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Abstract 
While the largely electrified rail network allows for direct utilization of renewable energy 
sources, there is still a considerable share of diesel-powered trains operating on non- and 
partly electrified tracks. To replace these, the more sustainable alternatives such as battery 
electric railway vehicles need to present a viable option with sufficient range. This paper aims 
to adapt and improve an existing optimization algorithm, previously used with diesel-powered 
trains, for the operation of battery electric railway vehicles. In this new approach, battery 
control is optimized alongside train control, utilizing a direct method solver to find the 
minimum energy trajectory. Furthermore, a detailed train model is implemented that is 
designed for operation on partly electrified tracks. To yield a highly accurate, yet also 
sufficiently fast algorithm, a numerical analysis is conducted and the parameters of the 
algorithm are determined accordingly. Finally, the application of the adapted algorithm on a 
use case in Germany shows that both velocity profile and control adapt in a way that minimizes 
utilization of the battery. The results indicate that the proposed algorithm presents a reliable 
and robust method to obtain minimum energy controls for battery electric railway vehicles 
with any electrification pattern. 
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Introduction 
In the context of the international fight against climate change sustainable means of transport 
and locally emission-free propulsion systems gain more importance, on road as well as on rail. 
One emerging technology that is currently in development within rail industry is the Battery 
Electric Multiple Unit (BEMU).1 BEMUs utilize a hybrid approach with overhead line equipment 
and an onboard Energy Storage System (ESS) in form of a battery.2 

Since the energy-saving potential due to optimized operation is substantial in battery powered 
railway applications,3 there is a need to extend optimization methods to the new use cases. 
While there is extensive literature on optimization with onboard ESS on either completely 
electrified routes or routes without any electrification,4-11 only one work is known to us that 
considers partly electrified tracks (cf. Xiao et al.12). However, this pseudo-spectral optimization 
method was focused on a hybrid ESS for tram operation. For a more general applicability an 
algorithm is needed that is easy to modify and able to deal with complex problem set. For this 
aim, Macian et al. introduced an algorithm for the optimal control of a diesel-powered train, 
which showed improved performance compared to well-established methods.13  

The work presented in this paper should answer the following question: Is the gradient-based 
Direct Method (DM) optimization approach introduced by Macian et al. in 2018 applicable on 
scenarios with battery electric railway vehicles and partly electrified tracks? At the same time, 
this paper attempts to obtain more realistic results by detailed modeling of the train, including 
auxiliary powers and load-dependent efficiency curves, and respect ride comfort restrictions 
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such as ac- and deceleration limits as mentioned in the outlook by Macian et al.13 Additionally, 
a numerical study and parameter calibration was conducted to reduce the computational 
effort and gain a fast algorithm. 

After a short introduction to the previous work of Macian et al., our model extensions and 
adaptions are presented. Afterwards, the parameter optimization is shown, followed by the 
presentation of a use case on a real route in Germany. 

Background – Direct Method 
The development of a new optimization algorithm for railway operation by Macian et al. was 
driven by three main goals:13  

1. To obtain optimal operation for a train model with any complexity,  
2. The possibility to include any kind of constraint in a straightforward manner and  
3. To keep computational requirements as low as possible. 

To achieve this, they applied three different methods on the Optimal Control Problem (OCP) 
of a diesel-powered train and conducted a benchmark. Pontryagin’s Minimum Principle (PMP) 
and Dynamic Programming (DP), both widely used in railway trajectory optimization, failed at 
least one of the goals mentioned above. DP resulted in very high computational requirements 
due to curse of dimensionality and violated equality constraints. PMP, on the other hand, 
failed to yield results for the OCP because the calculation of costates (Lagrangian multipliers) 
gets too complex. This could only be solved by a simplification via pre-fixed operation modes 
and, therefore, conflicts with the first two goals. 

The DM approach of constructing a large and sparse Non-Linear Programming (NLP) problem 
via collocation by Macian et al., however, fulfilled all goals. With this method, the continuous 
spatial domain of the whole route is discretized into a numerical grid and the optimal 
trajectory is approximated by known functions within steps between collocation/grid points 
(e.g. polynomials or piecewise functions). With a system model (differential equations and 
constraints) eligible function values can be determined. The optimal values are then calculated 
by an NLP solver.  

The OCP can be formulated with the following mathematical description: 

min
𝑥

𝑓(𝑥) , 𝑠. 𝑡. 

 𝑐l ≤  𝑐(𝑥) ≤  𝑐u (1) 

𝑥l ≤  𝑥 ≤  𝑥u 

Here, 𝑓(𝑥) denotes the objective function, which is to be minimized. In Macian’s case this is 
the integral of fuel consumption rate along the route.13 The solution vector 𝑥 consists of all 
states and actuators at the grid points, in this case velocities and power control settings (for 
both traction and braking).  The behavior of the solution variables is defined by the differential 
equation (DE) of motion and boundary conditions such as zero velocity at stops. It is 
furthermore bound by lower and upper limits (𝑥l and 𝑥u: e.g. speed limits and physical system 
bounds). Macian et al. considered additional system constraints 𝑐(𝑥) in form of power and 
force limits (path constraints given in each grid point) as well as a timetable (integral constraint 
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between two stops).13 The NLP formulation allows for all DEs and constraints to be transcribed 
into one vector. Since the utilized NLP solver Interior Point OPTimizer (IPOPT)14 is gradient-
based, first (gradient of objective function and Jacobian of constraints) and second (Hessian 
of both, not used by Macian) derivatives need to be provided or approximated. With the 
additional knowledge of derivatives, the optimization speed can be increased considerably. 
Therefore, objective function and constraints have to be twice continuously differentiable. 
Macian et al. achieved this by fitting the input functions with Fourier series and Gaussian 
functions.13 

Macian et al. achieved to handle the large problem with a straightforward implementation of 
the constraints. Utilizing a state-of-the-art open access NLP-solver, the optimization 
converged fast and with low computational requirements in a robust process. Additionally this 
method allows using previous solutions for increased convergence speed. Minor drawbacks 
are that NLP solvers only yield local instead of global optima and results and convergence 
behavior depend on the initial solution.  The restriction of twice continuously differentiable 
input functions bounds the applicability and the calculation of derivatives may be costly. Also, 
the discrete control approach chosen by Macian et al. causes difficulties and slows down the 
optimization. However, the DM with NLP overall presents strongly improved results and 
performance over DP and PMP. Based on their approach, additions to the model have been 
implemented to improve the results and analyze the applicability with respect to battery 
powered traction.  

Methodology – BEMU Model 
The first and most fundamental change from the approach by Macian et al. is the replacement 
of discrete by continuous control to simplify the control problem. Moreover, a continuous 
controller is appropriate for electric traction, especially for future applications with automated 
driving. We limited the power control setting 𝑁 to a range between -200 and +100 %. Here 
+100 % denotes full tractive effort, 0 the idle position, −100 % full regenerative braking and 
−200 % full regenerative braking with additional full power of the mechanic brakes. 

 𝑁𝑖 ∈ [−200,100]      ∀𝑖 (2) 

With this change the optimization process is reduced to one compared to the two iterations 
conducted by Macian et al. in order to handle the discrete variables. 

At this point, the fundamental assumption for the function type between collocation points 
had to be made. Our approach for the base state and actuator variables was to assume that 
the power control setting is approximated by a piecewise constant and the velocity 𝑣 by a 
piecewise linear function. This is in agreement with the assumptions made by Macian et al. 
and other research.8,13 With this being the foundation of all following models in this work, the 
approximation error (i.e. the difference between reality and modeled quantities) that is 
introduced here has to be kept in mind. However, this error can be limited by intelligent grid 
setup as shown later on.  

In order to implement a BEMU model, a novel electric drivetrain and a battery model had to 
be developed. In this model, recuperation of brake energy was included via generators at the 
traction units as well as two different energy sources and sinks (overhead catenary and 
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battery). A schematic overview of the important components is given in Fig. 1. Additionally, 
auxiliary loads such as heating, ventilation, lights and cooling were considered.15 All 
components are connected to the core DC-link on the train and for the energy throughputs 
load-dependent efficiencies and idle losses were integrated. 

 

Figure 1. Schematic representation of the train model with all electric components. 

Differential Equations and Constraints 
The equation of motion defines the relation between acceleration �̇� and traction or braking 
forces 𝐹trac/brake and resistance force 𝐹res, divided by the mass 𝑚 (static and rotational): 

 �̇� = 𝑓(𝑁, 𝑣) =
𝐹trac/brake(𝑁,𝑣)−𝐹res(𝑣)

𝑚static+𝑚rot
 (3) 

It was solved, as done before, with a modified Euler method, which is called the implicit 
midpoint rule. The left hand side of the differential equation is approximated by a difference 
quotient 

 �̇� ≈
𝑣𝑖+1−𝑣𝑖

Δ𝑡
 (4) 

The travel time between two grid points Δ𝑡𝑖 is determined by the distance Δ𝑠𝑖 =  𝑠𝑖+1 − 𝑠𝑖 
and the mean velocity �̅�𝑖  in that segment: 

 Δ𝑡𝑖 =  
Δ𝑠𝑖 

�̅�𝑖 
  (5) 

The mean velocity is described as the average between the neighboring grid points, because 
the velocity is assumed to be linear between points. 

 �̅�𝑖 =  
𝑣𝑖+𝑣𝑖+1

2
 (6) 

The right hand side is evaluated between collocation points. With the assumptions of 
piecewise constant control and linear velocity this results in 

 �̇�𝑖 = 𝑓(𝑁𝑖, �̅�𝑖) (7) 
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The forces for traction and braking are given by the quotient of the power at wheels 𝑃w and 
�̅�𝑖: 

 𝐹trac/brake(𝑁, 𝑣) =
𝑃w(𝑁𝑖)

�̅�𝑖
 (8) 

Resistance forces are approximated by the Davis formula (with coefficients �̃�, �̃� and �̃�),16 also 
considering gradients and curve resistances with Röckl’s formula (parameters 𝐷1 and 𝐷2, 
gravitational constant 𝑔),17 similar to Macian et al. 13 

 𝐹res(𝑣) =  �̃� + �̃� �̅�𝑖 + �̃� �̅�𝑖
2 + 𝑚 𝑔 (sin(arctan(�̃�𝑖)) +

𝐷1

𝑟𝑖−𝐷2

) (9) 

Gradients �̃�𝑖 and radii 𝑟𝑖 are given as piecewise constant inputs. However, curve resistances 
were disregarded for the simulations in this work because of insufficient data. 

Additionally to the equation of motion, multiple other constraints were adopted from Macian 
et al. with slight changes: 

• The travel time for each section 𝑗 between stops has to be shorter or equal to the given 
timetable (𝑡tab,𝑗). These integrals can be approximated by a sum with the assumptions 

from equation (4) and (5): 

 ∫ d𝑡
𝑡end

𝑡start
≈ ∑

Δ𝑠𝑖

�̅�𝑖

 
𝑖 ≤ 𝑡tab,𝑗   ∀𝑖 in one section 𝑗 (10) 

• The maximum positive force at wheels 𝐹trac is limited by the adhesion limit 𝐹adh. 
 𝐹trac,𝑖 ≤ 𝐹adh   ∀𝑖 (11) 

• The same restriction was applied for the electric brake force 𝐹brake with the force limit 
of the generator 𝐹gen, which has a negative value. 

 𝐹brake,𝑖 ≥ 𝐹gen   ∀𝑖 (12) 

Furthermore, we added a comfort constraint on the de- and acceleration 𝑎: 

 𝑎brake,max ≤ 𝑎𝑖 ≤ 𝑎trac,max   ∀𝑖 (13) 
The acceleration in each grid step is constant due to linear velocity and can be calculated by 
the change in velocity in one step. With assumptions in equation (4) and (5), this yields: 

 𝑎𝑖 =
𝑣𝑖+1−𝑣𝑖

Δ𝑡𝑖
=

𝑣𝑖+1
2 −𝑣𝑖+1

2

2 Δ𝑠𝑖
 (14) 

ESS Model and Constraints 
Additional constraints were required to properly describe the behavior of the ESS system. The 
implementation accounts for a battery system with a variable number of battery branches in 
a parallel circuit.18 One branch was modeled as a power source with power losses in an 
internal resistance. This is illustrated in Fig. 2. Here, the main parameters of interest are open 
circuit voltage 𝑈OC, nominal capacity 𝐶nom, internal resistance 𝑅int and the number of 
branches 𝑛branch. All of these variables were kept constant for simplicity except for 𝑈OC which 
was modeled as dependent on the State of Charge (SoC). With this simplified model, it is easy 
to feed the algorithm with publicly available battery data. Besides this, it also has the potential 
to provide significantly faster computational times then more complex approaches while still 
yielding very similar results. Following the proposed model, two new solution variables were 
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introduced to describe the state and control of the additional system: 𝑆𝑜𝐶 and the current 𝐼. 
It is assumed that both new variables are piecewise constant. 

The current 𝐼 is given in A, the SoC in %. 𝐼 is limited by a maximum charge and discharge 
current for the battery, bounds for 𝑆𝑜𝐶 can be set as an operational window for the battery. 

 

Figure 2. Schematic representation of the train model with all electric components. 

To obtain 𝐼 in each step, a balance around the battery can be formulated: 

𝑃batt,DC  = 𝑛branch(𝑈bat 𝐼branch) 

 = 𝑛branch((𝑈OC − 𝑅int 𝐼branch)𝐼branch) (15) 

Here, 𝑃batt,DC depicts the battery power which matches the power from the DC-link (sum of 
motor/generator and charging from catenary) including losses in the battery converter. 
𝑛branch is the number of parallel battery branches, 𝑈bat the overall battery voltage. To obtain 
𝐼, the quadratic equation has to be solved. Only one of the two solutions is physically valid: 

 𝐼 = 𝑛branch  (
𝑈OC

2 𝑅int
− √(

𝑈OC

2 𝑅int
)

2

−
𝑃batt,DC

𝑅int 𝑛branch
) (16) 

Besides that, a system equation for the battery to model 𝑆𝑜𝐶 is needed. In this simple internal 
resistance model, 𝑆𝑜𝐶 is given by (cf. Waheed19): 

 𝑆𝑜𝐶 = 𝑆𝑜𝐶start − ∫
𝐼

𝐶nom
 d𝑡

𝑡end

0
⋅ 100 % (17) 

In the discretized model, the integral is, again, approximated by a sum over piecewise constant 
currents. Between two grid points this yields: 

 𝑆𝑜𝐶𝑖+1 =    𝑆𝑜𝐶𝑖 −
𝐼𝑖

𝐶nom
 Δ𝑡𝑖 ⋅ 100 % (18) 

For the operation in both catenary and catenary-free sections on the same track, it is 
imperative to determine a proper battery control strategy. This optimization of the charging 
and discharging control is conducted alongside the train control optimization. This way, it is 
made sure that the power control is adapted to battery operation in catenary-free segments, 
the battery is efficiently recharged under catenary and, most importantly, boundary 
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conditions can be given for the 𝑆𝑜𝐶. With imposing a balanced 𝑆𝑜𝐶 at start and end of the 
route, comparability between different scenarios and setups can be guaranteed. 
For charge control two additional variables are defined: 

• A blend factor 𝜃, given in %, to determine whether the power is taken from or fed into 
battery (100 %) or catenary (0 %). In catenary-free operation, 𝜃 is fixed to 100 %. 

• A second blend factor 𝜖, given in %, to define the power with which the battery is 
recharged under catenary. 𝜖 = 100 % implies a charging power of 𝑃max,bat with the 
specified highest charging rate.  

Objective function 
The general objective function is defined as an integral of a cost function over the whole 
domain. This can, again be approximated by a sum with equations (4) and (5). 

 𝑓(𝑥) = ∫ 𝐶𝑜𝑠𝑡
𝑡end

𝑡start
d𝑡 ≈ ∑ 𝐶𝑜𝑠𝑡𝑖  

Δ𝑠𝑖

�̅�𝑖

𝑛−1
𝑖=1  (19) 

In this work, the objective was to minimize electric energy consumption. Because the final 
𝑆𝑜𝐶 is given in form of a boundary condition, it is possible to optimize energy consumption at 
the catenary only. The amount of energy consumed by the battery is optimized indirectly via 
charging power and the two blend factors, which are linked by the battery current constraint. 
With 𝑃trac,cat as tractive power at the catenary and 𝑃ch,cat as the additional charging power at 

catenary, the cost function for catenary operation results to: 

 𝐶𝑜𝑠𝑡(𝑁, 𝜃, 𝜖) = (1 − 𝜃) 𝑃trac,cat(𝑁) + 𝜖 𝑃ch,cat (20) 

At this state of the implementation, it is important to point out that adding traction and 
charging power with 𝜖 introduces a model inaccuracy because efficiencies and idle losses are 
calculated preemptively as a function of power control setting. However, the actual power 
throughput through some of the components such as the transformer differs since the power 
from battery to catenary and vice versa is calculated only during the optimization. For further 
improvement, efficiency functions with multiple dependencies 𝜂(𝑁, 𝜃, 𝜖) could be introduced. 
This would, however, lead to increased computational times and, hence, was avoided in this 
first approach. The individual error introduced by this approximation might be estimated by a 
backwards simulation of the results.  

Further Adaptions 
In addition to the modifications described above further measures were introduced for a more 
accurate and faster optimization. 

Firstly, as velocity appears in the denominator in the traction force calculation of the force 
constraints and the equation of motion, a minimum numerical speed 𝑣min was introduced to 
ensure a robust solution process. Together with the speed limits this yields the computational 
bounds for velocity: 

 𝑣𝑖 ∈ [𝑣min, 𝑣max,𝑖]        ∀𝑖 (21) 

Since auxiliary loads were included in the model, these have to be covered during station stops 
as well. For simplicity they are assumed constant in our approach. However, together with the 
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new requirements of reaching the final 𝑆𝑜𝐶 with proper charging control, this causes a need 
for optimizing the whole route in one process, including a handling of stops. The stops are 
modeled as small, virtual grid steps that correspond to the time it takes to drive this step size 
at 𝑣min. 

Macian et al. realized twice continuously differentiable functions, which are necessary for the 
NLP solver, by utilizing Fourier series and Gaussian functions.13 Since our method includes a 
lot of additional input functions, a more general approach was used. With a formulation by 
Jimenez-Fernandez et al., piecewise linear functions can be transformed by smoothing the 
salient, non-differentiable points.20 This method is illustrated in Fig. 3, the mathematical 
formulation is: 

 𝑓(𝑥) = �̂� + �̂� 𝑥 + ∑ �̂�𝑖 ln(1 + e−𝛼(𝑥−�̂�𝑖))
𝑛salient
𝑖=1  (22) 

Here, �̂�, �̂�, �̂�𝑖 and �̂�𝑖 denote parameters that are calculated from the known points; 𝑛salient is 
the number of breakpoints between piecewise linear sections and 𝛼 is a smoothing 
parameter. With increasing 𝛼 the result gets closer to the piecewise linear function. However, 
if 𝛼 is too big, the function might not be defined in the whole domain. To achieve the best 
possible result for each individual smoothing process, the highest possible 𝛼 is determined. 
Typical values for our input functions are between 2 and 4. 

 

Figure 3. Exemplary piecewise linear function versus power control setting and the associated smoothed function with 
different. 

The last adaption was to include second derivatives. Instead of using numerical approximation 
of second derivatives by a Quasi-Newton method21 the information about second derivatives 
for both objective function and all constraints is passed explicitly in a single matrix, which is 
called the Hessian 𝐻 of the Lagrangian.  
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Numerical Parameter Study and Grid Calibration 
To develop a fast and robust algorithm with little computational requirements, the numerical 
setup was analyzed and calibrated. In particular, these are the grid setup and the initial 
solution. 

The most impactful parameters are the amount and positioning of the collocation/grid points. 
The grid setup always implies a trade-off between computational speed and accuracy. The 
more grid points are used, the smaller the approximation error due to assumptions of 
piecewise function made in the Methodology become. On the other hand, the computation 
effort increases usually more than linearly with an increasing number of grid points. A grid 
study was conducted on a short, synthetic test route that is illustrated in Fig. 4. With this route, 
multiple series of tests including very high resolutions could be conducted. As a test vehicle, a 
generic regional BEMU was designed with realistic parameters from state-of-the-art BEMU 
prototypes and other regional trains.22-26 The key vehicle characteristics are given in Table 1. 
For the simulations, a train occupancy rate of 80 % of the total passenger capacity was 
assumed, with 75 kg per passenger. The rotational mass 𝑚rot was set to 5 % of 𝑚static. 

 

Figure 4. Track characteristics of the test track with elevation, speed limits, stops and the reference velocity profile. 

As measured data was not available, the reference for the grid study has been derived by 
increasing the number of grid points until the results converge to a solution that is not changed 
significantly by a further increase of resolution. In Fig. 4, the corresponding velocity profile for 
the reference case is depicted. 

With the use of refinement layers around critical points, the resolution in the rest of the 
domain can be lower without a big loss of accuracy. This means that areas with rather constant 
solution behavior such as coasting phases can be mapped with bigger grid steps than strong 
de- and acceleration phases. After various test rounds, it was found that a refinement layer 
around stations combined with an equidistant grid in the rest of the route yield stable results. 
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The refinement layer was set up with a first grid step of 10−3 m before and after the stop. 
From this smallest step the following steps grow in size with a widening factor of 1.5 until the 
equidistant base step size is met.  

Table 1. Key characteristics of the generic BEMU. 

Characteristic Value 

Length 55 m 
Mass 𝒎𝐬𝐭𝐚𝐭𝐢𝐜 (empty) 120 t 
Passenger Seats 150 
Maximum Velocity 140 km/h 
Max. De-/Acceleration 1 m/s² 
Max. Power at Wheels 2 MW (catenary), 1 MW (battery) 

Davis Coefficients �̃�, �̃�, �̃� 1956 N, 17.6 
N

m/s
, 2.59 

N

(m/s)2 

Motor/Generator Limit 𝑭𝐚𝐝𝐡, 𝑭𝐠𝐞𝐧 109956 N 

Nominal Battery Capacity 616 Ah 
Nominal Open Circuit Voltage 𝑼𝐎𝐂 790 V 
Internal Resistance 𝑹𝐢𝐧𝐭 0.65 Ω 

 

In Fig. 5, the simulation test results for various base step sizes are shown. The graph shows 
deviations in the results as well as the computational time for an optimization run with the 
simplest initial guess i.e. equal values for the solution variables in the whole domain. The 
deviations in energy and velocity are calculated against the reference (with a resolution of 0.5 
m-steps).  

 

Figure 5. Track characteristics of the test track with elevation, speed limits, stops and the reference velocity profile. 
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The numerical analysis showed that the discretization error for all grids with base steps smaller 
than 100 m steps is limited to 5 %.  The grid with 100 m-steps was used for further optimization 
because of the most advantageous trade-off between time and accuracy. The computational 
time (Intel® Core™ i7-8665U CPU@1.9 GHz and 16 GB RAM) is decreased from the magnitude 
of hours (4 h 38 min for 0.5 m-steps) to 49.6 s while still yielding accurate results. Since the 
energy consumption has a positive deviation compared to the reference in all cases, there is 
also no danger of overestimating the energy saving potential. Only one other analysis of grid 
calibration was found in railway trajectory optimization literature, conducted by Wu et al. with 
a PMP optimization.8 They suggested an optimal step size of 100 m, which matches with our 
results. 

After calibrating the grid setup, the initial solution was analyzed as a second parameter. Tests 
of different approaches proved a strong influence on computational time, while the results 
concerning energy consumption and velocity did not vary considerably (<1 %). The fastest 
overall performance was achieved with a trajectory from a preceding optimization with IPOPT 
that respects all constraints, but is not optimized (𝑓 = 0) and does not consider the battery 
model. The initial battery variables were theoretically estimated using the system equations 
introduced above. 

This approach further reduced the computational time with 100 m base steps from 49.6 s to 
4.9 s (0.8 s for the initial optimization and 4.1 s for the final run) by approximately 90 %, hence 
demonstrating that an intelligent initial guess is crucial.  

The procedure introduced above can contribute to design accurate and fast numerical 
algorithms. With this calibration, our algorithm yields fast results while still being within a high 
numerical accuracy. Overall the computational time compared to the reference was reduced 
from the magnitude of hours to only 4.9 s by utilizing appropriate refinement layers in 
combination with coarse base grid steps (100 m) and an intelligent initialization. Despite the 
significant reduction of grid points, the results were still within a 5 % numerical error margin.  

Use Case (Results) 
With the optimized setup, the algorithm was applied to the use case of a regional line in 
Germany from Hagen to Warburg with a length of 152 km. A geographical overview of the 
route is given in Fig. 6. 

 

Figure 6. Map of the route Hagen-Warburg with stations and assumed electrification (illustration by DLR). 
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Line speed limits, station stops and electrified sections are shown in Fig. 7. This line is equipped 
with overhead lines in the beginning (14.1 km) and the end (2.5 km) of the track. In our 
analysis, the electrification was extended by 16 km on each side and a catenary island (14.2 
km) in the middle of the track to yield a partly electrified scenario that is feasible with the 
generic BEMU introduced above.  

Simulations with the proposed algorithm and abovementioned calibrated parameters were 
carried out in order optimize the operation for this use case. Here, the optimization converged 
without constraint violations in approximately 12 min (0.4 min initialization and 11.6 min 
optimization) and yielded a total energy consumption at catenary of 1.1 MWh. The optimized 
solution was compared to a simulation without minimization of the energy that follows the 
same constraints and boundary conditions (including the timetable). Here, the optimization 
yields an improvement of 8.3 % in energy consumption at catenary, which clearly 
demonstrates the energy saving potential of the algorithm. The optimized net energy at 
battery was 528 kWh, including -256 kWh of recuperated energy, which corresponds to a 
recuperation factor of 23.3 %. This factor was calculated as recuperated energy at battery 
divided by energy consumption at catenary. The non-optimized simulation only yields a 
recuperation factor of 16.8 %, while at the same time amplifying battery stress due to 
increased energy output at battery. The key simulation results are summarized in Table 2. 
Additionally, the energy costs for a single roundtrip were calculated (see Table 2). For this 
economic evaluation, electricity prices at catenary within the German network by Deutsche 
Bahn were used. In 2019, buying electricity was charged with 5.69 cents/kWh, while feeding 
recuperated energy into the grid gave a revenue of 2.73 cents/kWh.27 Assuming a line 
schedule with four trains going three times per day (4380 roundtrips per year based on 
timetables by Deutsche Bahn28), this leads to savings of around 31 100 € per year only due the 
reduced energy consumption when compared to the non-optimized simulation. It has to be 
taken into account that these results depend heavily on the chosen line and vehicle. 
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Figure 7. Track characteristics of the route Hagen-Warburg with elevation, speed limits, stops and assumed 
electrification.  

Table 2. Key simulation results for the regional use case Hagen – Warburg (Germany). 

Results per roundtrip 
Non-optimized 

simulation 
Optimized 
operation 

Computational time  1 min 12 min 
Energy at catenary  1.2 MWh 1.1 MWh 
Net energy at battery without catenary recharging 590 kWh 528 kWh 
Recuperated energy at battery -201 kWh -256 kWh 
Energy costs at catenary  69.7 € 62.6 € 

 

The detailed optimized trajectory of the roundtrip simulation for this use case is depicted in 
Fig. 8. Here, subfigures 8 a) and e) show the whole trajectory, while subfigures b)-d) depict a 
representative segment of the route including five driving sections, for which the effects are 
discussed in detail:  

The results in terms of applied traction power clearly adapt to the available power sources in 
the respective line section. For section (V), the typical phases of energy efficient driving 
(optimum-efficiency-acceleration, coasting and braking) can be seen (cf. Fig. 8 b). The non-
electrified sections (I)-(III) deviate from this behavior. This is due to the limited power of the 
battery, which results in a maximum control setting of approximately 50 % as seen in the graph 
(cf. Fig. 8 c-d). The inhibited acceleration capacity leads to longer acceleration phases with 
shorter or non-existent coasting between stations. In section (IV), it can be seen that the train 
accelerates again, once it enters the electrified part and makes use of the catenary supply and 
the higher efficiency power setting.  
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Concerning our goal to increase the level of detail of the modeled train, some differences to 
the results by Macian et al. can be found. Firstly, a more realistic braking behavior was 
achieved. Our results describe a smooth transition from coasting to regenerative breaking (cf. 
Fig. 8 a-c) due to the additional comfort constraint for deceleration and due to recuperation, 
which makes early and slow braking more profitable than using the mechanical brakes and 
dissipating the kinetic energy.  

Additionally, the effects of load-dependent efficiencies on power control settings are visible. 
In particular, idle operation is mostly avoided and the coasting phase is rather a slow transition 
from tractive effort to regenerative braking than a simple zero-position control (cf. Fig. 8 c). 
This is due to the bad efficiency of idle operation with losses in the electric components. On 
the other hand acceleration is never carried out with full power effort, but rather around a 
maximum of 60 %, which is the most efficient power control setting with these specific 
efficiencies. 

In Fig. 8 d, the optimized power at catenary for the chosen segment can be seen. One part of 
this power is used to recharge the battery while driving (dotted line). By minimizing this part, 
the power at battery is implicitly optimized in the non-electrified sections and there shows a 
similar behavior as the tractive power at catenary. As expected, the regenerative energy 
during braking is not fed back into the catenary but utilized to recharge the battery since 
feeding back and then recharging the battery from catenary has a lower overall efficiency. 
Similarly, the tractive power in electrified sections is always supplied by catenary, since using 
the battery would imply additional losses. In Fig. 8e, the resulting SoC is depicted. On 
electrified sections, the battery is recharged in order to fulfil the requirement of a balanced 
state of charge in the beginning and the end.  

The use case results clearly proved the applicability of the algorithm on a partly electrified 
BEMU scenario. The solver converged to realistic results without any constraint violations. It 
was seen that both velocity profile and control adapt to the varying availability of power 
supply by catenary. As expected, regenerative energy is always fed into the battery if possible 
and tractive energy is preferably supplied by catenary if available. Therefore, this optimization 
leads to the maximum utilization of catenary and sparing use of battery. 
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Figure 8. (a) Velocity profile and energy consumption at catenary for the whole round trip with turnover stopping time; 
(b) velocity profile for a representative segment including five driving sections; (c) power control setting for the segment; 

(d) power at catenary (total and for charging) and battery for the segment; e) resulting SoC for the whole round trip. 
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Conclusions 

Our results proved that the DM optimization approach introduced by Macian et al. for diesel 
trains is also applicable to scenarios with battery electric railway vehicles and partly electrified 
tracks. To achieve this, the following modifications and extensions of the model were needed: 
a BEMU drivetrain model including an internal resistance battery model was implemented. 
Controls are now handled continuously and additional constraints were introduced. 
Furthermore, auxiliary loads and intermediate stops were considered in order to optimize the 
whole route at once. Utilizing a different approach to smooth non-differentiable functions and 
including second derivatives showed improved performance compared to the basic model by 
Macian et al. The numerical analysis yielded a suitable grid setup with a coarse base grid and 
refinement around stops. In combination with an intelligent initialization, a fast and at the 
same time accurate algorithm was designed.  

The use case of a partly electrified route in Germany confirmed that our algorithm is able to 
handle the large optimization problem very well. Within 12 min, we gained a converged 
minimum energy solution that showed the expected behavior of a BEMU, adapting to the 
changing conditions of the available power sources while also reducing battery degradation. 
Furthermore, the optimization algorithm prioritized the utilization of regenerative braking 
energy for battery charging over feeding electricity back in to the catenary as it is overall more 
energy-efficient. With an energy consumption of 1.1 MWh at catenary, it was possible to 
recover 256 kWh of regenerative braking energy in the presented use case. For this specific 
line, an energy recuperation factor of 23.3 % was obtained. Compared to the non-optimized 
simulation, improvements of 8.3 % in energy consumption at catenary could be achieved. 
Compared to manual operation, even higher improvements may be possible.  

Besides the energy saving potentials shown by offline benchmark simulations, an online 
application of the algorithm is not ruled out, since it is able to take previous solution as an 
input to further speed up the optimization. Utilizing a pre-calculated optimal solution, our 
algorithm might be used to react to changing conditions during the journey and find an 
adapted optimal solution within an acceptable time.  

Our algorithm presents a powerful tool to accelerate the change to a more sustainable 
transport sector as it can be used e.g. to plan and dimension the future operation of BEMUs. 
Some aspects of the work are still in development and need further improvements. The 
deficits of the current load-dependent efficiency-implementation could be overcome by a 
more complex approach. Further improvements could be the handling of dynamic auxiliary 
loads and a more detailed battery model including the allowance of short time peak currents. 
However, due to the high modularity of the algorithm, modifications like this and future 
additions such as hydrogen fuel cells as a power source are easily possible. 
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