attenuation results in deep penetration of the wave and 

thus in a reduced height of the scattering phase centre, whereby penetration increases with an 

increasing wavelength [97–100]. In terms of environmental conditions it maximized for very dry or 

frozen conditions and can reach several meters of penetration for L-band data (~1–2 GHz) [99]. 

Accordingly, DSMs based on InSAR (and radargrammetry) do not necessarily represent the real 

surface of a vegetation layer, which results in an underestimation of the nDSM. Nevertheless, SAR-

based nDSMs can be used as a proxy for tree height (Figure 4e1–e3). 



Remote Sens. 2020, 12, 3690 10 of 62 

 

Figure 4. Digital Surface Model (DSM) recorded by different sensors and mounted on various RS 

platforms: (a) DSM—Terrestrial Laser Scanner—LiDAR (RIEGL VUX-1), point density (250 

points/m2), on UAV (RiCopter), (b) DSM with Terrestrial Laser Scanner—LiDAR (RIEGL VUX-1), 

point density (30 points/m2), on airplane, Cologne, Germany, (c) DSM—RGB (Sony NEX-7 RGB) 

image data-based point cloud (natural colour), on UAV (modified after Thiel et al. [86], (d) DSM—

RGB image based point cloud, on airplane, (e) DSM comparisons of (e1) a Terrestrial Laser Scanner 

(TLS) DSM point cloud, (e2) a TanDEM-X DSM (satellite) and (e3, blue color) the DTM from the 

Federal LiDAR survey (airplane). The maximum extent of the TLS dataset is approximately 200 m 

and the resolution of the TanDEM-X DSM is 5 × 5 m2. (e2) Note that the TanDEM-X DSM is located 

within the canopy, illustrating the true backscatter center of the RADAR returns. 

The ideal configuration of an InSAR system aiming to generate elevation models is achieved 

when both phase images are acquired at the same time. This configuration is referred to as a single 

pass. To date, two spaceborne missions have acquired single-pass InSAR data. The Shuttle RADAR 

Topography Mission (SRTM) was the first mission to generate a near-global DSM. The slightly 

different viewing angle was achieved by extending a 60 m mast from the payload bay of the Space 

Shuttle Endeavour, which hosted one of the antennas on its end. The other antenna was mounted at 

the payload bay of the shuttle. Within 11 days a full coverage of the globe from 56° S to 60° N of C-

band InSAR data was achieved. At the same time, the German Aerospace Center (DLR) operated a 

second X-band interferometer. Due to its smaller swath width, however, it was not possible to cover 

the entire area from 56° S to 60° N. Based on the C-band data, several elevation products have been 

released, the most recent of which was SRTM Plus or SRTM NASA V3, with a raster cell size of 30 m × 

30 m [101]. Most voids are filled using the ASTER Global Digital Elevation Model—ASTER GDEM2 

[87] and the ASTER GDEM3 (ASTGTM) [88]. A release took place in 2016, with preliminary results 

already showing an RMSE of the elevation of 2.3 m compared to ICESat/GLAS data [102]. 

The second single-pass spaceborne mission (operated by DLR) is a constellation of two satellites 

with X-band sensors on board that fly in a helix formation, namely TanDEM-X and TerraSAR-X. The 

concerted orbits result in a slightly different viewing angle as required for elevation sensitive 

interferometers. Between 2010 and 2015, all land masses on Earth were scanned several times 
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resulting in a global DEM of to date unprecedented resolution and accuracy. The raster cell size is 

10 m × 10 m, the absolute vertical mean error of the DEM is smaller than +/−0.20 m and the RMSE is 

smaller than 1.4 m [103]. The TanDEM-X DEM was completed in September 2016. Currently, a new 

single-pass InSAR mission is being prepared under the guidance of DLR. Besides the mentioned 

spaceborne missions, several airborne systems operate as single-pass interferometers. Some of these 

systems (e.g., F-SAR, PAMIR) acquire very high resolution InSAR data (resolution cell <1 m2).  

Another configuration for the acquisition of InSAR data is the repeat-pass constellation. In this 

constellation phase, image pairs are not acquired at the same time. The minimum time lag for repeat-

pass spaceborne systems that is suitable for InSAR is one day [104]. This one-day time lag was 

achieved for the first time during the ERS −1/−2 tandem operation phase when one of the two ERS 

satellites acquired the first phase image and the other satellite acquired the second phase image. A 

recent mission that features this minimum time lag is COSMO-SkyMed, which comprised four 

satellites in total. The orbits were chosen in such a way that the repeat-pass interval along the same 

ground track varies between one and 15 days. In contrast, the European Sentinel-1 constellation 

comprises two satellites. Each of the satellites repeats the same ground track every 12 days. The 180° 

orbital phase difference of both Sentinels results in a combined repeat-pass interval of 6 days. 

Single SAR satellites commonly feature a larger time lag between both InSAR acquisitions. For 

instance, the repeat cycle of RADARSAT−2 is 24 days and 14 days for ALOS-2. The major 

disadvantage of repeat-pass systems is that they require stable biophysical conditions on the Earth’s 

surface. Change, caused by the movement of vegetation due to wind, plant growth variations in 

moisture content, and traits of the soil or vegetation, affects the scattering processes and leads to a 

decorrelation between both phase images. Small changes might just cause a degradation of the InSAR 

data quality while major changes can result in complete decorrelation, inducing an entire loss of the 

interferometric information. In general, the probability of decorrelation increases with increasing 

length of repeat-pass intervals. When working with shorter wavelengths, such as X-band or C-band, 

vegetated areas are often completely decorrelated after several days. On the other hand, X-band data-

based interferograms featuring high coherence can be retrieved when vegetation is absent and the 

surface parameters such as roughness and upper soil moisture remain stable. As longer wavelengths, 

such as L-band or particularly P-band, interact with larger (and thus temporally more stable) objects, 

sufficient coherence between both acquisitions can be found even for repeat-pass intervals of several 

days. ESA’s forthcoming Earth Explorer mission BIOMASS (first P-band repeat-pass interferometer 

in space) and CONAE’s SAOCOM mission (L-band) rely on this physical context. Another important 

fact is that electromagnetic waves featuring longer wavelengths are capable of penetrating deeper 

into media such as forest canopies. For example, P-band has the capability of penetrating through 

dense vegetation. Thus, BIOMASS will be the first spaceborne SAR mission providing DEMs in areas 

covered by dense forest such as tropical forest, while previous SAR missions only provide DSM-like 

DEMs (DEM plus a height component related to vegetation height). The aspired cell size of the 

BIOMASS mission DEM raster data is approximately 200 m × 200 m. An important concern of repeat-

pass InSAR systems is related to the varying impact of tropospheric conditions, which can result in 

defective elevation measurements, in particular with shorter wavelengths.  

The absolute height accuracy of InSAR-based elevation products enables geomorphic changes, 

i.e., in the terrain or surface to be detected at several metres only. Accordingly, InSAR-based elevation 

models therefore enable the detection of new clear cuts in forests, but are usually not accurate enough 

for the detection of subsidence in mining or karst areas. By using more than two phase images 

however, terrain changes can be measured with an accuracy of several millimetres, even with 

spaceborne sensors. The approach for the delineation of elevation changes is called Differential SAR 

Interferometry (DInSAR) [105,106]. Analogically to InSAR, stable environmental conditions are 

required for all (at least) three phase images. Therefore, areas with vegetation cover can hardly be 

investigated with DInSAR. The use of long wavelengths such as the L- or P-band can remedy this 

[107,108]. A special form of DInSAR is the persistent scatterer interferometry (PSI) [109] (see also 

Figure 5). This technique only considers temporally stable scattering objects (persistent scatterers), 

which are selected using specific filter approaches. Subsequently, relative phase changes and thus 
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elevation changes between these scattering objects are computed. This technique allows the 

integration of phase images from long time periods up to several years. Thus, elevation changes can 

be monitored over a very long time and movement rates can be determined with accuracy. However, 

persistent scatterers are hardly found in areas with vegetation cover, while a relatively high density 

is typical for urban areas. As DInSAR and PSI use repeat-pass data acquisition techniques, 

atmospheric impacts need to be considered. The common approach is to screen the temporal stack 

and to eliminate corrupted/strongly affected images. 

Based on PSI there are numerous applications for monitoring surface deformations in mining, 

landslide monitoring intensity [110,111], ice motion research [112], seismotectonics or volcanology 

[109]. Figure 5 shows subsidence revealed by PSI for the city of Sondershausen, Germany. The 

subsidence rate was delineated based on ERS −1/−2 data from 1995–2005, ASAR data from 2004–2010, 

and PALSAR data from 2007–2010. In the PSI deformation maps persistent scatterers located in the 

urban area are depicted in front of a geocoded SAR image. The colour of the persistent scatterer points 

indicates the rate of vertical displacement (in mm/year) [113].  

 

Figure 5. Persistent Scatterer Interferometry PSI reveals subsidence for the city of Sondershausen, 

Germany. The subsidence rate was delineated based on (1) ERS−1/−2 data from 1995–2005, (2) ASAR 

data from 2004–2010, and (3) PALSAR data from 2007–2010. In the PSI deformation maps persistent 

scatterers located in the urban area are depicted in front of a geocoded SAR image. The colour of the 

persistent scatterer points indicates the rate of vertical displacement in mm/year. Based on the PSI 

deformation maps (left hand) geometric models of the subsidence were derived (right hand column 

of figures; modified after Salepci [113].  

2.3. LiDAR and RADAR Altimeters 

LiDAR technologies are the most widely used technology to date (from the local to the global 

scale) for recording the status and changes in geomorphology [114,115]. LiDAR systems actively 

generate laser pulses (shots) and their respective “echoes” (returns) are registered by a co-mounted 

telescope. Each pulse illuminates a defined area of the Earth’s surface (a footprint). Therefore, LiDAR 
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systems enable RS information of the terrain and surfaces to be recorded, as well as numerous 

geomorphic traits along the shot [110,116–118]. The spatial density of the samples depends on the 

LiDAR system specifications. Recent airborne systems can achieve several measurements per square 

meter. The point density of LiDAR systems can range from 5–250 points/m2 (Figure 6).  

 

Figure 6. Erosion gullies in Northern Queensland (Australia) represented (a) by a 10 cm-Digital 

Elevation Model (DEM) derived from multiple overpasses with the RIEGL Q680i-S LiDAR and (b) by 

cross-sections depicted as solid area and line before and after remediation earthworks, respectively. 

Depending on the point density, LiDAR technologies can achieve accuracy in the centimetre 

range. They are therefore able to derive very high resolution DEMs. Furthermore, in areas with 

forests, shrubs and single trees, LiDAR technology can penetrate the vegetation and thus provide 

qualitative and quantitative monitoring of terrain under forest. Another advantage of LiDAR data 

compared to other RS data is that LiDAR point clouds only cause a small shadow [119], e.g., from 

trees compared to 20 m pixel image information from Aster sensors or RADAR technologies with a 

higher geometric ground resolution, which contain the shadow from trees as spectral information in 

the RS image. LiDAR allows digital derivations of DEMs, textures, contours, slope, curvature, surface 

roughness, or landslides, as well as numerous other geomorphic characteristics. 

There are many different types of LiDARs [71] installed on various RS platforms: the ground-

based LiDAR (TLS—terrestrial laser scanner, [120]) and the MLS—mobile laser scanner, the airborne-

based LiDAR (ALS—airborne laser scanner, installed on UAVs [121], microlights, and airplanes 

[114]), and even satellite-based LiDAR (SLS—satellite laser scanner, LiDAR—GEDI-LiDAR 

[45,122,123], and ICESat−2; [124], Figure 7). Comparatively simple LiDARs are limited to one or two 

returns per shot, usually the first and last return which typically represent the top of the canopy (first) 

and the ground (last). In dense vegetation, the last return does not necessarily represent the ground, 

so special algorithms are used to identify true ground returns. More sophisticated LiDARs not only 

record the outgoing and returning discrete pulses, but also the full waveforms [114]. This not only 

enables more algorithms to be used for monitoring geomorphic characteristics, traits, and changes of 

that during post-processing of the data to derive point clouds, but the information contained in the 

waveforms themselves (shape, amplitude, etc.) can be used for further analysis.  
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LiDAR data of this type together with a wide variety of analytical algorithms and optimally in 

combination with many more in-situ, close-range, air- and spaceborne RS techniques [125,126] enable 

the detection and monitoring of geomorphology. Modern full waveform-resolving LiDARs, such as 

the RIEGL Q1560, Q780, and others, are capable of generating rather dense point clouds, resolving 

geomorphic and surface characteristics with a resolution as accurate as 10 cm. These LiDARs are 

typically operated at wavelengths of 1550 nm or 1064 nm. There are even LiDAR systems under 

development that use several different wavelengths to resolve some spectral characteristics together 

with point clouds. 

The above-mentioned LiDAR systems are usually flown on manned aircraft, including rather 

small ones. Recently, LiDAR systems have also been developed for small UAVs [121]. Most of the 

UAV-deployed LiDARs are comparatively simple systems, which do not match the capabilities and 

the accuracy of the larger LiDARs. One of the main reasons for this is that GPS/INSS systems for UAV 

do not have the performance compared to airborne GPS/INS technologies. This area is indeed under 

intense development and new and improved systems are constantly emerging. At this stage, the most 

advanced and capable UAV-deployable LiDAR system is the RIEGL VUX with its various sub-types 

[127], including the integrated UAV-RiCOPTER. However, since the UAV can be operated at a very 

low flight speed with great overlap between the tracks and variable flight altitude, the resulting 

sample point density can be very high (~250 points/m2). Another feature is the wide scanning angle 

of the small field of view (FOV) of LiDAR RIEGL VUX-1UAV [128]. 2D–4 D geomorphic 

characteristics such as the walls of mountains, micro-morphological structures and textures, 

landslide mapping or the monitoring of soil erosions can be sampled with a high density of pulses 

[129]. When such systems are implemented, users are able to independently obtain up-to-the-minute 

DEMs and DSMs, which are of particular importance when attempting to solve specific local and 

regional issues requiring user-defined spatial and temporal resolution.  

The highest precision of LiDAR measurements can be achieved with ground-based TLS systems 

[120]. Such systems are typically installed on top of a tripod and scan their surrounding area with an 

accuracy of a few millimetres. The scanning range can be up to 6000 m (e.g., RIEGL VZ-6000). To scan 

the entire area of interest, a combination of scans from several scanning positions might be necessary. 

Analogous to UAV-based LiDAR data, TLS data capture vertical structures enabling the delineation 

of 3D features beyond DSMs or DEMs. The acquisition of TLS data is very time consuming and thus 

restricted to small areas. There are also mobile laser scanning (MLS) systems, which are basically 

TLS-systems mounted onto a moving ground-based platform (vehicles, vessels, railcars, even 

bicycles or pedestrians) [115]. 

LiDAR systems can also be operated from space. Although capable of providing global datasets, 

spaceborne LiDAR systems currently have some critical limitations. Due to physical constraints the 

footprint will always be relatively large (e.g., 50–120 m for ICESat/GLAS; [124,130,131]), which results 

in inaccurate elevation measurements, in particular in steep terrain. Furthermore, the point density 

is relatively low (ICESat/GLAS: 175 m spacing along the flight track, 3 km spacing between the three 

laser beams across the track). The NASA mission GEDI LiDAR (GEDI—Global Ecosystem Dynamics 

Investigation), launched on 5th December 2018 attempted to overcome some of these limitations. The 

GEDI Ecosystem LiDAR is a high resolution laser monitoring the Earth’s forests and topography 

from the International Space Station (ISS, https://gedi.umd.edu/) [45,122,132]. The footprint has a 

reduced diameter of 25 m, the along-track spacing of the separate footprints is 25 m, and the across 

track spacing between each of the ten tracks is 600 m. However, the sampling density will not be 

sufficient to generate detailed DSMs or DEMs. Small footprint airborne LiDARs overcome this 

limitation, as they sample the Earth’s surface with a very high level of detail. Unfortunately, global 

datasets cannot be acquired when reasonable time and expenditure are taken into account.  
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Figure 7. Simulated Global Ecosystem Dynamics Investigation GEDI waveforms (a) are vertical 

aggregations of point clouds (b) in GEDI sized footprints, which have been modeled to match 

expected pulse shape and spatial distribution of reflected energy for GEDI. ICESat-2 simulations (c) 

use degraded point clouds along transects with added background noise. Simulated photon returns 

are classified as noise, ground, or vegetation returns (taken from Duncanson et al. [132], License Nr: 

4856241027296). 

RADAR altimeters (RAs) rely on similar functional principles as LiDAR. The RA emits 

electromagnetic pulses and receives the echo. Based on the traveling time, the distance between the 

sensor and the surface can be delineated. In contrast to LiDAR, RAs use microwaves. Several satellites 

were equipped with an RA instrument (e.g., ERS−1/−2, ENVISAT, Sentinel-3). Analogically to small 

field of view of LiDARs, many RA systems feature the capability of waveform recording and analysis. 

However, compared to spaceborne LiDARs, spaceborne RAs feature an even larger footprint and a 

lower sampling density and are thus less suited to generate DEMs or DSMs. The main focus of most 

RAs is on marine applications, such as sea surface height, wave heights, or wind fields [133]. 

2.4. Criteria for Acquiring Elevation Data and Surface Data with RS 

The criteria for recording and acquiring elevation and surface data using RS can only be briefly 

mentioned here. Comparative reviews and papers for acquiring elevation data include those of 

Alganci [92] and Hawker [134]. 

2.4.1. Acquiring Elevation Data with RS 

Exogenous processes (e.g., weathering, deposition, and the accumulation of rock material 

through wind, water, ice, and climate change), endogenous processes (e.g., tectonic plate movements, 

volcanic activity, earthquakes) and their interactions, as well as anthropogenic drivers (e.g., river 

regulation, coal mining, salt and sand quarrying, or fracking) are structure-forming and lead to the 

formation and alteration of geomorphic traits, such as elevation, slope, aspect, curvature, and others, 

of the geosphere. The following factors are therefore essential to acquire digital elevation and surface 

data and their changes using RS:  

 The characteristics and the combinations of exogenous and endogenous geomorphic processes 

(the scope, length, intensity, consistency, dominance or overlay of the driver) lead to formation 

of specific geomorphological traits such as geological shapes, patterns, and structures. These 

process characteristics, in turn, define the characteristics and the accuracy of the monitoring, the 

possibilities of classification and the acquistion of relief parameters and thus other aspects 

derived from the topography and physiography like elevation, slope, aspect or curvature. 

 Geomorphic trait characteristics, their composition, and configuration, such as the 2D–4 D 

shape, structure, patterns, density, or distribution of the geomorphic traits and trait variations 

in space and over time. 

 The spatial, spectral, radiometric, angular, and temporal characteristics of the RS sensors (see 

Figure 8, Table 1). 



Remote Sens. 2020, 12, 3690 16 of 62 

 The choice of the RS platform that influences the spatial and temporal resolution and ultimately 

the recordability and precision of the RS sensor properties of the geomorphic traits. With 

airborne LiDAR systems more accurate derivations of the DEM/DSM can be made compared to 

with spaceborne terrain RS approaches. 

 The choice of the classification method (pixel-based, spectral-based, geographic objects based 

GEOBIA) and how well the applied classification algorithm and its assumptions fit the RS data 

and the spectral traits of geomorphology. 

 A multi-variate and multi-temporal implementation of RS sensors such as RGB, multi-spectral, 

hyperspectral, LiDAR, RADAR or microwave radiometer, which not only increase the number 

but also the characteristics and diversity of traits and trait variations that can be recorded by RS. 

 The coupling of in-situ, close range RS (ALS) with air- and spaceborne RS approaches, enabling 

the optimal calibration and validation of air- and spaceborne RS data. 

 

Figure 8. For discrimination and thus for successful monitoring, in addition to the characteristics and 

the distribution of geomorphic traits and their changes, it is also the spatial characteristics of the RS 

sensors used that are of major importance – in this case the spatial resolution. DEM comparison of a 

post-mining potash tailings pile, Teutschenthal-Bahnhof, near Halle, Germany (see also Schwefel et 

al., [135]), (a) LiDAR (DEM 1)—1 m, (b) photo of the post-mining landscape with a 95 m high potash 

tailings pile, (c) SRTM (DEM 90)—90 m, (d) Aster (DEM 30)—30 m, (e) DEM generated from height 

information of the land surveying office—LVermGeo (DEM 10)—10 m, (f) SAR (DEM 5)—5 m, (g) 

LiDAR (DEM 1)—1 m. 

Table 1. Semantic categorization of potentials and practicality of RS platforms and RS techniques for 

elevation data acquisition; inspired by Mulder et al., [136]: −− = no, − = low, + = medium and ++ = high 

agreement. 

Acquisi-

tion Tech-

nique 

High 

Spatial 

Resolu-

tion 

Wide Area 

Coverage 

High 

Temporal 

Refresh 

High 

Vertical 

Accuracy 

High 

Complex-

ity of 

Retrieval 

Canopy 

Penetra-

tion for 

DEM/(no 

DSM) 

Weather/ 

Illumina-

tion 

Indepen-

dence 

Spaceborne 

Repeat-

Pass InSAR 

+ ++ + + + ++ ++ 
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Spaceborne 

Single-Pass 

InSAR 

+ ++ ++ + - ++ ++ 

Spaceborne 

LiDAR 
+ ++ + + - + + 

Spaceborne 

RADAR 

Altimeter 

− + + ++ - + ++ 

Spaceborne 

Radar-

grammetry 

+ ++ ++ + - ++ ++ 

Spaceborne 

Photo-

grammetry 

+ + + + - - - 

Airborne 

InSAR 
++ + - - + ++ + 

Airborne 

LiDAR 
++ - - ++ + + - 

Airborne 

Radar-

grammetry 

++ - - + + ++ + 

Airborne 

Photo-

grammetry 

++ + - + + - - 

UAV-borne 

LiDAR 
++ - ++ ++ + ++ + 

UAV-borne 

Photo-

grammetry 

++ - ++ ++ - - - 

High spatial resolution: ++ High [0.1–0.5 m], + Medium [0.5–50 m], + Low [50–500 m]. Wide area 

coverage: ++ Wide [>1000 km2], + Medium [<1000 km2], + Small [<100 km2]. High temporal refresh: ++ 

High [<1 day], + Medium [<1 week], + Low [<1 month]. High vertical accuracy: ++ High [<1 m], + 

Medium [<2 m], + Low [<5 m]. High complexity of retrieval: ++ High [expert level], + Medium 

[advanced level], + Low [beginner level]. Canopy penetration for DEM, (no DSM): ++ High [ground 

visible], + Medium [ground partly visible], + Low [ground invisible]. Weather/illumination 

independence: ++ High [full independence], + Medium [partly independent], + Low [no 

independence]. 

2.4.2. Acquiring Surface Data on Vegetation and Urban Structures 

In addition to the aforementioned criteria, others also need to be taken into consideration when 

recording surface data using RS. To record geomorphic traits such as the DEM, structure-forming 

traits (i.e., structure, diversity, gradients of relief structures) play a decisive role in discriminating and 

deriving relief parameters.  

To derive surface elevation such as the height of vegetation as well as structural traits (i.e., the 

height of buildings, bushes and trees) other spectral traits of the vegetation (e.g., chlorophyll content, 

xanthophyll, morphological and phenological plant traits, or 2D–4 D traits of the vegetation height) 
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can also be used for discrimination. In this way, plant species, plant communities or the 

characteristics of vegetation diversity can be monitored using RS, when their spectral biotic traits 

differ in time or space.  

Urban surface structures on the other hand can be distinguished by the characteristic 3D 

geometry of the building height or building characteristics (i.e., roof incline, building geometry), 

which can be recorded either by LiDAR or RADAR RS technologies. In addition to recording 3D 

buildings, TIR, multispectral, or hyperspectral RS technologies can be used to detect other traits such 

as the characteristics of buildings, the degree of sealed surfaces and other aspects. Comparative 

reviews and papers on the acquisition and discrimination of plant species [137], the monitoring of 

vegetation diversity [54,138], forest health [139,140], as well as anthropogenic structures and traits 

[141,142] are all important in this context. 

Since various DEMs/DSMs derived from different RS technologies are already available, Table 

2 shows the numerous studies assessing the accuracy of DSM’s, whereas Table 3 summarizes the 

specifications of output DEMs of the RS technologies. Table 4 then goes on to provide an overview 

of RS-assisted derivation of terrain and landscape surfaces and its traits (Table 5). 

3. Aeolian Landforms 

There is a very strong connection between the global anthropogenic impacts of the 21st century 

(climate change, land use intensity, deforestation and urbanization) and increasing desertification, 

sand storms, wind-, water-, and soil-erosion, all leading to the degradation of large areas of the 

Earth’s surface [143,144]. Dune landscapes cover vast areas of the Earth’s terrestrial surface and as a 

result of desertification are showing an annual increase of 70,000 km2 [145]. The increase in human-

induced soil degradation is even stronger, equating to 1964 million hectares in the world [143,146]. 

Desertification processes not only lead to changes in geodiversity but also threaten biodiversity and 

major ecosystem services [143]. “The loss of our soils is thus one of the greatest crises of our time” 

[147]. 

The Earth’s surface is constantly shaped by wind, which leads to the discharge, deflation, 

erosion, transport, turbulence, saturation, collision as well as the sedimentation and accumulation of 

fine particles of different sizes and properties [148]. The type and characteristics of aeolian changes 

are determined by the following factors: (i) weather conditions such as consistency, continuity, 

intensity, extend or wind direction (wind force, rolling or sliding (creeping), the Bernoulli effect of 

winds—(lift), bouncing (saltation) and the impact of one particle upon another, as well as (ii) aeolian 

traits such as size, shape and biochemical-biophysical composition. However, RS approaches 

influence the discrimination and the monitoring of aeolian geomorphic traits, due to (iii) the 

properties of RS technologies: the spatial, spectral, radiometric, temporal and angular resolution, as 

well as the RS platform and the classification strategies selected for monitoring (see also Section 3). 

This is an extremely complex procedure to monitor and assess wind erosion and degradation 

processes in landscapes. An indicator complex comprised of agro-ecological indicators (i.e., surface 

soil texture, foliar cover, litter and rock fragmentation cover, biological soil crusts, canopy height and 

3D geometric growth form), air characteristics, and quality indicators (i.e., visibility, or PM2.5 

concentration) as well as model calculations (soil moisture or net soil loss or surface) must be included 

in the modelling when monitoring and assessing wind erosion. Here, it becomes clear that “the 

quality of ecosystem models is only as good as the quality and/or degree of uncertainty of the model’s 

input data” [42]. 

Originally, the monitoring of aeolian land forms started with the combined use of in-situ 

measurements (sand traps, meteorological/geochemical measurements) and model calculations 

[149]. Nowadays, with its different sensor characteristics and various platforms, RS is an essential 

technology for monitoring aeolian structural diversity [150] (see also Table 5). With the 

implementation of RS, numerous geomorphic diversity characteristics are used, i.e., the spatial-

temporal patterns of dunes (length, minimum spacing density, orientation, height and sinuosity, 

[151,152], the composition and configuration of aeolian dune patterns i.e., the complexity, diversity, 

shapes, patterns and heterogeneity based on Landsat and SRTM RS data [153] or multisensory data 



Remote Sens. 2020, 12, 3690 19 of 62 

using Landsat-7 ETM+ and data from Digital Orthophoto Quarter Quadrangles (DOQQs) [154]. 

Mechanisms that lead to the history of aeolian patterns based on RADAR have been monitored by 

multiple complementary RADAR RS sensor complexes (SIR-C imaging, SRTM interferometry-

derived elevations and RADAR sounding or ground penetrating RADAR (GPR)) [155]. Other 

essential RS technologies are also available to assess the volume and changes or intensity of 

sedimentation or dune migration [150]. Although numerous papers have provided reviews or 

detailed insights into dune landscapes, few papers have actually discussed the spatial distribution 

and thus the characteristics of geomorphic structural diversity, which is imperative for 

understanding dune landscapes [156]. The reason for this is that as patch mosaics and different 

patterns, aeolian land forms induce very distinct geomorphic characteristics and consequently 

specific morphometric traits, patterns, and functions, which are the outcome of turbulences, changes, 

and disturbances in ecology [157,158].  

Digital photogrammetry using aerial images was the first method for assessing dunes and their 

movements [159]. Nowadays, various optical (i.e., Landsat, Sentinel-2) as well as RADAR RS 

technologies such as SRTM are implemented not only to understand geo-ecological relationships and 

their complex effect mechanisms and interactions of dune ecosystems, but also to investigate spatio-

temporal dune patterns, their migration or processes, and the spreading of desertification [152,160] 

[143]. In fact, multispectral and multi-temporal RS approaches are increasingly being used to record 

a number of aeolian traits such as spatial-temporal dune-field pattern characteristics (i.e., length, 

minimum spacing density, orientation, height and sinuosity) [150]. 

LiDAR RS technologies have been successful due to their tremendously high spatial resolution 

and recording of 2D–4D aeolian structural traits with a high degree of precision detail when 

monitoring the disturbances of aeolian land forms [161]. The high-precision 2D–4D monitoring of 

aeolian structural traits opens up a whole new understanding of modelling, assessing and predicting 

complex relationships and interactions of geodiversity and biodiversity, their changes, disturbances 

and resilience [162,163]. The special features of LiDAR technologies are the monitoring of 2D–4D 

dune activity, spatial-temporal dune patterns and hierarchies, as well as extra-terrestrial dune 

formations [164].  

One of the greatest challenges in aeolian monitoring using RS is the spatio-temporal recording 

and delimitation of highly dynamic dune migration as well as subtle changes that occur on the surface 

due to transported sand. The implementation and the connection of airborne, spaceborne (LiDAR, 

optical and RADAR) with high-frequency spatial and temporal close-range terrestrial laser scanning 

(TLS), as well as in-situ measurements will enable an almost continuous monitoring and assessment 

of 3D–4DD dune dynamics and morphology, their interactions and geomorphic activity, helping to 

understand continuous surfaces over longer periods of time [165]. 

Due to the technological capabilities of LiDAR (i.e., the penetration of vegetation, see Section 4), 

it is currently the only technology that can be used, for example, to monitor remaining historically 

preserved migrating sand dunes that are situated under vegetation such as forests (see Figure 9). 
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Figure 9. Walking dune near Königs Wusterhausen, southeast of Berlin (Germany) depicted (a) as 

Digital Surface Model (DSM), (b) a Digital Elevation Model (DEM) as shaded relief, and (c) as a 3D 

Profile view of the DSM whereby of the dune surface appears orange and the forest vegetation green. 

The data basis was generated by Airborne Laser Scanning (ALS) with a RIEGL-LiDAR (point density 

>5 points/m2) carried by airplane. 

4. Fluvial Landforms 

Fluvial landforms are the product of flowing water accumulating in creeks, streams and rivers. 

This includes to changes in or the formation of terraces, sediment deposits, river beds, floodplains 

and river valleys. Fluvial systems typically have a large inherent diversity. As a geomorphic driver, 

a river is able to sort particle sizes of soil and gravel by different flow velocity, and to abandon 

channels to establish new types of ecosystems. Therefore, fluvial landform systems are highly 

complex and extremely dynamic from a geomorphological perspective [166,167]. However, the 

resilience of rivers is not only altered by natural processes and interactions (i.e., water, sediment, 

geology, soil, and vegetation), but also increasingly by the complex interactions between natural and 

anthropogenic drivers and impacts, which can ultimately tip the ecological balance (see changes in 

rivers feeding the Aral Sea) [168].  

Water engineering measures such as river relocation or the straightening of rivers, the reduction 

of retention surfaces, drainage, land use intensity and urbanization all lead to tremendous changes 

and disruptions to surface and subsurface runoff. The consequences are immense: an increased risk 

of flooding, erosion, and sedimentation in streams and rivers, leading to changes and disturbances 

in biodiversity, entire ecosystems, and the self-purification function of water. According to Grimaldi 

et al. [169] flood events are the “most frequent, disastrous and widespread natural hazards of the 

world” (see also [170]). Every year some 20,000 people die as a result of flood events [171]. From 

1995–2015 alone, ca. 109 million people were affected by flood damage, amounting to costs of around 

USD 75 billion per year [172]. 

Due to the very complex and highly dynamic nature of river systems, their forms, meandering 

processes, sedimentation processes and water quality have been successfully recorded for some time 

now using various RS technologies. These observations allow important considerations to be drawn 

about different disturbances such as water pollution, river straightening, bank protection measures, 

or the intensification of land use. However, considerations can also be drawn for example about 

disturbances or changes in surface runoff after heavy rainfall [173–176]. For the monitoring of fluvial 

systems using RS, GIS and topographic information, in-situ measurements as well as close-range and 

air- and spaceborne RS technologies are often used in combination with one another. The detailed 

object based classification of morphology forms using LiDAR data and the classification of 
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hyperspectral data shows the distribution of heavy metal content in soils and vegetation in flood 

plain areas [177–179]. Various sensor technologies are implemented for this purpose such as digital 

cameras, video cameras, heat-, infrared-, hyper-, and multispectral sensors, RADAR, and LIDAR 

[167,168,180] (see also Table 5). In this way Pekel et al. [181] were able to impressively show global 

surface water distribution and its long-term changes using global time series RS data (Landsat-5 TM, 

-7 ETM+, and -8 OLI). In the face of climate change the monitoring of global surface water distribution 

as well as changes and disturbances to it, will become a highly relevant topic.  

Aerial photos of rivers and floodplain geomorphology were the first RS technologies to record 

fluvial landforms [182]. The first RADAR technologies [183] as well as optical RS sensor systems like 

Landsat [184] were early applications that monitored the irrigation and drainage systems of areas as 

well as the first morphometric characteristics of river systems. Landsat and other spaceborne data are 

also widely used to analyse river morphology and morphodynamics, such as meandering and 

avulsions [185], as well as to monitor decadal length changes in the fluvial planform of rivers [186] 

(see also Section 4.2). Due to the unique characteristics of RADAR technologies (24-h and all-weather 

capability) as well as their ability to record flood events, RADAR RS is a crucial resource and 

technology for the mapping and prediction of flood events, and as a basis for geo-hydraulic 

modelling data [169,187,188]. 

On finer spatial scales airborne LiDAR-RS deliver crucial 3D–4D information with a very high 

degree of detail for geo-hydrological modelling (see also Section 4.3), which is essential for the 

successful mapping and monitoring of fluvial systems [161].  

4.1. Flood Events and Floodplain Risks 

RS plays a crucial role in recording, assessing [189], modelling, and forecasting [190] flash floods 

and flood hazards, in assessing their vulnerability, and in the valuation and prediction of flood risks 

in riverine landscapes as well as coastal areas as a consequence of extreme events such as monsoons, 

tsunamis or hurricanes. For these purposes, a number of optical RS sensors are used such as Landsat, 

Sentinel-2 [191], RADAR technologies such as ASAR, ENVISAT, TerraSAR, or RADARSAT, Sentinel-

1 [177,192], as well as airborne LiDAR systems [42] (see also Table 5).  

To investigate the effects and the resilience of fluvial landforms to anthropogenic disturbances 

such as mining or water engineering measures, multi-source information is often used comprising of 

historic maps, aerial images, digital orthophotos, b and different RS sensors on various platforms. 

Ghoshal et al. [193] proved for example through bathymetric surveys that fluvial systems recovered 

over a century from the damage caused by hydraulic mining operations (1853–1884) in Sierra Nevada 

in California. In fact, they found that the fluvial processes investigated from 1906 to 2006, erosion, 

sedimentation, redistribution of sediment, as well as volume changes, led to a stabilization of the 

river ecosystem. During the course of the recovery process, channels of up to ~13 m cut into the 

mining sediments. These fluvial processes led to a drastic reduction in the local flooding incidence in 

the region. 

Certain fluvial traits are known to play a crucial role in flood hazards and inundation modelling, 

such as the DEM and derived data like elevation, slope, curvature, the stream power index (SPI), the 

topographic wetness index (TWI), distributed roughness values, land use land cover (LULC) 

information, river density, distance to rivers, or different plant traits, such as phenology or plant 

density, that can be derived from various technologies [192]. 

RADAR and LiDAR are the most common RS technologies implemented for the mapping and 

monitoring of flood events. In fact, it was the use of RADAR that revolutionized the monitoring of 

flash flood hazards [194]. Costache et al. [195] conducted research on flash flood susceptibility 

assessments using multi-criteria decision making and machine learning approaches based on SRTM- 

and GIS techniques. With the open access of the RS time series for Sentinel-1 data these techniques 

are now widely implemented for flood detection and mapping [192,195,196]. Such techniques 

enabled the morphological characterization of the Kyagar glacier and the monitoring of glacier lake 

outburst floods based on a time series in 2018 Sentinel-1A data [197]. To monitor permanently and 

temporarily flooded coastal wetlands, multi-temporal ALOS PALSAR-1 data have been used [198]. 
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If various RADAR sensors with different sensor specifics are implemented, then more fluvial traits 

can be investigated and the weaknesses of the sensors can offset each other. Hong Quang et al. [199] 

used hydrological/hydraulic modeling-based thresholding of multi SAR RS sensors (Sentinel-1) to 

monitor floods in regions of Vietnam’s Lower Mekong River Basin. Alsdorf et al. [200] used InSAR 

technologies to measure water level changes on the Amazon floodplain. For high resolution flood 

monitoring an integrated methodology also used passive microwave brightness temperatures and 

Sentinel SAR imagery [201]. Furthermore, in a study by Grimaldi et al. [169], SAR RS information 

was not only used for mapping flood events without vegetation cover, but also for recording flood 

irrigation under vegetation. This study very impressively illustrated the wide application range for 

fluvial remote-sensing technologies. 

In addition to RADAR RS information various optical RS data, i.e., Landsat, Sentinel-2, 

RapidEye, or WorldView, are used for mapping floods [174]. Wang et al. [202] were able to 

demonstrate an efficient method for mapping flood extent in a coastal floodplain based on Landsat-

5 TM and DEM data. Furthermore, geomorphic changes in the Jhelum River following an extreme 

flood event were recorded in a case study using Landsat-8 OLI data [203]. With the help of time series 

Landsat-8 OLI imagery data and the integration of stream gage data, it was also possible to monitor 

the surface water extent in Central Valley in California [204]. There are many more studies using 

multitemporal Landsat data to map flood hazards over different time intervals [205]. Due to the 

improved spatial-temporal resolution of Sentinel-2 data, these are also being increasingly used for 

mapping flood events [206]. Sentinel-2 satellites provided a near real-time evaluation of catastrophic 

floods in a case study in the western part of the Mediterranean [207]. In another study of Ras Ghareb 

city in Egypt, Sentinel-2 data and fuzzy analytic hierarchy process approaches were also used for 

monitoring and assessing urban flash flood impacts [208]. In their case study of winter wheat fields 

in a semi-arid region, Olivera-Guerra et al. [209] showed irrigation retrieval from Landsat optical and 

thermal data integrated into a crop water balance model. 

In spite of numerous existing and future spaceborne optical and RADAR missions to monitor 

the fluvial morphology and assessment of flood hazards, LiDAR data are increasingly becoming an 

essential basis for recording detailed 2D–4D spatial-temporal geomorphological-hydrological 

information and for hydraulic analysis and modelling [161,210]. Webster et al. [211] used topographic 

LiDAR to map the flood hazard from storm-surge events for Charlottetown on Prince Edward Island 

in Canada. Moreover, numerous research papers have been based on the use of high-density LiDAR 

data, often in combination with 2D streamflow hydraulic modelling using high-density LiDAR for 

mapping high accuracy urban, river or coastal flood risks [212–215]. Morrissey et al. [216] used 

LiDAR data for modelling groundwater flooding in a lowland karst catchment. Furthermore, an 

increasing number of combinations and the linking of different sensors and RS platforms have been 

used to monitor flood events, e.g., web cameras with airborne LiDAR RS data [217]. Due to a high 

degree of flexibility with comparatively low costs, an increasing number of different RS sensors are 

being used on UAV platforms for monitoring floods [218,219]. 

In their research, Kulp and Strauss [42] were able to prove just how important sensor 

characteristics are for the quality of a model to predict flood risk. It goes without saying that models 

and model predictions are only as good as the quality of their input data. With the implementation 

of airborne LiDAR and calculations from a detailed DEM of coastal regions Kulp and Strauss [42] 

were able to prove that more than three times as many people are threatened by climate change and 

rising sea levels than was previously assumed based on models using SRTM DEM data. 

4.2. Fluvial and Tidal Channel Migration 

Channel “migration rates are key to understanding biogeochemical fluxes” [220], and are thus 

important indicators for water quality, the climate, and ultimately biodiversity. Natural channel 

migrations are episodic and dynamic processes on large spatial and temporal scales. Consequently, 

the monitoring and assessment of the river conditions, rates of change and in particular the 

assessment of resilience of river systems (especially after water engineering measures), has to be the 

kind of monitoring that incorporates all spatial-temporal scales of geomorphic organization. This not 
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only enables a better geohydrological understanding of driving forces, processes, and interactions, 

but also facilitates a targeted and successful river management. 

For some time now aerial image sequences as well as multispectral and multi-temporal RS 

technologies have been used to monitor the status, changes and disturbances of fluvial and tidal 

environments, channel migration and many other fluvial traits (see Table 5) in the context of different 

driving forces [168,174,221,222]. Preliminary research on this topic conducted by Garafalo [223] 

investigated the influence of wetland vegetation on tidal stream channel migration and morphology 

by using photogrammetric techniques over a period of 32 years (1940 to 1972). This research 

calculated an average relative channel migration rate of 0.21 m per annum for salt marsh tidal 

channels and 0.32 m per annum for freshwater tidal wetland channels. Using the time-series of aerial 

photographs and topographic information, the temporal evolution of natural and artificial 

abandoned channels of the River Rhône were analysed along with its controlling factors in a multi-

pressure river system over a period from the mid-19th century until the beginning of the 20th century 

[224]. 

With the opening of the Landsat archive, the time series of Landsat RS data (multispectral and 

TIR) has become a crucial data source for monitoring fluvial geogenesis, fluvial taxonomy, and fluvial 

functionality. Yang et al. [225] used the time-series of Landsat-5 TM data over a 19-year monitoring 

period for the Yellow River Delta in China. This covered fluvial traits such as the channel position, 

systematic changes to river banks and mid-channel bar dynamics and compared fluvial channel 

characteristics and migration in relation to the intensity of both natural and anthropogenic changes 

(i.e., from water engineering). Other research work on river- and channel migration, mid-channel bar 

dynamics, and channel stability assessment based on Landsat time-series has been conducted by 

[226–229].  

Finotello et al. [222] were able to derive a number of other morphometric traits such as sinuosity, 

intrinsic wavelength, curvature and the asymmetry index from Landsat time series data to 

characterize meandering patterns and meandering dynamics in tidal and fluvial environments. 

Sentinel-2 RS data have also been successfully implemented to characterize bankfull discharge and 

bankfull channel geometry indicators (width, depth, and longitudinal channel slope) of an alluvial 

meandering river system. RS information are the basis for their morpho-dynamic model that models 

fluvial processes like balancing bed sediment or bank and floodplain processes over the entire flow 

duration curve. Naito and Parker [230] also showed the spatiotemporal change of bankfull channel 

characteristics from randomly set initial conditions to an equilibrium state at which there is no more 

change in either space or time. 

RADAR RS is extensively used to record fluvial and tidal channel characteristics, their traits and 

migration processes [174]. Bhaskar and Kumar [231] used SRTM RS data to monitor channel 

migration processes in the Thengapatnam coastal tract bordering the Arabian Sea. With the help of 

SRTM and in-situ information they were able to demonstrate that the loss of river meander was 

caused by a relative elevation of the land surface or a lowering of the sea level. Lelpi et al. [232] used 

SRTM RS data to investigate the relationships between the incidence of floods and the speed of 

change to the channel migration rate in arid regions. They achieved this by combining the data from 

discharge records with channel migration rates, dynamic time-warping analysis, and chronologically 

calibrated subsidence rates derived from RS data. Their results showed a slight decrease in the 

discharge pattern of the Mojave river downstream, contradicting the results from previous studies 

that demonstrated an increase in the discharge patterns of comparable river systems. Furthermore, 

their results showed that ephemeral rivers in arid regions can show a previously unknown margin 

for maintaining hydraulic geometries in stratigraphic sequences. A number of other studies also used 

RADAR data such as SAR data to characterize fluvial channels [233]. To estimate river discharge, not 

only optical, but also RADAR altimetry RS data have proven to be particularly suitable such as 

ENVISAT, Jason −2 and −3, Sentinel-3A, CryoSat-2, and AltiKa satellite altimeters RS data [234]. 

Various morphometric traits, such as water velocity [235], river width [236], or water height 

measurements, have also been recorded using RS technologies [237].  
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Airborne LiDAR technologies, usually in combination with other sensor types i.e., 

hyperspectral, RGB or TIR RS data in terms of deriving numerous hydraulic geometric traits enable 

a number of fluvial channel migration characteristics and process rates to be recorded such as grain 

characteristics, grain and gravel size, shape or roundness. A detailed overview of the detection and 

characterization of fluvial traits, e.g., grain characteristics, grain, and gravel size, shape, or roundness 

among others, using LiDAR technologies is provided by [161,168,174](see also Figure 10). 

 

Figure 10. Tideways in the Weser river, northeast of Wilhelmshaven, Germany: (a) Photo of the 

tideways acquired from the airplane. (b) Location (Google Maps) of the monitored area (in orange) 

(c) Digital Elevation Model (DEM) created by Airborne Laser Scanning (ALS) with a blue rectangle 

(>5 LMW/m2), highlighting the location of the (d) 3 × 3 km tideways displayed as shaded relief 

(elevation of the contours Z = 20). 

4.3. Stream Bank Retreat 

The degradation of stream bank is caused by a combination of subaerial erosion, river erosion 

trees fall as well as river bank slides. Specific local geological conditions, land use intensity, and their 

characteristics, the flow regime, as well as the hydrological characteristics of the river catchment also 

play a crucial role in this respect. The significance of morphological and biological characteristics and 

the conditions of the riparian zones and disturbances to them through river bank deterioration in the 

formation of retention zones have long been ignored. For some time, attempts were made to reduce 

riverbank migration in agricultural from agricultural and urban areas. Stream bank retreat plays a 

major role in hydrodynamic processes, flows, the preservation of water purification processes, and 

consequently in the preservation of water quality. It has been proven that rivers with vegetation as 

opposed to rivers without vegetation lead to a ten-fold deceleration of river meander migration and 

ultimately to an improvement in the water purification process [220]. Furthermore, bank erosion 

processes can also monitored with UAV-SfM RGB technologies along complex bank lines of a straight 

mid-sized river reach [238]. 
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4.4. Flood Hazard 

The significance and selection of suitable RS data play a decisive role in how accurate model 

projections will be for potential areas of flooding. This has already been extensively described (see 

also: Flood events and floodplain risks using RS, [42]). A study by Micheli and Kirchner [239] used 

aerial photos to monitor and assess the effects of wet meadow riparian vegetation on stream bank 

erosion and on stream bank migration and erodibility over a 40-year period (1955–1995). Heeren et 

al. [240] used the time-series of RGB-data (2003–2008) for the monitoring and assessment of various 

geomorphic traits of stream bank retreat. A combination of terrestrial and airborne LiDAR with high 

spatial resolution RS–RGB data are crucial RS technologies for monitoring and assessing stream bank 

conditions [168,174,241]. UAV-based laser scanning in combination with other sensor technologies 

have also been used increasingly more for monitoring and modeling riverscape morphometric and 

vegetation traits [242–244].  

4.5. Coastal Landforms 

Coastal geomorphology describes the dynamic interface between the ocean and land surfaces. 

Based on hydrological, lithological and morphological criteria, seven different types—i.e., small 

delta, tidal system, lagoon, fjord and fjärd, large river, tidal estuary, ria, karst as well as arheic [245]—

of coastline can be distinguished, which can be recorded using RS methods (see also Table 5). Since 

the different types of coasts filter the water differently, the ecosystem services of different coastal 

types can be recorded and evaluated based on RS methods. Coasts experience such high dynamics 

due to the continuous motion of waves, making them a crucial driver for hydromorphological 

processes such as transport, erosion, or sedimentation. The monitoring of changes or disturbances to 

coastal geomorphic traits play an important role, particularly in the context of climate change with 

the rising of sea levels, a growing world population and the settlement of coastal areas. Current 

studies show dramatic changes to the coastline, whereby half of the world’s beaches would disappear 

by 2100 [246]. In this study, various RS sensor technologies, i.e., optical, RADAR, and LiDAR (Figure 

11), were implemented to record shoreline erosion-accretion trends [247]. Both Allen and Wang [248] 

and Green et al. [249] provide a crucial overview of feasible RS approaches to monitor coastal changes 

and retreats, the patterns and erosions of coastlines or changing sea levels by nearshore bathymetry 

and refer to tools for coastal protection. A UAV overview of how RS is implemented for coasts is 

provided by Klemas [250]. 

RS approaches with partially high temporal (several days) as well as spatial resolution (<1 m) 

can monitor changes to the position and configuration of coastal landslides on various spatial scales, 

assess their condition and consequently provide crucial predictions about populated and built-up 

areas. This is how Moore and Griggs [251] used methods of airborne photogrammetry for monitoring 

the long-term cliff retreat and erosion hotspots along the Monterey Bay National Marine Sanctuary 

from 1953–1994. They ascertained an average retreat rate of 7–15 cm/year, but additionally identified 

episodic hot spot rates for the coast of up to 20–63 cm/year. Time series from Landsat-5 TM and -8 

OLI are ideally suited for a geospatial assessment of several decades of coastal changes or ebb-tidal 

delta migration [252,253]. With the help of Google Earth Engine or other cloud-based RS platforms, 

one is able to quickly and cost-effectively integrate extensive RS time series data into the mapping of 

coastal geomorphological changes and consequently make important predictions about changes 

[254]. Some studies such as those by Kawakuboa et al. [255] investigated the influence of various 

biogenous and geogenous traits i.e., vegetation, water or soil traits on the geomorphic changes of 

coastlines in south-eastern Brazil using segmentation techniques based on TM and ETM+ data. Other 

works have also focused on assessing channel stability in the lower reaches of the Krishna River 

(India) using multi-temporal satellite data over the period 1973–2015 [256]. Various RADAR 

approaches have developed semi- or fully automated classifications and filter techniques and 

strategies for mapping the processes and changes to coastal geomorphology based on RADAR 

imagery such as SAR over longer time periods [257,258]. In this respect, LiDAR techniques are 

probably one of the most important RS technologies to investigate 2–4D morphometric changes of 

shorelines, coastal dunes, landslides, coastal cliffs or subsidence [161,246,259]. This technology in 
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particular portrays the extremely high temporal and process dynamics of the transformation in 

coastal regions through erosion and sedimentation processes in the coastal environment, even over 

short periods of time. For this reason, developments in the implementation of spaceborne GEDI-3D 

LiDAR are imperative for successful global coastal monitoring. 

 

Figure 11. (a) Cliff demolition of an area of the outer coast, Zemplin Fule (Germany): (a) Photo of the 

cliff depicted in 3 D profile view of a Digital Terrain Model (DTM) and a Digital Surface Model (DSM) 

that were created by Airborne Laser Scanning (ALS) in (b) 11/2016, (c) 1/2017, and (d) 7/2019. (e) 

Difference model [m] of the cliff demolition between 1917 and 1916. 

5. A Summary of Future RS Technologies and Existing Data Products for Monitoring 

Geomorphological Forms and Traits Relevant to Biodiversity 

This section provides a short overview of future RS technologies as well as existing data 

products, especially with respect to the Tandem-L mission ̶ a mission proposal suggesting two L-

band (~24 cm wavelength) SAR satellites in helical formation flight [46] (see also Table 6). This tandem 

formation enables single-pass interferometry and thereby 3D imaging of the land surface. Hence, a 

DEM will be generated that is similar to the operational TanDEM-X formation. However, with 

Tandem-L a global high-resolution DEM will be produced every year as opposed to only twice in the 

mission’s life time as is the case for TanDEM-X. This is enabled by cutting-edge SAR acquisition 

technology including digital feed arrays combined with a mesh reflector as well as signal recoding 

using digital beamforming [46]. The application of L-band waves, instead of X-band (~3 cm 

wavelength) makes transmission through vegetation possible. This allows the creation of a DEM 

despite distinct vegetation cover where TanDEM-X products would rather serve as a DSM (or 

intermediate-height model) due to limited vegetation canopy penetration at the X-band. 

Geomorphology mapping with Tandem-L relies on annual and global DEM analyses, allowing 

dynamic (inter-annual) surface processes to be monitored. Hence, vertical soil processes (subsidence, 

dolines, uplifts, as well as cryo- or bioturbation) as well as topographically induced soil movements 

(solifluction, soil drifts, mud- and landslides, rock fall) can be assessed and monitored in 

unprecedented quality and quantity. Figure 12 shows important current and future RS missions and 
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sensors to derive the status and changes of geomorphology, whereas Table 7 shows a selection of RS-

aided data products for monitoring terrain, surfaces and fluvial landform data products.

 

Figure 12. Current and future spaceborne RS mission instruments for monitoring landscape 

topography with information about the mission status, according to the CEOS database [260]. 

6. Conclusions and Outlook 

Geodiversity controls biodiversity: Geodiversity is the promoting, controlling, regulating, and 

limiting factor, as well as the most important for landscape processes, and thus a decisive factor for 

biodiversity. Therefore, biodiversity can be regarded as the result of geodiversity as well as its 

interactions, disturbances and alterations, implying that a successful conservation of biodiversity 

primarily entails the conservation of geodiversity.  

Therefore, the adequate recording of geomorphology as a crucial part of geodiversity is an 

important element in monitoring the state, changes and disturbances to geo- and biodiversity, 

ecosystem vulnerability as well as ecosystem integrity [1,9,261] and one of the greatest impacts and 

thus challenges of the 21st century. Many aspects of geomorphic diversity are changing rapidly due 

to anthropogenic factors (e.g., mining of rare metals, terracing, sand extraction, construction, sea-

floor trawling, training of rivers, dams, water-table lowering). This is highly relevant at the science–

policy interface, e.g., within the context of the Sustainable Development Goals [15], but is rarely 

considered in biodiversity conservation planning and the sustainable stewardship of our planet. 

Air and spaceborne RS approaches to record geomorphology have been used for some time now 

by research and planning institutions, because RS approaches enable a cost-effective, increasingly 

freely available, comprehensive, repetitive, standardized, as well as continuous monitoring of 

geomorphic characteristics from the local, to the regional and even up to the global level. 

This paper review summarizes the state-of-the-art in monitoring for example aeolian-, fluvial 

and coastal landforms and their geomorphic traits with air- and spaceborne RS technologies. In 

particular, air-and spaceborne RS technologies, as well as different methods for generating DEM and 

DSM, are compared, and the advantages and disadvantages of different methods are highlighted.  

It also presents numerous examples of monitoring the changes and disturbances of geomorphic 

structures and functions. Furthermore, RS data products and future RS technologies are introduced 

that are suitable for monitoring geomorphology as crucial part of geodiversity. A particular focus is 

on RS technologies such as LiDAR, RADAR, multispectral, hyperspectral, and RS technologies that 

can be implemented to record geomorphic traits. Due to their specific RS characteristics, spaceborne 

RADAR and airborne LiDAR RS technologies are the most applied technologies for monitoring 
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aeolian-, fluvial and coastal landforms. LiDAR technologies enable the monitoring of detailed 2D–4D 

geomorphic traits. Despite the fact that the in-orbit implementation of the first spaceborne LiDAR-

RS technologies (GEDI-LiDAR) is still in progress, it will play an essential future role in boosting 

innovation for monitoring the status, changes, and disturbances of geomorphology from a local to 

regional, and even to the global scale. The accuracy of geodiversity and biodiversity models is partly 

determined by the quality, accuracy and suitability of their input information. Consequently, models 

will only be as reliable for reproducing and forecasting real world conditions and scenarios as the 

quality and accuracy of the spatio-temporal input data provided. The paper therefore summarizes 

various RS techniques that are applied with varying precision levels to derive DEM and DSM.  

One of the most important RS products is the DEM, which has been released with different levels 

of detail using various RS techniques with different sensors on the local, regional and global scale. 

The DEM can be used to derive a wide range of other structural and functional geomorphic diversity 

indicators, which are imperative for the monitoring and modeling of geo- and biodiversity. 

Furthermore, the availability of different DEM/DSM products and variants regarding scale and 

accuracy enable the optimization of models and predictions in terms of scale-specific representability 

and plausibility [27]. 

To understand the complexity, the multidimensionality and the interactions of geomorphic 

changes, processes and disturbances, it is imperative to link air-and spaceborne RS technologies—

LiDAR, RADAR, multi- and hyperspectral or airborne geophysical survey technologies on different 

platforms with in-situ and close-range RS monitoring approaches. Currently, temporal and spectral 

high-frequency wireless sensor networks are being developed for lysimeters (agricultural and forest 

lysimeters) and eddy covariance towers, where hyperspectral (400–950 nm) as well as thermal sensor 

technology are integrated.  

These developments are the basis for the establishment of a European or even a global wireless 

sensor network (spectral, geomagnetic, seismic, and other close range technologies for the high 

frequency measurements of geohazards) that aim: (1) to calibrate and validate information and 

spectral responses from air- and spaceborne RS data with close-range sensor technology, (2) to better 

understand and quantify local and regional processes and interactions of geo-biodiversity, land use 

intensity and human pressures, (3) to advance data-based modelling that will allow more accurate 

predictions of events, as well as (4) to reduce data and model uncertainties, thus ensuring better 

transferability from point to area (logical, regional and global). 

With the help of spectral traits (ST) and spectral trait variations (STV), the RS approach for 

monitoring and understanding geodiversity [3], biodiversity [54], and ecosystem health [139,140] can 

record the status, changes, disturbances and processes of geomorphology. In the context of 

geomorphology, the trait approach is crucial, as traits or geomorphic traits constitute the singularly 

crucial interface between in-situ and RS approaches (close- and air/spaceborne RS) (see Figure 13). 
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Figure 13. In-situ and remote sensing (RS) approaches and their limitations for monitoring 

geomorphology, its traits and its five characteristics (modified after Lausch et al., [3]). 

We can only understand and classify the RS geomorphology assessment methods if we 

understand the RS approach, RS spectral indicators, and RS data products. This requires a new 

orientation and a “new RS based” definition of geomorphology, which allows for a combination of 

in-situ and RS approaches. The basis of this should be that geomorphology as a crucial part of 

geodiversity can be defined by five essential characteristics and monitored using RS approaches (see 

Figure 13, modified after Lausch et al. [3]). These characteristics are: geomorphic trait diversity, 

geomorphic genesis diversity, geomorphic taxonomic diversity, geomorphic structural diversity, and 

geomorphic functional diversity. Since RS approaches can record traits and trait variations of 

geomorphology based on the principles of image spectroscopy, geomorphic trait diversity depicts 

the essential components that influence the monitoring of the other four geomorphic diversity 

characteristics. Geomorphic diversity exists on all spatio-temporal scales and can therefore be 

recorded and monitored with different sensor technologies on different RS platforms. 

In subsequent papers, the recording of the five characteristics of geodiversity in terms of 

different RS characteristics will be presented and discussed in detail. This new approach and new 

way of thinking guarantees a holistic recording and assessment of different geomorphic traits, which 

are important for the monitoring of geomorphic (genesis, taxonomic, structural, and functional) 

diversity patterns. Therefore, a multi-spectral and multi-temporal RS approach enables the 

compensation of technological limitations of the single RS sensors by synergizing multi-sensor RS 

approaches. There is not a single RS sensor, RS platform, monitoring approach, or model that is 

sufficient enough to operate individually to understand the complexity, the processes, the changes, 

the disturbances, and the interactions of the geo- and biodiversity within the ecosystem in the context 

of the social–human system. 

The increasingly successful implementation of multi-sensor and multi-temporal RS techniques 

for data assimilation, calibration, and validation have greatly contributed to minimizing uncertainty 

in ecological modeling, as well as making robust predictions about extreme events and their impacts, 

reducing the need for as many in-situ observations [234,262–264]. 
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Table 2. Summary of various studies on the accuracy assessment of Digital Surface Models (DSMs, 

modified after Alganci [92]). 

Sensor/ 

Satellite/ 

Mission 

Scale/ 

Access 

Sensor 

Type & 

Auxiliary 

DEM 

Products 

Nominal  

Horizontal 

Resolution 

[m] 

Vertical 

Accuracy  

[m] 

RMSE  

[m] 

Refer-

ence 

Spaceborne Photogrammetric  

ALOS AW3D30 
Global/ 

open access 
optical 30 7 (LE 90) 4.4 [265,266] 

Terra ASTER 
Global/ 

open access 
optical 30 (~13)  5  [87,88] 

ASTER GDEM 2 
Global/ 

open access 
optical 30 

17  

(95% conf.) 
2.3 [87] 

ASTER GDEM 3 
Global/ 

open access 
optical 

72  

(2.4 arcsec) 

(for Japan 

only, [267]) 

17  

(95% conf.) 
2.3 [92,102] 

SPOT DEM 
Continents/ 

commercial 
optical 30 10 NA [266] 

IKONOS commercial optical 22 ~1.5 NA [266] 

Spaceborne—RADAR 

TanDEM-X 90 
Global/ 

open access 
SAR X  30, 90 NA 3.1 [268,269] 

TanDEM-X 
Global/ 

open access 
SAR X 10 <0.20 <1.4 [103] 

TerraSAR-X 
Global/ 

open access 
SAR X 10 <0.20 <1.4 [103] 

Bare Earth DEM 
Global/ 

open access 
SRTM 90 5.9 5.9 [270] 

EarthEnv-

DEM90 

Global/ 

open access 

SRTM3, 

ASTER 

GDEM, 

GLSDEM 

SRTM3 

90 

−6.2 (average 

in ASTER 

zone) 

 

−1.64 

(average in 

SRTM zone) 

0.82 (average 

in blend 

zone) 

10.554  

(in 

ASTER 

zone) 

4.13  

(in SRTM 

zone) 

5.362  

(in blend 

zone) 

[271]  

GMTED2010 
Global/ 

open access 

SRTM & 10 

other 

sources 

250, 500, 

1000 
6 (RMSE) 26 [272] 

MERIT 
Global/ 

open access 

SRTM3, 

AW3D30, 

VFP-DEM, 

ICESat 

GLAS 

90 
<2 (for 58% of 

globe) 

5.0 

(LE90) 
[273] 

SRTM 
Global/ 

open access 

SAR C-

band 
30, 90 6–9 (LE90) 

6.0 

(MAE) 
[274] 

Viewfinder 

Panorama 

Global/ 

open access 

ASTER, 

SRTM & 

other 

sources 

90 NA 
Not 

reported 
[275] 

SRTM Plus or 

SRTM NASA V3 

Global/ 

open access 

SAR C-

band 
90 6–9 (LE90) 5.9 [266] 
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ALOS AW3D 

(ALOS 

PALSAR) 

Global/ 

commercial 
optical 5 4.10 2.7 [276,277]  

PlanetDEM 30 

Plus 

Global/ 

commercial 
SRTM <10 (LE90) Not reported 

Not 

reported  
[278] 

NEXTMap 

World 10 

Global/ 

commercial 

Not 

reported 
10 5 (RMSE) 10 (LE9) [279] 

WorldDEM 
Global/ 

commercial 
TanDEM-X 12 

<2 (relative), 

<6 (absolute) 
<1.4 [268,277] 

Tandem-L 

(planned) 
Global  

SAR L-

band 

~12 (bare), 

25 (forest) 

2 (bare),  

4 (vegetated) 
NA [46] 

Table 3. Specification of output Digital Elevation Models (DEMs, modified after Hawker [134]). 

Data Source Generation Method 
Date of the 

Study 

Region of the 

Study 

Refer-

ence 

SPOT-5 HRS Parallel projection modeling 2004 Korea, Belgium [280] 

SRTM, ASTER Statistical measures 2006 Crete, Greece [281] 

IKONOS, QuickBird 

and OrbView-3 
Automatic image matching 2006 

Maras and 

Zonguldak, Turkey;  

Phoenix, United 

States 

[282] 

SPOT-5 in-track HRS 

and across-track HRG 

Area-based multiscale image 

matching method 
2006 

North of Québec 

City, Canada 
[283] 

IKONOS, QuickBird Physical and empirical models 2006 
North of Québec 

City, Canada 
[284] 

IKONOS Multi-image matching 2006 Thun, Switzerland [285] 

IKONOS, QuickBird, 

OrbView-3, Cartosat-1 
Automatic image matching 2007 

Maras and 

Zonguldak, Turkey;  

Phoenix, United 

States 

[286] 

IKONOS Automatic image matching 2008 
Maras and Istanbul, 

Turkey 
[287] 

Cartosat-1 
Towards automated DEM 

generation 
2008 Catalonia, Spain [239] 

Geoeye-1 and Cosmo-

SkyMed 

Rigorous model and RPC 

model 
2010 

Rome and Merano, 

Italy 
[288] 

GeoEye-1 and 

TerraSAR-X 

RPC models for optical, 

radargrammetry for synthetic 

aperture RADAR (SAR) 

2012 Trento, Italy [289] 

WorldView-2 Google 

Bias-compensated RPC bundle 

block-adjusted images 

generation, dense image 

matching, and DSM 

generation 

2016 Munich, Germany [290] 

Google Earth (GE) Terrain extraction from GE 2016 
Guangyuan City, 

China 
[291] 

ALOS PALSAR 
DEM extraction with InSAR 

technique 
2015 

Guangyuan City, 

China 
[292] 

ASTER GDEM v.2, 

SRTM-C, TerraSAR-X, 

ALOS W3D 

Vertical accuracy by dGPS and 

morphometric comp 
2017 

Central Andean 

Plateu, Argentina 
[293] 

AW3D30, ASTER, 

SRTM30, SRTM90, 

TanDEM-X 

Optical stereo mapping 

(AW3D30, ASTER) & Single-

pass SAR interferometry 

(SRTM30, SRTM90, TanDEM-

X) 

2020 
14 sites in Europe, 

USA and Antarctica 
[294] 
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Table 4. RS-assisted derivation of terrain and landscape surfaces. 

Mission/Platform Sensor 

UAV 1 

Airborne 2 

Spaceborne 3 

Sensor Characteristics 

Spectral Resolution 

Spectral 

Bands/Frequency 

Refer-

ences 

Terrain, Digital Elevation Model (DEM) 

SRTM 3 single pass InSAR X-band, C-band [69] 

TerraSAR-X 3 single pass InSAR X-band [57] 

TanDEM-X 3 single pass InSAR X-band [103,295] 

Sentinel-1 A/B 3 repeat pass InSAR C-band [296] 

ALOS PALSAR 3 repeat pass InSAR L-band [297] 

ALOS-2 PALSAR-2 3 repeat pass InSAR L-band [298] 

Terra ASTER 3 
dual stereographic imaging 

system (line scanner) 

NIR (nadir and 28° 

backward looking) 
[299] 

ALOS PRISM 3 
triplet stereographic imaging 

system (line scanner) 

Panchromatic: λ = 520—

770 nm (forward, nadir, 

and backwards looking) 

[297,300] 

ICESat GLAS 3 LiDAR (full waveform) 3 lasers (λ = 1064 nm) [301] 

Sentinel-3 SRAL 3 RADAR altimeter Ku-band, C-band [302] 

F-SAR2 
single pass InSAR 

repeat pass InSAR 

X-band, S-band 

C-band, L-band,  

P-band 

[303] 

UAVSAR 2 repeat pass InSAR L-band [304] 

Orbisar-RFP 2 single pass InSAR X-band, P-band [305] 

Pi-SAR-L 2 repeat pass InSAR L-band [306] 

Leica DMC III 2 
stereographic imaging system 

(discrete overlapping images) 
R, G, B, NIR [307] 

Leica ADS40 2 
triplet stereographic imaging 

system (line scanner) 

R, G, B, NIR (nadir), 

panchromatic (forward, 

nadir, and backwards 

looking) 

[308] 

Quantum systems TRON1 

Quadrocopter-fixed wing 

hybrid 

(platform, gimbal, various 

camera systems) 

stereographic imaging system 

(discrete overlapping images) 

R, G, B (multiple 

sensors) 
[309] 

Geocopter X8000 1 

Octocopter (platform, 

gimbal, various camera 

systems) 

stereographic imaging system 

(discrete overlapping images) 

R, G, B (Sony NEX7) 

or similar sensors  
[86] 

DJI Phantom IV Pro 1 

Quadrocopter (platform, 

gimbal, installed camera 

system) 

stereographic imaging system 

(discrete overlapping images) 
R, G, B (1′’ CMOS) [310] 

RiCOPTER VUX-SYS1 

(platform with integrated 

VUX1UAV LiDAR 

scanner) 

LiDAR (multiple return, echo 

intensity recording) 

One laser (NIR),  

max. 500,000 shots/s 
[311] 
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Quantum systems TRON 1 

Quadrocopter-fixed wing 

hybrid 

(platform with integrated 

YellowScan “SURVEYOR” 

LiDAR scanner) 

LiDAR (two return) 
One laser (λ = 905 nm),  

max. 300,000 shots/s 
[309] 

Surfaces/vegetation surfaces (digital surface model – DSM) 

TanDEM-X 3 single pass InSAR X-band [295] 

ALOS PALSAR 3 repeat pass InSAR L-band [297] 

ALOS-2 PALSAR-2 3 repeat pass InSAR L-band [298] 

ICEStaT GLAS 3 LiDAR (full waveform) 3 lasers (λ = 1064 nm) [301] 

F-SAR 2 
single pass InSAR 

repeat pass InSAR 

X-band, S-band 

C-band, L-band,  

P-band 

[303] 

UAVSAR 2 repeat pass InSAR L-band [304] 

Orbisar-RFP 2 single pass InSAR X-band, P-band [305] 

Pi-SAR-L 2 repeat pass InSAR L-band [306] 

Geocopter X8000 1 

Octocopter (platform, 

gimbal, various camera 

systems) 

stereographic imaging system 

(discrete overlapping images) 

R, G, B (Sony NEX7) 

or similar sensors  
[86,312] 

DJI Phantom IV Pro 1 

Quadrocopter (platform, 

gimbal, installed camera 

system) 

stereographic imaging system 

(discrete overlapping images) 
R, G, B (1” CMOS) [310] 

RiCOPTER VUX-SYS 1 

(platform with integrated 

VUX1UAV LiDAR 

scanner) 

LiDAR (multiple return, echo 

intensity recording) 

One laser (NIR),  

max. 500,000 shots/s 
[311] 

Quantum systems TRON 1 

Quadrocopter-fixed wing 

hybrid 

(platform with integrated 

YellowScan “SURVEYOR” 

LiDAR scanner) 

LiDAR (two return) 

One laser  

(λ = 905 nm),  

max. 300,000 shots/s 

[309] 

Geomorphic changes and disturbances—terrain changes, vertical displacements, elevation differences, 

surface deformations 

COSMO Skymed 3 

DiffInSAR (in areas with no 

vegetation) 

PSI (essentially in urban areas, 

suited time series available for 

some regions) 

X-band [313] 

TanDEM-X,TerraSAR-X 3 

DiffInSAR (in areas with no 

vegetation) 

PSI (essentially in urban areas, 

suited time series available for 

some regions) 

X-band [314,315] 
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ERS-1, ERS-2 3 

DiffInSAR (in areas with no or 

sparse vegetation) 

PSI (essentially in urban areas, 

suited time series from 1991 to 

2003 available for several regions) 

C-band [316–319] 

ENVISAT ASAR 3 

DiffInSAR (in areas with no or 

sparse vegetation) 

PSI (essentially in urban areas, 

suited time series from 2002 to 

2012 available for several regions) 

C-band [316,320] 

Sentinel-1 A/B 3 

DiffInSAR (in areas with no or 

sparse vegetation) 

PSI (essentially in urban areas, 

dense time series available almost 

globally since end of 2014) 

C-band [317,321] 

RADARSAT-2 3 

DiffInSAR (in areas with no or 

sparse vegetation) 

PSI (essentially in urban areas, 

dense time series rarely available) 

C-band [322,323] 

ALOS PALSAR 3 

DiffInSAR (in non-forested areas) 

PSI (essentially in urban areas, 

long and dense time series rarely 

available) 

L-band [315,320] 

ALOS−2 PALSAR-2 3 

DiffInSAR (in non-forested areas) 

PSI (essentially in urban areas, 

long and dense time series rarely 

available) 

L-band [324] 

SAOCOM3 

DiffInSAR (in non-forested areas) 

PSI (essentially in urban areas, 

long and dense time series rarely 

available) 

L-band [325] 

Airborne LiDAR 2, 

e.g., Optech ALTM Gemini 

LiDAR (four return, echo 

intensity recording), 

for changes in the order of dm or 

more 

One laser,  

max. 167,000 shots/s 

[71,319,32

6,327] 

UAV photogrammetry 1,  

e.g., Octocopter X8000 

(platform, gimbal, various 

camera systems) 

stereographic imaging system 

(discrete overlapping images) 

for changes in the order of several 

dm or more, uniformly 

distributed reference targets 

required 

R, G, B (Sony NEX7) 

or similar sensors  
[328,329] 

RiCOPTER VUX-SYS 1 

(platform with integrated 

VUX1UAV LiDAR 

scanner) 

LiDAR (multiple return, echo 

intensity recording), 

for changes in the order of dm or 

more 

One laser (NIR),  

max. 500,000 shots/s 
[311] 
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Sensor is used on the RS platform: UAV 1—unmanned aerial vehicles (UAV); airborne 2—airborne RS 

platform; spaceborne 3—spaceborne RS platform. 

Table 5. Remote sensing (RS)-aided derived in monitoring examples in terrain and surfaces, aeolian 

geomorphology, fluvial geomorphology and coastal geomorphology landslides and their traits. 

 Mission/Platform Sensor References 

Terrain and Surfaces/Traits 

Geomorpho90m (90 m/100 m/250 m) 

(Slope, Aspect, Aspect cosine, Aspect sine, 

Eastness, Northness, Convergence, Compound 

topographic index, Stream power index, East-

West first order partial derivative, North-South 

first order partial derivative, Profile curvature, 

Tangential curvature, East-West second order 

partial derivative, North-South second order 

partial derivative, Second order partial 

derivative, Elevation standard deviation, Terrain 

ruggedness index, Roughness, Vector 

ruggedness measure, Topographic position 

index, Maximum multiscale deviation, Scale of 

the maximum multiscale deviation, Maximum 

multiscale roughness, Scale of the maximum 

multiscale roughness, Geomorphon 

(26 geomorphometric variables 

derived from MERIT-DEM 3/R—

corrected from the underlying 

Shuttle RADAR Topography 

Mission (SRTM3) and ALOS 

World 3D—30 m (AW3D30) 

DEMs) 

 

[24] 

Mountain types, relief types, relief classes 
IKONOS OSA 3/M, DHM25 3/R, 

GTOPO30 – DEM 3/R, LiDAR 2/L 
[330–332] 

Volcano types (volcanic full forms),volcanoes, 

lava flow fields, hydrothermal alteration, 

geothermal explorations, heat fluxes, volcanoes 

hazard monitoring 

Doves-PlanetScop, Terra/Aqua 

MODIS 3/M, EO-1 ALI 3/M, Landsat-

8 OLI 3/M/TIR, Terra ASTER 3/M/TIR, 

MSG SEVIRI 3/M/TIR, LiDAR 2/L 

[333–337] 

Mountain hazards, mass movement (rock fall 

probability, boulders, denudation, mass erosion, 

rock decelerations, rotation changes, slope 

stability, rock shapes, particle shapes, patterns, 

structures, faults and fractures, holes and 

depressions) 

InSAR 3/R, SAR 3/R, LiDAR 2/L, 

Digital Orthophoto 1/RGB 
[338–347] 

Landslide chances, landslide evolution Digital Orthophoto 1/RGB [348] 

Above ground—chances, disturbances 

Opencast mining, sand mining and extraction, 

tipping, dumps 

TanDEM-X 3/R, SRTM DEM 3/R, 

ALOS PALSAR 3/R, ERS-1 3/R, 

GeoEye GIS 3/M, WorldView-3 

Imager 3/M, IKONOS OSA 3/M, 

Landsat-5 TM/-7 ETM+/-8  

OLI 3/M/TIR, IRS-P6 LISS-III 3/M, 

High resolution satellite data of 

Google 3/M, LiDAR 2/L 

[349–355]  

Vegetation traits as proxy of the geochemical 

parameters 
HyMAP 2/H [356] 

Below ground—chances, disturbances  

Salt mines, fracking  

ERS-1/-2 3/R, ASAR 3/R, ALOS 

PALSAR 3/R, Landsat-5 TM/-7 

ETM+/-8 OLI 3/M/TIR 

[113,357] 

Aeolian geomorphology/traits 

Desertification, soil and land-degradation, soil 

erosion 

NOAA/MetOp AVHRR 3/R, ERS−1/ 

−2 3/R, SIR-C 3/R, ENVISAT 3/R, 

ASAR 3/R, RADARSAT−1 3/R, 

ALOS PALSAR 3/R, Terra/Aqua 

MODIS 3/M,, IRS1B LISS-I/LISS-II 
3/M, Sentinel−2 MSI 3/M, Landsat-5 

TM/−7 ETM+/-8 OLI 3/M, LiDAR 2/L 

[143,144,358–

363] 
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Dune migration, migration rates, dune 

expansion, dune activity, moving dunes 

ALOS PALSAR 3/R, Landsat-8  

OLI 3/M, Sentinel-2 MSI 3/M, Context 

Camera 2/RGB, LiDAR 2/L 

[160,161,364–

366] 

Dune types, dune hierarchies, dune 

morphometry, dune hierarchies (free dunes—

shifting sand dunes, bounded dunes, dune 

fields, dune shapes (crescent, cross, linear, stars, 

dome, parabolic, longitudinal dune) 

SRTM 3/R, SIR-C/X-SAR 3/R, 

WorldView-2 WV110 3/M, IRS-RS2 

LISS-IV 3/M, Cartosat-1  

PAN-F/-A 3/M, Landsat-7 ETM+ 3/M, 

Landsat MSS 3/M, LiDAR 2/L 

[152,367–371], 

Dune spatial-temporal aeolic patterns (length, 

minimum spacing density, orientation, height, 

sinuosity), aeolian dune composition-

configuration (complexity, diversity, shapes, 

patterns, heterogeneity), dune ridges (lines) 

SRTM 3/R, SIR-C 3/R, Landsat-7 

ETM+ 3/M, LiDAR 2/L, Digital 

Orthophoto 3/RGB 

[150–155,366] 

Volume and their changes, intensity of dune 
SRTM 3/R, SPOT-5 HRG 3/M, Terra 

ASTER 3/M, LiDAR 2/L 

[150,152,163,3

72] 

Fluvial geomorphology/traits 

Flooding events, flood mapping, flash-flood 

susceptibility assessment, flood inundation 

modelling, floodplain-risk mapping, erosive 

impacts, sedimentation 

SRTM 3/R, ALOS PALSAR 3/R, 

ALSAR-1 3/R, SAR 3/R, ALOS-2 3/R, 

TerraSAR-X 3/R, RADARSAT-2 3/R, 

Sentinel-1 3/R, Landsat-5 TM/-7 

ETM+/-8 OLI 3/M/TIR, Sentinel-2  

MSI 3/M, IRS-1C/-1D LISS-III 3/M, 

IKONOS OSA 3/M, DEADALUS 2/H, 

LiDAR 2/L 

[42,177,191,19

2,195–

200,202–

204,207] 

Flood mapping under vegetation, irrigation 

retrieval, groundwater flooding in a lowland 

karst catchment 

SAR 3/R, Landsat-5 TM/-7 ETM+/-8 

OLI 3/M 
[169,209,216]  

Vegetation traits as proxy of the geochemical 

parameters, heavy metal stress in plants 
HyMAP 2/H, HySPEX 2/H [179,356] 

River detection, small streams detection 

SAR 3/R, Landsat-5 TM/-7 ETM+/-8 

OLI 3/M, Aerial images 2/RGB, Aerial 

images 1/RGB, LiDAR 2/L 

[180,262,373–

375] 

Channel landforms, hydrogeomorphic units 

including coarse woody debris, hydraulic 

(fluvial) landform classification, taxonomy of 

fluvial landforms, hydro-morphological units, 

riverscape units, river geomorphic units, in-

stream mesohabitats, tidal channel 

characteristics 

SAR 3/R, Aerial images 2/RGB,  

LiDAR 2/L 
[373,376–378] 

Channel characteristics, floodplain morphology 

hydraulic channel morphology, geometries, 

topography, river width arc length, longitudinal 

transect, (width, depth, and longitudinal channel 

slope, below water line morphology), 

Morphometric patterns of meanders (sinuosity, 

intrinsic wavelength, curvature, asymmetry), 

meander dynamics, channel geometry  

SAR 3/R, ENVISAT 3/R, Terra/Aqua 

MODIS 3/M, Landsat-5 TM/-7 

ETM+/-8 OLI 3/M, Sentinel-2  

MSI 3/M, Aerial images 2/RGB, 

LiDAR 2/L 

[222,230,233,2

35,236,262,379

–381] 

Channel migration, channel migration rates, 

channel planform changes, tidal channel 

migration  

Channel changes, disturbances, temporal 

evolution of natural and artificial abandoned 

channels, canal position, systematic changes of 

the river banks and canal centre lines 

SAR 3/R, SRTM 3/R, Landsat-5  

TM 3/M, Landsat-7 ETM+/-8  

OLI 3/TIR, Aerial images 2/RGB 

[223–228,378] 

Flow energy of stream power, channel sensitivity 

to erosion and deposition processes 

Channel stability assessment 

Landsat-1 MSS/-5 TM/-8 OLI 3/M, 

LiDAR 2/L 
[229,382] 
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River discharge estimation (river discharge, run-

off characteristics) 

ENVISAT 3/R, Jason-2/-3 3/R, 

Sentinel-3A OLCI/SLSTR 3/R, 

CryoSat-2 3/R, AltiKa 3/R,  

ENVISAT 3/R, Advanced RADAR 

Altimeter (RA-2) 3/R, Terra/Aqua 

MODIS 3/M 

[234,237] 

Water and flow velocity 

ENVISAT 3/R, Terra/Aqua  

MODIS 3/M, Aerial images 2/RGB, 

LiDAR 2/L 

[235,373,383] 

Water height, water level, water depth  

ENVISAT 3/R, AMSR-E 3/R,  

TRMM 3/R, 

Daedalus 2/H, Aerial images 2/RGB, 

LiDAR 2/L 

[237,263,373,3

84–386] 

Fluvial sediment transport, sediment budget, 

channel bank erosion, exposed channel 

substrates and sediments, suspended soil 

concentration and bed material, percentage clay, 

silt and sand in inter-tidal sediments, suspended 

sediments, flood bank overbank sedimentation, 

sediment wave, sand mining 

LiDAR 2/L, Radio frequency 

identification 1/RFID 

[166,354,380,3

87] 

Stream bank retreat Aerial images 2/RGB, LiDAR 2/L [239–244] 

Grain characteristics, grain size, gravel size, 

shape, bed and bank sediment size 

Daedalus 2/H, Aerial images 2/RGB, 

Aerial images 2/RGB, LiDAR 2/L 
[168,388–392] 

Pebble mobility 
Radio frequency identification 

technologies 1/RFID 
[393] 

River bathymetry 
CASI 2/H, Daedalus 2/H, Aerial 

images 2/RGB, LiDAR 2/L 

[373,386,394–

396] 

Coastal geomorphology/traits 

Coast taxonomy, coast types 

(Small Delta, Tidal system, Lagoon, Fjord and 

Fjärd, Large River, Tidal Estuary, Ria, Karst, 

Arheic) 

Different RADAR Sensors 3/R,  

Different optical RS Sensors 3/R 
[245] 

Coastal dynamical and bio-geo-chemical 

patterns 

NOAA/MetOp AVHRR 3/R,  

ERS-1 3/R, TOPEX 3/R,  

Nimbus-7 CZCS 3/M/TIR 

[397] 

Coastal landforms, coastline and shoreline 

detection 

SRTM 3/R, ALOS 3/R, NOAA 3/R, 

Landsat-7 ETM+ 3/M, Terra 

ASTER3/M, IKONOS OSA 3/M, 

LiDAR 2/L 

[42,398,399] 

Spatio-temporal shoreline dynamic, shoreline 

erosion-accretion trends, coast changes, cliff 

retreat, erosion hotspots 

SRTM 3/R, SAR 3/R, Landsat-4 MSS/-

5 TM 3/M, Landsat-8 OLI 3/M/TIR,  

SPOT 5 3/M, Sentinel-2 MSI 3/M, 

Aerial images 2/RGB, LiDAR 2/L 

[247,251–

253,257,258,40

0,401] 

Different morphometric shoreline indicators 

(morphological reference lines, vegetation limits, 

instant tidal levels and wetting limits, tidal 

datum indicators, virtual reference lines, beach 

contours, storm lines) 

Different optical RS Sensors 3/M, 

LiDAR 2/L 
[161,246,402] 

Sensor is used on the RS platform: UAV 1—unmanned aerial vehicles (UAV); airborne 2—airborne RS 

platform; spaceborne 3—spaceborne RS platform. RADAR R, Multispectral (MSP) M, Hyperspectral 

(HSP) H, RGB RGB, TIR T, LiDAR L, Radio frequency identification RFID 
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Table 6. Important current and future RS missions and sensors to derive the status and changes of 

terrain and surfaces. 

Mission/Platform Sensor 

UAV 1 

Airborne 2 

Spaceborne 3 

Sensor Type 

Frequency/ 

Spectral 

Information 

Launch 

Time 
References 

BIOMASS 3 

repeat pass InSAR, 

repeat pass fully 

polarimetric InSAR 

(PolInSAR), SAR 

Tomography (TomoSAR) 

P-band 2021 [403] 

SAOCOM 1A 3 

SAOCOM 1B 3 

SAOCOM-CS 3 

repeat pass InSAR 

(SAOCOM 1A & 1B), 

single pass PolInSAR 

(SAOCOM 1B & CS) 

Terrain observation with 

Progressive Scans SAR 

(TopSAR) 

L-band 
2018/20

19 
[404] 

NiSAR 3 repeat pass InSAR 
L-band 

S-band 
>2022 [405] 

ALOS-4 PALSAR-3 3 repeat pass InSAR L-band 2020 [406] 

Tandem-L 3 

single pass InSAR, single 

pass PolInSAR, multi-

pass coherence 

tomography 

L-band 2024 [407,408] 

ROSE-L repeat pass InSAR L-band 2028 [409] 

NovaSAR-S 3 single pass InSAR S-band 2018 [410,411] 

GEDI LiDAR 3 LiDAR (full waveform) 
3 laser transmitter, 

1064 nm 
2019 [45,122,123,412] 

ICEsat-2 3 LiDAR (full waveform) 
1 laser 6 beams, 

532 nm (ATLAS) 
2018 [124,130,131] 

Sensor is used on the RS platform: UAV 1—unmanned aerial vehicles (UAV); airborne 2—airborne RS 

platform; spaceborne 3—spaceborne RS platform. 

Table 7. Selection of remote sensing (RS)-aided data products for monitoring terrain, surfaces and 

fluvial landform data products  

Data Products Scale Link References 

Various DEMs Global 

Planetobserver: 

https://www.planetobserver.co

m/products/planetdem/planet

dem-30/ 

[278] 

NEXTMap® Elevation Data Suite Global 
https://www.intermap.com/ne

xtmap 
[279] 

TEMIS-GTOPO30  

global digital elevation model (GDEM)—30 m 
Global 

http://www.temis.nl/data/gtop

o30.html 
[413,414] 

GTOPO30 

Earth Resources Observation and Science 

Center/U.S. Geological Survey/U.S. 

Department of the Interior, USGS 30 ARC-

second Global Elevation Data, GTOPO30 

(Research Data Archive at the National 

Center for Atmospheric Research, 

Computational and Information Systems 

Laboratory, 1997)  

Global 
http://rda.ucar.edu/datasets/ds

758.0/. 
[415] 
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ASTER GDEM V3 

ASTER Global Digital Elevation Model 

(GDEM) Version 3 (ASTGTM) 

1 arc second  

Global 

https://lpdaac.usgs.gov/produ

cts/astgtmv003/ 

DOI:10.5067/ASTER/ASTGTM.

003 

[88] 

ALOS Global Digital Surface Model “ALOS 

World 3D (AW3D30)” 

30 m 

PRISM DEM 

Global 
http://www.eorc.jaxa.jp/ALOS/

en/aw3d30/ 
[90,297] 

SRTM  

30 m, 90 m, 1 km  

Elevation Data 

Global 

http://www.landcover.org/data

/srtm/ 

https://developers.google.com/

earth-

engine/datasets/catalog/USGS

_SRTMGL1_003 

[416] 

SRTM/SRTM NASA V2 Global 

https://dds.cr.usgs.gov/srtm/ 

https://www2.jpl.nasa.gov/srt

m/ 

[293,417] 

SRTM Plus/SRTM NASA V3 Global 
https://lpdaac.usgs.gov/produc

ts/measures_products_table 
[101,102] 

ALOS DSM: 30 m Global 

https://developers.google.com/

earth-

engine/datasets/catalog/JAXA_

ALOS_AW3D30_V1_1 

http://www.eorc.jaxa.jp/ALOS/ 

[418] 

NASADEM Global en/aw3d30/ [102] 

TanDEM-X DEM 

WorldDEM 
Global 

https://tandemx-

science.dlr.de/cgi-

bin/wcm.pl?page=DEM_Prom

otion_Start_Page  

(free samples for scientific 

purposes) 

http://www.intelligence-

airbusds.com/worlddem/ 

(commercial) 

[103] 

ICESat/GLAS Global 
https://nsidc.org/data/icesat/da

ta.html 
[301,329] 

GEDI LiDAR  Global 
https://gedi.umd.edu/data/pro

ducts/ 
[122] 

Global Land Survey Digital Elevation Model 

(GLSDEM) 
Global 

http://www.landcover.org/data

/glsdem/ 
[419] 

Global ALOS Landforms Global 

https://developers.google.com/

earth-

engine/datasets/catalog/CSP_E

RGo_1_0_Global_ALOS_landf

orms 

[420] 

Global ALOS Topographic Diversity Global 

https://developers.google.com/

earth-

engine/datasets/catalog/CSP_E

RGo_1_0_Global_ALOS_topo

Diversity 

[420] 

 

Global ALOS CHILI (Continuous Heat-

Insolation Load Index) 

 

Global 

https://developers.google.com/

earth-

engine/datasets/catalog/CSP_E

RGo_1_0_Global_ALOS_CHIL

I 

[420] 
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Global ALOS mTPI (Multi-Scale 

Topographic Position Index) 
Global 

https://developers.google.com/

earth-

engine/datasets/catalog/CSP_E

RGo_1_0_Global_ALOS_mTPI 

[420] 

GMTED2010: Global Multi-resolution 

Terrain Elevation Data 2010 
Global 

https://developers.google.com/

earth-

engine/datasets/catalog/USGS

_GMTED2010 

[272] 

Free Global DEM Data Sources – Digital 

Elevation Models 
Global 

https://gisgeography.com/free-

global-dem-data-sources/ 
NA 

The global Human Modification dataset 

(gHM) 
Global 

https://developers.google.com/

earth-

engine/datasets/catalog/CSP_

HM_GlobalHumanModificatio

n 

[421] 

Copernicus DEM—Global and European 

Digital Elevation Model (COP-DEM) 

Global/ 

EEA39* 

https://spacedata.copernicus.eu

/web/cscda/dataset-

details?articleId=394198 

[422] 

Geomorpho90m (90 m/100 m/250 m) 

(26 geomorphometric variables derived from 

MERIT-DEM—corrected from the 

underlying Shuttle RADAR Topography 

Mission (SRTM3) and ALOS World 3D—30 

m (AW3D30) DEMs) 

Slope, Aspect, Aspect cosine, Aspect sine, 

Eastness, Northness, Convergence, 

Compound topographic index, Stream 

power index, East-West first order partial 

derivative, North-South first order partial 

derivative, Profile curvature, Tangential 

curvature, East-West second order partial 

derivative, North-South second order partial 

derivative, Second order partial derivative, 

Elevation standard deviation, Terrain 

ruggedness index, Roughness, Vector 

ruggedness measure, Topographic position 

index, Maximum multiscale deviation, Scale 

of the maximum multiscale deviation, 

Maximum multiscale roughness, Scale of the 

maximum multiscale roughness, 

Geomorphon 

Global 

http://www.spatial-

ecology.net/dokuwiki/doku.ph

p?id=topovar90m 

https://doi.pangaea.de/10.1594/

PANGAEA.899135 

https://portal.opentopography.

org/dataspace/dataset?opento

poID=OTDS.012020.4326.1 

[24] 

Physiography US 

https://developers.google.com/

earth-

engine/datasets/catalog/CSP_E

RGo_1_0_US_physiography 

[420] 

Physiographic Diversity US 

https://developers.google.com/

earth-

engine/datasets/catalog/CSP_E

RGo_1_0_US_physioDiversity 

[420] 

OpenTopography  

High-Resolution Topography Data and Tools 

Global/ 

Regional/ 

Local 

https://opentopography.org/ NA 
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Airborne LiDAR data 

Open Topography 

High-Resolution Topography Data and Tools 

Regional 

http://gisgeography.com/top-6-

free-lidar-data-sources/ 

http://www.geoportal-

th.de/de-

de/Downloadbereiche/Downlo

ad-Offene-Geodaten-

Th%C3%BCringen 

http://opentopography.org 

(US-based, but world-wide 

coverage) 

[319,327] 

RS Global Airborne Laser Scanning Data 

Providers Database (GlobALS) 

Global/ 

Regional 

https://www.facebook.com/Glo

bALSData/) to 
[423] 

Australia’s terrestrial ecosystem data Australia 

TERN data Portal 

https://portal.tern.org.au/#/1a4

71b0a 

NA 

Supra National Ground Motion Service 

Global/ 

Regional/ 

Local 

Yearly Sentinel-1 based product 

s for public (first release 2019) 

TerraSAR-X/TanDEM-X based 

product on request for 

commercial use 

[424] 

Terrafirma Atlas 

Global/ 

Regional/ 

Local 

http://www.terrafirma.eu.com/ 

Open service partnership, 

production on request 

[424,425] 

Incomplete Inventory Surface Deformation in 

North America 
Regional 

catalogue with sites of 

suspected anthropogenic 

deformation, deformation data 

[426] 

ArcticDEM Mosaic Regional 

https://developers.google.com/

earth-

engine/datasets/catalog/UMN_

PGC_ArcticDEM_V3_2m_mos

aic 

[427–429] 

EU-DEM, Slope, Aspect, Hillshade EEA39 ** 
https://land.copernicus.eu/pro

duct-portfolio/overview 
NA 

GeoNetworks 

Multisource, multisensor geospatial data and 

measurements of mountain areas 

Global 
(https://geonetwork-

opensource.org/) 
[430] 

Global River Widths from Landsat (GRWL) 

Database 
Global 

https://doi.org/10.1126/science.

aat063 
[374] 

GFPLAIN250m, a global high-resolution 

dataset of earth’s floodplains 
Global 

https://github.com/fnardi/GFP

LAIN with 
[431] 

MERIT Hydro: A High-Resolution Global 

Hydrography Map Based on Latest 

Topography Dataset. 

Global 

http://hydro.iis.u-

tokyo.ac.jp/~yamadai/MERIT_

Hydro/ 

[432] 

Dataset of 100-year flood susceptibility maps US 

https://data.4tu.nl/articles/100-

year_flood_susceptibility_map

s_for_the_continental_U_S_de

rived_with_a_geomorphic_me

thod/12693680 

[433] 

Global Flood Hazard Global 
https://data.jrc.ec.europa.eu/co

llection/floods 
[434] 

Modis Flood Mapping Global 
https://floodmap.modaps.eosd

is.nasa.gov/ 
[435] 

Map of Active Volcanoes and recent 

Earthquakes world-wide 
Global 

https://earthquakes.volcanodis

covery.com/ 
NA 

Volcano hazard monitoring US 
https://www.usgs.gov/natural-

hazards/volcano-hazards/ 
[333] 

** 39 countries in the European Economic Area (EEA39). 
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