By E. L. hamblyn

INTRODUCTION

During the course of work on the growth and breeding of the Nile Perch at Sagana in Kenya a number of observations were made on populations of Tilapia subject to predation by Nile Perch. This work touches upon a central problem in fish culture, viz., the control of rapidly expanding fish populations by predation where monosex culture or culture of non-breeding species is impractical. Tilapia ponds often present this problem which may be approached by considering stockreduction methods. The use of the Nile Perch in this stock-controlling role is further enhanced by virtue of its qualities as a high-priced table fish. The work on the Luwala Sugar Estate Dam near Jinja, and on the experimental dams at Sagana, suggest two distinct courses of events during stock-control experiments, depending on whether the Nile Perch breeds or not. In further experiments the impact of predation by Nile Perch, and also by Black Bass (Micropterus salmoides) over a short period, is detailed for a limited population of Tilapia nigra, and the sequence by which a suitable prey population is established and utilized is discussed.

THE FOUR-ACRE DAM AT SAGANA

This dam is an example of a pond where the Tilapia, principally T. melanopleura and T. nigra. were small in size, present in very high numbers and were observed to be breeding at a small size (12.0-16.0 cm. total length). Length frequency distributions for T. melanopleura and T. nigra at the beginning and end of a fourteen-month period appear in Table AI.

At the beginning T. nigra outnumbered T. melanopleura by nearly four to one and on average were larger in size. Both species showed unimodal distributions but the mode for T. melanopleura was spread over two consecutive length groups (4.0 to 5.9 cm .) at the low end of the range while the modal length of T. nigra (7.0 to 7.9 cm .) was clearly defined and was near the centre of the distribution.

At the end of the experiment three well marked modes were evident in the T. nigra distribution whereas the T. melanopleura distribution was still unimodal, had a well defined modal class and approximated a typical net-selection curve. However, these final samples were obtained by draining the dam and sampling the whole fish population whilst the earlier samples were obtained from seine-net hauls only. Size selection by the seine-net (mesh 16 mm .) would have tended to exclude the smaller fish and would have entirely missed the smallest individuals below the first mode of the T. nigra distribution (3.0 to 3.9 cm .). The shape of the original T. melanopleura distribution may also have its origin here.

Over the fourteen-month period an increase in the number of T. melanopleura relative to the number of T. nigra had taken place but the latter species was still larger on average than the T. melanopleura. The stock of T. nigra were now characterized by relatively strong numbers. The final biomass of T. nigra represented nearly three times the biomass of T. melanopleura and comprised a small number of large individuals compared to a large number of small individual T. melanopleura (Table A.2).

The whole fish population recorded on 22nd March 1962 (with the exception of a negligible number of Gambusia, Barbus, T. mossambica and T. zillii) is shown in Table A3. The dam had supported 95,100 fish weighing 624.7 kg . But for nine

Nile Perch and the four exceptions noted above all these fish were Tilapia which together outnumbered the Nile Perch by 10,566: 1. The ratio by weight, however, was only 20: 1. The Nile Perch had grown from a total weight of 6.5 kg . at the start to 30.4 kg ., a gain of 23.9 kg .

In the absence of any numerical estimate for the numbers of Tilapia present at the beginning, no numerical changes wrought by the predator can be detected. The emergence of clearly defined length classes amongst the T. nigra stock may be a response to the presence of the predator.

This environment was ideal for the growth of Nile Perch in respect of prey fish supply and the failure of the Nile Perch to breed allows some idea of the stocking limits which could operate using a monosex group of predators. In this case 23.9 kg . were produced from 1.6 hectares (four acres) of water having a predator to forage (prey fish) ratio of 20: 1 by weight at the end of 423 days. Production of this level does not compare favourably with the expected production of 842 kg ./hectare/year upwards using non-predators alone (Hickling 1962, p.231).

LUWALA SUGAR ESTATE DAM

In this dam of about two acres Nile Perch introduced during October 1959 successfully established a breeding population amongst a stock of T. zillii. The sizes of Nile Perch caught in the dam during the experiment are shown in Table A4 together with the measurement of the original stock.

As it was impractical to drain and poison this dam a short period mark-andrecapture technique described by Schnabel (1938) was used to estimate the population of Tilapia zillii and Lates niloticus within the selection range of 16 mm . seine-net. The results are shown in Table A5, and the length frequency distributions of T. zillii at various times between August 1959 and February 1962 appear in Table A6.

The Tilapia were abundant in August 1959 but were of small size. The sample of T. zillii taken on 22nd December 1960, fourteen months after the introduction of the Nile Perch, was more markedly bimodal than any previous sample and was also the last sample to show more than one distinct length class. The Lates progeny were discovered on 5th October 1961, ten months after the latter sample was taken and two years after the introduction of the original stock. The December 1961 sample gave the first information about the T. zillii stocks after the discovery of the Nile Perch progeny. Only one mode of length frequency was represented and the Tilapia were noticeably fewer in number; the small samples of 1961 and 1962 were taken by five hauls of the seine-net whereas only two or three hauls secured the much greater samples of 1959 and 1960.

The size range in 1961 and 1962 was much the same as in the earlier two years. Male fish (14.0 to 15.0 em . total length) in breeding dress were present, indicating the small size at which breeding was taking place compared to the normal breeding size of males at 23.7 em . total length (Hamblyn 1960, p. 32). The growth of the Tilapia from December 1961 through to January 1962 may be followed by the movement of the mode. The growth rate of about 2.0 em . per month of this size range does not suggest an inadequate food supply (vide Cridland 1960, p. 139).

The population estimates given in Table A5 show about thirteen times more Tilapia than Lates living in this dam. By February 1962 no Nile Perch larger than 32.0 em . had been captured and there is no reason to believe that fish larger than
thIS SIze were present. Every effort was made to recover members of the parent stock which could have achieved a length of $80-100 \mathrm{~cm}$. by this time (Hamblyn in press).

The top end of the length range of T. zillii, Le. above 8.5 cm ., is beyond the predation range of the Nile Perch which do not eat fish more than one-quarter of their own body length (Hamblyn in press). The group of Tilapia above 8.5 em . and outside this range susceptible to predation includes the males in breeding dress, so that a reproducing group of Tilapia free of direct predation are able to breed at a size smaller than observed amongst wild fish and undesirably small for fish culture.

The Nile Perch were introduced on 16th October 1959 when the Tilapia population was in this runted condition and Lates appear to have been effective in reducing the numbers present but perhaps not to a density low enough to produce a sustained growth improvement in the Tilapia population. The stocks of prey fish (Tilapia) present calculated at a density above 1,000 per acre foot does not suggest a failing food supply as a factor controlling the size of the Nile Perch population, nor the size attained by individuals.

Whether a growth improvement by the Tilapia was possible in an environment carrying a stock at subsistence level, if indeed the stock was at this level, and whether the Tilapia were genetically capable of greater growth at the lower density, are undecided questions. Also, behavioural responses to the presence of a predator could be influential in isolating part of the dam as more or less safe areas, and the direct competition between Tilapia species in the post-larval stages for the same food organisms is yet another form of interaction. An inexplicable growth inhibition which may have affected the Nile Perch suggests that a population density of more than 100 Lates per square foot away may be too high. Thus this Nile Perch population may represent a runted stock.

the Measurement of predation

Figures for the actual impact of the predators or a known population of Tilapia were obtained in an experiment at Sagana using eight of the fish which later lived in the four-acre dam.

In this experiment, detailed in Table A7, three one-acre dams were each stocked with 2,000 Tilapia nigra. Eight Nile Perch were added to one pond, eight Black Bass (Mieropterus salmoides) to another, while the third pond was used as a control. At the end of thirty-five days a total count of the fish population was made in all three ponds. In the control pond 25 per cent of the stock were missing while the reduction of the Tilapia population in the Lates pond was 62.5 per cent and in the Micropterus pond was 55.0 per cent. The eight Lates had eaten about 750 Tilapia during this time and had gained 600 gm . in weight as a group (it was assumed that no invertebrate food was taken during the experiment). Disregarding differential growth increments and treating each Nile Perch as equal to one another, each had consumed the 4.0 to 8.0 cm . Tilapia (total length) at a rate of 2.68 fish per day. It is also shown that the Black Bass achieved a comparable predation rate of 2.0 to 2.3 fish per day when allowance is made for the death of one Black Bass during the early stages of the experiment.

The total weight increment of the Tilapia during the course of the experiment was 0.5 kg . in spite of the destruction of 62.5 per cent of their numbers in the most heavily predated Nile Perch pond. The Tilapia in the Black Bass pond did better in this respect, showing an increase of 5.9 kg ., but not so well as the control Tilapia which gave a net weight increment of 8.8 kg .

THE ESTABLISHMENT OF A PREY POPULATION AND SUBSEQUENT PREDATION

In the experiments described so far there was little known about the establishment of the prey population. Some information about this aspect of fish-culture was gained by stocking a control pond and a predator prey pond, each of 0.25 acres, with three pairs of Tilapia nigra and adding twelve small Nile Perch to the predatory-prey pond only. The measurements of the fish used are given in Table A8 which shows the length classes of the original populations and those of the same populations just over five months later.

At the end of the experiment the control pond contained three distinct length frequency modes, each representing a generation amongst the progeny of the original pairs. The predator-prey pond showed a length frequency distribution lacking well marked modes except for a group representing a recent breeding at the lowest limit of the range. Only two of the original twelve Nile Perch were recovered, while all but two parent T. nigra were recaptured. The Nile Perch had an average total length of 30.6 em . showing an average monthly growth increment of 3.7 em . At the beginning there were no fish prey of a suitable size present to support the Nile Perch, but at the end of the experiment they had the capacity to prey upon all Tilapia less than 8 ern. total length since the maximum size of prey for Lates approximates to 25 per cent of the predator length (Hamblyn in press). Observations showed the presence of small Tilapia in both ponds three weeks after the experiment began, so the Nile Perch may have utilized food other than Tilapia (e.g. Odonata nymphs, Xenopus larvae) until this time.

The length-frequency distributions given in Table A8 suggest that the first Tilapia progeny in the predator-prey pond suffered the heaviest predation (the 12.0 em . group was weak in this pond) and that the smaller Tilapia are most vulnerable. In this context Hamblyn (in press) has shown that although small Lates take small prey and that large fish can take larger prey, large fish still feed largely upon small prey.

References

CRIDLAND, C. C. (1960).-Laboratory experiments on the growth of Tilapia spp.; (i) the value of various foods. Hydrobiologia, 15 (1-2), 135-160.

HAMBLYN, E. L. (1960).-Tilapia ziltii (Gervais) from South Bay, Buhuka, Lake Albert. EAFFRO Annual Report for 1959.

HAMBLYN, E. L. (in press).-The food and feeding habits of the Nile Perch Lates niloticus (Pisces: Centropomidae).

HICKLING, C. F. (1962).-Fish Culture. Faber and Faber Ltd., London.
SCHNABEL, Z. E. (1938).-Tbe estimation of the total fish population in a lake, in ROUNESFELL, G. A., and EVERHART, W. H. (1963). Fishery Science, its methods and applications. John Wiley and Sons Inc., New York.

TABLE AI-THE LENGTH FREQUENCY DISTRIBUTIONS OF THE PRINCIPAL Tilapia SPECIES IN the 4-AcRE DAM AT SAGANA ON 19-1-62 AND 22-3-62

NOTE:-The division at 5.0 em . represents the lowest size limit retained by the 16 mm . seine-net.
TABLE A2-8TATISTICS FROM SUCCESSIVE SAMPLES OF THE PRINCIPAL Tilapia SPECIES In THE 4-AcRE DAM AT SAGANA ON 22-3-62

Sample Number	Species	Number	Range of Total Length (em.)	Weight (gm.)	Mean Weight (gm.)
1	T. melanopleura	57	4.0-9'0	170	$3 \cdot 2$
	T. nigra \quad.	46	3,5-11,0	445	9.7
2	T. melanopleura	65	4.0-7.0	165	$2 \cdot 5$
	T. nigra \quad.	32	3'5-11,5	255	$8 \cdot 2$
3	T. melonopleura	57	3,5-7.9	145	$2 \cdot 5$
	T. nigra .	41	4.0-11.0	395	$9 \cdot 6$
4	T. melanopleura	54	3,5-9.0	185	$3 \cdot 4$
	T. nigra	46	4.0-15.0	610	$13 \cdot 3$
5	T. melanopleura	7	$2,5-7 \cdot 0$		
	T. nigra	110	$\left.2 \cdot 0-11^{\prime} 5\right\}^{>}$	1,085	-
6	T. melanopleura	28		524	-
	T. nigra \quad.	71	2.0-11.9		-
7	T. melanopleura T. nigra	27 76	$\left.\begin{array}{ll} 2 \cdot 0-8 \cdot 9 \\ 2,5-11 \end{array}\right\|^{\zeta}$	545	-
8	T. melanopleura	29	4.0-7.4 ${ }^{\text {a }}$,		
	T. nigra ${ }^{\text {a }}$.	76	3,5-10,5 ${ }^{\text {> }}$	580	-
9	T. melanopleura	39	$\left.2 \cdot 0-12 \cdot 5{ }^{\prime}\right\rangle$	665	
	T. nigra \quad.	88	$2 \cdot 0-11 \cdot 4{ }^{\circ}$	665	-
10	T. melanopleura	50 50		160	-
11	T. migra ${ }^{\text {T. }}$, ${ }^{\text {anopleura }}$	60	2.0- $2 \cdot 0 \cdot 10 \cdot 4$		
	T. nigra .	37	2.0-9.9 ${ }^{\text {2 }}$ >	217	-
12	T. melanopleura	47	$3 \cdot 0-8.9{ }^{\text {a }}$		
	T. nigra	53	1.0-10.0 ${ }^{\text {> }}$	215	-

| Date | Time
 (hr.) | Water
 Level | Method of Capture | Total
 Number
 of Fish | Total
 Weight of |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 21-3-62 | 1100 | Fish (kg.) | | | |

TABLE A4-LENGTH FREQUENCY DISTRIBUTION OF Lates niloticus IN THE LuwALA SUGAR ESTATE DAM

Total length (em.)	16-10-59	5-10-61	18-1-62	Numbers of Fish		
				26-1-62	3-2-62	16-2-62
6.0-7.9	1	-	-	-	-	-
8.0-9.9	3	2	1	-	-	-
10.0-11.9	3	5	1	2	2	-
12.0-13.9	5	6	6	5	2	2
14.0-15.9	2	4	5	4	3	3
16.0-17.9	1	3	-	2	2	2
18.0-19.9	-	2	3	2	-	-
20.0-21.9	-	-	1	1	1	-
22.0-23.9	-	-	2	2	4	-
24.0-25.9	-	-	1	-	2	1
26.0-27.9	-	-	-	-	3	1
28.0-29.9	-	-	1	-	-	1
30.0-31.9	-	-	-	1	1	-
32.0-33.9	-	-	-	-	-	-
34.0-35.9	-	-	2	-	-	-
36.0	-	-	-	-	-	-
TOTALS	15	22	23	19	20	10

table a5-Population estimates for Tilapia zillii and Lates niloticus in the luwala sugar estate dam
(Within the selection range of a 16 em . seine-net)

table A6-LENGTH FREQUENCY DISTRIbUTIONS of Tilapia zillii in THE LUWALA SUGAR EStATE DAM

Total Length (em.)	13-8-59	15-10-60	6-1-61	22-12-61	29-12-61	18-1-62	26-1-62	3-2-62	7-2-62	16-2-62
4.0-4.9	1					1		3		
5.0-5.9 ..	11			9	3	3	3			
6.0-6.9 ..	6	3	9	45	2	6	1	1		
7.0-7.9 .	34	10	46	53	15	6	1	3		
8.0-8.9	90	18	32	31	21	16	3	5		
9.0-9.9 ..	66	42	42	11	48	20	10	8		
10.0-10.9 ..	41	88	31	15	24	29	14	9	Results	Results
11.0-11.9 ..	21	94	19	7	13	17	29	13	not	not
12.0-12.9 ..	26	43	5	7	1	10	13	13	significant	significant
13.0-13.9 ..	35	50	6	3	1	7	11	3		
14.0-14.9 ..	26	76	7	14		2	12	3		
15.0-15.9 ..	8	56	9	24	,	1	10	4		
16.0-16.9 ..	1	20		19	1	1	1			
17.0-17.9 ..	1	6	1	1			2			
$18 \cdot 0-18 \cdot 9$ $19 \cdot 0-19 \cdot 9$		1	1				4	1		
20-0-20.9 .						1	1	1		
TOTALS	367	508	208	239	130	120	116	67	4	24

TABLE A7-THE POPULATION OF Fish IN THE I-AcRE DAMS AT SAGANA DURING PREDATION PRESSURE EXPERIMENTS

Pond	Fish	$\begin{aligned} & \text { Number } \\ & \text { 20-12-60 } \end{aligned}$	$\begin{aligned} & \text { Number } \\ & 23-1-61 \end{aligned}$	$\begin{gathered} \text { Weight } \\ 20-12-60 \\ \text { (kg.) } \end{gathered}$	Weight 23-1-61 (kg.)	Weight increment (kg.)
Control	Prey	2,000	1,441	$4 \cdot 4$	13.2	8.8
(A2)	Predator	nil	nil	nil	nil	nil
Lates	Prey .	2,000	748	$4 \cdot 4$	4.9	$0 \cdot 5$
(A5)	Predator	8	8	5'7	$6 \cdot 3$	$0 \cdot 6$
Micropterus	Prey	2,000	869	$4 \cdot 4$	$10 \cdot 3$	$5 \cdot 9$
(A7)	Predator	8	7	$7 \cdot 6$	$5 \cdot 45$	-

TABLE A8-LENGTH FREQUENCY DISTRIBUTIONS OF PREDATORS AND PREY DURING Prey Population establishment experiments at sagana

Total Length (em.)	($\mathrm{M}=$ Male $\mathrm{F}=$ Female) Population Numbers on 31-1-61			Population Numbers on 5-7-61		
	Control	Predation and Prey Lates \| T. nigra		Control	Predation and Prey	
	T. nigra			T. nigra	T. nigra	Lates
2.0-2.9 "		-		8	-	
3.0-3.9 ..	-	-		97	19	
4.0-4.9..	-		-	7		
5.0-5.9	-	-	-	201	70	
6.0-6.9 ..	-	-	-	22	88	
7.0-7.9..	-	-	-	-	77	
8.0-8.9..		-	-	-	59	E
9.0-9.9 ..	-	-	-	-	85	\cdots
10'0-10.9 ..	-	2	-	1	42	\cdots
11.0-11.9	-	4	-	32	22	\cdots
12.0-12.9	-	3	-	47	11	¢
13.0-13.9 ..	-	2	-	37	3	E ©
14.0-14.9..	-	0	IF	12	4	
15.0-15.9..	-	1	IF	16	3	二
16.0-16.9..	3F	-	2F	11	6	$\stackrel{0}{*}$
17'0-17.9 .	-	-	-	-	-	<
18.0-18.9 .	-	-	-	1	.	
19.0-19.9 ..	-	-	-	-	-	
20.0-20.9..	-	-	-	-	-	
21.0-21'9 "	-	-	-	-	-	
22.0-22.9..	3 M	-	3 M	1	2	
23.0-23.9 .	-	-	-	2		

