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ABSTRACT

Social media is perceived as a rich resource for disaster management and relief e�orts, but the high class imbalance
between disaster-related and non-disaster-related messages challenges a reliable detection. We analyze and compare
the e�ectiveness of three state-of-the-art machine learning models for detecting disaster-related tweets. In this regard
we introduce the Disaster Tweet Corpus 2020, an extended compilation of existing resources, which comprises a total
of 123,166 tweets from 46 disasters covering 9 disaster types. Our findings from a large experiments series include:
detection models work equally well over a broad range of disaster types when being trained for the respective
type, a domain transfer across disaster types leads to unacceptable performance drops, or, similarly, type-agnostic
classification models behave more robust at a lower e�ectiveness level. Altogether, the average misclassification
rate of 3,8% on performance-optimized detection models indicates e�ective classification knowledge but comes at
the price of insu�cient generalizability.
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INTRODUCTION

Social media users share what happens to them and around them, especially when a disaster strikes or when a
potential hazard catches their attention. Apart from seeking help and advise they also share eyewitness reports,
discuss background information, express sentiment, and connect and coordinate with relevant people. Disaster
management and relief e�orts are often scarce on real-time information about ongoing disasters, and an analysis of
the related social media buzz promises to fill this gap. However, since only a small fraction of all social media
messages at any given point in time are disaster-related (Plotnick and Hiltz 2016), the key to tapping this resource
for disaster relief is the e�ective filtering of relevant messages.

A straightforward approach to collect disaster-related messages is filtering, using a dictionary with relevant keywords.
This approach fails for cases where the disaster-related terminology is diverse and ambiguous (e.g., “earthquake”,
“shaking”, “thoughts and prayers”), and where descriptive terms, such as hashtags (e.g., “#colorado” for the 2013
Colorado floods), are chosen by individual users and are often not consistent over time, while some messages even
use incorrect terminology. Moreover, a-priori knowledge of an impending or ongoing disaster is required, since
many disaster-indicating words are also used in other situations. Hence, detecting disaster-related messages is
commonly modeled as a classification task and tackled with machine learning technology. The existing research
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studies this classification task mostly in two settings: within-disaster and cross-disaster. In the within-disaster
setting, social media messages from a specific disaster, such as the floods in Alberta in 2013, are used for both
training and test; this setting is easy to study but lacks practical relevance. In the more realistic cross-disaster setting,
one or more sets of messages related to individual disasters are used for training, while messages for other disasters
of the same type are used for test, which requires significantly more data and which is therefore studied less often.
Most researchers address settings with a single disaster type only.

Given the outlined background we consider the following research questions as highly relevant for practical
applications:

1. How well do state-of-the-art models for disaster tweet detection cope with class imbalance?

2. What is the e�ectiveness discount between disaster-type-specific models and generic, type-agnostic models?

3. How e�ective are state-of-the-art models in cross-type detection settings?

A literature survey reveals that, despite the many pioneering e�orts and the large number of published experiments,
these questions have not received the deserved attention. The paper in hand starts closing this gap by evaluating the
state of the art with respect to class imbalance, cross-disaster detection, and cross-type detection. The models in
our experiments include a recently published Convolutional Neural Network (CNN) (Kersten et al. 2019) and two
transformer models, namely BERT (Devlin et al. 2018) and Universal Sentence Encoder (USE) (Cer et al. 2018).
We evaluate the models using a six-fold Monte Carlo cross-validation on human-curated tweets for 46 disasters
out of 9 disaster types, resulting in 648 experiments per model. The cross-type performance is evaluated within
162 experiments and considers models trained on messages originating from biological hazards, earthquakes,
floods, tropical and extra-tropical storms, industrial, societal, and transportation disasters, as well as wildfires. The
best-performing models achieve an �1 of 0.924. We analyze model generalizability by relating the performance loss
of a generic classifier trained on all disaster types to the average expected loss of a specialized classifier if applied on
disasters from types it was not trained for (altogether 1,620 experiments). A key finding is that the best specialized
classifier for biological hazards, earthquakes, and hurricanes is better than a generic classifier by at most 0.046 �1,
and that the average loss of applying an out-of-type classifier is 0.491. The average misclassification rate of all
162 models on a sample of 5 million tweets collected during tranquil periods, unrelated to any disaster, is 4.8%.

Our contributions can thus be summarized as follows:

1. Large-scale evaluation framework. We introduce the Disaster Tweet Corpus 2020, the largest corpus of
disaster-related tweets to date, consisting of 129,166 tweets sent during 46 disasters covering 9 disaster types.1

2. Systematic evaluation of the state of the art. We do the most extensive evaluation of state-of-the-art natural
language processing algorithms to date within cross-disaster and cross-type settings.

3. Insights on practical applicability. We analyze trade-o�s and risks attached to type-specific versus generic
models when applying them today in realistic settings.

In what follows, the Related Work section surveys the relevant literature. The Methodology section describes the
corpus construction, the analyzed models, and the experimental setup. The Results and Discussion section reports
on selected outcomes and insights gained, followed by a conclusion and discussion of avenues for future research.

RELATED WORK

Several prior publications study the problem of detecting disaster-related messages, albeit using di�erent terminology
and connotations, namely as relevance (Habdank et al. 2017; Kaufhold et al. 2020; Stowe, Palmer, et al. 2018),
informativeness (Win and Aung 2017), usefulness (Nguyen et al. 2017), topicality or aboutness (Xu and Chen 2006;
Li et al. 2018), and relatedness (Kersten et al. 2019). In contrast to identifying all messages related to a disaster,
informativeness, relevance, or usefulness are more applicable to specific applications (i.e. information extraction or
damage assessment). Table 1 shows an overview of the recent related work alongside employed methods, covered
disasters, conducted experiments, and used datasets.

Although traditional rule-based, keyword-based, and query-based systems have been studied, the most widely
employed method for filtering disaster-related social media messages is supervised machine learning. Statistical
algorithms based on hand-crafted features are a popular subject of inquiry, with logistic regression employed by

1The Disaster Tweet Corpus 2020 is available at https://doi.org/10.5281/zenodo.3713920.
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Table 1. Overview of the related work proposing detection approaches, grouped by their underlying paradigm, and
listing all datasets used. Column “Tests” denotes if the the cross-disaster (CD), cross-type (CT), and filtering (F)
is studied. Disaster types: bombing (BO), earthquake (EQ), explosion (EX), flood (FL), hurricane (HU), severe
weather (SW), train crash (TC), volcanic eruption (VE), wildfire (WF), and various/other (VA).

Reference Disaster Types Tests Datasets

BO EQ EX FL HU SW TC VE WF VA CD CT F

Rules, keywords, or queries

Abel et al. (2012) – – – – – – – – – x – – x TREC (2011), RSS news feeds, news articles
Olteanu, Castillo, et al. (2014) x – x x x x – – – – – x x CrisisLex-T6
Zheng et al. (2017) – x – x – – – – – x – – x Own data

Machine learning based on feature engineering

Parilla-Ferrer et al. (2014) – – – x – – – – – – – – x Own data
Stowe, Paul, et al. (2016) – – – – x – – – – – – – – Own data
To et al. (2017) – x – x – – – – x – – – – CrisisLex-T26 (Olteanu, Vieweg, et al. 2015),

Crowdflower (2015), Pfe�er and Morstatter (2016)
Win and Aung (2017) – x – – x – – x x – – – – CrisisLex-T6, AIDR (Imran, Castillo, et al. 2014)
Habdank et al. (2017) – – x – – – – – – – – – – Own data
Li et al. (2018) x – x x x x – – – – x x – CrisisLex-T6
Mazloom et al. (2019) x – x x x x – – – x x x – CrisisLex-T6, Schulz and Guckelsberger (2016)
Kejriwal and Zhou (2019) – x – x – – – – – x – x – Own data
Kaufhold et al. (2020) – – x x – – – – – – – – – Reuter et al. (2015), Habdank et al. (2017)

Neural networks

Nguyen et al. (2017) – x – – x – – – – – – x – CrisisLex-T6, CNLP (Imran, Mitra, et al. 2016), AIDR
Alam, Joty, et al. (2018) – x – x – – – – – – – x – CrisisNLP (2018)
Burel and Alani (2018) – – – – – – – – – x – – – CrisisLex-T26
Kersten et al. (2019) – – – x x – – – – x x x x CrisisLex-T6, CNLP, CMMD (Alam, Ofli, et al. 2018),

EPIC (Stowe, Palmer, et al. 2018), McMinn et al. (2013)
Kruspe et al. (2019) – – – – – – – – – x x x – CrisisLex-T26, CNLP
Ning et al. (2019) – – – – – – – – – x x x – CrisisLex-T26
Snyder et al. (2019) x – – – – – x – x x – – – CrisisLex-T26, Own data

Win and Aung 2017, naïve Bayes and support vector machines by Parilla-Ferrer et al. 2014, and random forest
decision trees by Kaufhold et al. 2020. These methods typically achieve an accuracy of about 0.75 in cross-disaster
experiments, notably outperformed by recent neural network architectures. Ning et al. 2019 demonstrated that
convolutional neural networks (CNNs) outperform other methods in the cross-disaster prediction of informativeness
on the popular CrisisLex-T26 (Olteanu, Vieweg, et al. 2015) collection, reporting �1-scores of 0.81. Similarly,
Burel and Alani 2018 report �1-scores of 0.84 for filtering disaster-related tweets in a 5-fold cross-validation on
CrisisLex-T26 with a standard CNN, and Kersten et al. 2019 report �1-scores of 0.83 with a parallel CNN in
cross-disaster settings over several collections of disaster-related tweets.

Most approaches presented in the related work are intended for multiple disasters or disaster types, with the most
studied ones being earthquakes, floods, and hurricanes, followed by explosions, bombings, and severe weather
events, while some also study uncommon disasters or completely di�erent events. However, experiments are
often conducted only on single disasters, while the more realistic cross-disaster setting has been gaining traction
only recently. The cross-type transfer of models is more frequently investigated, especially using neural networks,
although only a few studies comprehensively test the performance and transferability of classifiers across disaster
types, like Kersten et al. 2019 for hurricanes and floods. Recently, active learning approaches have been employed,
where models are trained or fine-tuned based on data annotated on the fly by citizens during disasters (Kaufhold
et al. 2020; Snyder et al. 2019), or based on labeled data from past events used in combination with unlabeled or
partially labeled messages from ongoing events (Imran, Mitra, et al. 2016; Li et al. 2018; Mazloom et al. 2019).

Of the various data sources used, the most recurring ones are the collections CrisisLex-T6 (Olteanu, Castillo, et al.
2014) and CrisisLex-T26 (Olteanu, Vieweg, et al. 2015), which cover 6 and 26 di�erent disasters, respectively.
Half of all studies rely on a public resource like CrisisLex, with acquiring and annotating own data being a close
second. The dominant strategy for data collection involves requesting tweets by keywords taken from general
disaster terminology (“earthquake”, “ground shaking”), combined with disaster-specific indicator words, phrases,
and hashtags, as well as an iterative refinement of queries as described by Olteanu, Castillo, et al. 2014.
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Table 2. Human-annotated tweets used in this study, grouped by disaster type, where the number of tweets is what
remained after preprocessing, excluding duplicates, very short, and non-English tweets.

Name Tweets

Earthquake (11) 27,034
2012 Costarica 568
2012 Guatemala 390
2012 Italy 268
2013 Pakistan 3,468
2013 Bohol 1,330
2013 California 326
2013 Chile 3,840
2015 Nepal 5,930
2017 Mexico 236
2017 Iraq and Iran 86
2018 Nepal 10,592

Name Tweets

Flood (9) 14,210
2012 Philipinnes 1,324
2013 Sardinia 182
2013 Manila 1,224
2013 Alberta 9,060
2013 Queensland 6,336
2013 Colorado 1,706
2014 India 3,594
2014 Pakistan 3,514
2017 Srilanka 1,480

Biological (2) 6,106
2014 Ebola 3,448
2014 Mers 2,658

Name Tweets

Hurricane (9) 48,922
2012 Hurricane Sandy 12,530
2012 Hurricane Pablo 1,426
2013 Typhoon Yolanda 1,544
2014 Typhoon Hagupit 3,916
2014 Hurricane Odile 2,458
2015 Cyclone Pam 3,886
2017 Hurricane Harvey 7,706
2017 Hurricane Maria 7,674
2017 Hurricane Irma 7,782

Wildfires (3) 4,820
2012 Colorado 182
2013 Australia 1,730
2014 California 2,908

Name Tweets

Industrial (4) 10,166
2013 West-Texas explosion 8,102
2013 Brazil nightclub fire 478
2012 Venezuela refinery explosion 124
2013 Savar building collapse 1,462

Societal (2) 11,206
2013 Boston bombing 9,576
2013 LA airport shootings 1,630

Transportation (4) 3,850
2013 Glasgow helicopter crash 1,554
2013 New York train crash 1,498
2013 Spain train crash 704
2013 LA train crash 94

Other (2) 2,852
2013 Russia meteor impact 1,524
2013 Singapore haze 1,328

METHODOLOGY

We conducted three experiments to evaluate state-of-the-art approaches with regard to their e�ectiveness to detect
messages related to disasters. The first experiment studies their performance in cross-disaster settings, covering 9
disaster types. More specifically, each model was trained on two selected disasters and then tested on di�erent
disasters of the same type. The second experiment compares such type-specific models to a generic model, which is
trained on disasters from all types, illustrating the trade-o� between specialized and generic models. The third
experiment analyzes the e�ectiveness of classifying unrelated tweets on a large sample of tweets from a tranquil
period. As a baseline approach, we examined the performance of a standard list of disaster-related keywords to
detect disaster-related tweets. In an auxiliary experiment, we demonstrate the stability of our evaluation strategy
with regard to the amount of available training data.

Data

Table 2 lists the 46 disasters considered in this study and the number of tweets available for each of them. The
disaster-related tweets originate from 7 collections reviewed in the related work: AIDR (Imran, Castillo, et al.
2014), CrisisLex T6 (Olteanu, Castillo, et al. 2014), CrisisLex T26 (Olteanu, Vieweg, et al. 2015), CrisisNLP
(Imran, Mitra, et al. 2016), CrisisMMD (Alam, Ofli, et al. 2018), Epic Annotations (Stowe, Palmer, et al. 2018),
and the collection of events from 2012 by McMinn et al. 2013. We assigned each disaster to one of 9 disaster
types, based on the taxonomy of disaster types developed by the disaster databases EM-DAT (Guha-Sapir 2019)
and Glide (GLIDE 2019). In particular, we grouped all tropical and extra-tropical storms to “hurricanes”, added
a “societal” type, and merged all uncommon disasters in the “others” type. Additionally, we created a “tranquil
period” dataset of 5 million tweets, randomly sampled from all tweets sent since 2011, in order to evaluate the
model performance in a detection setting with many negative examples. Not all of the above datasets contain
non-disaster-related tweets to an equal amount. To ensure balanced datasets for the evaluation, we removed all
negative examples from the datasets and filled them up to balance with tweets from the tranquil sample.

All datasets were preprocessed as follows: (1) removal of all non-English tweets as well as all retweet-indicating
prefixes (RT @username:), (2) replacement of all URLs with <URL>, hashtags with <HASHTAG>, user mentions
with <USER>, emoticons with <SMILE>, emojis with <EMOJI>, colon-separated numbers with <TIME>, and
other numeric strings with <NUMBER>, (3) collapsing of character repetitions and adding <REPETITION>,
(4) removal of line breaks and collapsing of white space, and, finally (5) removal of all duplicates and tweets shorter
than five characters (excluding the above replacement tags). More than half of the tweets have been removed from
the dataset, minimizing side-e�ects and providing for a sensible collection of tweets.

Models

Three machine learning architectures are used in this study: A parallel CNN previously proposed for detecting
disaster-related tweets as baseline (Kersten et al. 2019), a feed-forward neural network based on BERT embeddings2

2The uncased, 12 layer BERT from TensorFlow Hub: https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1.
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Table 3. Average �1 of the respective model when trained on multiple disaster types (MDT) and tested on all eleven
test datasets, their average cross-disaster (CD) and cross-type (CT) �1 scores, and their average miss-classification
rate on tranquil tweets (MCR).

Model MDT CD CT MCR

CNN 0.775 0.740 0.323 0.063
BERT 0.776 0.690 0.415 0.037
USE 0.818 0.752 0.467 0.044

and a feed-forward neural network based on a universal sentence encoder (USE)3. The CNN represents specialized
architectures for detecting disaster-related tweets, BERT and USE represent the current state of the art in many
natural language processing applications, performing well in a broad range of language tasks while being less reliant
on a lot of training data.

The CNN is built on word embeddings that were specifically trained with Word2Vec for disaster tweets (Nguyen
et al. 2017), using three parallel CNN branches with filter sizes 3, 4, and 5, respectively; each branch has 128 filters
and a dropout of 0.5. The branches are concatenated and passed to three feed-forward layers with Rectified Linear
Units (ReLu) as activation function and Max-Entropy as optimization criterion. The BERT-based model is a 3-layer
feed-forward neural network without dropout, ReLUs as activation function, and Max-Entropy as optimization
criterion; the input encoding is generated by the pre-trained BERT implementation. Accordingly, the USE-based
classifier employs the transformer-based USE encoder to generate input encodings for a feed-forward neural network
identical to the BERT-based model. A direct comparison of the average performance di�erence between these
models is shown in Table 3.

Experiment Settings

For the cross-disaster classification experiments, we constructed the training dataset for each type by selecting two
disasters from the five types flood, hurricane, earthquake, transportation, and industrial, and one disaster from the
three types biological, wildfire, and societal. We randomly sampled 1,500 positive and negative examples each
from the respective training disaster to avoid size e�ects on the models’ performance scores. We trained a model on
the sampled tweets for each disaster type and tested it against all tweets from all other disasters of the same type
not selected for training. In addition, we sampled 3,000 tweets from the “other” category to test against disasters
of uncommon type. We repeated the procedure of selecting disasters and sampling training examples in a 6-fold
Monte Carlo cross-validation. Altogether we trained 144 models and executed 162 evaluations. To assess model
generalizability, we combined all training and test samples for each cross-validation step and trained a generic
model for multiple disaster types. We tested all 8 same-type models and the generic model on each of the 10 test
sets from the cross-disaster experiments, and the combined test set to get both, the cross-type loss for each model
and the performance di�erence of using the generic model over the specialized one. In this regard, we trained
another 18 models and executed another 1,620 evaluations. Finally, the 162 models of the first two experiments are
tested on a random sample of 500,000 tweets from a tranquil period in order to evaluate the misclassification rate in
a close-to-realistic setting with exclusively negative examples.

For the keyword-based baseline, we used the CrisisLex (Olteanu, Castillo, et al. 2014) dictionary of disaster-related
keywords, preprocessed them, and classified each tweet in all datasets as related if it contained one or more of the
keywords. To test the training data requirements of our method, we repeated the cross-disaster evaluation for the
generic and the specialized models on earthquakes, floods, and hurricane events, leaving out a static test set, and
evaluated all models in a 5-fold Monte Carlo cross-validation with 20,000, 2,000, 200, and 20 tweets each for
training.

RESULTS AND DISCUSSION

Table 3 shows the average �1 of the model-architectures CNN, BERT, and USE over all respective models, where
USE-based models perform best as generic classifiers, as well as in the cross-disaster and the cross-type scenario,
while the BERT-based models perform marginally better with regard to their misclassification rate.

Regarding the cross-disaster detection performance of a model, Table 4 (left) shows the best-performing cross-
disaster model for each tested disaster type after cross-validation. The �1 scores of these models range from 0.869
on societal disasters to 0.980 on biological disasters. There is no significant di�erence in performance between

3The large tranformer-based model from Tensorflow Hub: https://tfhub.dev/google/universal-sentence-encoder-large/3.
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Table 4. Average �1, precision, recall, and misclassification rate on the tranquil tweets (MCR) of the best-
performing models and the wordlist baseline (WL) on each test disaster. The left half shows the best model trained
on tweets from only one type of disaster, the right half shows models trained on data from all disaster types. Bold
highlighting indicates the best �1 in that row, and underlining that the best-performing model diverges in type
from the test data.

Test Type Best Training Type Cross-type Training Data WL

Training Type �1 Prec Rec MCR Model �1 Prec Rec MCR Model �1

All – – – – – – 0.883 0.947 0.826 0.047 USE –
Biological Biological 0.980 0.977 0.982 0.022 USE 0.965 0.957 0.973 0.047 USE 0.275
Earthquake Earthquake 0.937 0.951 0.926 0.054 USE 0.924 0.958 0.895 0.050 BERT 0.614
Flood Flood 0.891 0.927 0.863 0.078 USE 0.916 0.904 0.929 0.122 CNN 0.691
Hurricane Hurricane 0.929 0.950 0.910 0.062 USE 0.883 0.953 0.826 0.047 USE 0.672
Industrial Wildfire 0.886 0.969 0.817 0.031 USE 0.973 0.971 0.975 0.047 USE 0.799
Societal Societal 0.869 0.950 0.803 0.041 USE 0.864 0.953 0.793 0.047 USE 0.596
Transportation Transportation 0.937 0.990 0.899 0.013 CNN 0.984 0.985 0.983 0.047 USE 0.648
Wildfire Flood 0.925 0.935 0.916 0.022 BERT 0.929 0.950 0.909 0.047 USE 0.497
Other Earthquake 0.680 0.916 0.543 0.054 USE 0.739 0.877 0.655 0.122 CNN 0.258

Average – 0.888 0.949 0.844 0.038 – 0.906 0.945 0.876 0.062 – –
Wordlist – – – – – – 0.621 0.989 0.453 0.019 – –

Table 5. Average �1 over all models and cross-validations for the cross-disaster (CD) and cross-type (CT) experi-
ments, and the average cross-type loss and variance of the �1 scores when using a cross-type over a cross-disaster
model. CT-Neg shows the percentage of tweets that were classified negative in cross-type settings.

Test Data CD CT CT-Loss CT-Variance CT-Neg

Biological 0.953 0.340 0.613 0.057 0.851
Earthquake 0.923 0.556 0.368 0.076 0.743
Flood 0.867 0.511 0.356 0.059 0.779
Hurricane 0.933 0.497 0.436 0.068 0.775
Industrial 0.801 0.631 0.170 0.052 0.704
Societal 0.826 0.380 0.446 0.036 0.843
Transportation 0.904 0.471 0.433 0.056 0.784
Wildfire 0.901 0.544 0.357 0.063 0.748

Average 0.889 0.491 0.397 0.058 0.779

resource-rich disaster types (earthquake, flood, and hurricane) and the newly added ones. For the uncommon
disasters collected in the “other” type, the best model in the cross-disaster setting achieves a lower �1 of 0.680,
and therefore remains as a future challenge. When additionally considering the cross-type models, it is notable
that the model for wildfires outperforms that for industrial disasters, and that the flood-model outperforms the
wildfire model on the respective test data. A successful domain transfer across types is nonetheless the exception, as
shown by the low average cross-type �1 and the low variance between the di�erent cross-type measures displayed
in Table 5. The exceptional cases in which type-transfer works warrant further inspection on an individual basis.

Table 4 (right) shows the results for the best-performing generic model, which was trained on tweets from all
disaster types. The generic model works better on the rare, unseen events in the “other” type, but also outperforms
the specialized models on floods, wildfires, industrial, and transportation disasters. In addition, Table 5 shows the
average loss of applying a specialized model on a di�erent type of test disasters, which can be interpreted as the risk
of choosing the wrong model. The average cross-type-loss is 0.397 in �1, which is significant considering that our
generic model has a higher average �1 over all disaster types than the best specialized models. If classification
e�ectiveness is the primary goal, it is advisable to chose the USE-based generic model when filtering for more than
one disaster type.

Table 4 reports the average misclassification rate over the tranquil tweets, ranging from 0.006 to 0.122 over all
models. The best generic model achieves an average of 0.055 and the best specialized model 0.038. When comparing
the average misclassification rate between model architectures (see Table 3), the BERT-based architecture performs
best with an MCR of 0.037, followed by USE with 0.044, and lastly the CNN with 0.063. If noise-reduction is the
primary goal and cross-type loss is an acceptable risk, the BERT-based specialized models should be chosen.

When comparing the model results to the keyword-based baseline also shown in Table 4, it is notable that the
baseline has a very high precision, low misclassification rate on tranquil tweets, and much lower recall than the
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Figure 1. Model performance over training set size as average cross-event �1 scores for earthquake, flood, and
hurricane prediction (specialized), and their combination (generic).

machine learning approaches, which leads to a significantly lower �1 score on the balanced datasets. The baseline
performs especially poor on rare disasters, as can be seen by the low �1 scores on biological and other disasters.
This exposes the major trade-o� of keyword-based filters: they are more reliable, less prone to additional noise, and
easier to interpret, but frequently miss unforeseen information.

Figure 1 shows the results of training models for earthquakes, floods, and hurricanes with varying amounts of
training data on a static test dataset. The best-performing model achieves 0.93 �1 given 20,000 training examples,
with all other models within the 5% range. In a resource-constrained environment, the generic models outperform
the specialized ones notably, but these di�erences become marginal as the number of examples increases. While the
models based on pretrained, contextualized word embeddings do not significantly benefit from more training data
beyond 2,000 tweets, the CNN relies more heavily on them. This can be explained by the higher number of trainable
parameters in the CNN model. While the CNN performs only marginally above random predictions given only
20 tweets, both BERT and USE achieve meaningful classifications results. This may be explained by the limitations
of the training data: Since most positive examples were originally collected using keywords, it is plausible that a
model with few trainable parameters (like a feed forward neural network using contextualized word embeddings)
learns the most important keywords from the given examples and approximates a restricted wordlist for filtering.

Limitations

Some limitations apply to the interpretation and practical application of the results described in this study. Firstly, the
results are not representative for the maximum possible performance of the individual classifiers, since specialized
classifiers were trained on only 3,000 tweets for reasons of comparability. Especially with regards to the lower
recall values, training models with more examples typically increases performance. Secondly, the best-case
misclassification rate of 0.038 suggest good performance, but conceivably may still be too high for real-world
applications with a common related-unrelated-ratio of 1:10,000 or worse. Thirdly, the low average cross-type
performance of 0.491 and the high cross-type loss of 0.397 suggest that specialized models classify tweets related
to other disaster types as unrelated and can thus distinguish between di�erent disasters occurring in parallel. This is
not necessarily the case, since the average rate of 0.779 for negative predictions from cross-type models is much
higher than the misclassification rate suggests. Lastly, the performance reported in this study is not necessarily
comparable to those reported in related work. Our method of sampling negative examples is not based on potential
keywords but on a statistically sound representation of all unrelated tweets, resulting in a lower lexical similarity
between classes which may render the classification task easier. Since the presented models are intended as a
detector on an unfiltered social media stream instead of on a stream filtered using keywords, we believe that our
methodology reflects a more realistic scenario.

CONCLUSION

We present a benchmark corpus of human-curated tweets related to 46 disasters compiled from related work, and
grouped into 9 disaster types, the Disaster Tweet Corpus 2020. With this corpus, we compared the ability of
162 models over 1,944 evaluations to classify tweets as related or unrelated to a disaster with regard to cross-disaster
classification, generalizability, and misclassification rate.

WiP Paper – Social Media for Disaster Response and Resilience

Proceedings of the 17th ISCRAM Conference – Blacksburg, VA, USA May 2020

Amanda Lee Hughes, Fiona McNeill and Christopher Zobel, eds. 878



Wiegmann et al. Analysis of Detection Models for Disaster-Related Tweets

The best specialized models achieve an �1 of 0.888 on average when generalizing to unseen disasters of a known
type, but lose an average 0.397 �1 when generalizing to disasters of an unseen type. Generic models trained on all
disasters perform slightly better in terms of �1 than specialized models, but have weaker misclassification rates on
unrelated tweets. As practical recommendation, a generic model is preferable unless only one disaster type is of
interest, or unless reducing noise as much as possible is paramount, and the risk of choosing the wrong model is of
no concern.

The limitations of our study leave room for further exploration of the topic. Naturally, creating larger and more
representative training datasets will improve the performance of the individual classifiers, especially with regard to
recall. Although e�ectiveness is comparable across disaster types on similarly sized training data, improving the
detection of tweets from rare and unseen disasters remains a future challenge. Models applied across disaster types
are generally not competitive, although the occasionally observed exceptions warrant further investigation on a
case-by-case basis.
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